
Citation: Huang, S.; Tsai, Y.-C.; Chou,

F.-D. A Trajectory-Based Immigration

Strategy Genetic Algorithm to Solve a

Single-Machine Scheduling Problem

with Job Release Times and Flexible

Preventive Maintenance. Algorithms

2023, 16, 207. https://doi.org/

10.3390/a16040207

Academic Editor: Conor Ryan

Received: 18 February 2023

Revised: 4 April 2023

Accepted: 10 April 2023

Published: 12 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Trajectory-Based Immigration Strategy Genetic Algorithm to
Solve a Single-Machine Scheduling Problem with Job Release
Times and Flexible Preventive Maintenance
Shenquan Huang 1, Ya-Chih Tsai 2 and Fuh-Der Chou 1,*

1 College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China
2 Department of Hotel Management, Vanung University, Taoyuan 32061, Taiwan
* Correspondence: fdchou@tpts7.seed.net.tw

Abstract: This paper considers the single-machine problem with job release times and flexible
preventive maintenance activities to minimize total weighted tardiness, a complicated scheduling
problem for which many algorithms have been proposed in the literature. However, the considered
problems are rarely solved by genetic algorithms (GAs), even though it has successfully solved
various complicated combinatorial optimization problems. For the problem, we propose a trajectory-
based immigration strategy, where immigrant generation is based on the given information of
solution extraction knowledge matrices. We embed the immigration strategy into the GA method to
improve the population’s diversification process. To examine the performance of the proposed GA
method, two versions of GA methods (the GA without immigration and the GA method with random
immigration) and a mixed integer programming (MIP) model are also developed. Comprehensive
experiments demonstrate the effectiveness of the proposed GA method by comparing the MIP model
with two versions of GA methods. Overall, the proposed GA method significantly outperforms the
other GA methods regarding solution quality due to the trajectory-based immigration strategy.

Keywords: single-machine; job release times; machine availability; genetic algorithm; immigration strategy

1. Introduction

In this paper, we consider the single-machine problem with job release times and
machine unavailable periods, where machine unavailable periods are caused by flexible
preventive maintenance (PM) activities. For classical single-machine scheduling problems,
most research assumes that all jobs are ready for processing simultaneously or that ma-
chines are always available to simplify the complexity of scheduling problems. These
two assumptions may impede many possible practical applications, and some studies
have demonstrated that there is a need to consider the dynamic job release time [1] or
machine unavailable periods [2,3]. Both are common phenomena in the real world and are
significant factors in production scheduling decisions. That is, taking into consideration
jobs’ release time and machine unavailable periods, a given production scheduling problem
can be solved more realistically.

For the considered problem, more precisely, there are n jobs with different release
times to the production system and waiting to be processed on a single machine without
preemption. The machine is not always available; it needs to be maintained periodically
to prevent its continuous working time from exceeding a specific threshold value and to
initialize the machine’s status. To the best of our knowledge, there are only three studies
considering dynamic job release time and machine availability constraints simultaneously
for the single-machine scheduling problem. Detienne [4] was the first to consider this type
of problem and proposed a MIP model to minimize the weighted number of late jobs. In
this study, the machine unavailable periods were fixed and known in advance. Cui and
Lu [5] considered the dynamic job release time for the machine availability scheduling

Algorithms 2023, 16, 207. https://doi.org/10.3390/a16040207 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16040207
https://doi.org/10.3390/a16040207
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-0055-7450
https://doi.org/10.3390/a16040207
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16040207?type=check_update&version=2

Algorithms 2023, 16, 207 2 of 33

problem. The main difference from the study of Detienne [4] is that, when implementing
PM as a decision variable in scheduling planning, it is not fixed and known. For this
problem, the researchers proposed a MIP model, heuristic algorithms and the branch and
bound (BAB) method to minimize the makespan. Pang et al. [6] considered the single-
machine maintenance scheduling problem with dynamic job release time, and this study
was motivated by a clean operation of semiconductor manufacturing in which the machine
had to stop to remove the dirt in the machine as a clean agent. For this problem, the
researchers proposed a scatter simulated annealing algorithm to simultaneously minimize
the total weighted tardiness and total completion time.

