
Citation: Michaloglou, A.; Tsitsas,

N.L. A Brain Storm and Chaotic

Accelerated Particle Swarm

Optimization Hybridization.

Algorithms 2023, 16, 208. https://

doi.org/10.3390/a16040208

Academic Editors: Lorenzo

Salas-Morera and Frank Werner

Received: 18 February 2023

Revised: 24 March 2023

Accepted: 6 April 2023

Published: 13 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Brain Storm and Chaotic Accelerated Particle Swarm
Optimization Hybridization
Alkmini Michaloglou † and Nikolaos L. Tsitsas *,†

School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
* Correspondence: ntsitsas@csd.auth.gr
† These authors contributed equally to this work.

Abstract: Brain storm optimization (BSO) and particle swarm optimization (PSO) are two popular
nature-inspired optimization algorithms, with BSO being the more recently developed one. It has been
observed that BSO has an advantage over PSO regarding exploration with a random initialization,
while PSO is more capable at local exploitation if given a predetermined initialization. The two
algorithms have also been examined as a hybrid. In this work, the BSO algorithm was hybridized
with the chaotic accelerated particle swarm optimization (CAPSO) algorithm in order to investigate
how such an approach could serve as an improvement to the stand-alone algorithms. CAPSO is an
advantageous variant of APSO, an accelerated, exploitative and minimalistic PSO algorithm. We
initialized CAPSO with BSO in order to study the potential benefits from BSO’s initial exploration as
well as CAPSO’s exploitation and speed. Seven benchmarking functions were used to compare the
algorithms’ behavior. The chosen functions included both unimodal and multimodal benchmarking
functions of various complexities and sizes of search areas. The functions were tested for different
numbers of dimensions. The results showed that a properly tuned BSO–CAPSO hybrid could be
significantly more beneficial over stand-alone BSO, especially with respect to computational time,
while it heavily outperformed stand-alone CAPSO in the vast majority of cases.

Keywords: nature-inspired optimization; evolutionary optimization; particle swarm optimization; brain
storm optimization; chaotic accelerated particle swarm optimization; chaotic maps; hybridization;
metaheuristic

1. Introduction

The constantly evolving families of evolutionary computation, swarm intelligence,
metaheuristic and nature-inspired optimization algorithms have penetrated into various
interdisciplinary scientific domains. Their applications to several optimization problems
have offered a plethora of results and conclusions [1]. Recent studies have indicated that
these optimization algorithms are here to stay since associated methodologies emerge
rapidly. Interesting discourse and debate regarding the classification of metaheuristic and
original nature-inspired algorithms have also been examined [2]. Thus, the need to evolve
both the algorithms themselves as well as our own knowledge of them has arisen [3,4].

Regarding the improvement of existing metaheuristics/nature-inspired algorithms
and their better utilization, one well-established approach is hybridization. We refer to
hybrid algorithms as a combination or augmentation of two or more algorithms (and/or
heuristics and metaheuristics) in order for them to work together to find the solution of
a problem more effectively. This synergy can be achieved in many fashions: algorithms
can work in parallel, compete or cooperate, switch places once or multiple times, or
augment each other by sharing techniques and knowledge. A hybrid method can be
more competitive or cooperative in nature, this depends on the hybridization scheme
and the algorithms chosen. In evolutionary optimization, hybridization seems to be very
popular and successful since it allows the utilization of advantages of more than one

Algorithms 2023, 16, 208. https://doi.org/10.3390/a16040208 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16040208
https://doi.org/10.3390/a16040208
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9384-447X
https://orcid.org/0000-0003-1409-2631
https://doi.org/10.3390/a16040208
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16040208?type=check_update&version=1

Algorithms 2023, 16, 208 2 of 20

algorithms, while also combating some of their disadvantages. Many well-established
nature-inspired algorithms have been incorporated into hybrids with other algorithms or
techniques, resulting in many effective approaches which can also be utilized for diverse
applications [5–9].

Brain storm optimization (BSO) is a relatively new nature-inspired evolutionary al-
gorithm, which was originally introduced by Shi in [10]. BSO is considered a promising
optimization method with several variants [11–13] and applications, e.g., in electromagnetic
engineering [14]. BSO models the social behavior of brainstorming amongst a group of
people with different characteristics and backgrounds. The goal of BSO is to consistently
invent and improve ideas as solutions of a problem. On the other hand, particle swarm
optimization (PSO) is an immensely popular nature-inspired optimization algorithm that ef-
ficiently models the behavior of a flock of birds in search of food. The group cooperates and
shares some knowledge and alignment. Since its introduction and refinement by Kennedy,
Eberhart and Shi in [15,16], PSO has been used in a multitude of optimization problems and
proven to be a robust and relatively simple method. There exist several PSO variants that
expand on the algorithm’s topologies, cooperation behaviors, problem domains, stochastic
behaviors and more. The chaotic accelerated PSO (CAPSO) algorithm is such a variant [17],
which utilizes chaotic maps, and has been successfully applied to different optimization
problems, e.g., [18–20]. It constitutes an improvement of accelerated PSO (APSO), serving
as a more exploitative and simplified PSO algorithm [21,22]. It is worth noting that both
BSO (e.g., [23–27]) and PSO (e.g., [27–32]) are popular hybridization candidates.

For evolutionary global optimization algorithms, the importance of the exploration and
exploitation phases is tremendous. Exploration ensures that the algorithm reaches different
promising areas of the search space. Additionally, exploration serves the algorithm as a
means to escape getting trapped into a local optimum. Exploitation allows the algorithm to
effectively search a given promising area around a current solution. It is more comparable to
local search behavior. The right balance between exploration and exploitation is necessary,
but it is difficult to perfect. The most common approach is to encourage exploration during
the initial iterations of the optimization process and exploitation during the later ones. This
balance, also referred to as the exploration–exploitation trade-off, is one of the main points
of focus when such a metaheuristic is fine tuned with respect to its own parameters.

BSO has demonstrated better speed in its global exploration for a random initialization
compared to PSO, with the latter, however, being more competent at local exploitation
when given a predefined initialization [33]. BSO utilizes a clustering process that is im-
pactful and necessary for the algorithm’s update scheme, but, unfortunately, it can be
computationally heavy. Considering the above facts, in this work, we hybridized BSO
with CAPSO, which is computationally lighter than BSO and more simplistic than PSO.
Our main aim was to create a hybrid that served as a possible improvement compared
to BSO. The developed BSO–CAPSO hybrid initially ran as BSO, then it continued the
optimization process as CAPSO. The two algorithms were used as simple building blocks,
facilitating their development and application. Similarly, recent approaches can be found
in [34,35], where PSO is hybridized with strategies/algorithms considering exploration
and exploitation characteristics and benefits.

BSO–CAPSO was tested on seven benchmark functions of various characteristics for
different numbers of dimensions. Results showed advantageous behavior when compared
to stand-alone BSO and CAPSO. Particularly, the results provided demonstrated that the
BSO–CAPSO hybrid achieved the following:

1. It severely outperformed CAPSO for most types of optimization benchmarks that
were tested.

2. It was more effective when optimizing unimodal functions compared to BSO.
3. It showed advantageous behavior in multimodal problems with various degrees of

success compared to BSO.
4. It was noticeably computationally lighter than BSO, to around one third of its compu-

tation time.

Algorithms 2023, 16, 208 3 of 20

5. It led to high-quality local search areas within a short amount of iterations.

Thus, the BSO–CAPSO hybrid could be successfully used to explore areas of com-
plex optimization problems efficiently and provide useful solutions or local search areas.
It could improve both of the stand-alone algorithms, while its application was not of
greater complexity.

