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Abstract: Pattern mining is a valuable tool for exploratory data analysis, but identifying relevant
patterns for a specific user is challenging. Various interestingness measures have been developed to
evaluate patterns, but they may not efficiently estimate user-specific functions. Learning user-specific
functions by ranking patterns has been proposed, but this requires significant time and training
samples. In this paper, we present a solution that formulates the problem of learning pattern ranking
functions as a multi-criteria decision-making problem. Our approach uses an analytic hierarchy
process (AHP) to elicit weights for different interestingness measures based on user preference. We
also propose an active learning mode with a sensitivity-based heuristic to minimize user ranking
queries while still providing high-quality results. Experiments show that our approach significantly
reduces running time and returns precise pattern ranking while being robust to user mistakes,
compared to state-of-the-art approaches.

Keywords: interactive data mining; machine learning; learning to rank; active learning; multi-criteria
decision making; analytic hierarchy process

1. Introduction

Data mining is a field that focuses on discovering relevant information from data and
transforming it into useful knowledge. One of its significant sub-fields, pattern mining,
involves searching and enumerating significant patterns in data. In recent years, there has
been a notable shift in the pattern mining community from efficiency-based approaches
to methods that can extract more meaningful patterns. Unfortunately, obtaining relevant
results with traditional pattern mining methods can be challenging and time consuming.
There are two main issues: first, a vast number of patterns are discovered, many of which
are redundant. Second, the preferences and domain experts’ background knowledge is not
considered. The significance of incorporating user preferences and knowledge was initially
highlighted by Silberschatz and Tuzhilin [1]. The fundamental concept is to represent the
user’s preferences using objective interestingness measures.

However, as noted in [2], using objective quality measures has limited practical utility
since interestingness is subject to the particular user and task at hand. The interestingness
of a pattern is determined solely based on the data.

In recent years, there has been a growing emphasis on user-centric, interactive, and
anytime pattern mining [3–5]. This paradigm highlights the need to quickly present to
the user some patterns that are likely to be interesting to them, and to obtain feedback
that will influence subsequent iterations of the interactive mining process. An important
aspect of this framework is the ability to learn user-specific functions for ranking patterns
from feedback. Although the idea of learning user-specific ranking functions was first
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investigated in [6], it has been extended in recent years by Boley et al. [4] and Dzyuba
et al. [3,5] in the context of interactive pattern mining. Additionally, Xuguang Bao et al. [7]
and Liang Chang et al. [8] adapted interactive data mining for extracting interesting spatial
co-location patterns. These approaches leverage standard machine learning techniques
to learn weighted vectors based on selected pattern features, such as items, transactions,
and length.

In [3], a linear ranking function is learned using support vector machines (RankingSVM).
In [4,5], the authors proposed using stochastic coordinate descent (SCD) [9] to learn a logistic
function. While these methods enable the exploitation of user feedback to learn ranking
functions, they also increase the computational cost of the learning task, particularly when
the number of pattern–measure pairs used for ranking increases. Nonetheless, a crucial
aspect of this framework is the ability to quickly present a set of patterns to the user and
focus on what may be of interest using interestingness measures.

In this paper, we address the challenge of learning pattern ranking functions as a
multi-criteria decision-making problem. To this end, we propose to use a weighted linear
function to aggregate all the individual measures into a global ranking function. Linear
functions have been widely adopted in learning to rank models because they are simple,
interpretable, and efficient, yet can still effectively capture the underlying relationships
between input features and relevance labels [10,11].

We propose a learning algorithm that is both fast and scalable, which enables us
to maintain the expected weights of measures. Our approach leverages the analytical
hierarchy process (AHP) [12] and a set of user-ranked patterns to learn the weighting vector
of measures. Specifically, we seek to maximize the correlation between the unknown user’s
ranking function and the learned AHP-based ranking function. We previously introduced
this approach in our work [13], where we presented the initial results of the passive version
of the algorithm.

This study presents a new learning algorithm that can operate in both active and
passive modes, specifically designed for pattern ranking. To improve performance in active
mode, a sensitivity-based heuristic is proposed to select more interesting patterns. The
algorithm is explained in detail using a running example. The approach was validated on
large datasets using three different user simulations in both passive and active modes. The
results indicate that the proposed approach is robust and can account for user mistakes and
changes in ranking criteria in interactive learning scenarios. We conducted experiments to
evaluate the effectiveness and efficiency of our approach using association rule mining as a
case study. We have considered the following research questions:

1. Can we efficiently reveal user-specific preferences over all patterns from a sample of
ranked patterns with a weighted linear function? What is the required input data to
make the learning algorithm more effective?

2. How does our new learning method based on AHP compare to the state-of-the-art
method Rank-SVM, for learning user-specific ranking functions?

3. To what extent is our sensitivity heuristic an appropriate choice for query selection in
the context of active learning?

4. How robust is our approach and does it keep the learning consistent when the user
makes mistakes?

Our experiments on various datasets demonstrated that our approach significantly
reduces the running time while accurately ranking patterns compared to state-of-the-art
methods.

The paper is organized as follows: In Section 2, we review the related work in pattern
mining and ranking functions. In Section 3, we provide some necessary preliminaries for
our approach. Section 4 formulates the problem we tackle and describes our proposed
method. A running example is presented in Section 5 to illustrate our approach. In Section 6,
we report and discuss the empirical results of our experiments. Finally, we conclude the
paper in Section 7.
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2. Related Work

Iterative/user-centric pattern mining has gained significant attention in recent years,
where the user is involved in the mining process to improve the mining results by providing
feedback. This approach is particularly useful in domains such as medical diagnosis or
fraud detection, where the user’s domain knowledge is essential.

To make this process more efficient and effective, researchers have been exploring
methods to learn ranking functions that can quickly present patterns to the user based on
their interests. This problem, known as object ranking, has been studied extensively in
machine learning and data mining communities.

One common approach to object ranking is to learn a ranking function based on pair-
wise comparisons. However, these methods can be time-consuming and expensive since
they require a large number of pair-wise comparisons to learn a reliable ranking function.
To address this challenge, researchers have explored alternative methods such as multi-
criteria decision making. In our approach, we use the analytical hierarchy process (AHP) to
learn the measures’ weighting vector, which maximizes the correlation between the user’s
ranking function and the learned AHP-based ranking function. In [6], the authors proposed
a user-centric approach to mining interesting patterns based on the user’s feedback. They
developed a log-linear model for itemsets that considers the user’s prior knowledge about
the items and their relationships. The model was trained using RankingSVM to learn a
ranking function that assigns a score to each itemset. The authors also proposed a belief
model that exploits belief probabilities assigned to transactions for more complex patterns.
The authors demonstrated that their approach outperformed existing methods in terms of
accuracy and efficiency for complex patterns where traditional methods may fail to capture
the user’s preferences.

Dzyuba et al. [3] extended the approach proposed by Xin et al. [6] and used RankingSVM

for active preference learning to rank patterns. However, these methods suffer from
computational inefficiencies, which limit their scalability on large datasets. In contrast, the
AHP-based approach proposed in our work has a linear time complexity and can efficiently
rank a large number of patterns.

In [14], the authors proposed a user-centric generic framework (PRIIME) to learn
ranking functions. To achieve this, regression techniques based on neural networks were
adopted. They assigned a score to each pattern based on user feedback and trained a
regression model on labeled patterns and their corresponding scores. The model predicts
the score of new patterns based on their features and user feedback. The proposed method
outperformed existing methods in terms of accuracy and efficiency and can effectively
mine interesting patterns and provide valuable insights to the user.

In their study, Lee and colleagues [15] investigated changes in the citation patterns of
academics in response to the “evaluation environment” that emerged in academia with the
rise of the World University Rankings (WURs). The authors analyzed papers published
in two higher education journals across three periods: pre-WURs (1990–2003), WURs
implementation (2004–2010), and adaptation to WURs (2011–2017). To compare and rank
first-citation speeds across these periods, they used the non-parametric Kaplan–Meier
method [16]. In [17], the authors investigated the factors that influence website rankings
of search engine result pages, highlighting the top contributors to better rankings. The
study is divided into two parts: a literature review and empirical research. The literature
review identified 24 factors that affect website rankings, with the most common being
backlinks, social media support, keywords in the title tag, website structure, size, loading
time, domain age, and keyword density. In the empirical research, the authors analyzed
the top 15 Google results for three search phrases, taking into account the factors identified
in the literature review. The significance of each factor was measured using Spearman
correlation. The findings revealed that the top factors contributing to higher rankings
are the existence of an SSL certificate on the website, keywords in the URL, the number
of backlinks, text length, and domain age. These results do not perfectly align with the
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literature review, suggesting a potential gap between academic understanding of SEO
factors and their real-world application.