Our considered problem is the same as that of Cui and Lu [5] mentioned above;
the objective of Cui and Lu [5] is to minimize the makespan, implying maximizing the
throughput of the system. With the increasing importance of time-related competition
and customer satisfaction, production performance based on due-dates becomes more
significant. Thus, the objective we adopted is to minimize the total weighted tardiness
(TWT) for responding to the needs of on-time delivery in just-in-time (JIT) production,
which is one of the important, relevant objectives for today’s manufacturing environments.
Moreover, the TWT objective has not been considered as often by researchers in this problem.
This problem is also NP-hard because the special case without machine maintenance
constraints, that is, the single-machine scheduling problem to minimize the total weighted
tardiness has proven to be NP-hard [7].

For the NP-hard problem considered in this paper, we propose a trajectory-based im-
migration strategy genetic algorithm. The main reason is that different genetic algorithms
(GAs) have been implemented successfully in many complicated scheduling problems
but are seldom applied to the considered problem. Additionally, an immigration strat-
egy is one of the common ways to keep the diversity of the population and avoid local
convergence. Thus, we develop a novel trajectory-based immigration strategy containing
three different solution knowledge extraction matrices for collecting important information
from the searched chromosomes and embed the immigration strategy into the proposed
GA method to generate better immigrants. Furthermore, we develop a mixed integer
programming (MIP) model to obtain benchmark solutions to evaluate the performance of
the proposed GA.

The rest of this paper is as follows. In Section 2, we review previous related studies.
We define the considered problem and a mixed integer programming model to minimize
the total weighted tardiness in Section 3. In Section 4, we describe the trajectory-based GA
in this paper. Section 5 describes the computational experiment, including the parameter
settings of the GA, test data generation scheme and experimental results. In Section 6, we
discuss the results obtained. Finally, Section 7 contains our conclusions and future research.

2. Literature Review

Regarding scheduling problems with machine availability constraints, hundreds of
contributions have been developed in the literature. Most of the machine availability is
caused by preventive maintenance. Preventive maintenance (PM) is designed as a prior
measure to reduce the probability of failure or degradation, and activating PM tasks in
scheduling problems are usually classified into two categories: (i) PM tasks are performed
at a fixed interval or within a time window or (ii) PM tasks are carried out depending on
certain monitored conditions. Table 1 exhibits a brief review of work on single-machine
scheduling problems with PM tasks based on the two categories. As seen from Table 1,
the previous major studies focused on the first category with different objective functions.
Additionally, Ma et al. [8] provided a detailed review and classification of papers that dealt
with deterministic scheduling problems related to fixed PM tasks in different manufacturing
shop floors. This information indicated increasing interest in studying this field over the
past several decades.

The references most pertinent to our considered paper are Qi et al. [9], Sbihi and
Varnier [2], and Cui and Lu [5]. In these studies, the PM task is driven by monitoring the

Algorithms 2023, 16, 207 3 of 33

current machine’s working time to ensure that it does not exceed a preset critical time
threshold and to initialize the status of the machine. Qi et al. [9] proposed three heuristic
algorithms and a branch and bound (BAB) method to minimize the total completion time.
Sbihi and Varnier [2] considered the two categories mentioned in Table 1 and proposed the
BAB method to minimize maximum tardiness. The two above studies assumed that all jobs
were ready at time 0. Cui and Lu [5] first considered the dynamic case of jobs’ release time
in the single-machine problem. They proposed a mixed integer programming (MIP), a BAB
method and a heuristic algorithm to minimize the makespan.

Another PM task motivated by the wafer cleaning operation of a semiconductor
manufacturing factory was proposed by Su and Wang [10], where a machine has to be
maintained periodically so that the amount of dirt left on the machine does not exceed a
preset critical dirt threshold. Su and Wang [10] developed a MIP, a dynamic programming-
based heuristic algorithm to minimize the total absolute deviation of job completion times.
Later, Su et al. [11] extended the single-machine problem to a parallel machine problem
and developed a MIP model and three heuristic algorithms to minimize the number of
tardy jobs. Pang et al. [6] extended the study of Su and Wang [10] to consider job release
time and bicriteria (total weighted tardiness and job completion time). They proposed a
scatter simulated annealing (SSA) algorithm to obtain nondominated solutions.

From Table 1, it is evident that our considered problem, i.e., the dynamic single-
machine scheduling problem with PM tasks, where PM tasks are driven by the threshold
value of the machine’s continuous working time and the total weighted tardiness as the
objective, has not been studied so far. The considered problem is NP-hard since the
static single-machine problem with the objective of the total weighted tardiness, where
the machine is always available, has proven to be NP-hard [7]. For this kind of NP-
hard problem, applying traditional methodologies, such as heuristic algorithms or exact
algorithms, suffers either from solution effectiveness or computational efficiency. In recent
years, various GAs based on global exploration and local exploitation search mechanisms,
due to their flexibility, have been utilized more successfully than traditional approaches in
solving NP-hard problems [12].