The rest of the paper is outlined as follows. In Section 2, the theoretical bases of
stand-alone BSO and CAPSO are presented in detail. In Section 3, we present the BSO–
CAPSO hybrid as a concept; its parameters and hybridization method are demonstrated
and explained. In Section 4, we expand on the experimental parameters and conditions
while the benchmarking functions are also provided in detail. Information regarding the
hybrid’s parameter tuning is provided alongside a detailed presentation of the parameters
used for our set of experiments. In Section 5, the results for all the experiments are provided.
The BSO–CAPSO hybrid is compared to the stand-alone BSO and CAPSO algorithms for
all the benchmarking functions and for different numbers of dimensions. Computation
time is also accounted for. The results are accompanied by several convergence diagrams to
visualize the differences of the algorithms’ behaviors and efficiency. Finally, in Section 6, the
observations regarding the results provided are organized and presented, and the benefits
of the BSO–CAPSO hybrid are discussed. Additionally, further discussions regarding the
applications of the proposed hybrid algorithm and future experimentation are included.

2. Background
2.1. Brain Storm Optimization (BSO)

BSO is inspired by the brainstorming process observed in groups of humans, which
is generally characterized by a plethora of behaviors and mental processes. During brain-
storming, a heterogeneous group of people tries to find solutions to a given problem. The
group has the ability to generate new ideas, exchange information, inspire each other, form
subgroups and constantly improve the candidate solution(s) formed within the group.

The algorithm modeling such a behavior was introduced by Shi in [10]. Precisely, a
group of N people gathers to facilitate solutions to a difficult problem. Through the various
interactions and dynamics, new ideas are generated with respect to Osborn’s four original
laws of the brainstorming process [36]:

1. Suspend judgement: No idea can be denoted as good or bad. Judging too early is also
advised against. The judgement of ideas is reserved for the end of the brainstorm-
ing process.

2. Anything goes: Any generated idea holds potential value, so every idea is presented to
and shared with the group.

3. Cross-fertilize (piggyback): A plethora of ideas can come to life when an already exist-
ing idea is further explored and improved. Ideas themselves should be treated as
generators of new ideas.

4. Go for quantity: It is of great importance to generate a very large number of ideas.
Improved ideas come from other ideas, so quality depends on quantity for this concept
and it will naturally emerge in time.

2.2. The BSO Algoritm

The original BSO algorithm has received various modifications to improve its effec-
tiveness and adaptability to optimization problems. BSO, as it has been developed in this
work, is described in the following steps.

1. Population initialization: As is common for evolutionary stochastic optimization, N
points in a D-dimensional search space are randomly generated. In BSO, they are
referred to as ideas. The initialization formula for the ith idea is

xd
i = xd

min + rand()(xd
max − xd

min), (1)

Algorithms 2023, 16, 208 4 of 20

where d is one of the D dimensions and xd
max, xd

min are its maximum and minimum
boundaries, respectively. The function rand() returns a number between 0 and 1 via a
uniform distribution.

2. Idea clustering: The N ideas are clustered into m groups, depending on their po-
sitions in the search space. Various clustering methods have been applied to and
experimented with BSO. In this work, we used the k-means algorithm [10,37], which
is the most popular. The variant applied to k-means is k-means++.

3. Idea evaluation: Each idea’s fitness is evaluated with respect to the objective function,
f . The best idea in each one of the m clusters is denoted as the cluster center.

4. Cluster center disruption: This occasionally occurs to increase the population’s diver-
sity. Disruption is controlled by the probability prep. A random number is generated.
If this number is smaller than prep, one of the clusters is randomly selected and its
center is replaced by a newly generated idea according to Equation (1).

5. Idea population update: The most important step in evolutionary global optimization
algorithms is the update scheme. In BSO, a new idea can be generated from a chosen
one. The update formula, see [10], is

xd
new = xd

chosen + ξN (0, 1), (2)

where N (0, 1) is a Gaussian random value with mean 0 and variance 1. The original
BSO algorithm [10] used a logarithmic sigmoid function for ξ, while alternative
approaches were also developed [38–40]. In this work, see [14,33], ξ is calculated by

ξ(t) = κ rand() exp
(

1− T
T − t + 1

)
, (3)

where T is the maximum number of iterations, t is the current iteration and κ adapts
to the size of the search space as

κ = 0.25(xmax − xmin). (4)

The idea xchosen can be a single selected idea from one cluster or a combination of two
ideas from two clusters. This is similarly controlled by a probability, pgen.

(a) In one-cluster idea selection, a single cluster is selected. The probability of
choosing a cluster is proportional to its size. After the cluster is chosen, xchosen
is either its center or a randomly chosen idea in it. This is controlled by poneC.

(b) In two-cluster idea selection, two clusters are randomly chosen. The probability
of choosing each cluster is the same. Similarly to one-cluster selection, either
two centers or two random ideas are chosen. This is controlled by ptwoC. The
two selected ideas are combined as

xd
chosen = rand()xd

selected1 + (1− rand())xd
selected2. (5)

Then, xd
chosen is used to generate a new idea by means of Equation (2). The newly

generated idea is compared to the current idea, i. If it is evaluated as better, it replaces
the current idea. Namely, for minimization problems, we have

f (xnew) < f (xi) : xi = xnew, (6)

while for maximization problems we have

f (xnew) > f (xi) : xi = xnew. (7)

This iterative process takes place for all the individuals (ideas) in the population until
the entire population has been updated for the cases when Equations (6) or (7) apply.

Algorithms 2023, 16, 208 5 of 20

6. Termination criteria: Many termination criteria can be applied to BSO. One of the
most common ones, and the one used in this paper, is when the maximum number of
iterations T is reached. This mean that the population update process occurs T times.

Algorithm 1 contains simple pseudocode for the developed BSO.

Algorithm 1: BSO Algorithm

Set parameters;
Initialize the population with N randomly generated ideas;
Initialize iteration number, t;
while T is not reached do

Cluster N ideas into m clusters;
Evaluate ideas and find cluster centers;
if rand() < prep then

Disrupt the center of a randomly selected cluster;
end
for each idea i in the population: do

if rand() < pgen then
Select one cluster;
if rand() < poneC then

Select center idea;
else

Select random idea;
end

else
Select two clusters;
if rand() < ptwoC then

Select and combine centers;
else

Select and combine two random ideas;
end

end
Generate a new idea;
if the new idea is better than current idea i then

Update the current idea i as the new one;
end

end
Update t;

end

Clustering: k-Means Algorithm

In general, a clustering algorithm is presented with a set of objects (or data points)
and groups them into clusters, meaning groups, according to the similarities they share.
Clustering is a process met in many fields, such as data analysis, machine learning and
pattern recognition. BSO utilizes clustering in order to group similar ideas (solutions)
together. In BSO, ideas exist in the D-dimensional space of the optimization problem, thus
similarity is examined as the distance between them in that space.

The k-means algorithm is a clustering algorithm that groups objects according to their
Euclidean distance with respect to the space they belong in [41]. It forms groups around
centers (centroids), which are the same in number as the number of clusters needed, and
keeps refining them according to their distances from the iteratively updated centroids.
Basic pseudocode for the k-means clustering process is presented in Algorithm 2.

In the k-means++ variant of the algorithm [42], the process is exactly the same except
for the consideration of more refined sampling during the centroid initialization phase in

Algorithms 2023, 16, 208 6 of 20

order to speed up convergence. Particularly, it initializes the centroids to be adequately
distant from each other, leading to (probably) better results than random initialization.