The study by Zimmer et al. [18] investigated the impact of filter bubbles and echo
chambers [19] on the spread of fake news, and analyzed the information behavior patterns
of individuals who reacted to such news. The study aimed to answer two research questions:
(1) whether machines facilitate the dissemination of fake news through the automatic
creation of filter bubbles, and (2) whether echo chambers of fake news are artificially created.
To accomplish this, the authors used a case study approach that involved both quantitative
and qualitative content analysis of online comments and replies on a blog and Reddit,
and an examination of social media ranking algorithms. The findings suggest that filter
bubbles exist, but users’ information behavior primarily feeds them, thus amplifying their
behavioral patterns, while selective exposure to information may result in confirmation
bias, other cognitive structures such as non-argumentative behavior, off-topic behavior,
denial, moral outrage, meta-comments, insults, satire, and the creation of new rumors, also
contribute to the various reactions to fake news. In [7], an efficient interactive approach
was proposed for users to discover their preferred co-location patterns. The approach
consists of a flexible interactive framework, an ontology-based similarity measure between
co-location patterns, a pattern filtering model to express user preferences, and a pruning
scheme to reduce the number of outputs.

The work proposed in [20] presents two significant contributions to the field of
database management systems (DBMS). Firstly, the authors developed an ontology and
methodology that describe essential features and aspects of the DBMS domain, including
various paradigms, query languages, platforms, and specific contexts. This model is popu-
lated with significant individuals (actual DBMSs) by leveraging existing knowledge from
DBpedia and Wikidata, which are free and open machine-processable knowledge bases.
This approach improves the view of the DBMS domain and has the potential to enhance
information integration and search capabilities by creating a specific knowledge graph.
Secondly, the authors designed and developed two knowledge-based web applications
that provide information about DBMSs according to the user’s needs and preferences.
These web systems, which the paper describes, serve as examples of using semantic web
technologies and the proposed knowledge model for educational and pragmatic purposes.

In [8], the authors proposed IDMBS (interactive data mining based on support vector
machine), an interactive mining system that uses SVM to discover user-preferred co-
location patterns. The system includes a filtering algorithm to select patterns, which are
then annotated by the user, and an SVM model to train on these patterns and discover
additional user-preferred co-location patterns.

Our proposed approach tackles the problem of learning a user-specific function for
ranking patterns as a multi-criteria decision-making problem using AHP. Moreover, our
method remains fast when the number of patterns used for ranking increases. Our approach
is novel in that it employs a multi-criteria decision-making methodology (AHP) that, to the
best of our knowledge, has not been used before. Our method is capable of scaling when
dealing with large datasets and is resilient to user mistakes.

Figure 1 depicts the overall methodology of our approach. Our approach operates in
passive learning mode if a user ranking already exists (i.e., S 6= ∅), otherwise it runs in
active mode by following the main steps. First, the sample patterns component selects a
subset of patterns. Then, the pattern selection component selects the most sensitive pairs of
patterns. Next, a query is generated and presented to the user to be ranked. Finally, the
learning weights component computes the weights of the linear function by leveraging the
user feedback. At the end of our learning process, the method provides the current weights
of the linear function.
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Figure 1. Methodology of the AHP-based learning to rank.

Most of the related work uses SVM-based algorithms to learn a user-specific function.
According to [21], the worst-case time complexity of the SVM algorithm varies between k2

and k3 on the number of samples k; whereas our approach is linear on k (see Section 4.6).

3. Background

In this section, we provide the necessary background information about pattern
mining, interestingness measures commonly used to evaluate pattern quality, and multi-
criteria decision making using the AHP method.

3.1. Pattern Mining and Interestingness Measures

Data of all types can be represented as a triplet (O,A,L), whereO is a set of objects, A
is a set of attributes, and L is the relational language used to express objects with respect to
a set of attributes. This framework is inspired by the concepts of inductive databases [22,23].
The language L can be used to define various types of datasets. For instance, when L is
a binary relation between attributes and objects (i.e., L ⊆ O ×A), we obtain the classical
itemset mining framework. When L expresses each object as a sequence of attributes, we
obtain a sequential dataset. Finally, when L expresses each object as a graph where nodes
and edges are labeled, we obtain a dataset of graphs.

The goal of data mining is to uncover meaningful patterns or regularities between
objects within large datasets. To evaluate the quality of these patterns and determine the
most relevant ones, interestingness measures are employed.

The field of data mining is actively researching how to measure the interestingness
of discovered patterns with respect to user-specific preferences. Nine concepts have been
introduced to assess the interestingness of patterns: conciseness, generality, reliability,
peculiarity, diversity, novelty, surprisingness, utility, and applicability [24]. Some of these
concepts are correlated, such as surprisingness and applicability, while others are conflict-
ing, such as generality and pecularity, and some are independent, such as novelty and
utility. Depending on the user’s preferences, they may value certain concepts over others.
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To satisfy these preferences, a wide range of measures and aggregation techniques have
been proposed [25].

3.2. Analytical Hierarchy Process (AHP)

AHP is a popular multi-criteria decision-making method created by Saaty [12]. It
involves breaking down the decision problem into a hierarchical structure and deriving
criteria weights from the decision maker using pair-wise comparisons, rather than relying
solely on numerical values.

After constructing a decision problem hierarchy using the AHP method, the important
weights of the criteria can be determined through the following three main steps:

1. To estimate the relative importance of m criteria at a given level, the user is asked to
make pair-wise comparisons between them. These comparisons are used to construct
a pair-wise comparison matrix A of size m×m, where aij represents the importance
of criterion i relative to criterion j. If aij > 1, criterion i is considered more important
than criterion j.
To ensure consistency, the matrix is filled such that aij = 1/aji and aii = 1. AHP uses
a scale from 0 to 9 to quantify the preference degree, where 1 indicates indifference
and 9 indicates absolute preference.

2. After constructing the pair-wise comparison matrix at a given level, various mathe-
matical techniques proposed in the literature can be used to compute the weight vector
w = (w1, . . . , wm)T . These techniques include the eigenvector method (EVM) [26,27]
and distance-based minimization methods, such as the least squares method, logarith-
mic least squares method, weighted least squares method, logarithmic least absolute
values method, and singular value decomposition [28–30]. The EVM method is the
most commonly used and computes the weight vector w by solving the following
characteristic equation: {

A · w = λmax · w
wT1 = 1

(1)

where A is the pair-wise comparison matrix, λmax is the highest eigenvalue of A, and
1 = (1, . . . , 1)T . The constraint ∑m

i=1 wi = 1 is added to help the solving process and
avoid infinite solutions. Note that, if A is positive then the highest eigenvalue is real
(i.e., λmax ∈ R) [30]. Interestingly, Saaty [31] mentioned that the perfect (When the
components of A are exactly obtained as the ratio between weights.) normalized
eigenvector w satisfies the following relation:

aij =
wi
wj

, ∀i, j = 1 . . . m. (2)

In this case, λmax = m only when the comparison matrix is perfectly consistent;
otherwise, λmax is greater than m. This equation explains why some researchers
prefer distance-based methods, which aim to minimize the distance between (aij)m×m
and (wi/wj)m×m directly. However, this leads to a non-linear and difficult-to-solve
problem. Therefore, in this paper, we use the EVM method instead of distance-based
methods.

3. Since AHP does not guarantee the transitivity of the user’s preferences, the pair-wise
comparison may result in inconsistencies. To detect these inconsistencies, a consistency
check is used by calculating the consistency ratio (CR), defined as CR = CI

RI , where
RI is a constant obtained from the random consistency index table of AHP. The
consistency index of the EVM method is computed as follows:

CI =
(λmax − n)

n− 1
(3)

The reliability of the computed weighting vector w (solution to Equation (1)) is as-
sessed by checking whether the CR value is less than 0.1.
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It is common for hierarchies to contain multiple levels of criteria, especially when there
are more than nine criteria. To handle this, it is beneficial to establish a hierarchy based on
existing dependencies between the criteria. This can help optimize the decision-making
process and reduce the number of required pair-wise comparisons. For further information
on this topic, we recommend referring to [30]. However, in this paper, we will not dive into
this aspect. In Example 1, we illustrate the AHP process.

Example 1. Consider a decision problem involving three criteria, where we aim to determine their
relative importance in achieving an overall goal. To do so, we construct a pair-wise comparison
matrix A(aij)3×3, where each element aij represents the relative importance of criterion i compared
to criterion j. The matrix is given as follows:

A =

1 1/2 1/4
2 1 1/2
4 2 1


To determine the weights of the criteria, we can employ the EVM method, which involves

solving the equation Aw = λmaxw. The resulting weight vector is given by w = (w1, w2, w3) =
(1/7, 2/7, 4/7), where each component represents the weight of the corresponding criterion.

