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Abstract: The avoidance of collisions among ships requires addressing various factors such as
perception, decision-making, and control. These factors pose many challenges for autonomous
collision avoidance. Traditional collision avoidance methods have encountered significant difficulties
when used in autonomous collision avoidance. They are challenged to cope with the changing
environment and harsh motion constraints. In the actual navigation of ships, it is necessary to carry
out decision-making and control under the constraints of ship manipulation and risk. From the
implementation process perspective, it is a typical sequential anthropomorphic decision-making
problem. In order to solve the sequential decision problem, this paper improves DQN by setting
a priority for sample collection and adopting non-uniform sampling, and it is applied to realize
the intelligent collision avoidance of ships. It also verifies the performance of the algorithm in the
simulation environment.

Keywords: ship collision avoidance; decision-making problem; reinforcement learning; DQN

1. Introduction

With the rise of artificial intelligence, developing the intelligence of transportation
vehicles has become one of the essential objectives of artificial intelligence research and ex-
ploration. The intelligent navigation of ships is of great practical significance for improving
the economic benefits of shipping enterprises. The development of artificial intelligence
technology, especially reinforcement learning and its related methods, has complied with
the requirements of intelligent ship collision avoidance and intelligent navigation [1,2].
Reinforcement learning emphasizes the agent’s learning from the environment to behavior
mapping, seeks the correct action decision by maximizing the income, and combines the
profit and loss considerations in the operation process, which is a more appropriate method
system in the intelligent collision avoidance of ships. Therefore, the essence of intelligent
collision avoidance under the reinforcement learning system is to allow the agent to make
the sequential decision to maximize the benefits under the balance of profit and loss.

The function of ship path planning is to complete the navigation index of the current
and target position of the ship under a restricted navigation area and among obstacles,
combined with the external environment and ship conditions. Obstacle avoidance is to
avoid obstacles in an unknown dynamic environment during navigation. During driving,
the operator will adjust the local path of the ship. The purpose of the traditional method is
to provide a complete deterministic solution at the decision-making level, including manual
rules and automatic execution, by analyzing the fusion information obtained by the ship
at each decision-making time. At the core of the traditional method is the decision rules
that people make according to the problem situation. Liu et al. [3] used the Fast Marching
Method (FMM) to generate collision avoidance paths for the USV in a dynamic environment
to ensure the safety of the USV. Wang et al. [4] combined A * and B spline methods to
generate a feasible path without obstacles. Zereik et al. [5] described a navigation guidance
and control system based on LOS and applied it to uncrewed ships considering only static
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obstacles. Chen et al. [6] proposed a collision avoidance method for USV based on Rapidly-
exploring Random Tree (RRT) and conducted a simulation verification on the MATLAB
platform. Szymak et al. [7] proposed an improved neuro-fuzzy algorithm to construct the
collision avoidance system of USV. When the constraints become more complex and the
variable dimension increases, the traditional path planning algorithm has some defects,
such as high time complexity, and quickly falls into local optimization.

Reinforcement learning [8,9] has developed rapidly in intelligent navigation because
of its simple structure and strong adaptability. It was first proposed by Sutton, whose
essence is to learn from the interaction. In recent years, there has been a boom in theoretical
research and technical implementation of reinforcement learning, especially in the Deep Q-
Network (DQN) algorithm [10,11] proposed by the Google team. In the shipping industry,
reinforcement learning is widely used in collision avoidance. By integrating the navigation
prior knowledge to design the ship’s perception state and reward function, the action space
can be designed based on the course control, and the DQN method can be applied to the ship
collision avoidance. Deep learning has a strong ability for data analysis and perception. It can
obtain helpful knowledge from multimodal information to strengthen learning without prior
knowledge. Through the interaction between the agent and the environment, it can learn
the best strategy to maximize the accumulated income. Ru et al. [12] proposed an intelligent
path planning method based on deep reinforcement learning, which solved the problem of
vehicle tracking error and over-dependence in traditional intelligent driving vehicle path
planning. Saito et al. [13] proposed and evaluated a Tabu list-based DQN (TLS-DQN) for
AAV mobility control; Yang et al. [14] studied the application of the DQN algorithm in deep
reinforcement learning algorithms. Combining the Q-learning algorithm with the experience
playback mechanism, the target Q value is generated to solve the multi-robot path planning
problem; Yi et al. [15] improved DQN as a typical deep reinforcement learning method. This
article decouples the choice of action and the target value calculation. At the same time,
the influence of a static environment is also considered to improve the generalization ability.