Algorithm 2: k-means Algorithm

Set number of clusters, k;
Randomly initialize k random points in the same space as the data and denote
them as centroids;

Set termination criterion, T;
while T is not reached do

Assign all points to the nearest centroid based on Euclidean distance ;
Recalculate the cluster centroids of each cluster as the average value per
dimension;

end

It should be emphasized that the centroid of the k-means or k-means++ algorithm is
not related to the cluster center we referred to in the BSO algorithm. The centroid is not
necessarily a member of the population, it is a point in space that serves as a center and
a point of reference. On the other hand, the cluster center is defined after the clusters are
obtained as the solution with the fittest objective function evaluation.

2.3. Chaotic Accelerated Particle Swarm Optimization (CAPSO)

The original PSO algorithm [15,16] is inspired by the swarm intelligence observed in
the behavior of swarms of birds in search for food. Swarms of birds (and other species,
e.g., schools of fish) have the ability to cooperate instead of compete in order to find food
sources. The members of the swarm have the ability to maintain cohesion, alignment
and separation, while they also exhibit cognitive behaviors. They have memory for their
own past success during the exploration process, while they can also communicate useful
information to each other regarding food allocation.

Usually, in PSO algorithms, we do not refer to animals, but particles, meaning points
(vectors) in the D-dimensional solution space. Each particle, i, represents a member of
the swarm with position xi and velocity vi, both being vectors of RD. In the original
PSO algorithm, each particle takes into account both the global best position, g, and its
individual (local) best position, x∗i , when it updates its velocity, vi.

The updated velocity is then used to update the position xi. So, the update scheme of
PSO is performed in two steps.

The accelerated PSO (APSO) algorithm was proposed by Yang in 2008 [21,22]. Since
the individual best of PSO is mainly used for necessary diversity, in the APSO algorithm
this is instead simulated by randomness. Additionally, in APSO, each particle’s position
updates in a single step (contrasting the two steps of PSO) as follows:

xd
new,i = (1− β)xd

i + βgd + αN (0, 1), (8)

where β, commonly taken in [0.2, 0.7], is referred to as the attraction parameter for the
global best and α, multiplied by a probability distribution, offers useful randomness to the
updates. Here, a Gaussian random distribution is chosen. Moreover, it has been shown
that a decreasing α is beneficial for the algorithm since, in this manner, it controls the
exploration–exploitation trade-off more adequately during the iterative process. To this
end, a strictly-decreasing function, α(t), was chosen, with a commonly used one being

α(t) = γt, (9)

where γ ∈ (0, 1) is a control parameter and t refers to time (the current iteration). It is important
to fine-tune α(t) to the nature of the optimization problem and search area [17,21,22].

Algorithms 2023, 16, 208 7 of 20

The chaotic APSO (CAPSO) [17] is a variant of the APSO algorithm. In the CAPSO
algorithm, the same single-step routine with APSO is utilized (i.e., Equation (8)), but a
varying β is deemed beneficial for improved performance. This global attraction parameter
is updated through a chaotic map. In [17], many chaotic maps were tested, and the most
advantageous results stemmed from the sinusoidal and singer maps. Here, a simplified
sinusoidal map was chosen for β, particularly

βk+1 = sin(πβk), β0 = 0.7. (10)

Algorithm 3 contains simple pseudocode for CAPSO.

Algorithm 3: CAPSO Algorithm

Set parameters;
Initialize the population with N randomly generated particles;
Initialize iteration number, t;
while T is not reached do

Evaluate the particles of the population;
Find the global best, g∗, for the current iteration;
Update α through a decreasing function;
Update β through a chaotic map;
for each particle in N do

Update particle’s position;
end
Update t;

end

3. The BSO–CAPSO Hybrid Concept

The BSO–CAPSO hybrid approach is fairly simple. Since BSO has better initial explo-
ration compared to PSO [33], we can safely assume that this could be similar for CAPSO.
Additionally, if CAPSO is provided with a predetermined initialization (which is practically
a form of information exploitation), it could potentially converge to even better solutions
than PSO, since it favors acceleration and exploitation.

Thus, the proposed hybrid algorithm randomly initializes its population, and it first
runs as BSO for a fixed number of iterations. When this number of iterations is reached, it
continues the optimization process as CAPSO, taking the last BSO updated population as its
“initial” population, meaning that the CAPSO phase is active for the remaining iterations.
It is worth mentioning that CAPSO is easy to implement and less computationally heavy
than BSO, which uses clustering. Hence, the BSO–CAPSO hybrid is expected to demand
less computation time than stand-alone BSO.

Important parameters: We refer to the iteration during which the switch between algo-
rithms occurs as tswitch; this parameter depends on the optimization problem. The guideline
for selecting an advantageous tswitch is to approximately choose an iteration during which
BSO starts to favor exploration less and begins to favor exploitation more. This could be
observed in convergence diagrams or determined through some sampling procedure.

Furthermore, α(t) of the CAPSO phase is crucial since it affects a great part of CAPSO’s
exploration–exploitation behavior. CAPSO’s α(t) and BSO’s ξ(t) are, after all, the functions
that also represent the exploration–exploitation trade-off of their respective algorithms
and they need to be adequately synchronized for the hybrid. The CAPSO phase of the
BSO–CAPSO hybrid begins with α(tswitch). Since the initial exploration is carried out by
BSO, α(t) must be adjusted to the optimization problem in a way that when the switch
happens the value α(tswitch) is as follows:

1. Not too large (too much added diversity), meaning CAPSO would not take advantage
of BSO’s initial exploration.

Algorithms 2023, 16, 208 8 of 20

2. Not too small (too little added diversity), meaning CAPSO would greatly favor
exploitation too early and possibly become trapped in a local minimum and not be
able to escape.

As with stand-alone APSO/CAPSO, it is recommended to investigate and fine-tune
the decreasing function α(t) versus the optimization problem’s characteristics, as well
as tswitch.

Clustering management: It is also important to note that since BSO utilizes the k-means
(k-means++) algorithm, the results of the clustering process need to be appropriately
managed. If there is some converging behavior during the BSO process of the hybrid, there
is a possibility that the clustering algorithm returns with less clusters than the ones set as its
parameter. In the hybrid algorithm’s developed code, we implemented simple mechanisms
that always check the cluster number returned by the k-means algorithm and we adjusted
the probabilities of cluster/idea picking accordingly so that the algorithm never chooses an
empty cluster or nonexistent solution and, thus, fails.

Boundary enforcement: There exist many methods to ensure that candidate solutions
remain within the lower and upper boundaries of the available D-dimensional space;
indicatively, we refer to [43,44]. In this iteration of the hybrid BSO–CAPSO algorithm, the
technique we applied was absorbing walls. This technique is quite straightforward: if a
boundary is crossed, the value of the stray variable becomes the minimum (or maximum)
value allowed, depending on which boundary is crossed. For the ith idea/solution, if there
is boundary crossing in the dth dimension, the rule is enforced as follows (for the lower and
upper boundary, respectively):

xi
d < xmin

d : xi
d = xmin

d (11)

xi
d > xmax

d : xi
d = xmax

d (12)

A simple technique was chosen since the examined benchmark functions were all of a
different nature. In general, when an algorithm is applied to an open or complex problem,
it is preferable to choose boundary conditions that cooperate sufficiently with the problem’s
characteristics and constraints.

A flowchart diagram of the BSO–CAPSO hybrid algorithm is presented in Figure 1.

