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Abstract: Deep learning uses artificial neural networks to recognize patterns and learn from them to
make decisions. Deep learning is a type of machine learning that uses artificial neural networks to
mimic the human brain. It uses machine learning methods such as supervised, semi-supervised, or
unsupervised learning strategies to learn automatically in deep architectures and has gained much
popularity due to its superior ability to learn from huge amounts of data. It was found that deep
learning approaches can be used for big data analysis successfully. Applications include virtual
assistants such as Alexa and Siri, facial recognition, personalization, natural language processing,
autonomous cars, automatic handwriting generation, news aggregation, the colorization of black
and white images, the addition of sound to silent films, pixel restoration, and deep dreaming. As a
review, this paper aims to categorically cover several widely used deep learning algorithms along
with their architectures and their practical applications: backpropagation, autoencoders, variational
autoencoders, restricted Boltzmann machines, deep belief networks, convolutional neural networks,
recurrent neural networks, generative adversarial networks, capsnets, transformer, embeddings from
language models, bidirectional encoder representations from transformers, and attention in natural
language processing. In addition, challenges of deep learning are also presented in this paper, such as
AutoML-Zero, neural architecture search, evolutionary deep learning, and others. The pros and cons
of these algorithms and their applications in healthcare are explored, alongside the future direction
of this domain. This paper presents a review and a checkpoint to systemize the popular algorithms
and to encourage further innovation regarding their applications. For new researchers in the field of
deep learning, this review can help them to obtain many details about the advantages, disadvantages,
applications, and working mechanisms of a number of deep learning algorithms. In addition, we
introduce detailed information on how to apply several deep learning algorithms in healthcare, such
as in relation to the COVID-19 pandemic. By presenting many challenges of deep learning in one
section, we hope to increase awareness of these challenges, and how they can be dealt with. This
could also motivate researchers to find solutions for these challenges.

Keywords: artificial neural networks (ANN); deep learning; autoencoders (AE); convolutional neural
networks (CNN); recurrent neural network (RNN); health care sector

1. Introduction

Deep learning is a machine learning technique that teaches computers and devices log-
ical functioning. It is inspired by the structure of the human brain. Deep learning originated
as artificial neural networks (ANNs) and has developed far more efficiency after decades
of research and development compared to the other machine learning algorithms [1].

In the early stages of the development of neural networks, researchers aspired to
create a system that mimicked the functions of the human brain. In 1943, McCulloch
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Abstract: Structural equation models (SEM) are widely used in the social sciences. They model
the relationships between latent variables in structural models, while defining the latent variables
by observed variables in measurement models. Frequently, it is of interest to compare particular
parameters in an SEM as a function of a discrete grouping variable. Multiple-group SEM is employed
to compare structural relationships between groups. In this article, estimation approaches for the
multiple-group are reviewed. We focus on comparing different estimation strategies in the presence
of local model misspecifications (i.e., model errors). In detail, maximum likelihood and weighted
least-squares estimation approaches are compared with a newly proposed robust Lp loss function
and regularized maximum likelihood estimation. The latter methods are referred to as model-
robust estimators because they show some resistance to model errors. In particular, we focus on the
performance of the different estimators in the presence of unmodelled residual error correlations and
measurement noninvariance (i.e., group-specific item intercepts). The performance of the different
estimators is compared in two simulation studies and an empirical example. It turned out that the
robust loss function approach is computationally much less demanding than regularized maximum
likelihood estimation but resulted in similar statistical performance.

Keywords: structural equation modeling; model robustness; robust loss function; regularized
estimation; model error; measurement noninvariance; differential item functioning

1. Introduction

Confirmatory factor analysis (CFA) and structural equation models (SEM) are amongst
the most important statistical approaches for analyzing multivariate data in the social
sciences [1–7]. These models relate a multivariate vector X = (X1, . . . , XI) of observed I
variables (also referred to as items) to a vector of latent variables (i.e., factors) η of lower
dimension using a linear model. SEMs represent the mean vector µ and the covariance
matrix Σ of the random variable X as a function of an unknown parameter vector θ. That
is, the mean vector is represented as µ(θ), and the covariance matrix is given by Σ(θ).

SEM and CFA, as particular cases, impose a measurement model that relates the
observed variables X to latent variables η

X = ν + Λη+ ε . (1)

In addition, we denote the covariance matrix Var(ε) = Ψ, and η as well as ε are multivariate
normally distributed random vectors. Note that η and ε are assumed to be uncorrelated. In
CFA, the multivariate normal (MVN) distribution is represented as η ∼ MVN(α, Φ) and
ε ∼ MVN(0, Ψ). Hence, one can represent the mean and the covariance matrix in CFA as

µ(θ) = ν + Λα and Σ(θ) = ΛΦΛ> + Ψ . (2)

Algorithms 2023, 16, 210. https://doi.org/10.3390/a16040210 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16040210
https://doi.org/10.3390/a16040210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8226-3132
https://doi.org/10.3390/a16040210
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16040210?type=check_update&version=2


Algorithms 2023, 16, 210 2 of 21

In SEM, more structured relationships among the latent variables can be imposed. A matrix
B of regression coefficients is specified such that

η = Bη+ ξ with E(ξ) = α and Var(ξ) = Φ . (3)

Hence, the mean vector and the covariance matrix are represented in SEM as

µ(θ) = ν + Λ(I − B)−1α and Σ(θ) = Λ(I − B)−1Φ[(I − B)−1]>Λ> + Ψ , (4)

where I denotes the identity matrix.
In practice, SEM parsimoniously parametrizes the mean vector and the covariance

matrix using a parameter θ as a summary. As is true with all statistical models, these
restrictions are unlikely to hold in practice, and model assumptions in SEM are only an
approximation of a true data-generating model. In SEM, model deviations (i.e., model
errors) in covariances emerge as a difference between a population covariance matrix Σ

and a model-implied covariance matrix Σ(θ) (see [8,9]). Similarly, there can be model
errors in the mean vector leading to a difference between the population mean vector µ
and the model-implied mean vector µ(θ). As a consequence, the SEM is misspecified at
the population level. Note that the model errors are defined at the population level in
infinite sample sizes. With finite samples in real-data applications, the empirical covariance
matrix S estimates the population covariance matrix Σ and the mean vector x estimates
the population mean vector µ. In this article, we investigate estimators that possess some
kind of resistance against model deviations. That is, the presence of some amount of model
errors does not impact the parameter estimate θ. This kind of robustness is referred to as
model robustness and follows the principles of robust statistics [10–12]. While in classical
robust statistics, observations (i.e., cases or subjects) do not follow an imposed statistical
model and should be treated as outliers, model errors in SEM occur as residuals in the
modeled mean vector and the modeled covariance matrix. That is, an estimator in an
SEM should automatically treat large deviations in µ− µ(θ) and Σ− Σ(θ) as outliers that
should not (substantially) impact the estimated parameter θ. We compare regularized
maximum likelihood estimation with robust moment estimation approaches. Robust
moment estimation has been scarcely used in SEM. We propose an alternative and more
flexible loss function for robust moment estimation and demonstrate that it results in similar
statistical performance compared to the computationally much more tedious maximum
likelihood estimation.