The remaining structure of this paper is as follows: the second section describes
the ship route planning problem; the third section introduces the DQN of reinforcement
learning in detail; the fourth section displays the test results; the fifth section provides the
conclusion of the paper.

2. Related Work

Research on intelligent collision avoidance of ships can be divided into actual ship
research and virtual simulation. As a modern means of transportation, ships have high
costs and high energy consumption. Therefore, conducting intelligent collision avoidance
experiments with accurate ships in natural channels is costly and inefficient. It also faces
possible safety problems caused by uncontrollable experimental conditions. If the navi-
gation operation is slightly careless, it can cause serious safety concerns and substantial
economic losses. Moreover, the actual ship is under the complex interference of external
wind and waves, and the test scenarios and results have strong randomness and poor
repeatability [16]. Therefore, this paper uses the virtual simulation software to simulate the
ship navigation scene, build the shipping agent, restore the ship navigation state, and train
the ship collision avoidance intelligence through the simulation experiment.

The ship’s motion is based on navigation control, including positioning. Nevertheless,
path planning is an essential aspect of navigation. Path planning aims to find an optimal
path that meets the requirement of not intersecting with any obstacle from beginning to end
in a specific environment. The path generated by ship path planning plays a navigation role
in its movement, guiding the ship to start from the current point, avoid obstacles and reach
the target point. The navigation control module includes global path planning and local
path planning. Sang et al. [17] proposed a deterministic method called multiple sub-target
artificial potential field (MTAPF). MTAPF belongs to the local path planning algorithm and
refers to the globally optimal path generated through an improved heuristic A∗ algorithm.
This algorithm divides the optimal path into multiple sub-target points, forming a sequence
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of sub-target points, using the improved A∗ algorithm to obtain the optimal path, using
the MTAPF algorithm for local path planning, and adopting a priority strategy to prevent
collisions in local path planning. Lyu et al. [18] proposed a real-time and deterministic path-
planning method for autonomous ships in complex and dynamic navigation environments.
The improved artificial potential field method includes improved repulsive potential field
function and corresponding virtual forces to solve the collision avoidance problem of
dynamic targets and static obstacles, including emergencies. He et al. [19] proposed a
dynamic path-planning algorithm based on the A-star algorithm and ship navigation rules.
The improved algorithm’s dynamic search mechanism, considering time factors, aims to
avoid collisions when moving obstacles are known. The function of global path planning
is to establish a viable path from the starting point to the target point according to the
existing electronic map. Local path planning, also known as local obstacle avoidance,
refers to perceiving unknown obstacles in ship operation and redefining the local path to
bypass the obstacles and move towards the target point. When the global and local path
planning algorithms work together, the ship can complete the autonomous motion from the
starting point to the target point. As a core function, autonomous navigation is the key to
realizing ship perception and motion. Path planning and positioning are essential to the
ship navigation control system and constitute effective ways to achieve ship autonomy and
intelligence. The simulation of ship collision avoidance path planning is divided into two
aspects. The first is to simulate the environment model of areas with moving obstacles and
accessible moving areas. The second step is to select the appropriate path search algorithm
according to the established environment model to achieve fast and real-time path planning.