4. AHP-Based Learning Approach for Ranking Patterns

We aim to develop a ranking function that combines a set of interestingness measures
while also taking into account user-specific preferences.

4.1. Problem Statement: Learning Pattern Rankings

In this section, we demonstrate that learning a ranking function that incorporates a set
of interestingness measures to approximate user-specific preferences can be formulated
as a multi-criteria decision-making problem. In this context, the criteria correspond to the
interestingness measures.

The objective of this task is to learn a ranking function for patterns based on a sample
of ordered patterns. To accomplish this, we adopt the approach of ordered feedback, where
users are asked to provide a total order over a small set of patterns based on their subjective
interestingness. This approach is inspired by previous research [32].

Let . be a binary preference relation between patterns. A ranking function based on
., denoted by r.(.), takes as input a subset of patterns P ⊆ L and returns as output a
permutation S = 〈Pr1 , Pr2 , . . . , Prn〉 of P , such that |P| = |S| and ∀i, j ∈ [1, n], i < j, Pri . Prj .

We aim to learn the user ranking function denoted by r.u , which is based on the
user preference relation .u. To achieve this, we use a set of interestingness measures
M = {M1, . . . Mm} and their corresponding ranking functions r.M1

, . . . , r.Mm
. The rank of

pattern Pj ∈ P with respect to the interestingness measure Mi is denoted by rankMi (Pj).
Here, (Pk .Mi Pl) means that Mi(Pk) ≥ Mi(Pl).

To frame the ranking problem as a learning problem, we need to find the weights
wi of a linear aggregation function over the measures from a set of ranked patterns that
maximizes the correlation with the user ranking function r.u . Specifically, we aim to find
the coefficients of the following function by solving a multi-criteria optimization problem:

fw(P) = ∑m
i=1 wi . Mi(P) (4)

Our approach leverages user feedback to perform pair-wise comparisons between
measures and estimate their relative importance based on individual measure scores. The
pair-wise comparison results are then aggregated into a matrix, which is used by the
analytic hierarchy process (AHP) to compute the weights wi for each measure.
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4.2. Comparing a Single Measure to a User Ranking

Let S = 〈P1, . . . , Pn〉 be a user ranking of patterns. LetM = {M1, . . . , Mm} be a set of
interestingness measures for patterns. To evaluate how well a particular measure performs
in terms of overall ranking accuracy compared to a user ranking, we use Kendall’s W
concordance coefficient [33]. For a measure Mi and a user ranking S, we define Ki(S) ∈
[0, 1] as the Kendall’s W coefficient between the ranking obtained using Mi and the user
ranking S, where a value of 1 indicates perfect concordance and a value of 0 indicates no
concordance.

Ki(S) = 3α

|S|3−|S|
, α = ∑

|S|
`=1(R` − R̄)2, (5)

where R` = rankMi (P`) + ranku(P`) with P` ∈ S, and R̄ = 1
|S|

|S|
∑
`=1

R`.

4.3. Comparing Two Measures According to a User Ranking

Let Mi and Mj be two measures to be compared based on a given user ranking S. We
can compute the gap ∆i,j(S) = Ki(S)− Kj(S) to determine how much Mi is closer to the
user ranking S than Mj. If ∆i,j(S) ≥ 0, then Mi is closer, otherwise, the converse is true.
When considering a set of user rankings S = {S1, . . . , Sn}, comparing two measures Mi
and Mj on S involves estimating the measure closest to S by averaging the gaps over all
the user rankings in S : ∆i,j =

1
n ∑

Sk∈S
∆i,j(Sk).

4.4. Learning Weights Process

Algorithm 1 implements the learning process that computes a weight vector w (a
weight for each measure) by exploiting the pair-wise comparisons of measures. It takes as
inputs a vector of pair-wise comparisons ∆ and its corresponding index l, a user ranking S,
and a set of measuresM. The learning step is performed at line 2 where for each pair of
measures, we first compute the Kendall W coefficient for each measure i with respect to the
user ranking S (Ki(S)). Then, we compute the gap between the pairs.

Algorithm 1: learnWeights(〈∆, l〉, S,M).
In :Set of measuresM = {M1, . . . , Mm}; user ranking S = 〈P1, . . . , Pn〉;
In Out :Pair comparisons and index parameter 〈∆, l〉;
Out :Weight vector w;

1 A[i, j]← 1, ∀i, j ∈ {1, . . . , m};

2 foreach Mi, Mj ∈ M : i < j do
3 ∆i,j ← l

l+1 ∆i,j +
1

l+1 (Ki(S)− Kj(S));
4 end

5 foreach ∆i,j ∈ ∆ do
6 if ∆i,j < 0 then
7 scale ∆i,j to (−9..− 1); A[j, i]← |∆i,j|; A[i, j]← 1/|∆i,j| ;
8 else
9 scale ∆i,j to (1..9); A[i, j]← ∆i,j; A[j, i]← 1/∆i,j ;

10 end

11 w← solve
(

A · w = λmax · w
subject to ∑m

j=1 wj = 1, wj > 0, ∀j = 1 . . . m.

)
12 return w;
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Algorithm 1 implements the learning process that computes a weight vector w (a weight
for each measure) by exploiting the pair-wise comparisons of measures. It takes as inputs
a vector of pair comparisons ∆ and the corresponding index l, a user ranking S, and a
set of measures M. The function incrementally updates ∆ by taking into account the
previous l user rankings at line 3. At line 5, the AHP matrix is constructed by scaling the
∆i,j comparisons to the AHP values between 1/9 and 9. Once constructed, the criteria
weight vector w is returned in line 12 by solving the minimization problem described in
line 11, using the eigenvector method (EVM) [30].

After learning the weight vector w, we use it to compute the score of a given pattern
Pi by applying a weighted aggregation function:

gw(Pi) = ∑
Mi∈M

wi scale(Mi(P)) (6)

The scale function is used to normalize the interestingness values of the different
measures to a [0, 1] scale so that they can be combined using the weighted aggregation
function.

4.5. AHPRank Algorithm

We propose Algorithm 2 to implement the AHPRank function (Algorithm 1) to learn a
weight vector in a passive/active mode. The algorithm takes as input a set of measuresM,
a set of user-ranked patterns S , and a triplet of parameters 〈P , θ, T〉. Here, P is a collection
of patterns, θ is a sample parameter used in the query generator for active learning, and T
is the maximum number of iterations used as a stopping criterion in the algorithm.

AHPRank initializes the vector of pair comparisons to zero in line 1. If AHPRank is called
with a non-empty S , it runs in passive mode by calling the learnWeights function on the
given user-ranked patterns S (lines 3–6). This produces a weight vector w. Otherwise, it
runs in active mode by submitting T queries to the user (lines 7–15). In the active mode,
the user is asked to rank a subset of patterns proposed by a query generator. Our query
generator is based on a heuristic that exploits the quality of the weights learned from the
previous iterations. The active learning mode follows the following iterative steps:

1. As a first step, a subset of patterns is sampled from the global set of patterns P using a
random sampling approach. At line 10, the function SamplePatterns is called, which
returns a sample P ′ of θ patterns.

2. The SensitivityBasedHeuristic function is used to select a pair of patterns. This
heuristic is designed to select a high-quality pair of patterns to accelerate the conver-
gence of the learning process (see Algorithm 3 in Section 4.5 for details).

3. Interacting with the user obtains feedback through a ranking query (line 12).
4. AHP-based learning of the user ranking function is performed by calling the learnWeights

function on the user-provided ranking query (line 13).

The proposed method is designed to handle large sets of patterns, which can be
computationally expensive to process. To address this issue, we introduce two steps in
the active learning mode. First, we randomly sample a subset of patterns from the global
set P , which reduces the complexity of the second step as well as introduces a diversity
factor. Second, we use a sensitivity-based heuristic to select pairs of patterns that are of
high-quality and diverse.