In this article, we discuss model-robust estimation of SEM when modeling means and
covariance matrices in the more general case of multiple groups [4,13]. Model errors in the
modeled covariance matrix can emerge to incorrectly specified loadings in the matrix Λ or
unmodeled residual error correlations in the matrix Ψ. In the following, we only consider
the case of unmodeled residual error correlations. Moreover, model errors in the modeled
mean vectors are mainly due to incorrectly specified item intercepts ν. In the multiple-group
SEM, this case is often referred to as a violation of measurement invariance [14–16]. The
investigation of model-robust SEM estimators under such a measurement noninvariance
situation is also the focus of this article. For discrete items, measurement noninvariance is
also referred to as differential item functioning (DIF; [17,18]), and several approaches for
model-robust estimation have been proposed (e.g., [19–21]).

The remainder of the article is organized as follows: Different model-robust estimation
methods are discussed in Section 2. Section 3 presents results from a simulation study with
unmodeled residual error correlations. In Section 4, we focus on standard error estimation
methods in a selected number of conditions of the simulation study presented in Section 3.
Section 5 presents results from a simulation study with unmodeled item intercepts which
indicates the presence of violations of measurement invariance (i.e., the presence of DIF).
In Section 6, results from an empirical example involving data from the European social
survey are offered. Finally, the article closes with a discussion in Section 7.
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2. Model-Robust Estimation in Structural Equation Modeling

In Section 2.1, we review the most frequently used estimation methods (i.e., maximum
likelihood and weighted least squares estimation) in multiple-group SEM. These methods
are known not to be resistant to model errors and are, therefore, referred to as model-non-
robust estimation methods. Section 2.2 introduces robust moment estimation of multiple-
group SEMs that is robust to the presence of model errors. As an alternative, Section 2.3
discusses regularized maximum likelihood estimation as a robust-estimation method.

2.1. Multiple-Group Structural Equation Modeling

We now describe different estimation approaches for multiple-group SEMs. Note
that some identification constraints must be imposed to estimate the covariance structure
model (4) (see [2]). For modeling multivariate normally distributed data without any
missing values, the empirical mean vector x and the empirical covariance matrix S are
sufficient statistics for estimating µ and Σ. Hence, they are also sufficient statistics for the
parameter vector θ.

Now, assume that there are G groups with sample sizes Ng and empirical means xg
and covariance matrices Sg (g = 1, . . . , G). The population mean vectors are denoted by µg,
and the population covariance matrices are denoted by Σg. The model-implied mean vector
shall be denoted by µg(θ) and the model-implied covariance matrix by Σg(θ). Note that
the parameter vector θ does not have an index g to indicate that there can be common and
unique parameters across groups. As a typical application of a CFA, equal factor loadings
and item intercepts across groups are imposed (i.e., measurement invariance holds) by
assuming the same loading matrix Λ and the same intercept vector ν across groups.

The maximum likelihood (ML) function for the parameter θ is given by (see [2,4])

FML(θ; {xg}, {Sg}) = −
G

∑
g=1

Ng

2

(
−I log(2π) + log|Σg(θ)|+ tr(SgΣg(θ)

−1) + (xg − µg(θ))
>Σg(θ)

−1(xg − µg(θ))
)

,

(5)

where {xg} and {Sg} are the sets of the empirical mean vectors and empirical covariance
matrices of all groups, respectively. In practice, the model-implied covariance matrix will
be misspecified [22–24], and θ is a pseudo-true parameter defined as the maximizer of the
fitting function FML in (5).

A more general class of fitting functions is weighted least squares (WLS)
estimation [3,4,25]. The parameter vector θ is determined as the minimizer of

FWLS(θ; {xg}, {Sg}) =
G

∑
g=1

(xg − µg(θ))
>W1g(xg − µg(θ)) + (sg − σg(θ))

>W2g(sg − σg(θ)) , (6)

where matrices Σ and S have been replaced by vectors σ and s that collect all nonduplicated
elements of the matrices in vectors. The weight matrices W1g and W2g (g = 1, . . . , G) can
also depend on parameters that must be estimated. Diagonally weighted least squares
(DWLS) estimation involves choosing diagonal weight matrices Wg1 and Wg2. The un-
weighted least squares (ULS) estimation is obtained when these matrices are identity
matrices. Interestingly, the minimization in (6) can be interpreted as a nonlinear least
squares estimation problem with sufficient statistics {xg} and {Sg} as input data [26].

It has been shown that ML estimation can be approximately written as DWLS estima-
tion [27] with particular weight matrices. DWLS can be generally written as

FDWLS(θ; {xg}, {Sg}) =
G

∑
g=1

I

∑
i=1

w1gi(xgi − µgi(θ))
2 +

G

∑
g=1

I

∑
i=1

I

∑
j=i

w2gij(sgij − σgij(θ))
2 , (7)

where w1gi and w2gij are appropriate elements in W1g and W2g, respectively. In ML estima-
tion, the weights are approximately determined by w1gi = 1/u2

gi and w2gij = 1/(u2
giu

2
gj),

where u2
gi are sample unique standardized variances with u2

gi = ψgii/σgii (see [27]). With
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smaller residual variances ψgii, more trust is put on a mean µgi or a covariance σgij in the
fitting function in ML estimation.

2.2. Robust Moment Estimation Using Robust Loss Functions

It is evident that the DWLS fitting function is not robust to outlying observations
because the square loss function is used. In model-robust SEM estimation in the context of
this article, outlying observations are defined as deviations µg − µg(θ) and Σg − Σg(θ). In
order to allow resistance of the estimator against model deviations, the square loss function
in (7) can be replaced with a robust loss function ρ (see [13])

Frob(θ; {xg}, {Sg}) =
G

∑
g=1

I

∑
i=1

w1giρ(xgi − µgi(θ)) +
G

∑
g=1

I

∑
i=1

I

∑
j=i

w2gijρ(sgij − σgij(θ)) . (8)

The robust mean absolute deviation (MAD) loss function ρ(x) = |x| was considered
in [28,29]. This fitting function is more robust to a few model violations, such as unmodeled
item intercepts or unmodeled residual correlations of residuals εi (see [8]). In this article,
we consider the more general Lp loss function ρ(x) = |x|p with 0 < p ≤ 1 can ensure
even more model-robust estimates [30]. This estimation approach is referred to as robust
moment estimation (RME). The Lp loss function with p = 2 is the square loss function
ρ(x) = x2 and corresponds to ULS estimation.

The Lp loss function has been successively applied in linking methods [13,31], which
can be considered as an alternative approach to a joint estimation of SEM for multiple
groups. The loss function with p = 0.5 or p = 0.25 has been proposed in the invariance
alignment linking approach [32–34].

In the minimization of (8), the nondifferentiable loss function ρ is substituted by a
differentiable approximation (e.g., ρ(x) = |x| is replaced by ρ̃ε(x) = (x2 + ε)1/2 for a
small ε > 0, such as ε = 10−3; see [30,32,35,36]). In practice, it is advisable to use reasonable
starting values and to minimize (8) using a sequence of differentiable approximations with
decreasing ε values (i.e., subsequently fitting ρ̃ε with ε = 10−1, 10−2, 10−3 and using the
previously obtained result as the initial value for the subsequent minimization problem).

2.2.1. Bias Derivation in the Presence of Model Errors

In this section, we formally study the bias in the estimated parameter θ in the presence
of model errors if the robust fitting function Frob in (8) is utilized. General asymptotic
results for misspecified models were presented in [6,37].

In the following, we consider the slightly more specific minimization problem

Frob(θ; ζ) =
H

∑
h=1

ρ(ζh − ζh(θ)) , (9)

where ζ = (ζ1, . . . , ζH) is a vector that can contain all group-wise mean vectors mg
and covariance matrices Sg for g = 1, . . . , G. Let vech(S) denote the nonduplicated
elements in a covariance matrix S. Then, the vector ζ contains all sufficient statistics
ζ = (m1, . . . , mG, s1, . . . , sG), where sg = vech(Sg) for g = 1, . . . , G.