Algorithms 2023, 16, 208 9 of 20

Figure 1. Flowchart diagram of the BSO–CAPSO hybrid algorithm.

4. Considerations and Setup for the Numerical Experimentation

The BSO–CAPSO hybrid and stand-alone BSO/CAPSO algorithms were tested using
the same benchmark functions to showcase the advantages of the hybrid approach.

It is noted that in this work, the proposed hybrid was compared to its parental
algorithms; this is a fairly common practice, as can be seen in, e.g., [26,29,33], or similarly
when a developed variant is examined against the main algorithm and/or closely-related
variants [17,39,40,45].

Algorithms 2023, 16, 208 10 of 20

BSO and PSO are very popular algorithms and their advantages and disadvantages
are well documented. Moreover, CAPSO shares the same family tree with its main parental
algorithm, PSO. Additionally, for CAPSO it has been demonstrated that it serves as an
improvement to APSO and that it outperforms chaotic PSO (CPSO) [17]. Based on these
considerations, the BSO–CAPSO hybrid is specifically examined as an improved alternative
to the use of stand-alone BSO or CAPSO.

4.1. Benchmark Functions

Benchmark functions are typically used for testing optimization algorithms; Yang’s
proposed test functions are widely utilized [46], while a recently organized collection is
presented in [47]. In this work, we selected the functions fk presented in Table 1. Specifically,
functions f1, f2, f3 are unimodal, while functions f4, f5, f6, f7 are multimodal.

Table 1. Benchmark functions.

Function Formula Global Minimum Search Area

Sphere f1 =
D

∑
i=1

x2
i

f1(x∗) = 0,
x∗ = {0, . . . , 0} [−100, 100]D

Rosenbrock f2 =
D−1

∑
i=1

[100(xi+1 − x2
i)

2 + (1− xi)
2]

f2(x∗) = 0,
x∗ = {1, . . . , 1} [−10, 10]D

Schwefel 2.21 f3 = max
i=1,...,D

|xi|
f3(x∗) = 0,

x∗ = {0, . . . , 0} [−100, 100]D

Rastrigin f4 = 10D +
D

∑
i=1

[x2
i − 10 cos(2πxi)]

f4(x∗) = 0,
x∗ = {0, . . . , 0} [−5.12, 5.12]D

Ackley f5 = −20exp

−0.2

√√√√ 1
D

D

∑
n=1

xi
2

− exp

(
1
D

D

∏
i=1

cos 2πxi

)
+ e + 20 f5(x∗) = 0,

x∗ = {0, . . . , 0} [−32.768, 32.768]D

Griewank f6 =
1

4000

D

∑
i=1

x2
i −

D

∏
i=1

cos
(

xi√
i

)
+ 1 f6(x∗) = 0,

x∗ = {0, . . . , 0} [−600, 600]D

Alpine 1 f7 =
D

∑
i=1
|xi sin (xi) + 0.1xi|

f7(x∗) = 0,
x∗ = {0, . . . , 0} [−100, 100]D

In related works, the benchmarking experimentation process of an optimization al-
gorithm has been examined in various manners. The original BSO [10] was initially only
tested on two functions. In the hybrids presented in [27,29,32,33], the proposed algorithms
were tested on two or three complex problems or designs in order to be evaluated. In this
work, the above collection of seven popular functions served as an efficient and reliable
experimental basis, with our approach being similar to [17,45], where six popular bench-
marking functions were selected and examined. It is also important to note that multimodal
functions are usually significantly more complex to optimize than unimodal ones. For this
reason, more multimodal than unimodal functions were selected.

4.2. Experimental Parameters and Conditions

The stand-alone BSO, CAPSO and BSO–CAPSO hybrid algorithms were developed
with Python3, with all experiments executed in the same computational platform. The
employed k-means clustering algorithm was the one included in the scikit-learn library [48],
which by default uses the k-means++ variant.

For each test, each algorithm was run 25 distinct times, for a maximum number of
iterations T = 2000, and the size of the population, N, was set as 4D + 1 for D = 10, 20, 30,
yielding N = 41, 81, 121, respectively. The numbers of clusters were set as one fifth or less
of the population sizes, as is recommended in Ref. [14], thus m = 8, 16, 24, respectively.

Algorithms 2023, 16, 208 11 of 20

4.2.1. BSO Parameters

Both for the stand-alone BSO and the BSO–CAPSO hybrid, prep = 0.2, pgen = 0.8,
poneC = 0.4 and ptwoC = 0.5, as suggested by BSO parameter selection studies [49].

4.2.2. CAPSO Parameters

For α(t), we used Equation (9). We set the parameter γ as γ = 0.99 in order to be
similar and comparable to the parameters chosen for the BSO–CAPSO hybrid.

4.2.3. BSO–CAPSO Hybrid Parameters

For the CAPSO phase, the β parameter updated through Equation (10). Additionally,
its values were normalized in [0.2, 0.7] [17]. For α(t), we used Equation (9). Through
experimentation, we noticed that values of γ ' 0.99 were the most beneficial. To produce
such values, we used the following formula (a similar approach can be found in Ref. [50]):

γ = (10−20)
1

c T , (13)

where c > 0, for which values of c ∈ (1, 7.5) were adequate. It is also recommended to
increase and adjust γ using (13) if the dimensions of the optimization problem increase. The
adjusted tswitch and the γ values per benchmark function fk are shown in Table 2. We note
that if tswitch was chosen somewhere between 2.5% and 20% of the number of iterations,
T, the hybrid provided adequate solutions. The following tswitch values were chosen with
BSO’s behavior and the optimization problem’s complexity in mind.

Table 2. BSO–CAPSO hybrid parameter values per benchmark function.

D = 10 D = 20 D = 30
tswitch γ tswitch γ tswitch γ

f1 50 0.9817479430199844 50 0.9885530946569389 50 0.9885530946569389

f2 250 0.9923540961321005 250 0.9929401613666818 250 0.9934427784709274

f3 200 0.9916619195386764 200 0.9942600739529567 200 0.9958222329003689

f4 400 0.9947206857569770 400 0.9947805211255779 400 0.9948099330498242

f5 100 0.9885530946569389 100 0.9892228001155464 100 0.9902907258434653

f6 100 0.9885530946569389 100 0.9954054173515270 100 0.9967159968972744

f7 200 0.9942600739529567 200 0.9958222329003689 200 0.9967159968972744

We note that parameter tuning was applied while considering performance, but also
stability. In general, stochastic algorithms, such as the ones employed in this paper, have a
chance of providing outlier results, or results of varying orders of magnitude; this could
be seen in BSO’s behavior for f6, f7, or the hybrid’s results for f6, as presented in Table 3.
During the process of parameter selection, the hybrid provided outlier-like results for
some parameter sets (tswitch and γ). This was more probable in multimodal functions or
functions with broader search areas when the parameters were not adequate. The provided
sets of parameters and results were chosen with algorithm stability in mind, and each set of
25 algorithm runs was handled as a unit, a nonseparable experiment. It is also noted that
for an acceptably wide range of parameter sets, outlier results were seldom and comparable
to typical stochastic/metaheuristic algorithm behavior.

Algorithms 2023, 16, 208 12 of 20

Table 3. Simulation results for D = 10.