2.1. Ship Navigation Environment Modeling

For ship collision avoidance, simulation modeling of the navigation environment is es-
sential. Compared with the road, the ship route contains more complex factors. Specifically,
these factors will lead to fundamental differences in static collision avoidance, dynamic col-
lision avoidance, and collaborative collision avoidance decision-making, so it is necessary to
conduct modeling and analysis in advance [20]. The navigation environment includes the
following aspects: (1) channel boundary and other boundary elements, including national
boundaries and regional boundaries. (2) Water geographical elements, including intertidal
zones, seabed topography, and navigation obstacles. (3) Various specific regional elements,
including open water areas, restricted areas, port boundaries, and area boundaries. (4) Ma-
rine environmental elements include ocean currents, icebergs, undercurrents, and other
elements in the ocean region. In order to solve the problem of ship collision avoidance,
the channel is simplified according to the task requirements. During channel simulation
modeling, the above channel elements are simplified as navigable and non-navigable zones.

When planning the path, the first consideration is not the specific location of obstacles
in the environment but to divide the environment into several sub-regions with consistent
topological characteristics and connectivity. The topology method builds the network and
finds the topological path in the connection area. However, it can only reflect the intercon-
nection between points in the natural environment and cannot establish an environment
consistent with the geometric shape of the natural environment. If specific geometric
details and paths need to be considered, the path planning method based on free space is
essential. The commonly used methods include the visual graph method [21] and the grid
method [22].

The visual graph method assumes that the agent and obstacle are particles and approx-
imate polygons, respectively. It combines and connects particles, target points, and polygon
vertices using visual line segments. This segment cannot pass through obstacles simulated
by polygons. The path planning problem is transformed into a group of shortest line
segments from the search starting point to the target point. Because the search path is a
segment connecting the vertices of the obstacle, the proxy can obtain collision information
with the obstacle. Many environmental barriers and feature information exist, extending
the path search time. At the same time, the visual graph method has poor flexibility, lacks
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adaptability to changing environments and has real-time constraints. In addition, it cannot
guarantee that the path sought is the most optimal path globally.

The grid method uses a free grid and an obstacle grid, two grids with different attributes
and sequence numbers to describe the environment. There are no obstacles in the free grid
area, obstacles are divided into the obstacle grid area. The ship collision avoidance problem is
transformed into a set of orderly feasible grids in the search workspace. This method takes the
grid as the basic unit to record the agent’s environment information. If the grid size is large,
the description of the feature map will be rough. Thus, the quality of the planned path could
be better, and the error could be more considerable. On the contrary, the more accurate the
description of environmental obstacles, the better the quality of the planned path. It makes the
storage space and search algorithm more complex. Therefore, the grid method should select
an appropriate grid-scale and corresponding algorithm according to the specific application
environment to optimize the ordered set of search grids. Grid graphs can describe many
characteristics of the navigation environment and achieve the best consumption of time and
space. Therefore, a grid map is widely used to describe the environment.

Due to the huge cost in the real environment, in order to verify the autonomous navi-
gation function of the ship, we will simulate the whole ship navigation space. The whole
navigation is carried out in feasible waters with obstacles. Obstacles do not represent fixed
islands, but also shallow waters, wave areas and inaccessible locations [23]. In the whole
navigation area, every position experienced by the ship is affected by wind and waves.
Waves more than 3 m are dangerous areas [24]. The influence of wind and waves on the
ship is also considered in the article. Marine meteorological data are from European Centre
for Medium-Range Weather Forecasts(ECMWF) [25]. Figure 1 shows the path planning
environment modeling of this paper. The width and height set by the test simulation are
12 × 12, and the cell is set to 40 pixels. The position of the robot represents the starting
point, the green square represents the obstacle, and the flag represents the target point.
The agent needs to find a path from the starting point to the target point in the shortest
cost, which should avoid obstacles perfectly. In this paper, dynamic means that in addition
to the starting point, obstacles and target point are randomly generated in the process of
agent travel. Dynamic obstacle modeling is shown in Figure 2.

Figure 1. Environment modeling of path planning.
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Figure 2. Dynamic environment modeling of path planning.

2.2. Algorithm of Path Planning

The goal of ship collision avoidance is to complete the navigation planning of the
current and target position of the ship in combination with the external environment and
the ship situation in the case of restricted navigation and obstacles. The obstacle avoidance
problem of ships is that the ship perceives the unknown environment during the navigation
process to avoid adverse factors and achieve the goal of safe navigation. During navigation,
the operator will adjust the local path of the ship. Traditional ship collision avoidance
algorithms, such as A∗ [19], artificial potential field [26], RRT [27], and other models have
limitations such as being prone to fall into local optimal solutions, low search efficiency,
or slow calculation speed.