We study the estimation problem using the optimization function in (9) at the popula-
tion level. That is, we study the model differences between ζ and ζ(θ). According to [26],
we can frame the estimation problem (9) as a nonlinear regression

ζ = ζ(θ) + r (10)

for some model error r = (r1, . . . , rH). We now study the impact of sufficiently small
model errors r. It is assumed that there exists a perfectly fitting SEM. That is, there exists a
parameter vector θ0 such that ζ0 = ζ(θ0) = (ζ01, . . . , ζ0H). This situation corresponds to
the absence of model error.
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We now replace the minimization problem (9) using a robust loss function with a
weighted least squares estimation problem. This approach is ordinarily employed in robust
statistics when estimating a robust regression model with iteratively weighted least squares
estimation [38,39]. Define ∆θ = θ− θ0 and r = ζ − ζ(θ0). Then, we can rewrite the
minimization problem (9) as

Frob(∆θ; ζ) =
H

∑
h=1

ρ(ζ0h + rh − ζh(θ)) . (11)

The nonlinear function ζh(θ) can be linearized around θ = θ0. Hence, we can write

ζh(θ) ' ζ0h + a>h ∆θ , (12)

where ah = (∂ζh)/(∂θ) evaluated at θ0. Moreover, we approximate the robust estimation
problem in (11) by a weighted least squares problem [38,40]

Frob(∆θ; ζ) =
H

∑
h=1

ω2
h(rh − a>h ∆θ)2 (13)

using ωh = ρ(eh)/eh for eh = rh − a>h ∆θ. Then, the change in the θ parameter estimate
can be directly expressed as a function of model deviations r using the weighted least
squares regression formula [38]. Let Ω be the diagonal matrix containing weights ωh in
the diagonal. Let A be the design matrix that contains rows a>h for h = 1, . . . , H. Then, the
asymptotic bias in the estimated parameter vector is given by

∆θ = (A>ΩA)−1 A>Ωr . (14)

If a robust loss function ρ is chosen, gross model errors rh result in small weights ωh.
Hence, these model errors should only have a minor impact with respect to the parameter
estimate θ. Note that a similar formula like (14) has been presented in [37] for a general
differentiable discrepancy function.

2.2.2. Standard Error Estimation

In this subsection, standard error formulas for RME are derived. Note that the param-
eter estimate θ̂ is a nonlinear function of the vector of sufficient statistics ζ that contains
group-wise mean vectors mg and nonduplicated elements of group-wise covariance ma-
trices sg = vech(Sg). The covariance matrix Vζ = Var(ζ) is derived under multivariate
normality of observations X. The vectors mg and sg are uncorrelated within group g and
across groups g = 1, . . . , G. Hence, Vζ can be written as a block-diagonal matrix of covari-
ance matrices Var(mg) and Var(sg). If Ng is the sample size of group g, the covariance
matrix of the mean vector is estimated by

Var(mg) = N−1
g Sg . (15)

Let vec(S) be the vectorized matrix of the covariance matrix S. Then, there exists a transition
matrix K that contains appropriate entries 0, 0.5, and 1 such that (see [3])

sg = vech(Sg) = Kvec(Sg) . (16)

If ⊗ denotes the Kronecker product, the covariance matrix of sg is estimated by (see [3])

Var(sg) = N−1
g K

(
Sg ⊗ Sg

)
K> . (17)

Hence, Vζ is given as a block-diagonal matrix with block-wise matrix entries defined by
(15) and (17).
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RME can be viewed as obtaining the parameter estimate θ̂ by minimizing a (possi-
bly robust) discrepancy and (approximated) differentiable function F(θ, ζ). Denote by
Fθ = (∂F)/(∂θ) the vector of partial derivatives with respect to θ. The parameter estimate
is given as the root of the nonlinear equation

Fθ(θ̂, ζ) = 0 . (18)

Assume that the population sufficient statistics are denoted by ζ0 and there exists a pseudo-
true parameter θ0 such that Fθ(θ0, ζ0) = 0. Note that the parameter ζ0 does not refer to a
data-generating parameter but is defined by choosing a particular discrepancy function F.
Different pseudo-true parameters will be obtained for different choices of discrepancy
functions in misspecified SEMs.

We now derive the covariance matrix of θ̂ by utilizing a Taylor expansion of Fθ. Denote
by Fθθ and Fθζ the matrices of second-order partial derivatives of Fθ with respect to θ and ζ,
respectively. We obtain

Fθ(θ̂, ζ) = Fθ(θ0, ζ0) + Fθθ(θ0, ζ0)(θ̂− θ0) + Fθζ(θ0, ζ0)(ζ − ζ0) . (19)

As the parameter estimate θ̂ is a nonlinear function of ζ, the Taylor expansion (19) provides
the approximation

θ̂− θ0 = − Fθθ(θ0, ζ0)
−1Fθζ(θ0, ζ0)(ζ − ζ0) . (20)

By defining A = − Fθθ(θ, ζ0)
−1Fθζ(θ, ζ0), we get, using the multivariate delta formula [22,

41]
Var(θ̂) = AVζ A> (21)

This approach is ordinarily used for differentiable discrepancy functions in the SEM lit-
erature [3,7,25,37]. We also apply the Formula (21) for differentiable approximations
ρ̃ε(x) = (x2 + ε)p/2 of the robust Lp loss function ρ(x) = |x|p for p ≤ 1 and a sufficiently
small ε > 0 in RME.

As an alternative to the multivariate delta formula, standard errors can be obtained
with resampling approaches, such as bootstrap or jackknife [42]. However, these approaches
are computationally more demanding because SEM estimation has to be carried out in each
replication sample.

2.3. Regularized Maximum Likelihood Estimation

Regularized estimation of SEMs might be a more direct approach for modeling mis-
specifications in means and covariances [43–50]. In this case, model errors are represented
as outliers in item intercepts (i.e., in the vector ν) and nondiagonal entries in the residual
error covariance (i.e., in the matrix Ψ).

In regularized estimation, a nonidentified SEM is typically utilized, and only outlying
entries in ν and Ψ are estimated differently from zero. To ensure the identifiability of model
parameters, regularized estimation relies on sparsity assumptions [51–53] in item intercepts
and residual correlations. The main idea in regularized ML (RegML) estimation is that a
penalty function is subtracted from the likelihood. The penalty function P controls the
sparsity in a subset of the estimated parameter vector θ. For example, the subset in θ might
refer to nondiagonal residual error correlations or group-specific item intercepts.

We now discuss the choice of the penalty function. For a scalar parameter x, the lasso
penalty is a popular penalty function used in regularization [52], and it is defined as

PLasso(x, κ) = κ|x| , (22)

where κ is a nonnegative regularization parameter that controls the extent of sparsity in the
obtained parameter estimate. It is known that the lasso penalty introduces bias in estimated
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parameters. To circumvent this issue, the smoothly clipped absolute deviation (SCAD; [54])
penalty has been proposed. The SCAD penalty is defined as

PSCAD(x, κ) =


κ|x| if |x| < κ

−(x2 − 2aκ|x|2 + κ2)(2(a− 1))−1 if κ ≤ |x| ≤ aκ
(a + 1)κ2 if |x| > aκ

(23)

with a > 2. In many studies, the recommended value of a = 3.7 (see [54]) has been adopted
(e.g., [51,55,56]). The SCAD penalty retains the penalization rate and the induced bias of the
lasso for model parameters close to zero, but continuously relaxes the rate of penalization
as the absolute value of the model parameters increases. Note that PSCAD has the property
of the lasso penalty around zero, but has zero derivatives for x values strongly differing
from zero.