It is important to determine when to stop the learning process. Our method allows
for a custom stopping criterion, but we also consider the case where a fixed number of
iterations T is used. This simulates the scenario where the user can stop at any time based
on their satisfaction with the learned ranking function.
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Algorithm 2: AHPRank(M,S , 〈P , θ, T〉).
In :Set of measuresM = {M1, . . . , Mm};

Passive mode (S 6= ∅): Set of user-ranked patterns S = {S1, . . . , Sn};
Active mode (S = ∅): Collection of patterns P ; sample size θ ;
number of iterations T;

Output: wt : weighting vector at the last iteration t;

1 foreach ∆i,j ∈ ∆ do ∆i,j ← 0;
2 if S 6= ∅ then
3 foreach Sk ∈ S do
4 wt ← LearnWeights(〈∆, k〉, Sk,M) ; // Learn weights
5 end
6 end
7 else
8 w0 ← 1 ; // Weight vector
9 for t = 1, 2 . . . T do

10 P ′ ← SamplePatterns(P , θ) ; // Step 1
11 Qt ← SensitivityBasedHeuristic(P ′, wt−1,M) ; // Step 2
12 S∗t ← AskRanking(Qt) ; // Step 3
13 wt ← LearnWeights(〈∆, t〉, S∗t ,M) ; // Step 4
14 end
15 end
16 return wt

Algorithm 3: Sensitivity− basedheuristic(P , w,M).
In :Collection of patterns P ; weight vector w; set of measuresM;
Output: Pair : Selected pair of pattern

1 P ′ ← Sort(P , w) ; // sort P according to gw
2 Pair ← ∅;
3 σmin ← +∞;
4 for i ∈ 1..|P ′| : Pi, Pi+1 ∈ P ′ do
5 score← σ(Pi, Pi+1);
6 if score < σmin then
7 σmin ← score;
8 Pair ← {Pi, Pi+1};
9 end

10 end
11 return Pair;

A Pattern Selection Heuristic for AHPRank

Active learning is a challenging task since each learning step needs to enhance the
learned function. The selection of appropriate patterns for the user to rank is the key to
incrementally improve the learning process. However, generating the ideal set of patterns is
a computationally demanding task and is known to be NP-hard [34]. To address this issue,
we propose a heuristic (Algorithm 3) based on sensitivity analysis for AHP models [35].
Our heuristic aims to select a pair of patterns that are close in terms of their overall score
predicted by the learned function relative to the sum of the measure gaps:

σ(Pi, Pj) =

∣∣∣∣∣ gw(Pi)− gw(Pj)

∑m
`=1(M`(Pi)−M`(Pj))

∣∣∣∣∣; i, j ∈ 1 . . . k. (7)
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A successful aggregation should have the property that if two patterns are close
in overall predicted score, they should also be close in their measure values. Thus, the
algorithm will be enforced into learning the correct preferences of the patterns when having
the lowest σ value since the selected pair is surely close in terms of gw values and very
distant on the values of the measures. Example 2 illustrates the selection process of the
Algorithm 3.

Example 2. Suppose we have two patterns P1 and P2 with four interestingness measuresM =
M1, M2, M3, M4. Let P1 = 〈0.1, 0.2, 0.3, 0.7〉, P2 = 〈0.7, 0.3, 0.2, 0.1〉, and let the current learned
weight vector be w = 〈0.25, 0.25, 0.25, 0.25〉. At this stage, gw(P1) = 0.26 and gw(P2) = 0.26.
Although P1 and P2 have the same overall score, their measure values differ. This pair of patterns is
an interesting candidate with σ(P1, P2) = 0, where retrieving the user’s preference between them
can improve the learning process and bring it closer to the user’s ranking.

4.6. Complexity Analysis

Proposition 1 (Time complexity). Algorithm 2 has a time complexity of O(n k) in passive
learning and O(n) in active learning when the number of interestingness measures is bounded.

Proof. Let S = {S1, . . . , Sn} be a set of n user rankings, where k is the size of the largest
ranking St and m is a bounded number of measures inM. Once the pair-wise comparison
matrix A is built, the preference vector of weights w can be computed using various mathe-
matical techniques, including the eigenvector-based method (EVM) [30]. The worst-case
time complexity of the EVM approach is O(m3) [36], which is of constant time complexity
O(1) since m is constant. The time complexity of computing the matrix at line 3 of the
learnWeights function is O(m n k) since Kendall’s W is in O(k) (see Definition (5)). The
complexity of lines 2, 5, and 11 in learnWeights are, respectively, O(n m2 + m n k), O(m2),
and O(m3). Notice that in AHP, it is demonstrated in [37] that the number of criteria is
recommended to be no more than seven ±2. Thus, assuming m is a small and fixed number
of measures, we can set m ≤ 9 and obtain an asymptotic quadratic complexity of O(n k)
when AHP is in passive mode. In other words, the approach takes O(k) for each ranking in
the given S . When AHP is in active mode, where queries are pairs of patterns (k = 2), the
time complexity is linear on the number of queries submitted to the user, i.e., O(n).

It is important to emphasize that in practice, the set S is typically reduced to a single
large ranking in passive learning mode (n = 1 and a large k), and to a set of n queries
consisting of pairs of patterns in active learning mode (large n and k = 2). As a result,
AHPRank can run in linear time, with a complexity that is linear in k for passive mode
and linear in n for active mode. This low complexity makes AHPRank a fast approach for
learning a user ranking function, as supported by the experimental evaluation in Section 6.

5. Running Example

To demonstrate our approach, we utilize an initial set of patterns P = {P1, . . . , P10},
along with a user ranking r.u , and five interestingness measuresM = {M1, . . . , M5}. The
user ranking for P , rankings given by Mi on P , and the AHPRank results are presented in
the columns of Table 1. It is important to note that none of the measures perfectly match
the user ranking (column user).
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Table 1. Running example with 10 patterns and 5 measures.

User S M1–Rank M2–Rank M3–Rank M4–Rank M5–Rank gw–Rank

1 P7 0.95 1 0.48 8 0.79 2 0.30 9 0.80 1 0.72 1
2 P3 0.75 3 0.72 1 0.78 3 0.70 2 0.61 2 0.68 2
3 P6 0.80 2 0.49 7 0.50 9 0.65 4 0.60 3 0.61 3
4 P1 0.47 9 0.47 9 0.76 5 0.56 6 0.59 4 0.54 4
5 P8 0.56 6 0.65 4 0.63 8 0.69 3 0.40 5 0.53 5
6 P10 0.57 5 0.50 6 0.80 1 0.4 8 0.02 10 0.34 8
7 P5 0.62 4 0.62 5 0.66 6 0.57 5 0.27 7 0.48 7
8 P2 0.48 8 0.66 3 0.65 7 0.1 10 0.05 9 0.33 9
9 P4 0.50 7 0.68 2 0.77 4 0.50 7 0.35 6 0.50 6

10 P9 0.02 10 0.1 10 0.05 10 0.8 1 0.25 8 0.18 10

The data presented in Table 1 is utilized by our algorithm to construct the AHP matrix
and learn the weight vector w over the set of interestingness measuresM = {M1, . . . , M5}.
For simplicity, we refer to the AHP algorithm in the passive mode with S = {Sa =
〈P3, P1, P5, P2, P4〉}. In this case, the user’s ranking order is P3 .u P1 .u P5 .u P2 .u P4. AHP
learns the weights by invoking learnWeights on Sa and computing the correlation between
the user rankings of Sa and the rankings of the measures Mi. The matrix in (8) shows the ∆
values for each measure pair. It is worth noting that no two measures perfectly match the
user ranking (column user) for the pattern set P .

To compute ∆1,2(Sa), we need to calculate Kendall’s W K1(Sa) (resp., K2(Sa)) between
the ranking of M1 (resp., M2) and the user ranking Sa. The value of ∆1,2(Sa) is given by
(K1(Sa)− K2(Sa)), which in this case is (0.25− 0.25) = 0. After scaling the values of ∆
to (−9 · · · − 1) for negatives and (1 . . . 9) for positives, we can observe from Equation (8)
that measure M5 is better than M4 with a degree of 6. The same degree of preference is
observed between M5 and M3, while M3 and M4 are indifferent.

∆ =



(M1) (M2) (M3) (M4) (M5)

(M1) 0 0.42 0.42 −0.43
(M2) 0.20 0.28 −0.25
(M3) −0.08 −0.55
(M4) −0.60
(M5)

 Scaling−→



(M1) (M2) (M3) (M4) (M5)

(M1) 1 4 4 −4
(M2) 2 3 −3
(M3) 1 −6
(M4) −6
(M5)

 (8)

Afterwards, the learnWeights function in AHPRank computes the AHP matrix A using
the scaled ∆ matrix (i.e., the average correlation gap) as input:

A =



(M1) (M2) (M3) (M4) (M5)

(M1) 1 1 4 4 1/4
(M2) 1 1 2 3 1/3
(M3) 1/4 1/2 1 1 1/6
(M4) 1/4 1/3 1 1 1/6
(M5) 4 3 6 6 1

 (9)

At the end, AHPRank computes the weighting vector w by solving a minimization problem.
The learned weight vector w = (wM1 , wM2 , wM3 , wM4 , wM5) is (0.24, 0.24, 0.065, 0.065, 0.39),
reflecting the importance of each measure for achieving the goal of the user ranking
function gw.