Although the research on intelligent collision avoidance of ships has made significant
progress in recent years, the above algorithms have their advantages. However, no intelli-
gent collision avoidance method that can replace human pilots has been found with the
extensive application of deep reinforcement learning in robots, games, image processing,
medicine, and other fields [28–31]. In particular, deep reinforcement learning has made a
breakthrough in intelligent driving and uncrewed vehicles. The successful application of
reinforcement learning in the field of intelligent vehicles has quickly extended its experience
to collision avoidance algorithms in the field of intelligent ships. The reinforcement learning
method has developed rapidly in intelligent navigation because of its simple structure and
strong adaptability. It was first proposed by Sutton, whose essence is to learn from the
interaction. In recent years, especially the Deep Q-Network (DQN) algorithm proposed by
the Google team has caused a boom in theoretical research and technical implementation
of reinforcement learning. In the shipping industry, reinforcement learning is widely used
in collision avoidance to integrate the navigation prior knowledge to design the ship’s
perception state and reward function, design the action space based on the course control,
and apply the DQN method to the ship collision avoidance. Wang et al. [32] developed a
new intelligent collision avoidance algorithm based on approximate representation rein-
forcement learning (AR-RL) and applied it to ship collision avoidance in continuous space.
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Zhai et al. [33] proposed a multi-ship automatic collision avoidance method based on a
double deep Q network (DDQN) with prioritized experience replay.

3. The Proposed Deep Q Network(DQN)

The development of AI technology, especially reinforcement learning and its related
methods, has adapted well to the needs of intelligent collision avoidance of ships. Re-
inforcement learning learns strategies through the interaction between agents and the
environment to maximize returns or achieve specific goals. It can obtain helpful knowledge
from multimodal information without prior knowledge. Through the interaction between
the agent and the environment, it can learn the best strategy to maximize the accumulated
income. Therefore, the essence of intelligent collision avoidance under the reinforcement
learning method is to let the agent make the sequential decision to maximize the benefits
under the balance of profit and loss, which is closer to human driving intelligence. DQN
(Deep Q-network) refers to a Q-learning algorithm [34,35] based on deep learning. It mainly
combines the value function approximation and neural network technology and uses the
target network and experience playback to train the network. DQN is a value-based algo-
rithm. In the value-based algorithm, what they learn is not the strategy but the evaluation
of the action. In DQN, the state is entered. The neural network extracts features, and the Q
value of the action is back-propagated to the evaluation network through the loss function.

Among many methods, the reinforcement learning algorithm is more suitable [36–38].
It can allow the ship agent to interact with the environment in real-time and improve
the collision avoidance ability by constantly trying to accumulate experience, which is
very similar to the experience accumulation process of people. DQN can directly output
the action decisions agents should take in different states, thus highly simulating human
decisions and actions in real situations. In addition, DQN can also fully consider the
constraints of navigation rules and conventions when designing the value function. It
is a collision avoidance method that can be used in actual navigation. The agents in
DQN implement new actions according to specific strategies according to the rewards and
environmental feedback of the new status. This learning method lets agents know which
actions they should take in a specific state to maximize their rewards.

3.1. The Original DQN

Reinforcement learning is a typical Markov decision process (MDP) [39]. The envi-
ronment information obtained in the ship traveling process is insufficient, so the Markov
decision process modeled in this paper is a partially observable Markov decision process
(POMDP). POMDP can use (S, A, Psa, R, ω, O, γ) description, where S = s1, s2, . . . , sn is a
set of state space, and si represents the state of step i. A = a1, a2, . . . , an is the action space
set, and ai indicates the action of the step i. Psa is the state transition probability matrix.
R is the reward function. The probability of observation is ω. O is the observation space.
γ is the discount factor. The value function iteration method of DQN and Q-learning is
very similar. Q-learning directly uses the subsequent state data of the iteration for learning.
Q-learning is based on the optimal action-value function Q∗. Both algorithms adopt the
optimal Behrman equation to make the agent learn some data, as shown Equation (1) .