We now describe RegML estimation in more detail. In the general multiple-group SEM,
the parameter vector θ is extended to include group-specific residual error correlations ψg
(which is the vectorized version of Ψg) and group-specific item intercepts νg (g = 1, . . . , G).
By including all effects in the SEM, the parameter θ would not be identified. Therefore, a
penalty function is subtracted from the log-likelihood function, and the following function
is minimized

FML(θ; {xg}, {Sg})− N∗
G

∑
g=1

∑
h
PSCAD(νgh, κν)− N∗

G

∑
g=1

∑
h
PSCAD(ψgh, κψ) (24)

using a sample size N∗ that can be equal to ∑G
g=1 Ng. Note that, for brevity, we suppress to

indicate the dimensionality of the regularized parameters ψg and νg. In addition, note that
there are two regularization parameters κν and κψ.

In practice, minimization of (24) for fixed values of the two κ parameters results in a
subset of νg and ψg parameters that are different from zero, where the remaining parameters
have been set to zero. Typically, the two κ regularization parameters are unknown nuisance
parameters in (24) that must also be estimated. In practice, the minimization of (24)
is carried out on a discrete one- or two-dimensional grid of κ values, and the optimal
regularization parameter is selected that minimizes the Bayesian information criterion
(BIC). The optimization of the nondifferentiable fitting function can be carried out using
gradient descent [52] approaches or by substituting the nondifferentiable optimization
functions with differentiable approximating functions [8,35,36,57]. In our experience, the
latter approach performs satisfactorily in applications.

RegML has the disadvantage that standard errors are difficult to obtain. Of course, re-
sampling methods, such as bootstrap or other demanding approaches, can be
applied [52,58,59]. However, this approach is computationally demanding because the
tuning parameter selection must be applied in each bootstrap sample. Therefore, avoiding
RegML in situations where computation time matters might be preferable.

3. Simulation Study 1: Unmodeled Residual Error Correlation

In this Simulation Study 1, we compare the estimation approaches RME and RegML
in a misspecified single-group two-dimensional factor model. It is of interest which of the
estimation methods is resistant to model misspecification. It can be expected that RegML
and RME with powers p ≤ 1 will provide some resistance to model errors.

3.1. Method

The data-generating model is a two-dimensional factor model involving six manifest
variables X1, . . . , X6, and two latent (factor) variables η1 and η2. The data-generating model
is graphically presented in Figure 1. The first three items load on the first factor, while the
last three item load on the second factor. Model errors exist by introducing two unmodeled
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residual correlations of items corresponding to the two factors (i.e., of items X1 and X4, and
items X2 and X5).

η1

X2X1 X3

η2

X5X4 X6

ϕ12

ψ14 ψ25

Figure 1. Simulation Study 1: Data-generating model.

The means of all variables were set to equal in the population. However, the mean
structure was left saturated in estimation because it is not of interest in this simulation
study. The specified factor loadings λ were all set to 0.7, and all error variances were set to
0.5. The latent correlation φ12 of the factors η1 and η2 was set to 0.5 in the simulation. The
factor variable η, as well as the residuals ε, were multivariate normally distributed.

We varied the size of both residual error correlations as 0.5 · δ with δ = 0, 0.3, and 0.6,
indicating moderate-sized and large-sized residual error correlations. The sample size N
was chosen to 500, 1000, or 2500.

We estimated the two-dimensional factor model with unmodeled residual error corre-
lations. That is, the analysis models were misspecified (except for RegML). The six factor
loadings and the six residual variances were freely estimated. The variances of the latent
factors were set to 1. We employed ML, ULS, RegML, and RME, utilizing the Lp loss
function with powers p = 0.25, 0.5, and 1. ML and ULS can be considered non-robust SEM
estimation approaches, while RegML and RME are considered robust approaches. In total,
six different estimates were compared for each simulated dataset in each condition.

For RegML, we only imposed the SCAD penalty on nondiagonal entries in the residual
covariance matrix Ψ. RegML was estimated at a grid of regularization parameters between
10 and 0.002 (see replication material on https://osf.io/v8f45 (accessed on 27 March 2023)
for specification details). In this simulation study, the tuning parameter a was fixed to
3.7. We chose estimates of the regularization approach using the optimal regularization κψ

based on the BIC.
We studied the estimation recovery of the factor correlation φ12, a factor loading λ11,

and a residual variance ψ11. We assessed the bias and root mean square error (RMSE) of
a parameter θ̂ of interest. In each of R = 2000 replications in a simulation condition, the
estimate θ̂r (r = 1, . . . , R) was calculated. The bias was estimated by

Bias(θ̂) =
1
R

R

∑
r=1

(θ̂r − θ) . (25)

The RMSE was estimated by

RMSE(θ̂) =
1
R

R

∑
r=1

(θ̂r − θ)2 . (26)

To ease the comparability of the RMSE between different methods across sample sizes, we
used a relative RMSE in which we divided the RMSE of a particular method by the RMSE

https://osf.io/v8f45
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of the best-performing method in a simulation condition. Hence, a relative RMSE of 100 is
the reference value for the best-performing method.

The statistical software R [60] was employed for all parts of the simulation. All
estimators of the SEM were obtained using the mgsem() function in the sirt [61] package.
Replication material can be found at https://osf.io/v8f45 (accessed on 27 March 2023).

3.2. Results

In Table 1, the bias and the relative RMSE for the factor correlation φ12, the factor
loading λ11, and the residual variance ψ11 are presented.

Table 1. Simulation Study 1: Bias and relative root mean square error (RMSE) of model parameter
estimates as a function of sample size N and size of residual error correlations δ.

Bias Relative RMSE

RME with p = RME with p =

Par δ N RegML 0.25 0.5 1 ULS ML RegML 0.25 0.5 1 ULS ML

φ12

0
500 −0.01 0.00 0.00 0.00 0.00 0.00 102 102 101 101 100 101
1000 0.00 0.00 0.00 0.00 0.00 0.00 102 101 101 100 100 100
2500 0.00 0.00 0.00 0.00 0.00 0.00 103 100 100 100 100 100

0.3
500 0.02 0.02 0.02 0.03 0.07 0.07 100 101 103 113 162 166
1000 0.01 0.01 0.01 0.03 0.07 0.07 100 101 105 122 213 218
2500 0.01 0.01 0.01 0.03 0.07 0.07 100 101 108 144 318 328

0.6
500 0.01 0.01 0.01 0.03 0.15 0.16 100 101 102 119 312 336
1000 0.00 0.01 0.01 0.03 0.15 0.16 100 100 103 129 429 462
2500 0.00 0.01 0.01 0.03 0.15 0.16 100 100 105 152 672 722

λ11

0
500 0.00 0.00 0.00 0.00 0.00 0.00 101 108 106 104 104 100
1000 0.00 0.00 0.00 0.00 0.00 0.00 101 105 104 103 104 100
2500 0.00 0.00 0.00 0.00 0.00 0.00 101 104 104 104 104 100

0.3
500 0.00 0.00 0.00 0.01 0.02 0.01 102 104 103 101 109 100
1000 0.00 0.00 0.00 0.01 0.02 0.01 100 101 101 102 117 102
2500 0.00 0.00 0.00 0.01 0.02 0.01 100 100 101 105 137 108

