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Abstract: Combinatorial clustering based on the Ising model is drawing attention as a high-quality
clustering method. However, conventional Ising-based clustering methods using the Euclidean
distance cannot handle irregular data. To overcome this problem, this paper proposes an Ising-based
kernel clustering method. The kernel clustering method is designed based on two critical ideas. One is
to perform clustering of irregular data by mapping the data onto a high-dimensional feature space by
using a kernel trick. The other is the utilization of matrix–matrix calculations in the numerical libraries
to accelerate preprocess for annealing. While the conventional Ising-based clustering is not designed
to accept the transformed data by the kernel trick, this paper extends the availability of Ising-based
clustering to process a distance matrix defined in high-dimensional data space. The proposed method
can handle the Gram matrix determined by the kernel method as a high-dimensional distance matrix
to handle irregular data. By comparing the proposed Ising-based kernel clustering method with
the conventional Euclidean distance-based combinatorial clustering, it is clarified that the quality
of the clustering results of the proposed method for irregular data is significantly better than that
of the conventional method. Furthermore, the preprocess for annealing by the proposed method
using numerical libraries is by a factor of up to 12.4 million × from the conventional naive python’s
implementation. Comparisons between Ising-based kernel clustering and kernel K-means reveal that
the proposed method has the potential to obtain higher-quality clustering results than the kernel
K-means as a representative of the state-of-the-art kernel clustering methods.

Keywords: kernel clustering; simulated annealing; Ising model; constraint function

1. Introduction

Ising machineshave been developed to solve combinatorial optimization problems
in the past few years. D-Wave Systems, Inc., (Burnaby, Canada) is currently working on
a Quantum Annealing (QA) machine that can solve the Ising model [1]. Additionally,
conventional digital computers are also being utilized to perform special-purpose compu-
tations using the Ising model, such as Simulated Annealing [2], the simulated bifurcation
algorithm [3], and so on [4,5]. In particular, Ising machines are expected to be applied to a
wide range of fields such as vehicle routing problems [6], traffic flow optimization [7,8], air
traffic management [9], control of automated guided vehicles [10], planning space debris
removal missions [11], and machine learning [12–14].

One of the applications utilizing the Ising machines is combinatorial clustering. Clus-
tering is a machine learning technique that involves grouping similar objects together based
on their characteristics. Clustering aims to identify natural groupings in the data, which
can help with tasks such as data compression, anomaly detection, and pattern recognition.
There are two main types of clustering: hierarchical and non-hierarchical approaches.
In hierarchical clustering, the data are organized into a tree-like structure, with the most
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similar objects grouped together at the bottom of the tree and progressively more dissimilar
groups at higher levels. On the other hand, non-hierarchical clustering involves partition-
ing the data into a fixed number of clusters. This can be achieved through methods such
as k-means clustering, where the data are partitioned into k clusters by minimizing the
distance between each point and its assigned cluster centroid. Although non-hierarchical
clustering is a powerful approach when the number of clusters is known, conventional
non-hierarchical clustering makes it hard to find the globally optimum solution. This is
because state-of-the-art clustering performs approximation by calculating the distance
between the data point and the cluster centroid instead of the distance among data points.

Combinatorial clustering is a method that enables the calculation of the distance
among data points [15]. Since Ising machines have the potential to accelerate such a
time-consuming calculation, combinatorial clustering based on the Ising model is drawing
attention because of its ability to obtain high-quality clustering results [16–19]. Ising-based
combinatorial clustering typically employs the Euclidean distance as a measure of similarity.
Nevertheless, numerous practical data possess irregular distributions that render clustering
via Euclidean distance challenging.

To improve the quality and robustness of clustering, some different approaches have
been developed. One is a clustering algorithm combining deviation-sparse fuzzy C-Means
with neighbor information constraints [20]. The algorithm uses a deviation-sparsity reg-
ularization term to encourage sparsity in the clustering results by incorporating spatial
information about neighboring data points. Such techniques can help feature selection
and dimensionality reduction beyond performing only clustering. Viewpoint-based kernel
fuzzy clustering with weight information granules [21] is another novel fuzzy clustering
algorithm that combines kernel clustering with viewpoint-based clustering. The algorithm
uses viewpoint-based clustering to identify initial clusters and then applies kernel clus-
tering to refine them. Weight information granules are introduced to better capture the
distribution of the data, and a regularization term is included to encourage sparsity in the
clustering results. However, such clustering algorithms require minimization of objective
functions and are still based entirely upon the approximation of minimizing them to save
the computational complexity. Since such approximated methods fail to find the exact
solution in many cases, Ising-based combinatorial clustering that potentially solves the
exact solution has to be expanded to handle any distribution of data.

This paper suggests a solution for achieving combinatorial clustering capable of
handling any irregular data. Specifically, the proposed method involves performing Ising-
based kernel clustering by employing the kernel method on Ising machines to execute
combinatorial clustering. The proposed method transforms irregular data onto the high-
dimensional feature space by using an appropriate kernel function [22]. Here, it takes a
lot of time to calculate the transformed data from the irregular input data. To accelerate
this preprocess, this paper also discusses an efficient implementation of Ising-based kernel
clustering for numerical libraries. Efficient representation to utilize numerical libraries is
defined by matrix–matrix calculations.

The remainder of this paper is structured as follows: Section 2 provides an overview
of Ising machines and combinatorial clustering. Section 3 proposes Ising-based kernel
clustering and efficient implementation to utilize numerical libraries. Section 4 presents an
evaluation of the proposed method with respect to quality and execution time. Section 5
describes the related work of the proposed method. Finally, Section 6 summarizes the main
contributions of this paper.