Using the AHP interestingness measure gw from Equation (6), we can rank all patterns
in P provided in Table 1. AHPRank achieves an overall ranking accuracy of 91% in this
example, correctly ranking the first five patterns, the seventh, and the tenth ones.
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6. Experiments

In this section, we empirically evaluate the effectiveness of our proposed pattern
ranking framework AHPRank. We first introduce our case study on association rules mining
and the different oracles we used to simulate user-specific rankings. Next, we present the
research questions we aimed to answer, the experimental protocol we followed, and the
results we obtained.

6.1. Mining Associations Rules (ARs)

Our approach, AHPRank, is experimentally evaluated on association rule mining, which
is one of the most important and well-studied tasks in data mining. Association rules are
implications of the form X → Y, where X and Y are itemsets such that X ∩ Y = ∅ and
Y 6= ∅. Here, X represents the body of the rule and Y represents its head. The frequency of
an itemset X in a dataset, denoted by f req(X), is the number of transactions of the dataset
containing X. The frequency of a rule X → Y is the frequency of the itemset X ∪Y, that is,
f req(X → Y) = f req(X ∪Y).

Various interestingness measures for association rules have been proposed, including
support, confidence, interest factor, correlation, and entropy. Tan et al. [38] conducted a
study on the usefulness of existing measures in different application types and identified
seven independent groups of consistent measures having similar properties, as shown in
Table 2.

Table 2. Independent subjective measure groups.

Groups Measures

1 Yules Q, Yules Y, Odds Ratio

2 Cosine, Jaccard

3 Laplace, Support

4 φ coefficient, Collective Strength, Piatetsky-Shapiro’s

5 Goodman–Kruskal’s, Gini Index

6 Interest factor, added value, Klosgen K

7 Certainty factor, Mutual Information, Cohen’s κ

To evaluate our approach, we selected one measure from each of the seven groups of
consistent measures identified by Tan et al. [38]. This gave us a set of seven measures that
are independent and have similar properties. These measures are highlighted in bold in
Table 2.

6.2. User Feedback Emulators

Since it can be challenging to evaluate an interactive approach with limited user
feedback, we simulated user feedback by using three different objective target ranking
functions:

• RAND-EMU: The user-specific ranking is equivalent to a random weighted aggregation
function. For each measure Mi, we generate a random weight wi ∈ [0, 1] such that
∑m

i=1 wi = 1.
• LEX-EMU: The user-specific ranking follows a lexicographic order on the measures. We

define a lexicographic order lex onM as lex(M) = 〈l1, . . . , lm〉 such that
⋃m

i=1 li =M.
Given two patterns (P1, P2), P1 is preferred to P2 if (li(P1) > li(P2)) or (li(P1) =
li(P2) ∧ li+1(P1) > li+1(P2)) for i = 1 to m− 1.

• CHI-EMU: χ2 is a statistical measure that is a good candidate to emulate user feed-
back [39], while χ2 can be a complex function to approximate with non-trivial correla-
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tions, it is also a quality measure suggested in [5]. We use χ2 as the target user-specific
ranking function over ARs. For an association rule X → Y, the χ2 value is defined as:

χ2(X → Y) =

(
f req(X → Y)− f req(X) f req(Y)

N

)2

f req(X) f req(Y)
N

, (10)

where N is the number of transactions in the dataset.

6.3. Research Questions

Our evaluation seeks to address the following research questions:

• RQ1: Can we determine a user’s preferences for a set of patterns based on a sample
of ranked patterns? If so, how much data is needed and how long does the learning
process take?

• RQ2: How does our proposed AHP-based learning method compare to the SVM-based
baseline for automatically learning user-specific ranking functions?

• RQ3: How effective is AHPRank in an active learning context? Is the sensitivity heuristic
a good choice for query selection?

• RQ4: How effective is AHPRank in an interactive data mining context?

6.4. Experimental Protocol
6.4.1. Implementation Settings

We implemented our AHPRank approach in Java with two modes: the passive mode,
denoted as AHPRank.0, and the active mode, denoted as AHPRank.1. The code is publicly
available on GitHub at github.com/lirmm/AHPRank. We compared our approach to the
state-of-the-art SVM-based approach RankingSVM [5]. We use RankingSVM.0 to denote
the passive version and RankingSVM.1 to denote the active version, following [3]. All
experiments were conducted on an Intel Core i7 2.4 GHz with 16 GB of RAM, with a
maximum duration of one hour.

Metrics

We use three metrics to evaluate the performance of our approach:

1. The Spearman’s rank correlation coefficient ρ measures the accuracy of the learned
ranking compared to the target ranking over n patterns. It is computed as follows:

ρ = 1− 6 ∑n
i=1(rankL(Pi)− rankT(Pi))

2

n(n2 − 1)
(11)

2. The recall metric R@k evaluates the ability of our approach to identify the top k most
interesting patterns. It is computed as follows:

R@k =
|{rankL(Pi) ≤ k : i ∈ 1..n ∧ rankT(Pi) ≤ k}|

k
(12)

3. CPU time in seconds is measured for both the passive and active modes. The waiting
time between two queries is also recorded for the active mode.

6.5. Benchmark Datasets

We selected several datasets of realistic sizes from the FIMI repository (fimi.uantwerpen.
be/data/, accessed on 19 March 2023). These datasets have different characteristics that
represent various application domains. Table 3 reports the number of transactions (|T |), the
number of items (|I|), the application domain, and the number of valid rules (#Rules) cor-
responding to the initial rules mined using a standard association rules algorithm without
any knowledge about the user, for each dataset. The datasets are presented in ascending
order of #Rules.

fimi.uantwerpen.be/data/
fimi.uantwerpen.be/data/
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Table 3. Dataset Characteristics.

Dataset |T | |I| Density
(%) Type of Data #Rules

Hepatitis 137 68 50.00 Disease 0.5 M
Connect 67,557 129 33.33 Game steps 1 M
Mushroom 8124 119 18.75 Species of mushrooms 1.5 M

T40 100,000 1000 4.20 Synthetic dataset 2 M
Retail 88,162 16,470 0.06 Retail market basket data 2.5 M

T40:T40I10D100K.

6.6. Passive Learning Results

In this section, we address the first two research questions (RQ1 and RQ2). To that
end, we perform a five-fold cross-validation on each dataset, where we randomly select
20% of the rules as training data and use the remaining 80% for testing. This type of
cross-validation allows us to evaluate the effectiveness of the approaches in learning from
relatively small training sets. We report the results averaged over the five folds.

(A) Analyzing the different user feedback emulators. Table 4 presents the results of the
correlation analysis between the user-specific ranking functions (RAND-EMU, LEX-EMU,
and CHI-EMU) and the seven interestingness measures, as well as the virtual best measure
(VBM), which returns the best rank correlation ρ provided by one of the seven measures. The
analysis was performed on all datasets, and the results are reported in terms of Spearman’s
rank correlation coefficient ρ.

Table 4. Correlation results with user ranking for using the emulators.

Datasets
Measures

(1) (2) (3) (4) (5) (6) (7) VBM

RAND-EMU

Hepatitis 0.78 0.92 0.29 0.97 0.79 0.85 0.45 0.97
Connect 0.68 0.62 0.95 0.70 0.60 0.45 0.57 0.95
Mushroom 0.84 0.97 0.28 0.83 0.55 0.73 0.36 0.97
T40 0.71 0.99 0 0.76 0.99 0.99 0 0.99
Retail 0 0.98 0.43 0.71 0.84 0.98 0.51 0.98

LEX-EMU

Hepatitis 0.79 0.64 0 0.68 0.92 0.63 0 0.92
Connect 0.21 0.47 0.76 0.26 0 0.23 0.50 0.76
Mushroom 0.21 0.82 0.38 0.77 0.78 0.37 0 0.82
T40 0.76 0.98 0 0.77 0.99 0.97 0 0.99
Retail 0.10 0.78 0.54 0.49 0.84 0.80 0.58 0.84

CHI-EMU

Hepatitis 0.20 0.92 0.36 0.96 0.73 0.85 0.43 0.96
Connect 0.09 0.15 0 0.02 0.29 0.01 0 0.29
Mushroom 0.51 0.64 0 0.46 0.28 0.88 0 0.88
T40 0.71 0.98 0.17 0.64 0.98 0.99 0.29 0.99
Retail 0 0.94 0.53 0.60 0.83 0.57 0.61 0.94

(1): YulesY, (2): Cosine, (3): Laplace, (4): Leverage, (5): Lambda, (6): InterstFactor, (7): Certainty.