0.6
500 0.00 0.00 0.00 0.01 0.04 0.02 100 108 107 107 139 138
1000 0.00 0.00 0.00 0.01 0.04 0.02 100 107 107 110 166 146
2500 0.00 0.00 0.00 0.01 0.04 0.02 100 104 105 111 219 160

ψ11

0
500 0.00 0.00 0.00 0.00 0.00 0.00 100 117 113 109 109 100
1000 0.00 0.00 0.00 0.00 0.00 0.00 100 109 107 106 107 100
2500 0.00 0.00 0.00 0.00 0.00 0.00 101 107 107 107 108 100

0.3
500 −0.02 −0.01 −0.01 −0.01 −0.03 −0.02 107 110 107 105 116 100
1000 −0.01 −0.01 −0.01 −0.01 −0.03 −0.02 104 100 100 103 127 102
2500 −0.01 0.00 −0.01 −0.01 −0.03 −0.01 107 100 101 108 155 111

0.6
500 −0.02 0.00 −0.01 −0.01 −0.06 −0.03 105 102 100 100 139 136
1000 −0.01 0.00 0.00 −0.01 −0.06 −0.03 102 101 100 104 176 145
2500 0.00 0.00 0.00 −0.01 −0.06 −0.03 100 101 102 112 260 177

Note. Par = model parameter; ML = maximum likelihood estimate; RegML = regularized maximum likelihood
estimate using the Bayesian information criterion for regularization parameter selection; RME = robust moment
estimation with power p in the loss function ρ(x) = |x|p; ULS = unweighted least squares estimate; Biases with
absolute values of at least 0.03 are printed in bold. RMSE values of at least 110 are printed in bold.

It turned out that in the condition of no unmodeled residual error correlations
(i.e., δ = 0 and no model misspecification), no biases occurred for all parameters. How-
ever, there were slight efficiency losses with RME for N = 500, which were particularly
pronounced for the powers p = 0.25 and p = 0.5 for the residual variance. The efficiency
loss for the factor loading for the robust estimation methods was slightly smaller than for
the residual variance. Finally, there was almost no efficiency loss for the robust methods
for the factor correlation.

https://osf.io/v8f45
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In the conditions with model errors (i.e., in the case of unmodeled residual correla-
tions), ML and ULS were severely biased for the factor correlation. The bias for ML and
ULS turned out to be slightly smaller for the factor loading and the residual variance.
RegML and RME, using the powers p = 0.25 or p = 0.5, were unbiased, while RME with
p = 1 had a small bias for the latent correlation. Regarding efficiency, RME with p = 0.25
was superior to p = 0.5.

In general, RME with p = 0.25 performed quite competitively to RegML. Given the
fact that RMSE is computationally much less demanding than RegML, one could prefer
model-robust SEM estimation in the presence of unmodeled residual error correlations
using the Lp robust loss function in practical applications.

4. Focused Simulation Study 1A: Computation of Standard Errors

In this Focused Simulation Study 1A, different standard error estimation formulas are
compared for selected conditions of Simulation Study 1.

4.1. Method

The same data-generating model of Simulation Study 1 (see Section 3) was utilized in
a subset of conditions. Multivariate data was generated based on a two-dimensional factor
model with two residual correlations. The correlations were omitted from the analysis
model. The size of the residual correlations was chosen as 0.5 · δ with δ equal to 0 or 0.6. The
same sample sizes as in Simulation Study 1 were employed (i.e., N = 500, 1000, and 2500).

The same estimation methods as in Simulation Study 1, except RegML, were used
(i.e., ML, ULS, and RME with p = 0.25, 0.5, and 1). Standard errors were computed for
each estimation method based on the multivariate delta formula (DF; see Equation (21))
that is implemented in the sirt::mgsem() function in the R package sirt [61]. Moreover, the
resampling methods jackknife (JK) and bootstrap (BS) were used [42,62]. For jackknife,
40 replication zones were employed for determining the standard error of model parameter
estimates. For bootstrap, 100 bootstrap samples were used to compute the standard
deviation of a parameter estimate across bootstrap samples that were used as the standard
error estimate. Moreover, standard errors for ML were also computed based on the observed
information (OI) matrix obtained as the Hessian of the log-likelihood function. Note that
the OI method is expected to result in biased standard error estimates in misspecified
models (i.e., in the case of δ = 0.6).

Confidence intervals around model parameter estimates were constructed under a
normality assumption of a parameter estimate at a confidence level of 95%. The empirical
coverage rate was determined as the proportion that the confidence interval covers the
pseudo-true parameter of an estimation method. A corresponding pseudo-true parameter
was obtained by applying the respective estimation method to the covariance matrix of
observed variables (i.e., Var(X)) in an infinite sample size (i.e., at the population level).

In total, 4000 replications were used for estimating the coverage rate at the confidence
level of 95%. A dedicated function for JK and BS standard error computation was written
in R [60]. Model estimation and standard error computation based on DF were carried out
using the mgsem() function in the R package sirt [61].

4.2. Results

In Table 2, coverage rates at the confidence level of 95% of model parameter estimates
as a function of sample size N and the size δ of unmodeled residual error correlations are
displayed. Overall, it turned out that DF, JK, and BS standard error estimates resulted
in satisfactory coverage rates (i.e., between 92.5% and 97.5%) for a correctly specified
(i.e., δ = 0) and a misspecified (i.e., δ = 0.6) SEM. As expected, standard errors based on
the OI resulted in undercoverage for a misspecified SEM. Given the fact that standard error
computation based on DF is much less computationally demanding, it can be recommended
for usage in RME. Computationally more involved resampling methods, such as JK or BS,
are, therefore, not necessarily required.
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Table 2. Focused Simulation Study 1A: Coverage rate at confidence level 95% of model parameter
estimates as a function of sample size N and size of residual error correlations δ for different standard
error estimation methods.

RME with p =

0.25 0.5 1 ULS ML

Par δ N DF JK BS DF JK BS DF JK BS DF JK BS OI DF JK BS

φ12

0
500 95.8 95.1 95.5 95.5 94.8 94.9 95.3 94.4 95.0 94.9 94.2 94.6 95.0 95.1 94.2 94.6
1000 95.2 94.7 94.9 95.1 94.6 94.7 94.8 94.4 94.7 94.6 94.2 94.3 94.7 94.7 94.4 94.5
2500 95.4 94.7 95.3 95.3 94.7 94.9 95.3 94.6 94.9 95.2 94.7 94.7 95.2 95.2 94.7 94.9

0.6
500 94.8 94.5 94.6 94.5 94.1 94.5 93.7 93.0 93.3 94.7 94.0 94.3 93.5 94.4 93.7 94.4
1000 94.3 94.0 94.7 94.3 93.7 94.1 93.7 93.3 93.1 94.7 94.0 94.4 93.6 94.6 94.0 94.1
2500 95.1 94.5 95.0 95.0 94.3 94.7 95.0 94.2 94.1 95.2 94.5 94.8 94.3 95.2 94.3 94.6

λ11

0
500 95.8 95.4 96.0 95.6 95.1 95.9 95.2 94.5 95.1 94.7 94.0 94.3 95.0 95.1 93.9 94.7
1000 95.2 94.3 95.6 95.1 93.9 95.1 94.6 93.7 94.4 94.4 93.4 93.7 94.6 94.7 93.8 93.8
2500 94.5 93.8 94.6 94.4 93.8 94.1 94.2 93.9 94.3 94.2 93.8 94.0 94.6 94.6 93.8 94.1