2. Ising-Based Combinatorial Clustering
2.1. Ising Model

Equation (1) is a Hamiltonian of the Ising model. Ising machines search for the
combination of variables σi ∈ {−1,+1} that minimizes the energy of the Ising model in
Equation (1).
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H = ∑
i<j

Ji,jσiσj + ∑
i

hiσi (1)

The Ising model has the interactions between two different spins Ji,j and the magnetic
field of its own spin hi.

The Quadratic Unconstrained Binary Optimization (QUBO) model is an equivalent
representation of the Ising model. Equation (2) is a Hamiltonian of the QUBO model. Here,
binary variables qi ∈ {0, 1} are decision variables of the QUBO model. The Hamiltonian of
the QUBO model is transformed from the Hamiltonian of the Ising model by qi =

σi+1
2 .

H = ∑
i<j

ai,jqiqj + ∑
i

biq2
i (2)

The QUBO model also has the interactions between two different variables ai,j. In con-
trast to the Ising model, the QUBO model does not have any magnetic field but has another
type of self-interaction bi because qi = q2

i holds for qi ∈ {0, 1}. In addition, the coefficients
of the Ising and QUBO models are stored in the matrix form. The matrix form is a unified
interface that various Ising machines have adopted.

2.2. Combinatorial Clustering

Combinatorial clustering is one of the machine learning methods and minimizes the
sum of intra-cluster distances among data points. Well-known clustering methods such as
K-means, K-means++, and spectral clustering perform quasi-optimization to reduce the
computational complexity. Hence, quasi-optimized clustering methods cannot obtain the
globally optimal clustering solution even with a sufficient computation time. On the other
hand, combinatorial clustering can achieve high-quality clustering results. Finding the
combination of data that minimizes the sum of intra-cluster distances guarantees that a
globally optimal solution is found [15].

The objective function to minimize the sum of intra-cluster distances of combinatorial
clustering is represented as Equation (3).

H =
1
2

K−1

∑
a=0

∑
C(i)=Ca

∑
C(j)=Ca

d(xi, xj). (3)

To perform combinatorial clustering, the number of clusters K is set in advance. xi
indicates the coordinates of data point i. d(xi, xj) indicates the degree of similarities between
two different data points i and j. Cluster assignments of data points are represented as
C(i) = Ca when data point i belongs to cluster a.

Ising-based combinatorial clustering has been proposed to obtain the globally optimal
solution [16].

Ising-based combinatorial clustering uses one-hot encoding to represent decision
variables by using binary variables. Figure 1 is an overview of the one-hot encoding. The
clustering results expressed in one-hot encoding represent a cluster to which a single datum
belongs by using bits, whose number is the same as that of clusters.

Equation (4) is a decision variable using one-hot encoding.

qi
a =

{
1 (C(i) = Ca)

0 (C(i) 6= Ca).
(4)

For qi
a ∈ {0, 1}N×K, N is the number of data points, and K is the number of clusters.

The one-hot encoding indicates that qi
a is 1 if data xi belongs to cluster Ca, and 0 if it

does not.
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Equation (5) is the QUBO model of combinatorial clustering.

H =
1
2

N−1

∑
i,j=0

d(xi, xj)
K−1

∑
a=0

qi
aqj

a +
N−1

∑
i=0

λi(
K−1

∑
a=0

qi
a − 1)2. (5)

Here, the number of data points is represented as N. The Lagrange multiplier λi
is introduced to combine the first and the second terms of Equation (5). The first term
of Equation (5) is the objective function transformed from Equation (3) by using binary
decision variables. The second term of Equation (5) is the constraint function that obliges
each data point to belong to only one cluster. It is generally known that a sufficiently
large Lagrange multiplier avoids violation of the constraint. In the case of combinatorial
clustering, it is already revealed that the appropriate value of the Lagrange multiplier is
N − K when all the values of d(xi, xj) are normalized [16].

i
0 1 … N-2 N-1

a

0 1 0 … 0 0
1 0 1 … 0 0
⋮ ⋮ ⋮ … ⋮ ⋮
K-2 0 0 … 0 0
K-1 0 0 … 1 1

𝑞!!, 𝑞"!… , 𝑞#$%! , 𝑞#$"! = {1,0, … , 0,0}

𝑞!", 𝑞""… , 𝑞#$%" , 𝑞#$"" = {0,1, … , 0,0}

𝑞!&$%, 𝑞"&$%… , 𝑞#$%&$%, 𝑞#$"&$% = {0,0, … , 0,1}

𝑞!&$", 𝑞"&$"… , 𝑞#$%&$", 𝑞#$"&$" = {0,0, … , 0,1}

Figure 1. An overview of one-hot encoding.

2.3. Problems

Ising-based combinatorial clustering has the potential to obtain the global optimal
clustering results. However, conventional Ising-based combinatorial clustering cannot
handle data with irregular distributions. This is because the conventional method uses the
Euclidean distances as the degree of similarity. When the input data are mapped on the
Euclidean space, combinatorial clustering can handle linearly separable data. However,
conventional combinatorial clustering cannot handle non-linear separable data. Thus,
irregular data are defined as the data for which linear decision boundaries cannot be
drawn. Euclidean-based clustering methods assume that each cluster has equal variance,
and decision boundaries are drawn linearly. Therefore, irregular data with heteroge-
neous variances among clusters or with no radial spread from the cluster center cannot be
appropriately clustered.

One way to perform clustering of irregular data is to apply a kernel method to irregular
data. The kernel method can perform clustering of irregular data by mapping the data onto
a high-dimensional feature space.

In the case of quasi-optimal clustering methods, kernel clustering is widely used to
obtain clustering results for any distributed data. However, Ising-based combinatorial
clustering using the kernel method that can handle irregular data has not been proposed
yet. Thus, it is required to consider the QUBO formulation for kernel clustering.