Q∗(st, at) = Est+1∼p(·|st ,at)[Rt + γmax
A∈A

Q∗(St+1, A)|St = st, At = at] (1)

Equation (1) is approximated. Q∗(st, at) on the left of the Equation (1) can be ap-
proximated as Q̃(st, at). Q̃(st, at) is made at step t. On the right of the Equation (1), the
mathematical expectation is about the state St+1 at the next step. If the current state st is
known, the agent executes the action at according to strategy, and the environment will
return the reward rt and obtain the new state st+1. Based on rt and st+1, the expectation is
calculated by Monte Carlo approximation, as shown in Equation (2).

rt + γmax
a∈A

Q∗(st+1, a) (2)



Algorithms 2023, 16, 220 7 of 19

Further, Q∗ in Equation (2) is approximated by Q̃. Equation (3) is used to estimate
Q∗(st, at) at step t + 1, it is called Temporary Difference (TD). Q̃(st, at) and ŷt is the estima-
tion with regard to optimal action value Q∗(st, at). Because ŷt includes reward rt partially
based on real observations, it is believed that ŷt is the more reliable. So, it is encouraged
Q̃(st, at)) to be closed to ŷt. Therefore, Equation (4) is used to update Q̃.

ŷt , rt + γmax
a∈A

Q̃(st+1, a) (3)

Q̃(st, at)← (1− α)Q̃(st, at) + αŷt (4)

However, there are some differences between DQN and Q-learning. The DQN consists
of two networks–network Q and target network Q̃. At initialization, the structure of the
target network Q̃ and Q are the same. In each episode, the agent will obtain a state st and
take an action at when interacting with the environment. Network Q based on ε-greedy is
used to evaluate the Q-value function. Then, the agent obtains the reward rt and enters the
state st+1. Therefore, some data (st, at, rt, st+1) will be collected and input to the experience
replay. If the experience replay is full, some old data will be discarded. Next, the sampled
data in the playback buffer is calculated by the target network Q̃, as shown in Equation (3).

The detailed operation of experience playback is as follows: first, randomly select
n batches of data from the experience playback pool and record it as (st, at, rt, st+1),
Q̃now, Q̃new; secondly, the Q̃now at position (sj, aj) is expressed as Equation (5); thirdly,
the maximum value of Q̃now at sj+1 is calculated as Equation (6); fourthly, Equation (7) is
used to calculate TD target; fifth, Equation (8) is adopted to update the element at (sj, aj).

q̂j = Q̃now(sj, aj) (5)

ˆqj+1 = max
a

Q̃now(sj+1, a) (6)

ŷj = rj + γ ˆqj+1, δj = q̂j − ŷj (7)

Q̃new(sj, aj)← (1− α)Q̃now(sj, aj) + αδj (8)

3.2. The Improved DQN

DQN uses prioritized experience replay (PER). When sampling data train the Q net-
work, the data will be uniformly sampled from the playback buffer. This is not necessarily
the best method because some data may be more critical. Assuming that some data have
been sampled before, it was found that the timing difference error of these data is enormous.
The timing difference error is the difference between the output of the network and the
target, which means that these data are relatively challenging to train when training the
network. Since it is not easy to train, we should give them a high probability of being
sampled, that is, give them a priority. In this way, we will consider the data that are not
good for training. When using PER, we will change the sampling process and the method of
updating parameters because of changing the sampling process. So PER not only changes
the distribution of sampling data but also changes the training process.