0.6
500 95.5 94.9 96.0 95.6 94.7 96.2 95.6 94.5 95.3 94.9 93.8 94.5 88.5 96.2 95.7 96.4
1000 95.1 94.5 95.5 94.9 94.5 95.0 94.7 94.4 94.8 94.6 93.8 94.4 88.5 95.6 94.7 95.9
2500 95.1 94.7 95.2 95.0 94.7 94.9 95.3 94.5 94.9 95.2 94.3 94.9 89.0 95.4 94.5 95.4

ψ11

0
500 96.6 96.2 97.6 96.4 95.8 96.9 95.8 94.8 95.4 95.1 94.3 94.4 95.0 95.0 94.4 94.9
1000 96.1 95.3 96.7 95.9 95.1 95.9 95.5 94.8 95.3 95.3 94.6 94.9 95.1 95.1 94.7 94.9
2500 95.0 94.7 95.3 95.1 94.6 95.1 95.1 94.6 94.9 95.0 94.5 94.7 95.0 95.0 94.3 94.4

0.6
500 96.1 95.7 97.1 96.1 95.6 96.9 95.7 95.2 95.8 94.9 94.5 94.6 88.7 96.7 96.5 96.8
1000 95.3 95.0 95.9 95.4 95.0 95.8 95.3 94.7 95.3 94.9 94.2 94.7 88.6 95.8 95.1 96.4
2500 95.1 94.7 95.0 95.1 94.6 95.0 94.9 94.5 94.8 95.1 94.5 94.7 88.8 95.2 94.8 95.6

Note. Par = model parameter; ML = maximum likelihood estimate; RegML = regularized maximum likelihood
estimate using the Bayesian information criterion for regularization parameter selection; RME = robust moment
estimation with power p in the loss function ρ(x) = |x|p; ULS = unweighted least squares estimate; DF = standard
error estimation based on delta formula; JK = standard error estimation based on jackknife; BS = standard error
estimation based on bootstrap; OI = standard error estimation based on observed information.

5. Simulation Study 2: Noninvariant Item Intercepts (DIF)

In this Simulation Study 2, we investigate the impact of unmodelled group-specific
item intercepts in a multiple-group one-dimensional factor model. The presence of group-
specific item intercepts indicates measurement noninvariance (i.e., in the presence of DIF).
This simulation study investigates whether robust estimation approaches can handle the
occurrence of DIF.

5.1. Method

The setup of the simulation study closely follows [32]. Data were simulated from a
one-dimensional factor model involving five items and three groups. The factor variable
η1 was normally distributed with group means α1 = 0, α2 = 0.3, and α3 = 0.8. The group
variances were set to 1, 1.5, and 1.2, respectively. All factor loadings were set to 1, and all
measurement error variances were set to 1 in all groups and uncorrelated with each other.
The factor variable, as well as the residuals, were normally distributed.

DIF effects were simulated in exactly one of the five items in each group. In the first
group, the fourth item intercepts had a DIF effect δ. In the second group, the first item had
a DIF effect −δ, while the second item had a DIF effect −δ in the third group. The DIF
effect δ was chosen as either 0 (no DIF, measurement invariance), 0.3 (small DIF), or 0.6
(moderate DIF). The sample size per group was chosen as N = 500, 1000, or 2000.

A multiple-group one-dimensional SEM was specified as the analysis model. The
analysis model assumes invariant item intercepts and factor loadings. In the first group,
the factor mean was set to 0, and the factor variance was set to 1 for identification reasons.
Note that the data-generating model included some group-specific item intercepts that
remained unmodelled in the analysis models (except for RegML). This, in turn, led to
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misspecified analysis models. ML, ULS, RegML with the SCAD penalty on group-specific
item intercepts, and RME with powers p = 0.25, 0.5, and 1 were utilized. In RegML, the
optimal regularization parameter κν was chosen based on the BIC.

We investigated the estimation recovery of group means α2 and α3 of the second and
the third group, respectively. Bias and relative RMSE (see Section 3.1) were again used
for assessing the performance of the estimates. In total, 2000 replications were conducted.
The models were estimated using the mgsem() function in the R [60] package sirt [61].
Replication material can be found at https://osf.io/v8f45 (accessed on 27 March 2023).

5.2. Results

In Table 3, bias and relative RMSE for the factor means of the second and the third
group (i.e., α2 and α3) are presented.

Table 3. Simulation Study 2: Bias and relative root mean square error (RMSE) of model parameter
estimates as a function of sample size N and size of DIF effects δ.

Bias Relative RMSE

RME with p = RME with p =

Par δ N RegML 0.25 0.5 1 ULS ML RegML 0.25 0.5 1 ULS ML

α2

0
500 0.00 0.00 0.00 0.00 0.00 0.00 100 103 102 100 100 100
1000 0.00 0.00 0.00 0.00 0.00 0.00 100 102 101 100 100 100
2500 0.00 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100 100

0.3
500 −0.02 −0.03 −0.03 −0.07 −0.12 −0.12 101 100 100 113 152 152
1000 0.00 −0.01 −0.02 −0.06 −0.12 −0.12 100 103 106 140 231 230
2500 0.00 −0.01 −0.01 −0.05 −0.12 −0.12 100 103 107 169 356 355

0.6
500 0.00 −0.01 −0.02 −0.07 −0.24 −0.24 100 104 104 129 303 302
1000 0.00 −0.01 −0.01 −0.06 −0.24 −0.24 100 102 103 144 435 433
2500 0.00 0.00 −0.01 −0.05 −0.24 −0.24 100 101 104 171 698 692

α3

0
500 0.01 0.01 0.01 0.01 0.01 0.01 100 103 102 101 100 100
1000 0.00 0.00 0.00 0.00 0.00 0.00 100 102 101 100 100 100
2500 0.00 0.00 0.00 0.00 0.00 0.00 100 101 101 100 100 100

0.3
500 −0.02 −0.03 −0.03 −0.07 −0.12 −0.11 100 103 102 115 153 149
1000 0.00 −0.01 −0.02 −0.06 −0.12 −0.11 100 104 107 139 223 216
2500 0.00 −0.01 −0.01 −0.05 −0.12 −0.12 100 103 108 167 344 332

0.6
500 0.00 −0.01 −0.01 −0.06 −0.23 −0.21 100 103 102 124 286 267
1000 0.00 0.00 −0.01 −0.05 −0.23 −0.22 100 103 103 139 421 390
2500 0.00 −0.01 −0.01 −0.05 −0.24 −0.22 100 101 104 174 693 641

Note. Par = model parameter; ML = maximum likelihood estimate; RegML = regularized maximum likelihood
estimate using the Bayesian information criterion for regularization parameter selection; RME = robust moment
estimation with power p in the loss function ρ(x) = |x|p; ULS = unweighted least squares estimate; Biases with
absolute values of at least 0.03 are printed in bold. RMSE values of at least 110 are printed in bold.

In the condition of no DIF effects (i.e., δ = 0), all different estimators were unbiased.
There were minor efficiency losses for robust moment estimation with p = 0.25 and p = 0.5
for the sample size N = 500. However, in larger samples, there were almost no differences
among the different estimators.

In the simulation conditions with small or moderate DIF effects, ML and ULS were
substantially biased. Notably, RME with p = 1 also produced a nonnegligible bias. RME
with powers p = 0.25 or p = 0.5 performed similarly to RegML concerning bias. RME had
only slightly increased efficiency losses. Interestingly, RME p = 0.25 performed better than
p = 0.5 in terms of RMSE.