Table 1. Two categories of related studies for the considered problem.

Objectives First Category Second Category

Makespan [3,13–16] [5]

Total completion time or total flow time [14,17–20] [9]

Total weighted completion time [21–25] [26]

Total absolute deviation of job completion times [10]

Maximum lateness [14] [26]

Maximum earliness [27]

Maximum tardiness [2,20,28] [2]

Mean lateness [20]

Mean tardiness [20]

Number of tardy jobs [14,29–31] [11]

Weighted number of late jobs [4]

Bicriteria (total weighted tardiness and total
completion time) [6]

Compared with classical scheduling problems, employing meta-heuristic algorithms
to solve single-machine scheduling problems with machine unavailability constraints has
been very limited, with only a few studies to date. Pang et al. [6] considered a single-
machine scheduling problem in which PM tasks are driven by the accumulated dirt and
adopted the total weighted tardiness and total completion time simultaneously as an

Algorithms 2023, 16, 207 4 of 33

objective. The researchers proposed a scatter simulated annealing (SSA) algorithm to
obtain nondominated solutions. Chen et al. [32] developed a GA to solve a single-machine
scheduling problem by minimizing total tardiness, where machine availability is measured
by its reliability. Due to their success in applying meta-heuristic algorithms to solve the
scheduling problem with machine availability constraints, we propose a new GA with
knowledge of solution trajectory, aiming at presenting a trajectory-based immigration
strategy to enhance the effectiveness of our GA.

3. Problem Description and Methodology
3.1. Problem Description

Let J = { Jj
∣∣j = 1, 2, . . . , n} be the set of n jobs that are scheduled on a single machine. To

keep the machine in good condition, the machine’s continuous working time cannot exceed
a maximum specific time L. As a result, it is necessary to perform maintenance activity
irregularly to initialize the machine. The maintenance time is MT. This paper considers
non-preemptive and non-resumable cases; all jobs must be processed without interruption,
and a job should be finished before a maintenance activity without restarting. Additionally,
we assume that a job has a processing time, release time and due date for which data can
be estimated in advance from the manufacturing execution system (MES). The objective is
to minimize the total weighted tardiness (TWT) subject to the given job release time and
maintenance constraint. According to the standard machine scheduling classification, the
problem can be denoted as 1

∣∣rj, nr, f pm
∣∣∑ wjTj.

3.2. Mixed Integer Programming (MIP) Model

Based on the above description, we formulate a MIP model for the 1
∣∣rj, nr, f pm

∣∣∑ wjTj
problem. The parameters and variables used in the model are as follows:

• Parameters
n: number of jobs
Jj: job j
L: maximum working time limit
MT: maintenance time, which is a constant
M: a very large positive integer constant
rj: release time of job j
pj: processing time of job j
wj: weight of job j
dj: due date of job j

• Decision variables
Cj: completion time of job j
Tj: tardiness of job j, where Tj = max

(
0, Cj − dj

)
Xjk: 1 if job j is assigned at position k in the sequence, 0 otherwise
Yk: 1 if maintenance activity is assigned after position k in the sequence,
0 otherwise
Qk: continuous working time of machine after position k in the sequence
STk: start time at position k for processing in the sequence
PTk: processing time for the job assigned at position k in the sequence
CTk: completion time at position k in the sequence

To obtain a feasible schedule, variables Xjk and Yk are binary and decide which job is
assigned at position k and whether a maintenance activity is assigned after position k, as
shown in Figure 1. This is based on the following constraints.

Algorithms 2023, 16, 207 5 of 33

Algorithms 2023, 16, x FOR PEER REVIEW 5 of 31

To obtain a feasible schedule, variables 𝑋௝௞ and 𝑌௞ are binary and decide which job is
assigned at position k and whether a maintenance activity is assigned after position k, as
shown in Figure 1. This is based on the following constraints.

Figure 1. Feasible schedule.