BSO BSO–CAPSO Hybrid CAPSO

D : 10 Mean Best Worst Time Mean Best Worst Time Mean Best Worst Time

f1 5.08 × 10−14 2.69 × 10−15 2.50 × 10−13 99.95 5.59 × 10−32 3.30 × 10−32 1.17 × 10−31 13.20 1.92 × 10−17 6.95 × 10−18 3.22 × 10−17 11.44

f2 5.74 × 100 4.08 × 100 6.48 × 100 105.97 1.70 × 100 5.03 × 10−2 5.53 × 100 23.87 3.22 × 100 0.34 × 100 7.92 × 100 12.53

f3 2.92 × 10−6 3.14 × 10−7 1.01 × 10−5 97.45 7.35 × 10−8 5.08 × 10−8 1.05 × 10−7 19.07 2.72 × 10−9 1.85 × 10−9 3.54 × 10−9 10.74

f4 4.38 × 100 9.95 × 10−1 7.96 × 100 109.46 9.55 × 100 1.99 × 100 1.89 × 101 34.76 1.65 × 101 4.97 × 100 3.28 × 101 13.88

f5 7.34 × 10−8 9.34 × 10−9 2.45 × 10−7 116.02 3.03 × 10−10 1.83 × 10−10 5.08 × 10−10 18.84 5.52 × 10−9 3.38 × 10−9 7.44 × 10−9 14.74

f6 4.0 × 10−2 7.40 × 10−3 9.60 × 10−2 116.70 1.09 × 100 3.71 × 10−1 1.98 × 100 20.88 1.53 × 101 7.98 × 100 2.61 × 101 15.22

f7 7.05 × 10−8 1.21 × 10−8 4.52 × 10−7 114.81 3.97 × 10−2 3.17 × 10−4 2.64 × 10−1 24.31 1.13 × 100 2.04 × 10−7 6.87 × 100 13.41

5. Results

The simulation results are given in Tables 4 and 5 and they are organized per the
number of dimensions, D. The results obtained were the mean, best and worst functions’
values, as well as average computation times (referred to as time), in seconds.

5.1. Time Calculations

In order to determine the computation time/cost for each experiment, Python 3’s
library, Time (specifically time.perf_counter()), was used to calculate the difference between
the moments in time an experiment began and ended. The signaling of an experiment’s
beginning and ending remained exactly the same for each experiment, so that the results
were as accurate as possible. All the experiments were performed on the same personal
computer (CPU-AMD Ryzen 5 1600, RAM-8,00GB @ 1197MHz, OS-Windows 10 Pro 64-bit).

Table 4. Simulation results for D = 20.

BSO BSO–CAPSO Hybrid CAPSO

D : 20 Mean Best Worst Time Mean Best Worst Time Mean Best Worst Time

f1 2.17 × 10−10 2.53 × 10−11 1.28 × 10−9 187.46 1.93 × 10−19 1.10 × 10−19 3.40 × 10−19 45.74 6.11 × 10−17 3.65 × 10−17 8.17 × 10−17 42.72

f2 1.68 × 101 1.55 × 101 1.76 × 101 213.09 1.28 × 101 9.90 × 100 1.70 × 101 68.54 2.46 × 101 1.25 × 101 1.52 × 102 48.19

f3 1.57 × 10−4 5.84 × 10−5 5.05 × 10−4 185.89 2.05 × 10−5 1.42 × 10−5 2.62 × 10−5 55.29 4.53 × 100 3.96 × 10−9 1.37 × 101 40.49

f4 1.32 × 101 6.96 × 100 1.89 × 101 224.78 1.91 × 101 9.95 × 100 3.88 × 101 85.31 4.66 × 101 3.18 × 101 8.36 × 101 53.41

f5 2.91 × 10−6 1.18 × 10−6 5.00 × 10−6 230.73 1.49 × 10−9 1.08 × 10−9 1.93 × 10−9 61.73 7.46 × 10−9 5.57 × 10−9 9.95 × 10−9 54.26

f6 3.15 × 10−3 3.97 × 10−10 2.22 × 10−2 246.62 1.56 × 10−1 9.75 × 10−9 1.38 × 100 68.86 3.12 × 101 9.77 × 100 5.01 × 101 59.24

f7 1.25 × 10−4 1.37 × 10−6 1.79 × 10−3 260.69 3.72 × 10−1 3.63 × 10−2 1.42 × 100 68.83 2.70 × 100 1.42 × 10−1 1.32 × 101 51.48

Table 5. Simulation results for D = 30.

BSO BSO–CAPSO Hybrid CAPSO

D : 30 Mean Best Worst Time Mean Best Worst Time Mean Best Worst Time

f1 4.88 × 10−9 8.11 × 10−10 1.95 × 10−8 313.01 3.75 × 10−19 2.38 × 10−19 5.95 × 10−19 99.64 1.38 × 10−16 8.92 × 10−17 2.18 × 10−16 92.19

f2 2.77 × 101 2.69 × 101 2.86 × 101 347.05 2.39 × 101 2.08 × 101 2.92 × 101 137.79 3.08 × 101 2.18 × 101 1.25 × 102 108.55

f3 9.99 × 10−4 3.75 × 10−4 2.25 × 10−3 288.03 6.10 × 10−4 5.02 × 10−4 7.65 × 10−4 110.77 1.28 × 101 6.48 × 100 2.06 × 101 89.58

f4 2.22 × 101 9.95 × 100 3.38 × 101 379.65 3.64 × 101 1.59 × 101 6.27 × 101 167.25 8.45 × 101 3.58 × 101 1.50 × 102 118.06

f5 1.51 × 10−5 6.73 × 10−6 2.20 × 10−5 375.91 1.48 × 10−8 1.13 × 10−8 1.89 × 10−8 130.91 8.30 × 10−9 6.99 × 10−9 9.47 × 10−9 119.61

f6 1.25 × 10−6 8.74 × 10−8 4.41 × 10−6 419.78 1.91 × 10−2 3.42 × 10−6 7.60 × 10−2 145.27 6.72 × 101 3.55 × 101 9.58 × 101 129.30

f7 1.67 × 10−3 3.03 × 10−5 4.73 × 10−3 390.75 1.24 × 100 3.77 × 10−1 2.54 × 100 142.58 5.46 × 100 5.94 × 10−1 1.34 × 101 114.90

5.2. Convergence Diagrams

In Figures 2–10, we depict certain convergence diagrams. Particularly, we plotted the
average global best value of the considered benchmark function per iteration to provide
some visual representations of the BSO–CAPSO hybrid’s behavior versus that of the BSO
and CAPSO algorithms. The dimensions D = 10, 20 and 30 were considered. It was
evident that the hybrid algorithm successfully accelerated convergence after tswitch, while,
simultaneously, it maintained the quality of the solutions compared to stand-alone BSO. It

Algorithms 2023, 16, 208 13 of 20

severely improved CAPSO. It specifically seemed to converge (or otherwise “accelerate”)
more efficiently than CAPSO, while also improving the quality of its solutions in the vast
majority of cases, especially regarding the complex multimodal functions. The diagrams’
data were obtained by the provided detailed results in Tables 4 and 5.

0 250 500 750 1000 1250 1500 1750 2000
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Be

st
 Fi

tn
es

s A
ve

ra
ge

×104

Sphere, D = 10

BSO
BSO-CAPSO Hybrid
CAPSO

Figure 2. Convergence diagram of the stand-alone BSO, BSO–CAPSO hybrid and stand-alone
CAPSO algorithms for the sphere (f1) function with D = 10. Convergence acceleration occurred after
tswitch = 50.

0 250 500 750 1000 1250 1500 1750 2000
Number of Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Be
st
 Fi
tn
es
s A

ve
ra
ge

Ackley, D = 10

BSO
BSO-CAPSO Hybrid
CAPSO

Figure 3. Convergence diagram of the stand-alone BSO, BSO–CAPSO hybrid and CAPSO algorithms
for the Ackley (f5) function with D = 10. Convergence acceleration occurred after tswitch = 100.