The results show that the correlation between a given measure and a user-specific
ranking function can vary significantly depending on the dataset. For instance, the Lambda

measure is highly correlated with CHI-EMU on the T40 dataset (ρ = 98%), but it is weakly
correlated on the Connect dataset (ρ = 29%). Similarly, the correlation between RAND-EMU

or LEX-EMU and the measures also varies significantly across the datasets. However, the
VBM approach, which selects the best measure for each dataset, achieves a high level of
accuracy (with a mean of 91%). These results suggest that a weighted aggregation of the
selected measures could lead to a good trade-off between accuracy and robustness.
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(B) Comparing AHPRank.0 with RankingSVM.0. Table 5 presents the results of the k-folds
cross-validation for RankingSVM.0 and AHPRank.0, where we report the averaged rank
correlation ρ, recall values (R@10% and R@1%), and CPU time in seconds averaged over
the folds. Since RankingSVM.0 can handle a training set of up to 100 K rules within an hour,
we compared it with our approach with the Hepatitis dataset only. We observed that
RankingSVM.0 outperformed AHPRank.0 in terms of ranking accuracy for all user feedback
emulators, although AHPRank.0 remained competitive with acceptable accuracy. The same
trend was observed in terms of recall at the 10% and 1% top of the ranking (R@10%
and R@1%). We noted that AHPRank.0 achieved a high correlation with the user ranking
functions on most datasets. However, on Connect, we observed a weak correlation with
CHI-EMU, while a high correlation was observed with RAND-EMU and LEX-EMU. This
can be attributed to the fact that RAND-EMU and LEX-EMU are linear functions expressed
with the given seven interestingness measures, which explains their high accuracy, while
CHI-EMU is a complex function that requires more extensive statistics to learn. Notably, the
high accuracy of RankingSVM.0 came at the expense of longer running times. For instance,
it took more than 15 min for RankingSVM.0 to learn from a training set of 100K rules, and
exceeding 100K rules, RankingSVM.0 required more than one hour, while AHPRank.0 was
able to handle 7.5 M rules in less than 4 min.

In what follows, the observations and the conclusions drawn from CHI-EMU remain
true for RAND-EMU and LEX-EMU. For the sake of simplicity, we only report the results on
the complex function CHI-EMU.

Table 5. Five-fold cross-validation results (passive learning).

RAND-EMU

RankingSVM.0 AHPRank.0

ρ R@10% R@1% t(s) ρ R@10% R@1% t(s)

Hepatitis 0.94 0.74 0.77 851 0.93 0.79 0.71 9
Connect - - - TO 0.95 0.72 0.63 26
Mushroom - - - TO 0.89 0.69 0.66 32
T40 - - - TO 0.99 0.93 0.58 63
Retail - - - TO 0.93 0.95 0.96 66

mean - - - - 0.94 0.82 0.71 39

LEX-EMU

RankingSVM.0 AHPRank.0

ρ R@10% R@1% t(s) ρ R@10% R@1% t(s)

Hepatitis 0.99 0.99 0.99 902 0.92 0.86 0.81 13
Connect - - - TO 0.60 0.46 0.50 21
Mushroom - - - TO 0.86 0.56 0.65 32
T40 - - - TO 0.99 0.93 0.46 71
Retail - - - TO 0.78 0.68 0.65 68

mean - - - - 0.83 0.70 0.61 41

CHI-EMU

RankingSVM.0 AHPRank.0

ρ R@10% R@1% t(s) ρ R@10% R@1% t(s)

Hepatitis 0.99 0.97 0.92 979 0.94 0.90 0.77 10
Connect - - - TO 0.15 0.28 0.67 17
Mushroom - - - TO 0.98 0.91 0.93 28
T40 - - - TO 0.99 0.99 0.96 84
Retail - - - TO 0.91 0.96 0.95 50

mean - - - - 0.79 0.81 0.86 38
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(C) Impact of varying the size of the training data on learning. It is crucial to emphasize
that our proposed AHPRank approach aims to achieve a fast learning process while providing
high accuracy in ranking patterns. To further support our observation on the scalability
of AHPRank.0 compared to RankingSVM.0, we present in Figures 2 and 3 a performance
comparison by varying the size of the training data when learning the CHI-EMU function,
as similar results were obtained for RAND-EMU and LEX-EMU functions. For each dataset,
we randomly select nb rules, and we compare the two approaches for nb ∈ 10, 100, 1K,
10K, 100K. The results are averaged over ten runs.

Regarding the Spearman correlation ρ, Figure 2 shows that the two approaches have
a discrepancy of only 5% when the training data does not exceed 1K. However, the gap
becomes significantly more substantial (exceeding 10%) and in favor of AHPRank.0 when
the training data contains 10K and 100K rules.

In terms of recall at 10% and 1%, RankingSVM.0 outperforms AHPRank.0 with a gap
of 23% and 15% at R@10% and R@1%, respectively, when the training data contains only
10 rules. However, as the size of the training data increases, the gap between the two
approaches becomes narrower, with a difference of less than 5% for R@10%, and remaining
relatively constant for R@1%.
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Figure 2. Learning accuracy comparison between RankingSVM.0 and AHPRank.0 learning CHI-EMU

on different training data sizes.

0.01

0.1

1

10

100

1000

10000

10 102 103 104 105

T
im
e(
s)

#Rules
RankingSVM.0 AHPRank.0

Figure 3. CPU time comparison between RankingSVM.0 and AHPRank.0 learning using the CHI-EMU

emulator on different training data sizes averaged over all the datasets.

In terms of CPU time, Figure 3 demonstrates that RankingSVM.0 can process training
data of up to 100 rules in less than a second, whereas it takes more than one minute for 1K
rules, 13 min for 10K rules, and over 26 min for 100K rules. In contrast, AHPRank.0 is capable
of handling training data ranging from 100 to 100K rules in a time span ranging from 0.03
to 24.86 s, while still maintaining a ranking accuracy comparable to that of RankingSVM.

6.7. Active Learning Results

In this section, we aim to address research questions RQ2 and RQ3, which involve
comparing the active learning versions of RankingSVM and AHPRank. To achieve this, we
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employ a straightforward process that involves asking the user ranking queries on pairs of
patterns (e.g., do you prefer Pi to Pj?).

(A) Evaluating the effectiveness of our sensitivity-based heuristic. In this section, we
aim to evaluate the effectiveness of our sensitivity-based generator (SBG) (see Section 4.5)
in improving the active learning process of AHPRank.1. To do so, we compare SBG to a
random generator (RG), where RG randomly selects a pair of patterns from #Rules and
submits them to both RankingSVM.1 and AHPRank.1. We conduct our experiments with
human-in-the-loop, setting the number of queries (i.e., iterations of Algorithm 2) to a
maximum of 20 queries. We repeat the experiment 10 times and take the average result to
account for the sampling step of our SBG and the randomness of the RG approach. After a
few tests, we set the sample size X picked in line 10 of Algorithm 2 to θ = 103, providing
a good trade-off between time selection and the accuracy of the selected pair.

Figure 4 presents a scatter plot of 20 iterations comparing the performance of RankingSVM.1
and AHPRank.1 with both RG and SBG. We report the Spearman correlation ρ, recall at 10%,
and recall at 1% for each iteration. The results show that the use of SBG outperforms RG,
regardless of the learning algorithm, as can be observed from the scatter plot.
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Figure 4. Qualitative comparison of the random vs. sensitivity-based query generator using the
Spearman correlation ρ and the recall at 10% and 1% of each iteration.

To support our observation on the effectiveness of SBG, we conducted a statistical
test using the Wilcoxon signed-rank test. We used a one-tailed alternative hypothesis with
the null hypothesis that RG is more efficient than SBG: H0: The accuracy using RG ≥ the
accuracy using SBG. The alternative hypothesis H1 states that SBG outperforms RG. With
this statistical test, we concluded that the use of SBG is more efficient than RG (i.e., H1 is
accepted).

Table 6 reports the p value, z-score, and confidence interval (CI) of each test. Except
for the case of (RankingSVM.1, R@10%), we had strong evidence to reject the null hypothesis
based on the p value column. The CI column clearly shows that the use of SBG is better
than RG. Consequently, we will use the SBG heuristic in RankingSVM.1 and AHPRank.1 in
the following.
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Table 6. Wilcoxon signed-rank test (RG vs. SBG).