Given the fact that there were only small efficiency losses with RME, the computation-
ally more expensive RegML could perhaps be avoided in practice if the goal is estimating
factor group means.

https://osf.io/v8f45
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6. Empirical Example: ESS 2005 Data

We now present an empirical example to illustrate the performance of the different
robust and non-robust SEM estimation approaches.

6.1. Method

In this empirical example, we use a dataset that was also analyzed in [32,63,64]. The
data came from the European social survey (ESS) conducted in the year 2005 (ESS 2005)
including subjects from 26 countries. The latent factor variable of tradition and conformity
was assessed by four items presented in portrait format, where the scale of the items is
such that a high value represents a low level of tradition conformity. The wording of the
four items was (see [32]): “It is important for him to be humble and modest. He tries not to
draw attention to himself.” (item TR9), “Tradition is important to him. He tries to follow
the customs handed down by his religion or family.” (item TR20), “He believes that people
should do what they’re told. He thinks people should follow rules at all times, even when
no one is watching.” (item CO7), and “It is important for him to always behave properly.
He wants to avoid doing anything people would say is wrong.” (item CO16). The full
dataset used in [32] was downloaded from https://www.statmodel.com/Alignment.shtml
(accessed on 27 March 2023). For this empirical example, a subsample of 33,060 persons
from 17 selected countries was included to restrict the range of variability of country factor
means. The sample sizes per country ranged between 1358 and 2963, with an average of
1997.1 (SD = 464.5). We only included participants in the sample that had no missing
values on all four items.

We specified a one-dimensional factor model with 17 groups (i.e., 17 countries) assum-
ing invariant item parameters (i.e., invariant intercepts, loadings, and residual variances) in
the estimation approaches ML, ULS, and RME, with powers p = 0.25, 0.5, and 1. In RegML,
the SCAD penalty was imposed on group-specific item intercepts.

The obtained country means and country standard deviations of the factor variable
were linearly transformed for all different estimators such that the total population com-
prising all persons from all 17 countries had a mean of 0 and a standard deviation of 1.

The analysis was conducted using the mgsem() function from the R [60] package sirt [61].
The processed dataset and replication syntax can be found at https://osf.io/v8f45 (accessed
on 27 March 2023).

6.2. Results

In the following, we present the estimates of RegML with the obtained optimal regu-
larization parameter κν of 0.02.

In Table 4, the country means for the six different estimators are presented. The
maximum absolute difference between country means stemming from the different models
ranged between 0.032 and 0.337, with an average of 0.116 (SD = 0.081). This showed
considerable variability. Hence, the different robust and non-robust estimators differently
weighted DIF effects in the computation of country means.

We also computed the ranks of the 17 countries across the six different estimates. The
maximum absolute country rank difference ranged between 0 (country C10, rank 1) and
8 (country C21, rank 2) with an average of 3.9 (SD = 2.1). A large range for country
means was observed for country C21 (rank 2). The means for this country ranged between
−0.01 (RME) and 0.33 (ML). Note that robust approaches provided similar results, but
they substantially differed from RME with p = 1, ULS, and ML. Similarly, for country C06
(rank 3), there was a range of country means with values between 0.06 and 0.26. However,
low dependencies of country means from the model estimator choice were observed for
countries C10 (rank1), C09 (rank 13), and C13 (rank 14).

https://www.statmodel.com/Alignment.shtml
https://osf.io/v8f45
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Table 4. Empirical example: Estimated country means for different estimation methods.

RME with p =

Rank CNT RegML 0.25 0.5 1 ULS ML

1 C10 0.37 0.37 0.37 0.34 0.34 0.35
2 C21 0.01 −0.01 0.01 0.18 0.27 0.33
3 C06 0.06 0.17 0.19 0.26 0.25 0.26
4 C03 0.33 0.33 0.32 0.25 0.21 0.21
5 C08 0.13 0.15 0.16 0.23 0.23 0.20
6 C12 0.12 0.14 0.15 0.20 0.19 0.16
7 C05 0.15 0.17 0.17 0.15 0.11 0.13
8 C16 0.14 0.05 0.06 0.09 0.06 0.07
9 C01 0.12 0.11 0.10 0.07 0.08 0.07

10 C14 −0.11 −0.10 −0.10 −0.09 −0.05 −0.06
11 C22 0.02 −0.01 −0.02 −0.06 −0.08 −0.07
12 C15 −0.18 −0.17 −0.17 −0.16 −0.01 −0.07
13 C09 −0.21 −0.21 −0.21 −0.21 −0.19 −0.23
14 C13 −0.30 −0.30 −0.30 −0.32 −0.28 −0.30
15 C17 −0.20 −0.19 −0.21 −0.29 −0.36 −0.33
16 C25 −0.17 −0.18 −0.19 −0.29 −0.39 −0.34
17 C24 −0.29 −0.32 −0.34 −0.37 −0.38 −0.39

Note. Rank = country rank based on estimated country mean with ML; CNT = country labels originally used in
[32]; ML = maximum likelihood estimate; RegML = regularized maximum likelihood estimate using the Bayesian
information criterion for regularization parameter selection; RME = robust moment estimation with power p in
the loss function ρ(x) = |x|p; ULS = unweighted least squares estimate.

In Figure 2, average absolute differences in country means between different models
are displayed. Large absolute differences are displayed in darker red-brown color, while
small differences are colored in light yellow-orange. RME with p = 0.25 (i.e., “RME0.25”)
and RME with p = 0.5 (i.e., “RME0.5”) provided similar country means with an average
distance of 0.01. Notably, RegML also resulted in similar estimates to RME, with p = 0.25
or p = 0.5 (i.e., average distances of 0.02 or 0.03). In addition, ML and ULS resulted in
similar estimates. Interestingly, RME with p = 1 performed slightly differently compared
to the other approaches. As in the simulation studies, it did not show full robustness to
outlying DIF effects in item intercepts.

In Figure 3, the regularization paths of the estimated country means as a function of
the regularization parameter κν are displayed. The RegML estimates of the country means
are displayed on the left side of the figure, and the ML estimates are displayed on the right
side of the figure. Interestingly, the paths are not monotone, and there is some variability in
country mean estimates depending on the choice of the regularization parameter.

In Table 5, the estimated country-specific item intercepts for regularized ML estimation
are presented. Overall, three countries had three regularized item intercepts, 12 countries
had two regularized item intercepts, and two countries had one regularized item inter-
cept. In total, 35 out of 68 item intercepts were regularized (i.e., the country-specific item
intercepts were estimated as zero).

The regularization paths for country-specific item intercepts for four selected countries,
C01, C09, C13, and C21, are displayed in Figure 4. One immediately recognizes that
more and stronger deviations from invariance were observed with smaller values of the
regularization parameter κν.
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Figure 2. Empirical example: Visualization of average absolute deviations in country means between
different estimation methods. Note. ML = maximum likelihood estimate; RegML = regularized
maximum likelihood estimate using the Bayesian information criterion for regularization param-
eter selection; RME = robust moment estimation with power p in the loss function ρ(x) = |x|p;
ULS = unweighted least squares estimate.
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Figure 3. Empirical example: Regularization paths for estimated country means in regularized
maximum likelihood estimation as a function of the regularization parameter κν.
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Table 5. Empirical example: Estimated country-specific item intercepts for regularized maximum
likelihood estimation based on BIC regularization parameter selection.