Algorithms 2023, 16, 208 14 of 20

0 250 500 750 1000 1250 1500 1750 2000
Number of Iterations

0

20

40

60

80

100

120

140

Be
st

 Fi
tn

es
s A

ve
ra

ge
Griewank, D = 10

BSO
BSO-CAPSO Hybrid
CAPSO

Figure 4. Convergence diagram of the stand-alone BSO, BSO–CAPSO hybrid and CAPSO algorithms
for the Griewank (f6) function with D = 10. Convergence acceleration occurred after tswitch = 100.

0 250 500 750 1000 1250 1500 1750 2000
Number of Iterations

0

50

100

150

200

250

300

350

Be
st
 Fi
tn
es
s A

ve
ra
ge

Griewank, D = 20

BSO
BSO-CAPSO Hybrid
CAPSO

Figure 5. Convergence diagram of the stand-alone BSO, BSO–CAPSO hybrid and stand-alone CAPSO
algorithms for the Griewank (f6) function with D = 20. Convergence acceleration occurred after
tswitch = 100.

Algorithms 2023, 16, 208 15 of 20

0 250 500 750 1000 1250 1500 1750 2000
Number of Iterations

1

2

3

4

5

6

lo
g1

0(
Be

st
 Fi
tn
es
s A

ve
ra
ge

)
Rosenbrock, D = 20

BSO
BSO-CAPSO Hybrid
CAPSO

Figure 6. Convergence diagram of the stand-alone BSO, BSO–CAPSO hybrid and stand-alone CAPSO
algorithms for the Rosenbrock (f2) function with D = 20. Convergence acceleration occurred after
tswitch = 250.

0 250 500 750 1000 1250 1500 1750 2000
Number of Iterations

0

5

10

15

20

Be
st
 Fi
tn
es
s A

ve
ra
ge

Ackley, D = 20

BSO
BSO-CAPSO Hybrid
CAPSO

Figure 7. Convergence diagram of the stand-alone BSO, BSO–CAPSO hybrid and stand-alone
CAPSO algorithms for the Ackley (f5) function with D = 20. Convergence acceleration occurred
after tswitch = 100.

Algorithms 2023, 16, 208 16 of 20

0 250 500 750 1000 1250 1500 1750 2000
Number of Iterations

2

3

4

5

6

lo
g1

0(
Be

st
 Fi
tn
es
s A

ve
ra
ge

)
Rosenbrock, D = 30

BSO
BSO-CAPSO Hybrid
CAPSO

Figure 8. Convergence diagram of the stand-alone BSO, BSO–CAPSO hybrid and stand-alone CAPSO
algorithms for the Rosenbrock (f2) function with D = 30. Convergence acceleration occurred after
tswitch = 250.

0 250 500 750 1000 1250 1500 1750 2000
Number of Iterations

0

20

40

60

80

Be
st
 Fi
tn
es
s A

ve
ra
ge

Schwefel 2.21, D = 30

BSO
BSO-CAPSO Hybrid
CAPSO

Figure 9. Convergence diagram of the stand-alone BSO, BSO–CAPSO hybrid and stand-alone CAPSO
algorithms for the Schwefel 2.21 (f3) function with D = 30. Convergence acceleration occurred after
tswitch = 200.

Algorithms 2023, 16, 208 17 of 20

0 250 500 750 1000 1250 1500 1750 2000
Number of Iterations

0

100

200

300

400

500

600

Be
st
 Fi
tn
es
s A

ve
ra
ge

Alpine 1, D = 30

BSO
BSO-CAPSO Hybrid
CAPSO

Figure 10. Convergence diagram of the stand-alone BSO, BSO–CAPSO hybrid and stand-alone
CAPSO algorithms for the Alpine 1 (f7) function with D = 30. Convergence acceleration occurred
after tswitch = 200.

6. Discussion and Conclusions
6.1. Observations and Remarks

The results demonstrated that the BSO–CAPSO Hybrid showcased improved behav-
iors compared to the stand-alone BSO and CAPSO algorithms. The hybrid provided better
solutions regarding all unimodal functions, compared to both BSO and CAPSO. The only
exception to this was the Schwefel 2.21 function, f3, for D = 10 dimensions, where CAPSO
offered the best results. However, for larger numbers of dimensions the hybrid severely
outperformed CAPSO for the said benchmark. For multimodal functions, the results were
less absolute, but they were in favor of the hybrid approach. The hybrid outperformed
CAPSO for all multimodal functions—with the exception of the Ackley function, f5, only
for D = 30. In some cases, this was very impactful, such as for the Griewank function, f6.
Compared to BSO it showcased both more and less advantageous results. Nevertheless, it
decreased BSO’s computational time significantly— up to a third or less—while providing
acceptable and comparable results. Additionally, the BSO–CAPSO hybrid accelerated
convergence at tswitch. This means that the BSO initialization could, indeed, be beneficial for
CAPSO’s local exploitation. Additionally, acceleration at tswitch often showcases the ability
to discover a high-quality local search area (a high-quality attraction basin) very early
during the iterative process, which means access to high-quality solutions with minimal
computational costs; see, e.g., Figures 3 and 6.

Moreover, it was observed that in some functions (e.g., f3, f4, f6) discovering a good
value for γ of α(t) (cf. Equation (9)) was challenging and demanded some intuition and a
trial-and-error approach. This possibly implies that a different α(t) function could be more
beneficial for these cases, since this function is also problem-dependent to some degree.
In this work, however, guidelines regarding the tuning of the hybrid’s parameters were
provided; thus, a solid baseline regarding parameter setting was solidified. Good results
were obtained, and they supported the usage of the hybrid approach. Hence, it is also
implied that the BSO–CAPSO’s performance on multimodal functions could be further
improved; this was also discussed in Sections 2.2 and 2.3, above. Future investigation into

Algorithms 2023, 16, 208 18 of 20

α(t) could benefit not only the BSO–CAPSO hybrid but also CAPSO’s use of hybridization
in general. Additionally, although the sinusoidal chaotic map was showcased as the top
performer in previous research regarding CAPSO [17], it is possible that different chaotic
maps could be beneficial for some problems and should be considered in the BSO–CAPSO
hybridization.

6.2. Further Discussion

Since BSO–CAPSO outperformed BSO significantly when applied to unimodal func-
tions, we can assume that this hybrid approach could be efficiently utilized for local search
in combination with global search optimization algorithms when applied to complex prob-
lems. If BSO–CAPSO is provided with a single attraction basin, or a small number of
attraction basins, the results of this paper imply that it could outperform stand-alone BSO
and provide a better result faster. This could extend to several multimodal functions, since
the hybrid provided optimal results in some cases.

Regarding CAPSO, the hybrid approach demonstrated significant improvements
compared to the stand-alone version, so it is advantageous to propose replacing CAPSO
with the BSO–CAPSO hybrid when it is applied to a complex problem.