In addition, the preprocess for Ising-based computation takes a long time to calculate
the coefficients of the QUBO problem. Ising-based clustering methods also require the
calculation of the QUBO coefficients in Equation (5). To make matters complicated, Ising-
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based kernel clustering has to transform data onto the high-dimensional feature space.
Thus, Ising-based kernel clustering requires more complex preprocessing calculations than
conventional Ising-based combinatorial clustering.

3. Ising-Based Kernel Clustering

This paper extends Ising-based combinatorial clustering to minimize the high-dimensional
space distance defined by the Gaussian kernel. The proposed method uses a Gram matrix
and an appropriate kernel function to transform irregular data into linearly separable data.
The Gram matrix is a matrix where each element is the distance between two data points in
the high-dimensional feature space. The appropriate kernel function maps the input data
onto the high-dimensional feature space.

Even though conventional Ising-based combinatorial clustering can potentially solve
the exact solution for clustering problems based on the Euclidean distance, it cannot
accept the Gram matrix determined by the kernel trick. This is because the Gram matrix
has diagonal components in spite of the Euclidean distance matrix not having diagonal
components. To process the Gram matrix by the Ising-based clustering, the objective
function of combinatorial clustering, which works with distances between data points
defined by Euclidean distances, is changed to an objective function including the Gram
matrix. The objective function based on the Gram matrix is then transformed into a
QUBO model.

On the other hand, the preprocess of creating the Gram matrix and calculating the
kernel function takes a lot of time. To accelerate the preprocess, the preprocess in the
Ising-based kernel clustering is implemented so as to utilize numerical libraries. Recent
numerical libraries are designed to accelerate matrix calculations by solving them using
parallel and distributed computing systems. Therefore, this paper discusses calculations
for parallel and distributed computing systems.

3.1. Kernel Method for Combinatorial Clustering

In the kernel method, elements of a Gram matrix G express the degree of similarities
in the high-dimensional feature space between two data points. The elements of a Gram
matrix are calculated by the following equation.

g(xi, xj) = k(xi, xj)−
1
n ∑

l
k(xi, xl)

− 1
n ∑

k
k(xk, xj) +

1
n2 ∑

k,l
k(xk, xl). (6)

Hereinafter, g(xi, xj) is denoted as gij. The proposed method can calculate all nec-
essary similarities in advance. This is because the proposed method is the optimization
method using similarities among all data points. This method does not need to update any
similarities in the calculation process. The calculation of similarities is performed for all
pairs of data points. Thus, the Gram matrix G is calculated by the following equation.

G =

 g0,0 . . . g0,N−1
...
. . .

...
gN−1,0 . . . gN−1,N−1



= M −Mh[1 . . . 1]−

1
...
1

Mh
T −Ma

1 . . . 1
...
. . .

...
1 . . . 1

 (7)

M is a kernel matrix with elements calculated by the kernel function. Mh is a K-
dimensional vector whose i-th vector component represents an arithmetic mean among
k(xi, x0), . . . , k(xi, xN−1). The second and third terms of Equation (7) are derived from the
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second and third terms of Equation (6). Ma in Equation (7) is a scalar that represents the
arithmetic mean among all elements of the kernel matrix M. Therefore, the elements of
the fourth term in Equation (7) are equivalent to the fourth term of Equation (6) for each
element gij. Switching the kernel function, called a kernel trick, enables the Gram matrix to
represent various measures of similarities. k(xi, xj) requires the kernel trick to select the
appropriate Mercer kernel defined by Mercer’s theorem. Mercer’s theorem determines that
the available matrix used as the Gram matrix is only positive and semi-definite. The kernel
function is defined so that the inner product matrix transformed from the original data
is the symmetric Gram matrix. In this paper, the kernel function k(xi, xj) is given by the
following Gaussian kernel.

k(xi, xj) = exp
(
− 1

2σ2 d(xi, xj)
2
)

. (8)

k(xi, xj) in Equation (8) are the elements of the kernel matrix M and are also calculated
in the same way for all pairs of the data points. Thus, the kernel matrix is expressed by
using a squared Euclidean distance matrix D2 as follows, where D2 has the elements of
squared distances d(xi, xj)

2.

M =

 k(x0, x0) . . . k(x0, xN−1)
...
. . .

...
k(xN−1, x0) . . . k(xN−1, xN−1)


= EXP(− 1

2σ2 D2)

=


exp

(
− 1

2σ2 d(x0, x0)
2
)

. . . exp
(
− 1

2σ2 d(x0, xN−1)
2
)

...
. . .

...
exp
(
− 1

2σ2 d(xN−1, x0)
2
)

. . . exp
(
− 1

2σ2 d(xN−1, xN−1)
2
)
 (9)

Here, EXP(X) is defined as the function that calculates Napier’s constant e to the
power of each element in the matrix X. Nowadays, numerical libraries implement such
an exponential function to accelerate calculations. In addition, the same calculations of

1
2σ2 d(xi, xj) are performed as the scalar-matrix calculation in recent numerical libraries.

3.2. QUBO Formulation for Ising-Based Kernel Clustering

The kernel function transforms the elements of the Gram matrix into the degree of
similarities among data points. Thus, combinatorial clustering using the Gram matrix
provides global optimal clustering assignments. The elements of the Gram matrix are
already transformed as distances in the high-dimensional data. Since the objective function
of combinatorial clustering is the sum of intra-cluster similarities among data points,
Equation (10) is the objective function of combinatorial clustering using the kernel method.

Hobjective = −
N−1

∑
i,j=0

gij

K−1

∑
a=0

qi
aqj

a. (10)

Equation (10) is a similar form to the first term of Equation (5). Although the distance
matrix D with d(xi, xj) elements has zero diagonal components, the Gram matrix G with gij
elements has non-zero diagonal components. Thus, the QUBO function for combinatorial
clustering using the Gram matrix needs to be defined differently from the QUBO function
for conventional combinatorial clustering using the Euclidean distance matrix.
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Equation (10) can be expressed as Equation (11) by eliminating redundancy. This is
because the Gram matrix is symmetric.