CNT TR09 TR20 CO07 CO16

C01 · −0.17 · −0.17
C03 · −0.32 · −0.26
C05 −0.50 0.29 · ·
C06 0.09 · 0.24 ·
C08 · 0.12 · ·
C09 · −0.24 · 0.09
C10 −0.47 0.25 · ·
C12 · 0.05 · ·
C13 0.29 · · −0.47
C14 0.10 0.31 · −0.42
C15 0.42 0.07 · −0.22
C16 −0.26 · · −0.13
C17 −0.52 −0.12 · ·
C21 · · 0.48 ·
C22 −0.14 · · −0.36
C24 · −0.32 · −0.17
C25 −0.52 · · −0.31

Note. CNT = country labels originally used in [32]. Regularized item intercepts are indicated with a dot (i.e.,
with “·”).
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Figure 4. Empirical example: Regularization paths for estimated country-specific item intercepts in
regularized maximum likelihood estimation as a function of the regularization parameter κν.
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7. Discussion

In this article, we have demonstrated that, using model-robust SEM estimation meth-
ods, such as regularized maximum likelihood estimation and robust moment estimation,
provides some resistance to model errors for modeled means and covariances. Importantly,
this robustness property is only guaranteed if model errors are sparsely distributed. That is,
most of the model errors are zero (or approximately zero), while only a few model errors are
allowed to differ from zero. The plausibility of this assumption should be evaluated for each
empirical application that potentially involves model error. Moreover it is noted that robust
moment SEM estimation approaches did not result in practically relevant efficiency losses
compared to non-robust approaches (i.e., maximum likelihood or unweighted least squares
estimation) in the absence of model errors. Hence, robust estimation approaches can be
recommended in empirical applications with moderate to large sample sizes (i.e., N ≥ 500).
Importantly, robust moment estimation is computationally much less demanding than
regularized estimation. Moreover, it also provides valid standard errors that are much
more difficult to obtain with regularized ML estimation.

We applied robust moment estimation and regularized ML estimation for unmodeled
item intercepts in Simulation Study 2 in Section 5. In this case, there is essentially no
need to utilize the more computationally expensive regularization technique. The crucial
assumption is that there are only a few model deviations in the modeled mean vectors and
covariance matrices. This property is also referred to as the sparsity assumption [51], which
means that the majority of the entries in mean vectors and covariance matrices are correctly
specified. The methods discussed in this article will typically fail if the majority of or all the
elements in the mean vectors and covariance matrices are misspecified [65,66]. This will
likely be the case if the item loadings in the confirmatory factor model vary across groups.
This situation is referred to as nonuniform DIF. Model deviations in item loadings lead to
model deviations in the covariance matrix that is not as sparse as deviations in the mean
structure. Hence, this is a situation in which regularized ML estimation might be preferred
over robust moment estimation.

The treatment in this article was based on the multivariate normal distribution utilizing
mean vectors and covariance matrices as sufficient statistics. Sometimes, researchers tend to
model ordinal items by relying on underlying latent normally distributed variables [67,68].
In this case, thresholds and polychoric correlations replace mean vectors and covariance
matrices in the weighted least squares fitting function. The approach based on model-
robust fitting function can also be simply transferred to the case of modeling ordinal items.
Future research might compare the performance of robust moment estimation with limited
information methods relying on thresholds and polychoric correlations with regularized
maximum likelihood estimation. Clearly, the computational advantages of model-robust
limited information methods would be even more pronounced compared to the case of
continuous items.

It should be noted that multivariate normality is not a requirement for obtaining
consistent estimates in correctly specified structural equation models [37]. This article
investigates the robustness of parameter estimates regarding model misspecification in
the mean and the covariance structure. There is a distinct literature that focuses on robust
estimation of SEM in the violation of multivariate normality [69,70]. These approaches
might result in more efficient estimates in the case of heavy-tailed or contaminated distri-
butions. However, outliers in this article are defined in the sense that some entries of the
mean vector and the covariance matrix are misspecified infinite sample sizes (i.e., at the
population level).

As pointed out in this article, the multiple-group SEM with unmodeled item inter-
cepts corresponds to the estimation in the violation of measurement invariance (i.e., in the
presence of differential item functioning). Linking approaches, such as invariance align-
ment [32,71] or robust Haberman linking [30], also deal with the estimation of factor means
in one- or multidimensional confirmatory factor models. They do so by first estimating
model parameters of the factor model separately in each group in the first step. In the
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second step, group-specific estimated item intercepts and factor loadings are transformed
with a robust or non-robust linking function to identify factor means and factor standard
deviations. This approach is advantageous if there is a misfit in the mean and the covariance
structure. If the covariance structure is correctly specified, a joint robust moment estimation
approach of the multiple-group SEM could have higher efficiency. In practical applications,
it has been shown that misspecification more frequently occurs in the mean structure than
in the covariance structure [72]. Hence, the robust moment estimation approach proposed
in this article might be a viable alternative to the frequently employed invariance alignment
technique. Future research could thoroughly compare robust moment estimation with
invariance alignment or robust Haberman linking.

It has been argued that regularized estimation could also be applied with a fixed tuning
parameter [73]. Recent research indicated that model parameter estimation could improve
when using a fixed tuning parameter instead of an optimal tuning parameter based on the
minimal information criterion [20]. Notably, regularized estimation in SEM is also referred
to as penalized estimation [74]. In this framework, the penalty function P(x) ∝ |x|1/2 is
interpreted as a fixed prior distribution that has a density f (x) ∝ exp(−|x|1/2) [74] using
the so-called alignment loss function (see [30,32]).

An anonymous reviewer also suggested investigating the Huber loss function [10,38]
in addition to the Lp power loss function ρ(x) = |x|p (p ≤ 1). As a disadvantage, the
Huber loss function requires an additional tuning parameter. We have some limited
empirical experience in using the Huber loss for robust Haberman linking [30]. In this
situation, the Huber loss function performed in an inferior way to the Lp loss function. This
was particularly the case for asymmetrically distributed (i.e., asymmetrically structured)
model deviations. Studying a wider range of robust loss functions in multiple-group SEM
might be an interesting topic for future research, although we are somewhat skeptical
that the Huber loss function will outperform the Lp loss function in the conditions of our
simulation studies.

Finally, it is always a substantive question of whether model errors are allowed to
have outliers or not [75]. That is, should statistical models automatically remove particular
means or covariances for estimating the parameter θ? We attacked such a mechanistic
approach to model estimation and argued that model deviations, such as violations of
measurement invariance, should not automatically result in model refinement [76]. Hence,
we do not think that there is always an optimal loss function in every application [75]. If
this were true, the statistical inference would always be based on maximum likelihood esti-
mation. However, we believe that researchers intentionally choose a statistical parameter of
interest and apply M-estimation theory [77] for the statistical inference that is not based on
correctly specified models. In this sense, SEMs can be estimated with non-robust estimation
approaches (such as maximum likelihood or unweighted least squares estimation) using
an intentionally misspecified model [78,79]. Appearing model errors can be included as
additional uncertainty in standard errors of the estimated θ parameter. In SEM, ref. [9]
proposed such an approach by imposing a stochastic model for model errors. We think that
this approach should deserve more attention in empirical research.
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Abbreviations

The following abbreviations are used in this manuscript:

BIC Bayesian information criterion
BS bootstrap
CFA confirmatory factor analysis
DF delta formula
DIF differential item functioning
DWLS diagonally weighted least squares
ESS European social survey
JK jackknife
MAD mean absolute deviation
ML maximum likelihood
MVN multivariate normal
OI observed information
RegML regularized maximum likelihood
RME robust moment estimation
RMSE root mean square error
SCAD smoothly clipped absolute deviation
SEM structural equation model
ULS unweighted least squares
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