An important point of discussion is that several optimization problems remain open,
very complex and computationally heavy (e.g., engineering optimization problems such
as antenna design). In such problems, calculating the value of the objective function for
a single solution or a set of solutions can be a time-consuming process. This means that
the process of optimization through a metaheuristic global optimization method (which
traditionally evaluates the objective function several hundreds or thousands of times)
can be very computationally demanding. Thus, the use of the proposed hybrid could be
applicable and valuable for such cases. This is reinforced if the BSO–CAPSO hybrid is
applied to classes of problems that are known to benefit from BSO or algorithms with
similar behaviors and effectiveness. Furthermore, when the global best solution of the
problem is unknown, and, instead, the goal of the global optimization is a solution that
serves specific quality conditions and constraints, BSO–CAPSO could prove fairly valuable
since it is noticeably less time consuming and it shows a tendency to discover high-quality
local search areas after tswitch, which is a point early in the iterative process. Even in
case of a potential loss of accuracy (when compared to standalone BSO), BSO–CAPSO
could be an advantageous trade-off if solutions of the desired quality are obtained in a
significantly smaller amount of computational time. Finally, the hybrid’s ability to discover
high-quality local search areas early on is also promising for the future use of CAPSO
hybridization, regarding the acceleration of optimization algorithms that utilize clustering
or computationally heavy topologies for their exploration.

Author Contributions: Investigation, A.M. and N.L.T.; methodology, A.M. and N.L.T.; writing—review
and editing, A.M. and N.L.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data supporting reported results are available from the authors upon
reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations were used in this manuscript:

PSO particle swarm optimization;
BSO brain storm optimization;
APSO accelerated particle swarm optimization;
CAPSO chaotic accelerated particle swarm optimization.

Algorithms 2023, 16, 208 19 of 20

References
1. Fister, I., Jr.; Yang, X.S.; Fister, I.; Brest, J.; Fister, D. A brief review of nature-inspired algorithms for optimization. arXiv 2013,

arXiv:1307.4186.
2. Tzanetos, A.; Dounias, G. Nature inspired optimization algorithms or simply variations of metaheuristics? Artif. Intell. Rev. 2021,

54, 1841–1862. [CrossRef]
3. Vikhar, P.A. Evolutionary algorithms: A critical review and its future prospects. In Proceedings of the 2016 International

Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India,
22–24 December 2016; pp. 261–265. [CrossRef]

4. Yang, X.S. Nature-inspired optimization algorithms: Challenges and open problems. J. Comput. Sci. 2020, 46, 101104. [CrossRef]
5. Das, S.; Abraham, A.; Konar, A. Particle swarm optimization and differential evolution algorithms: Technical analysis, applications

and hybridization perspectives. In Advances of Computational Intelligence in Industrial Systems; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 1–38.

6. Ghamisi, P.; Benediktsson, J.A. Feature selection based on hybridization of genetic algorithm and particle swarm optimization.
IEEE Geosci. Remote Sens. Lett. 2014, 12, 309–313. [CrossRef]

7. Jadhav, A.N.; Gomathi, N. WGC: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering.
Alex. Eng. J. 2018, 57, 1569–1584. [CrossRef]

8. Shelokar, P.; Siarry, P.; Jayaraman, V.K.; Kulkarni, B.D. Particle swarm and ant colony algorithms hybridized for improved
continuous optimization. Appl. Math. Comput. 2007, 188, 129–142. [CrossRef]

9. Teng, Z.j.; Lv, J.l.; Guo, L.w. An improved hybrid grey wolf optimization algorithm. Soft Comput. 2019, 23, 6617–6631. [CrossRef]
10. Shi, Y. Brain storm optimization algorithm. In Proceedings of the International Conference in Swarm Intelligence, Chongqing,

China, 14–15 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 303–309.
11. Cheng, S.; Sun, Y.; Chen, J.; Qin, Q.; Chu, X.; Lei, X.; Shi, Y. A comprehensive survey of brain storm optimization algorithms. In

Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastian, Spain, 5–8 June 2017; pp. 1637–1644.
[CrossRef]

12. Oliva, D.; Elaziz, M.A. An improved brainstorm optimization using chaotic opposite-based learning with disruption operator for
global optimization and feature selection. Soft Comput. 2020, 24, 14051–14072. [CrossRef]

13. Tuba, E.; Dolicanin, E.; Tuba, M. Chaotic brain storm optimization algorithm. In Proceedings of the International Conference on
Intelligent Data Engineering and Automated Learning, Guilin, China, 30 October–1 November 2017; Springer: Cham, Switzerland,
2017; pp. 551–559. [CrossRef]

14. Aldhafeeri, A.; Rahmat-Samii, Y. Brain Storm Optimization for Electromagnetic Applications: Continuous and Discrete. IEEE
Trans. Antennas Propag. 2019, 67, 2710–2722. [CrossRef]

15. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]

16. Shi, Y.; Eberhart, R.C. Parameter selection in particle swarm optimization. In Proceedings of the International Conference on
Evolutionary Programming, San Diego, CA, USA, 25–27 March 1998; Springer: Berlin/Heidelberg, Germany, 1998; pp. 591–600.
[CrossRef]

17. Gandomi, A.H.; Yun, G.J.; Yang, X.S.; Talatahari, S. Chaos-enhanced accelerated particle swarm optimization. Commun. Nonlinear
Sci. Numer. Simul. 2013, 18, 327–340. [CrossRef]

18. Michaloglou, A.; Tsitsas, N.L. Feasible Optimal Solutions of Electromagnetic Cloaking Problems by Chaotic Accelerated Particle
Swarm Optimization. Mathematics 2021, 9, 2725. [CrossRef]

19. Michaloglou, A.; Tsitsas, N.L. Particle Swarm Optimization Algorithms with Applications to Wave Scattering Problems. In
Optimisation Algorithms and Swarm Intelligence; IntechOpen Limited: London, UK, 2021. [CrossRef]

20. Zhou, Q.; Zhang, W.; Cash, S.; Olatunbosun, O.; Xu, H.; Lu, G. Intelligent sizing of a series hybrid electric power-train system
based on Chaos-enhanced accelerated particle swarm optimization. Appl. Energy 2017, 189, 588–601. . [CrossRef]

21. Yang, X.S. Engineering Optimization: An Introduction with Metaheuristic Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010.
22. Yang, X.S. Nature-Inspired Optimization Algorithms; Academic Press: Cambridge, MA, USA, 2020.
23. Narmatha, C.; Eljack, S.M.; Tuka, A.A.R.M.; Manimurugan, S.; Mustafa, M. A hybrid fuzzy brain-storm optimization algorithm

for the classification of brain tumor MRI images. J. Ambient. Intell. Humaniz. Comput. 2020, 1–9. [CrossRef]
24. Ibrahim, R.A.; Abd Elaziz, M.; Ewees, A.A.; Selim, I.M.; Lu, S. Galaxy images classification using hybrid brain storm optimization

with moth flame optimization. J. Astron. Telesc. Instruments Syst. 2018, 4, 038001. [CrossRef]
25. Bezdan, T.; Zivkovic, M.; Bacanin, N.; Chhabra, A.; Suresh, M. Feature Selection by Hybrid Brain Storm Optimization Algorithm

for COVID-19 Classification. J. Comput. Biol. 2022, 29, 515–529. [CrossRef]
26. Alzaqebah, M.; Jawarneh, S.; Alwohaibi, M.; Alsmadi, M.K.; Almarashdeh, I.; Mohammad, R.M.A. Hybrid brain storm

optimization algorithm and late acceptance hill climbing to solve the flexible job-shop scheduling problem. J. King Saud-Univ.-
Comput. Inf. Sci. 2022, 34, 2926–2937. [CrossRef]

27. Hua, Z.; Chen, J.; Xie, Y. Brain storm optimization with discrete particle swarm optimization for TSP. In Proceedings of the 2016
12th International Conference on Computational Intelligence and Security (CIS), Wuxi, China, 16–19 December 2016; pp. 190–193.