Hobjective = −
N−1

∑
i=j

gij

K−1

∑
a=0

qi
aqj

a

−
N−1

∑
j<i

gij

K−1

∑
a=0

qi
aqj

a −
N−1

∑
i<j

gij

K−1

∑
a=0

qi
aqj

a

= −
N−1

∑
i=0

gii

K−1

∑
a=0

qi
aqi

a − 2
N−1

∑
i<j

gij

K−1

∑
a=0

qi
aqj

a. (11)

When the two data are in the same cluster, the elements of the Gram matrix are
calculated. Equation (11) adds the element of the Gram matrix between the two data to the
Hamiltonian when qi

a and qj
a are both 1.

However, Equation (11) has a minimum value when all binary variables are 0. This
means that all the data do not belong to any cluster. To avoid this problem, the one-hot
constraint that all the data should belong to only one cluster is given as Equation (12).

∃!qi
a ∈ {q0

a, . . . , qN−1
a } s.t. qi

a = 1. (12)

To satisfy Equation (12) for ∀qi
a ∈ {qi

0 . . . qi
K−1}, the one-hot constraint function based

on the QUBO model is shown in Equation (13).

Hconstraint =
N−1

∑
i=0

(
K−1

∑
a=0

qi
a − 1)2. (13)

The one-hot constraint function has also been used for combinatorial clustering based
on the Euclidean distance. Therefore, combinatorial clustering based on the Ising model
using the kernel method is represented in Equation (14).

H = −
N−1

∑
i=0

gii

K−1

∑
a=0

qi
aqi

a − 2
N−1

∑
i<j

gij

K−1

∑
a=0

qi
aqj

a

+
N−1

∑
i=0

λ(
K−1

∑
a=0

qi
a − 1)2. (14)

λ is given by the method of the Lagrange multiplier. Violation of the constraint is
avoided by providing a sufficiently large Lagrange multiplier.

3.3. QUBO Matrix Generation by Matrix–Matrix Calculations

To generate the QUBO matrix using matrix–matrix calculations, a binary decision
vector q ∈ RNK is introduced. Each element of q is defined as follows.

q = [q0
0, . . . , q0

K−1, q1
0, . . . , q1

K−1, . . . , . . . , qN−1
0 , . . . , qN−1

K−1 ]
T . (15)

Here, the following five matrices are defined to discuss the matrix–matrix product
form of Equation (14).

• IK ∈ RK is a K-dimensional identity matrix.
• UK ∈ RK is a K-dimensional upper triangular matrix with 0 for the diagonal compo-

nents and 1 for the upper triangular components.
• Λ ∈ RN is defined as a matrix with λ for the diagonal components and 0 for the other

components.
• Gdiag ∈ RN is a matrix consisting of only the diagonal components of the Gram matrix

G. Gdiag has zero non-diagonal components.
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• Gtriu ∈ RN is a matrix consisting of only the upper triangular components of the
Gram matrix G. Gtriu has zero diagonal and lower triangular components.

First, let us consider the matrix–matrix product form of calculating the similarities be-
tween two data points in the high-dimensional feature space. The first term of Equation (14)
calculates the products among the diagonal components gii of the Gram matrix and the
same two binary decision variables qi

a and qi
a. The second term calculates the products

among the upper triangular components gij and two different binary decision variables qi
a

and qj
a. Thus, the first and second terms of Equation (14) are transformed to Equation (16).

Hobjective = q((−Gdiag − 2Gtriu)⊗ IK)qT . (16)

The operator⊗ is the Kronecker product. The Kronecker product of matrices A ∈ Rp×q

and B ∈ Rr×s generates a matrix C ∈ Rpr×qs as follows.

C = A⊗ B

=

 a0,0 . . . a0,q−1
...
. . .

...
ap−1,0 . . . ap−1,q−1

⊗ B

=

 a0,0B . . . a0,q−1B
...
. . .

...
ap−1,0B . . . ap−1,q−1B

. (17)

Equation (16) is calculated by using the calculation of Equation (17). The summation
operators of ∑N−1

i=0 gii, ∑N−1
i<j gij, and ∑K−1

a=0 correspond to the matrices of Gdiag , Gtriu, and IK ,

respectively. Gdiag and Gtriu have the same sizes of RN×N . IK is the matrix with the size
of RK×K. Since q of Equation (15) is the vector with the size of RNK, the size of the matrix
((−Gdiag − 2Gtriu)⊗ IK) is expanded to RNK×NK. As a result, Equation (16) can perform
the same calculation of the first and second terms of Equation (14).

Second, let us consider the matrix–matrix QUBO generation form of the one-hot
constraint. The third term of Equation (14) is represented as Equation (18) [18].

Hconstraint = −
N−1

∑
i=0

λ
K−1

∑
a=0

(qi
a)

2 + 2
N−1

∑
i=0

λ ∑
a<b

qi
aqi

b. (18)

As well as the case in the matrix–matrix product form of calculating the Gram elements,
the summation operators of ∑N−1

i=0 λ, ∑K−1
a=0 , and ∑a<b correspond to the matrices of Λ, IK ,

UK , respectively. Hence, Equation (18) is represented as the matrix–matrix product form of
Equation (19).

Hconstraint = q((−Λ⊗ IK) + (2Λ⊗UK))qT

= q(Λ⊗ (2UK − IK))qT . (19)

Equation (14) is expressed as the sum of the matrix–matrix product forms in
Equations (16) and (19), as in Equation (20).