Ordinary experience playback obtains a sample every time and uses it to update DQN
parameters. Prioritized experience replay assigns a weight to each sample and performs
non-uniform random sampling according to the weight. If DQN has an inaccurate judgment
on the value of (sj, aj), that is, Q is far from Q∗ , the sample should have a higher weight.
The data generated during navigation have different levels of importance. In path planning,
agents will generate many such samples. However, the ship will avoid obstacles during the
navigation process, and these small samples will significantly impact the path. Therefore,
the data on avoiding obstacles should have a higher weight and receive more attention.
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Samples should have different degrees of attention. We can determine which samples
are more important according to the absolute value of TD error. If the absolute value
of TD error δj is large, which indicates that the current evaluation of the real value of
(sj, aj) is inaccurate. Then the higher weight should be set for (sj, aj, rj, sj+1). In this paper,
Equation (9) is used to calculate the sampling probability. If uniform sampling is used,
all samples have the same learning rate of alpha. If non-uniform sampling is adopted,
the learning rate alpha must be adjusted according to the sampling probability. Set the
learning rate as Equation (10).

pj ∝ |δj|+ ε (9)

pj =
pa

j

∑k pa
k

(10)

where, ε is a small number to prevent the sampling probability from approaching 0. β is
a super parameter that needs to be adjusted. We take multi-step updating to make the Q
network as close as possible to the target value. The multi-step method combines the Monte
Carlo method and the time series difference method, so it has not only the advantages and
disadvantages of the Monte Carlo method but also the advantages and disadvantages of
the time series difference method. Previously, only a particular step was sampled, so the
data obtained is accurate, and the Q value is estimated. Now there are more steps to sample
and only N steps to estimate the value, so the impact of the estimated part will be relatively
small. Of course, the disadvantages of the multi-step method are the same as those of the
Monte Carlo method. Because there are many items, the total variance of N items will be
more significant. However, we can adjust the value of N to balance the variance and the
inaccurate Q value. The whole algorithm flow is shown in Algorithm 1.

Algorithm 1 DQN based on prioritized experience replay and multi-step updating

Initialize Q and Q̃, let Q = Q̃ , b, β, γ ;
for e = 1 to episodes

repeat;
Initialization status st, perform action at based on Q(ε -greedy strategy);
obtain rt and the new state st+1;
Store N samples (si, ai, ri, si+1) to experience playback pool;
Prioritized experience replay and multi-step update Q;
Non-uniform sampling from experience playback pool with Equation (9) ;
Calculate the target value with Equation (7);
Update the parameters of Q(si ,ai)

so that Q is as close to y as possible;
Reset Q = Q̃ every m update;

end for

4. Experiment
4.1. Environment and Parameter Settings

The setting of the test running environment of the paper is shown in Table 1. The
experiments in this paper are based on the following equipment.

Table 1. Experimental environment.

Configuration Parameters

Operating system CentOS Linux release 7.6.1810 (Core)
Memory 754 G

CPU Intel(R) Xeon(R) Platinum 8260 CPU
Basic frequency 2.40 GHZ

Programing language Python 3.8.3
Graphics card NVIDIA Corporation TU102GL (rev a1)
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Note that γ = 0 means that the agent only cares about the recent rewards, while γ = 1
makes it committed to higher rewards in the long term. If the discount factor reaches
or exceeds 1, the action value Q may diverge. In this case, the learning efficiency can
be improved by gradually increasing the discount factor from a lower value to the final
value. As the number of iterations increases, the value of γ increases from 0.1 to 0.9. the
total number of samples in the experience replay b = 5000. β = 0.3. In the experimental
simulation, the actions taken by the agent are only up, down, left and right.

4.2. Comparison of Test Results

According to the above experimental simulation environment and parameter settings,
the ship path drawn by improved DQN, original DQN, Q-learning algorithm in the case
of obstacles is shown in Figure 3–5. It can be seen from the figure that the ship draws the
shortest navigation path with the improved DQN. Although all three algorithms finally
find the end point, their costs are different. Figures 4 and 5 show the capabilities of the
original DQN and Q-learning in ship path planning, and the two algorithms produce
repeated exploration in some sections. The original DQN performs better than the Q-
learning algorithm. The costs of the three algorithms at given starting point and end point
are shown in Table 2.

Figure 3. The improved DQN for path planning.
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Figure 4. The original DQN for path planning.