28. Kao, Y.T.; Zahara, E. A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl. Soft Comput.
2008, 8, 849–857. [CrossRef]

http://doi.org/10.1007/s10462-020-09893-8
http://dx.doi.org/10.1109/ICGTSPICC.2016.7955308
http://dx.doi.org/10.1016/j.jocs.2020.101104
http://dx.doi.org/10.1109/LGRS.2014.2337320
http://dx.doi.org/10.1016/j.aej.2017.04.013
http://dx.doi.org/10.1016/j.amc.2006.09.098
http://dx.doi.org/10.1007/s00500-018-3310-y
http://dx.doi.org/10.1109/CEC.2017.7969498
http://dx.doi.org/10.1007/s00500-020-04781-3
http://dx.doi.org/10.1007/978-3-319-68935-7_60
http://dx.doi.org/10.1109/TAP.2019.2894318
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1007/BFb0040810
http://dx.doi.org/10.1016/j.cnsns.2012.07.017
http://dx.doi.org/10.3390/math9212725
http://dx.doi.org/10.5772/intechopen.97217
http://dx.doi.org/10.1016/j.apenergy.2016.12.074
http://dx.doi.org/10.1007/s12652-020-02470-5
http://dx.doi.org/10.1117/1.JATIS.4.3.038001
http://dx.doi.org/10.1089/cmb.2021.0256
http://dx.doi.org/10.1016/j.jksuci.2020.09.004
http://dx.doi.org/10.1016/j.asoc.2007.07.002

Algorithms 2023, 16, 208 20 of 20

29. Juang, C.F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man
Cybern. Part B Cybern. 2004, 34, 997–1006. [CrossRef]

30. Thangaraj, R.; Pant, M.; Abraham, A.; Bouvry, P. Particle swarm optimization: Hybridization perspectives and experimental
illustrations. Appl. Math. Comput. 2011, 217, 5208–5226. [CrossRef]

31. Sengupta, S.; Basak, S.; Peters, R.A. Particle Swarm Optimization: A survey of historical and recent developments with
hybridization perspectives. Mach. Learn. Knowl. Extr. 2018, 1, 157–191. [CrossRef]

32. Victoire, T.A.A.; Jeyakumar, A.E. Hybrid PSO–SQP for economic dispatch with valve-point effect. Electr. Power Syst. Res. 2004,
71, 51–59. [CrossRef]

33. Song, L.; Rahmat-Samii, Y. Hybridizing Particle Swarm and Brain Storm Optimizations for Applications in Electromagnetics. In
Proceedings of the 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI
GASS), Rome, Italy, 28 August–4 September 2021; pp. 1–4. [CrossRef]

34. Alkayem, N.F.; Cao, M.; Shen, L.; Fu, R.; Šumarac, D. The combined social engineering particle swarm optimization for real-world
engineering problems: A case study of model-based structural health monitoring. Appl. Soft Comput. 2022, 123, 108919. [CrossRef]

35. Alkayem, N.F.; Shen, L.; Al-hababi, T.; Qian, X.; Cao, M. Inverse Analysis of Structural Damage Based on the Modal Kinetic
and Strain Energies with the Novel Oppositional Unified Particle Swarm Gradient-Based Optimizer. Appl. Sci. 2022, 12, 11689.
[CrossRef]

36. Smith, R. The 7 Levels of Change: Diffferent Thinking for Diffferent Results; Tapestry Press: Abingdon, UK, 2002; Volume 3.
37. Zhu, H.; Shi, Y. Brain storm optimization algorithms with k-medians clustering algorithms. In Proceedings of the 2015 Seventh

International Conference on Advanced Computational Intelligence (ICACI), Wuyi, China, 27–29 March 2015; pp. 107–110.
[CrossRef]

38. Cao, Z.; Hei, X.; Wang, L.; Shi, Y.; Rong, X. An improved brain storm optimization with differential evolution strategy for
applications of ANNs. Math. Probl. Eng. 2015, 2015, 923698. [CrossRef]

39. El-Abd, M. Brain storm optimization algorithm with re-initialized ideas and adaptive step size. In Proceedings of the 2016 IEEE
Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 2682–2686. [CrossRef]

40. Zhou, D.; Shi, Y.; Cheng, S. Brain storm optimization algorithm with modified step-size and individual generation. In Proceedings
of the International Conference in Swarm Intelligence, Shenzhen, China, 17–20 June 2012; Springer: Berlin/Heidelberg, Germany,
2012; pp. 243–252. [CrossRef]

41. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
42. Vassilvitskii, S.; Arthur, D. k-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, San Diego, CA, USA, 22–24 January 2006; pp. 1027–1035.
43. Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [CrossRef]
44. Huang, T.; Mohan, A.S. A hybrid boundary condition for robust particle swarm optimization. IEEE Antennas Wirel. Propag. Lett.

2005, 4, 112–117. [CrossRef]
45. Li, L.; Zhang, F.; Chu, X.; Niu, B. Modified brain storm optimization algorithms based on topology structures. In Proceedings of

the Advances in Swarm Intelligence: 7th International Conference, ICSI 2016, Bali, Indonesia, 25–30 June 2016; pp. 408–415.
46. Yang, X.-S. Test problems in optimization. arXiv 2010, arXiv:1008.0549.
47. Plevris, V.; Solorzano, G. A Collection of 30 Multidimensional Functions for Global Optimization Benchmarking. Data 2022, 7, 46.

[CrossRef]
48. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,

V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
49. Zhan, Z.H.; Chen, W.N.; Lin, Y.; Gong, Y.J.; Li, Y.L.; Zhang, J. Parameter investigation in brain storm optimization. In Proceedings

of the 2013 IEEE Symposium on Swarm Intelligence (SIS), Singapore, 16–19 April 2013; pp. 103–110. [CrossRef]
50. Yang, X.S. Accelerated Particle Swarm Optimization (APSO). Online at MATLAB Central File Exchange. 2022. Available online:

https://www.mathworks.com/matlabcentral/fileexchange/74766-accelerated-particle-swarm-optimization-apso (accessed on
1 April 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSMCB.2003.818557
http://dx.doi.org/10.1016/j.amc.2010.12.053
http://dx.doi.org/10.3390/make1010010
http://dx.doi.org/10.1016/j.epsr.2003.12.017
http://dx.doi.org/10.23919/URSIGASS51995.2021.9560569
http://dx.doi.org/10.1016/j.asoc.2022.108919
http://dx.doi.org/10.3390/app122211689
http://dx.doi.org/10.1109/ICACI.2015.7184758
http://dx.doi.org/10.1155/2015/923698
http://dx.doi.org/10.1109/CEC.2016.7744125
http://dx.doi.org/10.1007/978-3-642-30976-2_29
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1007/s00500-016-2474-6
http://dx.doi.org/10.1109/LAWP.2005.846166
http://dx.doi.org/10.3390/data7040046
http://dx.doi.org/10.1109/SIS.2013.6615166
https://www.mathworks.com/matlabcentral/fileexchange/74766-accelerated-particle-swarm-optimization-apso

	Introduction
	Background
	Brain Storm Optimization (BSO)
	The BSO Algoritm
	Chaotic Accelerated Particle Swarm Optimization (CAPSO)

	The BSO–CAPSO Hybrid Concept
	Considerations and Setup for the Numerical Experimentation
	Benchmark Functions
	Experimental Parameters and Conditions
	BSO Parameters
	CAPSO Parameters
	BSO–CAPSO Hybrid Parameters

	Results
	Time Calculations
	Convergence Diagrams

	Discussion and Conclusions
	Observations and Remarks
	Further Discussion

	References