H = Hobjective + Hconstraint

= q((−Gdiag − 2Gtriu)⊗ IK + Λ⊗ (2UK − IK))qT . (20)

Recent numerical libraries are equipped with necessary functions for calculating
the QUBO matrix ((−Gdiag − 2Gtriu)⊗ IK + Λ⊗ (2UK − IK)). Therefore, the method of
generating the QUBO matrix for kernel clustering by matrix–matrix calculations is effective
to accelerate the preprocess for annealing methods.
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The computational complexity of the proposed Ising-based kernel clustering is es-
timated to be O(N2K2) at most. The complexity is mainly occupied by the process of
solving the QUBO problem. When NK spins are given, SA takes the computational time of
O(N2K2). Conversely, QA takes the computational time of O(NK). This paper uses the SA
to solve the QUBO problem because the recent QA cannot yet solve the large problem at
high computational precision. The kernel clustering by solving the QA is one of our main
future directions.

The maximum preprocess times for annealing are estimated to be O(N2), O(N2),
and O(N2K) for calculating the Gaussian kernel matrix (Equation (9)), the Gram matrix
(Equation (7)), and the QUBO matrix (Equation (20)), respectively. Additionally, the pre-
process is formulated in the matrix–matrix calculation to utilize the numerical libraries.
Since the numerical libraries accelerate the preprocess, the actual computational time is
reduced more.

Therefore, the proposed kernel clustering has a similar high computational complexity
of O(N2K2) as the conventional Euclidean-based Ising clustering. The proposed method
can expand the system availability even without increasing the computational complexity.
Conversely, Ising-based clustering methods have more computational complexity than
state-of-the-art approximated clustering methods. The approximated clustering methods
obtain at most the computational complexity of O(NK) at the expense of finding a locally
optimum solution. While the quasi-optimal clustering methods do not guarantee to provide
the globally optimum solution, the Ising-based clustering methods have the potential to
find a ground state. When the ground state of the clustering is required, the proposed
method shows an ideal clustering one by leveraging the nature of Ising machines.

4. Evaluation
4.1. Experimental Environments

The proposed method is compared with Euclidean distance-based combinatorial
clustering as the conventional method. Evaluations are conducted in terms of solution
quality and execution time.

Both proposed and conventional combinatorial clustering based on the Ising model
use an externally defined one-hot constraint [17,18]. This method is preferred over the
internally defined one-hot constraint in the QUBO matrix, resulting in higher-quality
clustering. The reason for this is that in the internally constrained method, the Lagrange
multiplier is significantly larger than the coefficients of the objective function. As a result,
the constraint function has a significant influence, and solutions that satisfy the one-hot
constraint can be obtained. However, as the influence of the objective function is small,
the quality of clustering results decreases [18]. To address this problem, this paper utilizes
externally defining the one-hot constraint of Equation (12) while only minimizing the
objective function of Equation (11). By using the externally-defined one-hot constraint
method, combinatorial clustering with the QUBO function containing only the objective
function and the externally defined one-hot constraint can achieve higher quality results
than the method that has both the objective and constraint function in the QUBO function.
The Ising-based kernel clustering method utilizes the coefficients of the objective function
as the elements of the Gram matrix. Let us conduct the experiments by minimizing the
Hamiltonian of Equation (16) while externally defining the one-hot constraint.

In the case of this paper, SA is used to search for the solution that minimizes the QUBO
function for Ising-based kernel clustering. The SA algorithm is executed on a computing
platform called SX-Aurora TSUBASA (Aurora) [23], which consists of a CPU (Intel Xeon
6126) and a VE (NEC Vector Engine Type 20B) [24]. In the SA algorithm on Aurora, the one-
hot constraints are defined externally to the QUBO function, and the SA algorithm searches
for solutions that allow multiple-bit flips [25]. Initially, SA searches for solutions with a
single-bit flip, and once the one-hot constraint is satisfied, it then searches for only the
solutions that satisfy the constraint using multiple-bit flips.
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Parallel Tempering (PT) [26] is used in addition to SA on Aurora. PT assigns different
temperatures to multiple SA processes, and each process independently executes SA in
parallel. The purpose of this method is to improve the exploration of the solution space
by allowing solutions to escape from local minima. During the PT search, solutions are
probabilistically exchanged between different SA processes based on the temperature of
each process. The number of parallel temperatures for PT is set to 8. The number of sweeps,
which is a parameter indicating the number of times to search for a solution, is set to 100.
The inverse temperature 1

T starts from 0.1 at the beginning of the search and gradually
increases to 50 at the end. NumPy v0.22.1 [27] is used as the numerical library to perform
matrix–matrix calculations shown in Equations (7), (9) and (20).

The experiment uses four datasets generated through scikit-learn v1.0.2 [28]’s artificial
data generation functions, and each dataset has 64 data points.

The clustering results are evaluated based on the Adjusted Rand Index (ARI), which
measures the similarity between the clustering result and the correct label. ARI has a
maximum value of 1 when all labels match, and the average value is calculated from
100 experiments.

4.2. Quality

Figure 2 shows the clustering results of the conventional method.
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Figure 2. Clustering results of the conventional method.

Figure 2a represents a dataset containing three clusters with equal variances, while
Figure 2b depicts a dataset with clusters distributed anisotropically. Figure 2c shows a
dataset comprising two half circles that interleave, while Figure 2d represents a dataset
with a small circle inside a larger circle. In this paper, the datasets depicted in Figure 2a–d
are referred to as Blobs, Aniso, Moons, and Circles, respectively, and the data points within
different clusters are indicated with different colors.

Figure 2a illustrates that the conventional method is capable of clustering data with
equal variances accurately. However, it fails to cluster data that are not equally distributed
from the center, as depicted in Figure 2b–d. The conventional method tries to partition the
data in a single linear line, making it impossible to achieve the desired clustering result.

Figures 3 shows the clustering results of the proposed method.
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Figure 3. Clustering results of the proposed method. Data points having the same color belong to the
same cluster.