Approaches Metrics p Value z-Score CI

RankingSVM.1
ρ 0.00226 −2.8373 99%

R@10% 0.12302 −1.1573 70%
R@1% 0.06301 −1.5306 90%

AHPRank.1
ρ 0.00034 −3.3973 99.9%

R@10% 0.00205 −2.8746 99%
R@1% 0.00139 −2.9866 99%

(B) Comparing AHPRank.1 with RankingSVM.1. Table 7 presents a comparison between
RankingSVM.1 and AHPRank.1 on five datasets, reporting the Spearman correlation ρ, recall
at 10% and 1% stopping criterion T at 10, 50, and 100 queries, and the average latency time
Time between two queries for RankingSVM.1 (never exceeding the latency bound of 0.1 s).
The findings hold for the RAND-EMU, LEX-EMU, and CHI-EMU functions.

Table 7. Qualitative evaluation of RankingSVM.1 vs. AHPRank.1.

(a) (b) (c) (d) (e)

10 Queries

(1)

ρ 0.73 0.04 0.69 0.99 0.97
R@10% 0.61 0.28 0.38 0.92 0.91
R@1% 0.44 0.49 0.36 0.45 0.67
Time 0 0 0 0 0

(2)
ρ 0.78 0.10 0.93 0.99 0.99

R@10% 0.66 0.36 0.80 0.97 0.91
R@1% 0.51 0.50 0.71 0.81 0.93

50 Queries

(1)

ρ 0.94 0.20 0.71 0.99 0.98
R@10% 0.77 0.10 0.39 0.92 0.91
R@1% 0.57 0 0.36 0.45 0.67
Time 0 0 0 2 3

(2)
ρ 0.95 0.10 0.93 0.99 0.99

R@10% 0.83 0.40 0.72 0.94 0.91
R@1% 0.66 0.45 0.51 0.64 0.93

100 Queries

(1)

ρ 0.94 0.29 0.72 0.99 0.98
R@10% 0.75 0.20 0.41 0.92 0.91
R@1% 0.53 0 0.36 0.45 0.67
Time 0 2 3 3 10

(2)
ρ 0.98 0.10 0.81 0.99 0.99

R@10% 0.89 0.35 0.49 0.95 0.91
R@1% 0.78 0.42 0.37 0.74 0.93

(1): RankingSVM.1, (2): AHPRank.1, (a): Hepatitis, (b): Connect, (c): Mushroom, (d): T40, (e): Retail.

The main observation from Table 7 is that AHPRank.1 outperforms RankingSVM.1. Look-
ing at the Hepatitis dataset, for example, AHPRank.1 achieves an accuracy of 78% with
only 10 queries, while RankingSVM.1 achieves 73%. At 50 queries, AHPRank.1 achieves an
accuracy of 95%, compared to 94% for RankingSVM.1. At 100 queries, AHPRank.1 reaches
98% accuracy, while RankingSVM.1 remains stable at 94%. In terms of recall, AHPRank.1
discovers the most relevant patterns in the first 50K and 5K patterns (out of 500K) with
accuracies of 78% and 66% over 10 queries, respectively, compared to 61% and 44% for
RankingSVM.1.
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For the Retail dataset, AHPRank.1 achieves high accuracy over 10 queries, which
remains stable over the following 90 queries. RankingSVM.1 results are less impressive on
Retail, particularly on the recall metric. However, the main difference is in the waiting time
Time, where RankingSVM.1 can keep the user waiting for more than 10 s between two queries.
The same observation can be made on the other datasets, where RankingSVM.1 can be
hampered by overall waiting time, even with queries of size 2. In contrast, AHPRank.1 shows
an instantaneous behavior, taking less than 0.1 s between two queries. This represents
a limitation in the use of RankingSVM.1, especially when the learning is integrated into
an interactive data mining process, where a reasonable latency time for a human user is
around a few seconds [40].

6.8. Interactive Learning Results

In this section, we address the last research question RQ4, and conduct two exper-
iments to evaluate the robustness and performance of our approach in the presence of
human mistakes.

Our first experiment aims to evaluate the robustness of our approach in the face of
human mistakes. To simulate situations where the user feedback may be incorrect, we
randomly select a set of queries and swap the user preference with a probability Err.
Specifically, a user who prefers pattern Pi over Pj will mistakenly prefer Pj over Pi with a
probability Err.

Figure 5 compares the performance of RankingSVM.1 and AHPRank.1 under different
levels of human error, ranging from 0% to 40%, and reports results averaged over 10 runs
on the whole set of datasets using CHI-EMU and submitting 20 queries to the user. Our
results show that AHPRank.1 is quite stable and robust even with high levels of human error,
up to 40% (8 mistakes out of 20). The overall correlation between the learned function
and the user (ρ) remains stable at 77% without mistakes and drops only to 70% under
Err = 40%. However, RankingSVM.1 is stable only up to Err = 20%, and then its accuracy
drops significantly, with ρ decreasing from 71% to 54%. In terms of recall, the decline is
less than 2% at R@10% and 8% at R@1% under AHPRank.1, while RankingSVM.1 experiences
a decline exceeding 10% at both R@10% and R@1%. In terms of CPU time, we observe
waiting times ranging from 6 to 12 s under RankingSVM.1, whereas our approach never
exceeds 0.02 s between two queries.

These results suggest that our approach is robust and can handle user mistakes,
while RankingSVM.1 is less robust and can suffer from significant drops in accuracy when
faced with human mistakes. Additionally, our approach provides faster query processing
times, which is critical in interactive data mining scenarios where human users expect
near-instantaneous feedback.

0.3

0.4

0.5

0.6

0.7

0.8

0% 5% 10% 20% 40%

Err
RankingSVM.1 AHPRank.1 R10% R1%ρ

Figure 5. Learning under mistakes (20 queries).

Our second experiment aims to evaluate the robustness of our approach when faced
with an undecided user who begins with a set of preferences A but ends up with preferences
B. Here, the initial user preferences A are biased towards the presented patterns until the
user is more comfortable with preferences B.
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To simulate such situations where the user’s target function changes during the
learning process, we conduct an experiment where we start with LEX-EMU as the target
function to learn, and after x queries, we switch to RAND-EMU. This learning process takes
(20− x) more queries, and we refer to it as the LEX2RAND target. We choose to switch from
LEX-EMU to RAND-EMU because the two functions are linear. We compare RankingSVM.1
and AHPRank.1 on the LEX2RAND(x) target for a total of 20 queries, where x ∈ 0, 5, 10. Note
that with x = 0, LEX2RAND(0) is equivalent to RAND-EMU.

Figure 6 shows the averaged results of 10 runs on all datasets over 20 queries. The
main observation that we can draw is that AHPRank.1 is stable even when faced with a
changing linear function to learn, even if the user’s preferences change halfway through the
learning process (i.e., after 10 queries). However, changing the target function during the
learning process can significantly impact the accuracy of RankingSVM.1 (a decline of 44% in
terms of ρ). Regarding CPU time, our approach is 50 times faster than RankingSVM.1.

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Lex2Rand(0) Lex2Rand(5) Lex2Rand(10)

Targets
R10% R1%ρRankingSVM.1 AHPRank.1

Figure 6. Learning under swaps (20 queries).

7. Discussion

In this section, we review the key experimental findings from the proposed AHPRank

approach, as well as its limitations and potential for tackling real-world applications.
Additionally, we suggest directions for future research.

7.1. Results Analysis: Pros and Cons of the Proposed Approach

According to our experimental study given in Section 6, the results highlight that
AHPRank has superior scalability compared to the state-of-the-art RankingSVM in passive
learning mode, particularly when the number of data points is high. Although RankingSVM

has a high level of accuracy, it requires more training time, which makes it impractical for
an interactive learning context. In active mode, our sensitivity-based heuristic was shown
to be effective in selecting informative data points, and AHPRank was shown to be more
robust than RankingSVM with respect to incorrect rankings.

In summary, our research findings indicate that AHPRank offers an interesting trade-off
between ranking accuracy and running time, making it a practical and efficient solution for
various real-world applications. Its time complexity scales linearly with the training data
size, and it can achieve high ranking accuracy in just a few seconds. Overall, our results
suggest that AHPRank is a promising approach for ranking tasks.

As with any ranking methodology, AHPRank has certain limitations that should be
taken into consideration for further improvements:

1. Expert judgment bias: AHPRank relies heavily on subjective expert judgment, which
can introduce bias into the ranking process.

2. Limited applicability: AHPRank may not be applicable in all scenarios, such as cases
where there are no clear criteria or when the criteria are too subjective.

3. Data availability: The accuracy of AHPRank depends on the availability and quality
of data. If the data are incomplete or inaccurate, they may affect the ranking results.