Figure 5. The Q-learning for path planning.
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Table 2. Experimental environment

Algorithm The Length of Path

The improved DQN 21
The original DQN 32

The Q-learning 124

In the simulation, when the ship arrives at the destination, the reward value is 1,
and when the ship moves towards the obstacle, the reward value is −1. Moreover, the re-
ward value is 0. The maximum episode setting in the paper is 2000. With the execution
of the episode, the steps and cost of each episode of the ship are shown in Figures 6–11.
In Figure 6, the ship based on the improved DQN algorithm is constantly explored, and the
steps will change dramatically. When the algorithm is executed to the 1750th episode, it
reaches stability. The value of steps is 21. The steps of the original DQN algorithm are
compared, as shown in Figure 7. In the whole episode process, the original DQN has been
in dynamic exploration and can not move towards the established goal due to uniform
sampling. Figure 8 shows the steps performance of Q-learning algorithm. Q-learning has
explored the longest step, but the algorithm is not stable. Figures 9–11 shows the cost of
the whole episode. In this paper, cost is the reward obtained by the ship when it travels
to the target point. It can be seen from the figure that the reward of the improved DQN
algorithm has always been at the maximum in the 1750th episode. The performance of the
other two algorithms is weaker than that of the improved DQN.
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Figure 6. Episode via steps of the improved DQN.
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Figure 7. Episode via steps of the original DQN.
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Figure 8. Episode via steps of the Q-learning.
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Figure 9. Episode via cost of the improved DQN.
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Figure 10. Episode via cost of the original DQN.
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Figure 11. Episode via cost of the Q-learning.

In order to further verify the performance of the improved DQN algorithm, this paper
dynamically generates obstacles in the simulation environment except that the meteorolog-
ical environment remains unchanged. The simulation results are shown in Figures 12–17.
The improved DQN algorithm also performs well in the ship path planning problem with
randomly generated obstacles. Under the complex environment, the improved DQN can
also find a safe and reliable path. As shown in Figures 13 and 16, after little exploration,
the improved DQN algorithm can find a feasible path and reach a steady state. Since the
goal of the algorithm is to obtain the maximum reward, the improved DQN algorithm aims
to pursue the maximum reward. The cost of each episode is shown in Figures 13 and 16.

Figure 12. The improved DQN for the path planning of dynamic obstacle scenario 1.
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Figure 13. Episode via steps of the improved DQN for scenario 1.
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Figure 14. Episode via cost of the improved DQN for scenario 1.
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Figure 15. The improved DQN for the path planning of dynamic obstacle scenario 2.
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Figure 16. Episode via steps of the improved DQN for scenario 2.
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Figure 17. Episode via cost of the improved DQN for scenario 2.

5. Discussion

The complexity of the environment puts forward higher requirements for the rapidity
and flexibility of path planning. The rapid development of artificial intelligence provides an
effective way for path planning of complex problems. This paper improves the experience
replay of DQN algorithm, and it is applied to path planning in complex marine environ-
ments. By sorting and sampling the samples (sj, aj, rj, sj+1) in the experience playback pool,
the higher the value of the samples, the greater the probability of the sampling motivating
the agent to learn correctly. The multi-step update reduces the inaccurate estimation of Q
value and accelerates training. The improved DQN enhances the algorithm’s performance
by training network parameters based on non-uniform sampling by setting sample priority.
In the simulation environment, the unit length of the shortest collision avoidance path
planned by the improved DQN is 21, which is superior to other comparative algorithms.
In the simulation environment of dynamically generating random obstacles, the shortest
collision avoidance path planned by the improved DQN outperforms other comparative
algorithms regarding exploration steps and rewards. The improved DQN algorithm is
applied to ship path simulation and can plan reliable paths in dynamic and static obstacle
environments. Experiments show that this improved DQN reinforcement learning algo-
rithm can be used to solve the path planning problem in complex environments. The ship
simulation environment designed in this article is relatively simple, and exploring DQN
planning collision avoidance paths in more complex environments is more meaningful.
Exploring other technologies to improve DQN performance in solving collision avoidance
path problems is worthy of future research.
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