The σ parameters in Equation (8) for Figure 3a–d are set to 3.5, 0.55, 0.2, and 0.4,
respectively, as these values produce the highest ARI. The clustering results in Figure 3a
demonstrate that the proposed method can accurately cluster center-aggregated data,
similar to the conventional method. Additionally, the proposed method can effectively
cluster anisotropic and irregular data, as demonstrated in Figure 3b–d. This is due to
the transformation of the data into linearly separable high-dimensional data through the
kernel method.

Figure 4 shows ARI for each dataset to further evaluate the difference in quality
between the proposed and conventional methods.
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Figure 4. The qualities of the proposed kernel-based and conventional Euclidean-based methods for
different datasets.

The clustering results for the Blobs dataset show that the conventional method achieves
a higher ARI than the proposed method. This is because the Blobs dataset can be linearly
partitioned based on the Euclidean distance without any transformation. However, the pro-



Algorithms 2023, 16, 214 12 of 22

posed method still achieves a relatively high ARI of 0.91 even by using the kernel method.
On the other hand, for the Aniso, Moons, and Circles datasets, the proposed method out-
performs the conventional method in terms of ARI. This is because the data transformation
by the kernel method is effective for irregularly distributed data.

In order to achieve superior clustering results in combinatorial clustering using the ker-
nel method, it is imperative to select the optimal parameter σ. Figure 5 vividly demonstrates
the impact of varying σ on the clustering quality.
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Figure 5. ARI of combinatorial clustering using kernel method when σ is varied.

The results presented in Figure 5 are striking, demonstrating the crucial importance
of selecting the correct parameter σ in the Ising-based combinatorial clustering using
the kernel method. For instance, it is clear from Figure 5a that the Blobs dataset achieves
remarkably high ARI for several σ, showcasing the versatility and flexibility of the proposed
method in transforming the data to provide multiple decision boundaries. In contrast,
Figure 5b–d show that Aniso, Moons, and Circles have a small range of maximum ARI,
indicating a limited number of decision boundaries that can be achieved with the given
parameter range. These findings underline the significance of selecting the optimal σ
parameter to achieve high-quality results of Ising-based kernel clustering.

Next, Figure 6 shows the clustering results with the highest ARI of the proposed
method and the conventional method on the dataset with six circles to evaluate the capabil-
ity of the proposed method to handle any two or more clusters.
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Figure 6. The clustering results on the dataset with 6 circles. Data points having the same
color belong to the same cluster. (a) The conventional Euclidean-based method; (b) the proposed
kernel-based method.

The results show that the conventional method fails to cluster the data appropriately,
while the proposed method successfully clusters the data even when the clusters have
uneven variances and irregular shapes.

Furthermore, Figure 7 shows ARIs when changing the number of circles and the
number of clusters. This experiment is carried out by changing the number of circles up to
6 in the Circles dataset. Then, the number of data points is also increased from 64 to 192.
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Figure 7. The qualities of the proposed kernel-based and conventional Euclidean-based methods for
different numbers of clusters.

Based on Figure 7, it is evident that the proposed method outperforms the conventional
method across all the numbers of clusters considered. However, as the number of clusters
increases, the mean ARI of the proposed method decreases. This is because SA converges
to suboptimal solutions. To mitigate this issue, it is essential to fine-tune the parameters of
SA, such as the number of sweeps or the way to schedule the inverse temperature, to obtain
better results.

4.3. Execution Time

Figure 8 shows the total execution time of the preprocessing for annealing. These
execution times include the times for generating the kernel, Gram, and QUBO matrices.
Proposed indicates the proposed method that is defined by the matrix–matrix calculations
for using numerical libraries. Conventional is the conventional implementation in which
coefficients of the kernel, Gram, and QUBO matrices are calculated iteratively [22]. In-
ternal and External indicate the internally-constrained and externally-constrained QUBO
matrix-generating methods, respectively. The internally-constrained QUBO matrix con-
tains coefficients of the Lagrange multiplier. Conversely, the externally-constrained QUBO
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matrix does not contain the coefficients of the Lagrange multiplier. The experiments are
conducted by changing the number of data points from 8 to 1024.
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Figure 8. Total execution time of preprocessing for annealing.

When the number of data points is eight, both internal and external Proposed meth-
ods are about 10 times faster than both internal and external Conventional methods. This
is because the preprocess for annealing is represented as the matrix–matrix calculations
to utilize numerical libraries. The numerical libraries can accelerate the matrix–matrix
calculations by adopting techniques of distributed memory and highly parallel program-
ming models. As the number of data points increases, the difference between Proposed
and Conventional increases. The difference between the proposed and the conventional
methods are at most 12.4 million and 6.1 million times when the number of data points is
1024. This is because the conventional method requires more instructions for calculating
coefficients than the proposed method. The proposed method uses a numerical library
to process calculations with a high level of parallelism. Moreover, numerical libraries are
highly optimized to maximize machine performance by specializing in specific calculations.
Conventional methods, on the other hand, are implemented in script languages such as
Python to implement easily and are not specialized in bringing the best out of the perfor-
mance. As a result, the proposed method achieves speedups of millions of times over the
conventional method. Since the proposed method accelerates the preprocess for annealing
methods, the matrix–matrix computation has the potential to solve large-scale Ising-based
clustering problems.

To further investigate the effectiveness of matrix–matrix calculations in the preprocess
for annealing, Figures 9–12 show the breakdowns of the preprocess time. Figures 9 and 10
show the execution times for calculating the kernel and Gram coefficients, respectively.
Proposed uses the method of determining the coefficients of matrices by matrix–matrix
calculations, as shown in Equations (7) and (9). Conventional calculates the coefficients
sequentially by implementing Equations (6) and (8).
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Figure 9. The execution time of determining the Gaussian kernel coefficients.