4. Complexity: The AHP methodology can be complex to implement and interpret,
which may make it difficult to use by non-experts.
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5. Sensitivity to input parameters: AHPRank requires input parameters, such as crite-
ria, which can be sensitive to changes and may require careful tuning for optimal
performance.

7.2. Real-World Applications

The use of AHPRank algorithms can provide significant benefits for companies, im-
proving the efficiency of decision-making and recommendation processes. Here are some
potential industrial applications of AHPRank:

• Cooperative, Connected and Automated Mobility: One potential application of
AHPRank in the context of autonomous vehicles is to rank the importance of differ-
ent sensor inputs for decision-making. For example, cameras, lidars, and radars are
commonly used in autonomous vehicles to perceive the surrounding environment.
However, some sensors may be more reliable or informative than others in certain
scenarios. By using AHPRank, the importance of each sensor input can be determined
based on the preferences of the vehicle user or the specific driving scenario. Another
potential use of AHPRank in the context of autonomous vehicles is to rank different
driving strategies or maneuvers based on safety and efficiency. For instance, AHPRank
can be used to determine the optimal speed and following distance when driving in
heavy traffic, or to prioritize which safety features to activate in emergency situations.
Furthermore, AHPRank can also be used to prioritize maintenance and repair tasks
for autonomous vehicles. By considering factors such as cost, safety, and reliabil-
ity, AHPRank can help identify the most critical components that require immediate
attention.

• ChatGPT: The integration of AHPRank with ChatGPT can have several benefits. Firstly,
it can improve the understanding of user intent by ranking the relevance of different
topics and keywords in their queries. This, in turn, can help ChatGPT generate
more accurate and relevant responses. Additionally, AHPRank can be used to rank the
generated responses based on the user’s preferences, leading to a more personalized
and satisfying experience for the user. Furthermore, the use of AHPRank in ChatGPT can
also assist in selecting the most appropriate response from a set of possible responses.
This can be performed by ranking the responses based on various factors such as clarity,
accuracy, and relevance to the user’s query. By using AHPRank to rank these responses,
ChatGPT can provide the most suitable response to the user. Overall, the combination
of ChatGPT and AHPRank can lead to a more efficient and effective conversational
AI system that better understands the user’s intent and provides personalized and
relevant responses. This can ultimately enhance the user’s experience and satisfaction
with the AI system.

• Search engines: AHPRank can also be used to improve the efficiency and accuracy of
search engines in real-time. By incorporating a more comprehensive and dynamic
approach to measuring the relevance and importance of web pages, AHPRank has the
potential to enhance search engine ranking algorithms. This can lead to a better overall
search experience for users, both internally and externally, by providing more relevant
and informative results.

• E-commerce: Online retailers can benefit from using AHPRank to improve their prod-
uct recommendation systems and search results. By incorporating a more comprehen-
sive and dynamic approach to measuring the relevance and importance of products,
AHPRank can help increase the accuracy and effectiveness of these systems. This, in
turn, can lead to higher conversion rates, increased sales, and enhanced customer
satisfaction. Moreover, recent studies in customer relationship management [41] have
highlighted the importance of incorporating customer information to enable more
effective interactions with clients. AHPRank can be used in combination with customer
data to support decision-making and planning of coordinated entrepreneurial mar-
keting strategies aimed at attracting and retaining profitable customers. For instance,
by using AHPRank to rank products based on customer preferences and feedback, re-
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tailers can tailor their offerings to better meet the needs and interests of their target
customers.

• Content recommendation: Content recommendation is a crucial aspect of media
companies and content providers as it has a direct impact on user engagement and
satisfaction. By using AHPRank, these companies can provide personalized content
recommendations to their users based on their interests, preferences, and behaviors.
This approach will not only enhance the user experience but also increase the like-
lihood of retaining users and increasing engagement. One of the key advantages
of using AHPRank for content recommendation is its ability to incorporate multiple
criteria in the decision-making process, such as content type, user preferences, and
viewing history. This comprehensive approach allows for more accurate and rele-
vant recommendations, ultimately leading to improved user satisfaction. Moreover,
content recommendation systems can also be enhanced by incorporating real-time
feedback from users, such as user ratings and reviews, to continually improve the
recommendation process. This can be achieved by incorporating the feedback into the
decision-making process of the AHPRank algorithm, allowing for more personalized
and accurate recommendations.

• Supply chain optimization: A crucial aspect for companies to reduce costs and in-
crease efficiency. By using AHPRank, companies can rank suppliers, products, or
logistical options based on multiple criteria, such as cost, delivery time, reliability,
and quality. This approach enables companies to make informed decisions about
suppliers and products, thereby reducing risks associated with supply chain man-
agement. In addition, AHPRank can also be used to optimize supply chain logistics
by evaluating various transportation options, such as different routes or modes of
transportation, and selecting the most efficient and cost-effective option. This can
ultimately result in faster delivery times, reduced transportation costs, and improved
customer satisfaction.

In a more concrete way, here are five real-life tasks where AHPRank can prove to be
interesting to use:

1. Supplier evaluation and selection: AHPRank can be used to rank and select suppliers
based on multiple criteria, such as quality, cost, and delivery time.

2. Investment portfolio management: AHPRank can help portfolio managers to rank
and select assets based on various factors such as return, risk, and liquidity.

3. Employee performance evaluation: AHPRank can be used to evaluate employee per-
formance based on multiple criteria such as productivity, teamwork, and innovation.

4. Product design and development: AHPRank can be used to rank different design
options based on factors such as customer preferences, cost, and manufacturability.

5. Marketing campaign optimization: AHPRank can be used to rank different marketing
strategies based on criteria such as target audience, reach, and cost-effectiveness.

Overall, the flexibility and scalability of the AHPRank approach make it a valuable tool
for decision making in many industries.

7.3. Future Research Directions

There are several potential areas for future research on AHPRank. First, one could
explore the use of more sophisticated machine learning techniques to further improve
the ranking accuracy of AHPRank. For instance, deep learning models could be trained to
automatically classify the AHPRank queries. This combination enables the replacement of the
end-user with a module that can learn preferences from user data and respond to queries
on their behalf. This can lead to more efficient and personalized user experiences. Second,
there is a need to investigate the generalizability of AHPRank to different types of data and
ranking tasks. Future work could focus on applying AHPRank to diverse domains such
as healthcare, finance, and social media, and evaluating its effectiveness in each of these
contexts. Third, there is an opportunity to extend AHPRank to handle dynamic data, where
the underlying ranking criteria may change over time. This would require developing
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new algorithms and techniques that can adapt to changes in the data and update the
rankings in real-time. Finally, another potential area for future research is to explore the
use of AHPRank in conjunction with other decision-making tools and techniques, such as
optimization algorithms and simulation models. This could lead to the development
of more comprehensive and integrated decision-making frameworks that can support
complex business processes and strategic planning.

8. Conclusions

In this paper, we proposed a novel framework called AHPRank for learning pattern rank-
ing functions using the analytic hierarchy process (AHP) multi-criteria decision-making
method. Our algorithm can operate in both passive and active learning modes, allowing
users to rank subsets of data points according to their preferences. We showed that the
learned weights can be used to aggregate all measures into a single ranking function.
The latter was demonstrated to closely match the user’s ranking preferences through
experiments and statistical analysis.

We applied our framework to the association rules mining case study and compared
it with state-of-the-art learning methods. Our experimental results showed that AHPRank
can efficiently learn the ranking function and outperform existing approaches in terms of
ranking accuracy and running time. Furthermore, we showed that AHPRank can help users
effectively prioritize and analyze patterns, leading to better decision making.

Our proposed framework has a wide range of potential applications across various
domains, including marketing in e-commerce, finance, healthcare, and social network
analysis. In e-commerce, for example, AHPRank can be used to recommend products to
customers based on their interests, leading to more personalized and effective marketing
strategies. In finance, AHPRank can assist investors in making informed decisions about
where to allocate their funds by ranking investments based on their risk and return profiles.
In healthcare, AHPRank can predict the most effective treatment for a given patient based on
their individual characteristics, improving patient outcomes and reducing healthcare costs.
In social network analysis, AHPRank can be used to rank posts based on their relevance or
importance, helping users to more easily navigate and engage with social media platforms.
By leveraging the AHPRank algorithm, users can benefit from more accurate and timely
ranking patterns, ultimately enhancing their ability to make informed decisions based on
the available data.

Future work could include exploring the use of AHPRank in combination with other
machine learning techniques or developing an interactive system that can learn and update
user preferences over time. In summary, our proposed framework offers a practical and
efficient solution for learning pattern ranking functions, which can lead to better decision
making in various applications.
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