Figure 9 shows that the execution time for determining the coefficients of the kernel
matrix is not so long. The acceleration rate of the proposed method to the conventional
method is also small, ranging from 1.5 to 7.6. This is because the proposed method deter-
mines the coefficients of kernel matrix by not matrix–matrix calculations but scalar–matrix
calculation. As shown in Equation (9), an exponential operator exp() and a multiplier
− 1

2σ2 is applied to the elements of the Gaussian kernel matrix M only once to each element
of the squared distance D2. Since the numerical library cannot be highly parallelized for
scalar–matrix operation, the acceleration ratio of the proposed method to the conventional
method is low.

Figure 10 also shows that Proposed is much faster than Conventional. This experimental
result reveals that the matrix–matrix calculations is accelerated by the numerical library.
In calculating the coefficients of the Gram matrix, the acceleration ratio of the proposed
method to the conventional method is at most 392.6 million. Since the process of generating
the Gram matrix has multiple matrix–matrix calculations, the parallel calculation by the
numerical library is effective.
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Figure 10. The execution time of determining the Gram coefficients.

Figures 11 and 12 show the execution times for determining the elements of the
externally-constrained and internally-constrained QUBO matrices.
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Figure 11. The execution time of determining the elements of the externally-constrained QUBO matrix.

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

8 16 32 64 128 256 512 1,024

Ex
ec

ut
io

n 
tim

e 
[s

ec
.]

The number of data points

Proposed Conventional

Figure 12. The execution time of determining the elements of the internally-constrained QUBO matrix.

When the number of data points is eight in Figures 11 and 12, matrix–matrix calcula-
tions of the externally-constrained and internally-constrained QUBO matrix take longer
than the conventional method. This is because multiple numerical functions of matrix–
matrix calculations take constant overhead. Since the conventional methods do not have
the overhead due to determining the QUBO coefficients, the conventional methods are
faster than the proposed methods when the number of data points is small.

As the numbers of data points increase, the differences between the proposed and con-
ventional methods increase in both cases of Figures 11 and 12. The proposed methods for
the externally-constrained and internally-constrained QUBO coefficients can achieve times
that are 12.9 and 14.5 faster than the conventional methods for the externally-constrained
and internally-constrained QUBO coefficients, respectively. Here, the acceleration ratio of
generating the externally-constrained QUBO coefficients is smaller than that of generating
the internally-constrained QUBO coefficients. This is because the internally-constrained
QUBO coefficients require calculating both the coefficients of the Gram matrix and those
of the Lagrange multiplier, while the externally-constrained QUBO coefficients require
calculating only the coefficients of the Gram matrix. Since the conventional method for
internally-constrained QUBO coefficients requires more complicated preprocesses, the pro-
posed method for the internally-constrained QUBO coefficients is more effective than that
for the externally-constrained QUBO coefficients. Thus, the speedup ratio for determining
methods of the internally-constrained QUBO coefficients is higher than that for determining
methods of the externally-constrained QUBO coefficients.
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These discussions clarify that it is useful for the preprocess of annealing to use numer-
ical libraries for the matrix–matrix calculations. The most effective part of the proposed
method is determining the coefficients of the Gram matrix. The Gram coefficients are
also used for the state-of-the-art kernel clustering methods other than Ising-based kernel
clustering methods. While these state-of-the-art kernel clustering methods calculate the
Gram coefficients among centroids and the other actual data points, Ising-based kernel
clustering methods calculate the Gram coefficients among only the actual data points. Since
all the Gram coefficients among the actual data points are calculated simultaneously in
advance, calculating the Gram matrix for Ising-based kernel clustering methods can obtain
a high level of parallelism by using the numerical libraries. The experiments clarify that
utilizing matrix–matrix calculations for the Gram matrix is effective. Because the kernel
methods are also useful in the field of other machine learning methods, such as linear
regression, support vector machine, and K-nearest neighbor, the proposed matrix–matrix
calculating method has the potential to accelerate these methods based on the Ising model.

4.4. Comparisons with Kernel K-Means

While the Ising-based kernel clustering optimizes the original objective function, ker-
nel K-means clustering [29] as a representative of the state-of-the-art kernel clustering
methods conducts quasi-optimization using the Gram elements. To reduce the computa-
tional cost, Kernel K-means calculates similarities among centroids xα, geometric center of
clusters α, and the other data points xi instead of similarities among all actual data points
xi and xj.

Figures 13 and 14 are comparisons between the proposed Ising-based kernel clustering
and the kernel K-means. Figures 13 and 14 show the ARIs and the execution times of each
clustering method, respectively.
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Figure 13. The ARIs of the proposed Ising-based kernel clustering and kernel K-means.

Figure 13 shows that the ARIs of the proposed method are higher than that of the
conventional method. This is because the proposed method searches for the global opti-
mal solution. Since the kernel K-means performs quasi-optimization, the probability of
obtaining solutions with high accuracy is low.
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Figure 14. Execution times of the proposed Ising-based kernel clustering and kernel K-means.

Next, Figure 14 shows that the execution times of the proposed method are longer
than that of the kernel K-means. This is because the proposed Ising-based kernel clustering
takes a long time to determine the coefficients of the kernel, Gram, and QUBO matrices.
Thus, Ising-based kernel clustering is useful in the situation where clustering results with
higher accuracy are required even if it takes a longer time.

4.5. Experiments on Real Datasets

For further analysis, this section conducts experiments using practical real-world
datasets. The Yale Face Database (YALE) [30] and the Japanese Female Facial Expres-
sion Dataset (JAFFE) [31] are used for the experiments, and their details are shown in
Table 1. Furthermore, several facial image examples from YALE and JAFFE are presented
in Figures 15 and 16, respectively.

Table 1. Description of the datasets.

# of Instances # of Classes Image Size

YALE 165 15 243× 320

JAFFE 213 10 256× 256

Figure 15. Samples of the Yale Face Database.

Figure 16. Samples of the Japanese Female Facial Expression Dataset.

Clustering for the facial image dataset is a task that categorizes facial images of the
same person into the same cluster. In this experiment, the proposed method is used to
perform clustering for YALE and JAFFE datasets, and the performance is evaluated by
comparing it with other non-Ising-based clustering methods.
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The clustering performance is evaluated using Normalized Mutual Information (NMI).
NMI is a normalization of the Mutual Information score to scale the results between 0 (no
mutual information) and 1 (perfect correlation).

First, an experiment is conducted to investigate an appropriate parameter σ because
the performance of the proposed method depends on the parameter σ. Next, the results are
compared with state-of-the-art clustering methods. When performing clustering for com-
plex image data, such as facial images, it is not always possible to convert the data structure
to a linearly separable one with a single kernel. Therefore, multi-view methods using
multiple kernels tend to show high performance [32]. Kang et al. [33] proposed Structured
Graph Learning with Multiple Kernel (SGMK), which extends Structured Graph Learning
to multiple kernel clustering and showed that SGMK outperforms many clustering meth-
ods, such as Spectral Clustering [34,35], Multiple Kernel K-means [36,37], and structure
learning approaches [38,39]. Therefore, this paper compares the proposed method with
SGMK from the viewpoint of NMI.

Figure 17 is the NMI of the proposed method for YALE and JAFFE datasets. The results
show that the NMI performance of the proposed method did not change significantly when
σ is varied for both the YALE and JAFFE datasets. This suggests that using a single Gaussian
kernel to transform the data structure is not sufficient for facial image clustering and that
using multiple kernels to select the most appropriate kernel is more effective than adjusting
the parameters of the Gaussian kernel.

Table 2 shows that the Ising-based kernel clustering has lower NMIs than SGMK. This
is because SGMK uses multiple kernels for data transformation and performs clustering
based on the most suitable kernel, while Ising-based kernel clustering uses only a single
Gaussian kernel.

Multi-view clustering methods that use multiple kernels to transform input data into
linearly separable high-dimensional data are one of the most promising ways to perform
kernel clustering for practical real-world data. While Ising-based kernel clustering has
the potential to obtain the ground state for a given objective function of kernel clustering,
selecting the most appropriate kernel is required before optimization. Thus, developing an
algorithm for Ising-based kernel clustering that uses multiple kernels will be discussed in
the future.
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Figure 17. The NMI of Ising-based kernel clustering for YALE and JAFFE datasets.

Table 2. The comparison of NMI between the Ising-based kernel clustering and SGMK.

Ising-Based Kernel Clustering SGMK

YALE 28.11% 62.04%

JAFFE 10.35% 99.18%

5. Related Work

In addition to Ising-based kernel clustering proposed in this paper, another way
to perform clustering of irregular data is Ising-based binary clustering using the kernel
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method [40]. This method involves utilizing only one single decision boundary to linearly
separate the data mapped onto a high-dimensional feature space. However, conventional
Ising-based binary clustering utilizing the kernel method is limited to cases with only
two clusters, rendering it impractical. The reason why binary clustering using the kernel
method can only group data into two clusters is the use of decision variables representing
a binary value. In contrast, the proposed method presented in this paper can be applied
more generally across a wide range of applications to categorize irregular data into two or
more clusters.

Combinatorial clustering based on the Ising model has also been utilized for semi-
supervised clustering. Cohen et al. proposed constrained clustering, which employs
various types of supervisory information [41], while Authur et al. proposed balanced clus-
tering, ensuring that all clusters have the same number of data points [13,14]. The QUBO
formulation employed in these semi-supervised clustering techniques can be converted into
Equation (14). Consequently, the approach proposed in this paper that employs the kernel
method can also be extended to semi-supervised clustering. When irregular data are given
that are challenging to categorize, the inclusion of supervised information can be beneficial.
Therefore, integrating the kernel method into semi-supervised clustering can enhance the
practicality of combinatorial clustering. A promising area for future research would be to
explore kernel clustering using supervisory information based on the Ising model.

6. Conclusions

Ising-based combinatorial clustering is receiving attention due to its quality of clus-
tering. However, conventional Ising-based clustering methods cannot handle data with
irregular distributions. To overcome this problem, this paper proposes an Ising-based
combinatorial clustering method using a kernel method. The proposed method uses a
kernel trick to convert various data onto high-dimensional data that can be clustered. This
paper also resolves the problem of a high computation cost for the process of determining
the coefficients of the kernel, Gram, and QUBO matrices by extracting the potential of
highly parallelized numerical libraries.

First, the proposed method is compared with Euclidean distance-based combinatorial
clustering as the conventional method. The experimental results show that the quality
of the clustering results of the proposed method is significantly higher than that of the
conventional method on irregular data. Moreover, the proposed method can obtain high-
quality clustering results by selecting the appropriate parameter. Second, the proposed
implementation using numerical libraries is compared with the naive implementation,
where kernel, Gram, and QUBO coefficients are determined iteratively. Experimental results
show that the proposed method is at most 12.4 million times faster than the conventional
method. The experiments have also revealed the potential to solve large-scale Ising-based
kernel clustering problems. Third, comparisons between the Ising-based kernel clustering
and the kernel K-means show that the Ising-based kernel clustering is effective in the
situation where higher-quality clustering results are required at the expense of a bit more
time. Finally, experiments on real-world datasets suggest that selecting the appropriate
kernel is more important than parameter tuning for only one kernel. Even though the
proposed method has the potential to minimize the given objective function of kernel
clustering, it is needed to give the appropriate kernel to ensure maximum performance.

In future work, combining methods for ensemble clustering [42,43] that combine
multiple clustering results or multiple kernels [33] to improve the accuracy and robustness
of clustering will be discussed.
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