Each job must be arranged into exactly one position ∑ 𝑋௝௞௡௞ୀଵ = 1 ∀ 𝑗 = 1,2,3, … , 𝑛 (1)

Each position must be occupied by exactly one job ∑ 𝑋௝௞௡௝ୀଵ = 1 ∀ 𝑘 = 1,2,3, … , 𝑛 (2)

For each position k, the start time for the processing job can be given by 𝑆𝑇௞ ≥ ∑ ൫𝑟௝ ∙ 𝑋௝௞൯௡௝ୀଵ ∀ 𝑘 = 1,2,3, … , 𝑛 (3)𝑆𝑇௞ ≥ 𝐶𝑇௞ିଵ + (𝑀𝑇 ∙ 𝑌௞ିଵ) ∀ 𝑘 = 2,3,4, … , 𝑛 (4)

For each position k, the processing time for the assigned job can be given by 𝑃𝑇௞ = ∑ ൫𝑝௝ ∙ 𝑋௝௞൯௡௝ୀଵ ∀ 𝑘 = 1,2,3, … , 𝑛 (5)

For each position k, the completion time of position k should be satisfied by 𝐶𝑇௞ ≥ 𝑆𝑇௞ + 𝑃𝑇௞ ∀ 𝑘 = 1,2,3, … , 𝑛 (6)

For the first position, the continuous working time can be given by 𝑄ଵ = ෍ ൫𝑝௝ ∙ 𝑋௝ଵ൯௡௝ୀଵ (7)

For each position k, excluding the first position, the continuous working time can be
given by 𝑄௞ିଵ + ∑ ൫𝑝௝ ∙ 𝑋௝௞൯ ≤ 𝑄௞ + (𝑀 ∙ 𝑌௞ିଵ)௡௝ୀଵ ∀ 𝑘 = 2,3,4, … , 𝑛 (8)∑ ൫𝑝௝ ∙ 𝑋௝௞൯ ≤ 𝑄௞ + 𝑀 ∙ (1 − 𝑌௞ିଵ)௡௝ୀଵ ∀ 𝑘 = 2,3,4, … , 𝑛 (9)

In the above two equations, we apply the M value, a very large positive constant, to
obtain the continuous working time for each position. If 𝑌௞ିଵ = 0, then the continuous
working time at position k (𝑄௞) will be forced to be 𝑄௞ିଵ + ∑ (𝑝௝ ∙ 𝑋௝௞)௡௝ୀଵ ; on the other
hand, if 𝑌௞ିଵ = 1, then the continuous working time at position k (𝑄௞) will be ∑ (𝑝௝ ∙ 𝑋௝௞)௡௝ୀଵ .

For each position, the continuous working time should satisfy 𝑄௞ ≤ 𝐿 ∀ 𝑘 = 1,2,3, … , 𝑛 (10)

k 1 2 3 4 5

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0 A feasible schedule

0 0 0 0 1 PM PM

0 0 0 1 0

0 1 0 1 0

𝑋ଵ௞Xଶ௞Xଷ௞Xସ௞Xହ௞𝑌௞
𝐽ଶ 𝐽ଷ 𝐽ଵ 𝐽ହ 𝐽ସ

Figure 1. Feasible schedule.

Each job must be arranged into exactly one position

∑n
k=1 Xjk = 1 ∀ j = 1, 2, 3, . . . , n (1)

Each position must be occupied by exactly one job

∑n
j=1 Xjk = 1 ∀ k = 1, 2, 3, . . . , n (2)

For each position k, the start time for the processing job can be given by

STk ≥∑n
j=1(rj·Xjk) ∀ k = 1, 2, 3, . . . , n (3)

STk ≥ CTk−1 + (MT·Yk−1) ∀ k = 2, 3, 4, . . . , n (4)

For each position k, the processing time for the assigned job can be given by

PTk = ∑n
j=1(pj·Xjk) ∀ k = 1, 2, 3, . . . , n (5)

For each position k, the completion time of position k should be satisfied by

CTk ≥ STk + PTk ∀ k = 1, 2, 3, . . . , n (6)

For the first position, the continuous working time can be given by

Q1 = ∑n

j=1

(
pj·Xj1

)
(7)

For each position k, excluding the first position, the continuous working time can be
given by

Qk−1 + ∑n
j=1(pj·Xjk) ≤ Qk + (M·Yk−1) ∀ k = 2, 3, 4, . . . , n (8)

∑n
j=1(pj·Xjk) ≤ Qk + M·(1−Yk−1) ∀ k = 2, 3, 4, . . . , n (9)

In the above two equations, we apply the M value, a very large positive constant, to
obtain the continuous working time for each position. If Yk−1 = 0, then the continuous
working time at position k (Qk) will be forced to be Qk−1 + ∑n

j=1(pj·Xjk); on the other hand,
if Yk−1 = 1, then the continuous working time at position k (Qk) will be ∑n

j=1(pj·Xjk).

Algorithms 2023, 16, 207 6 of 33

For each position, the continuous working time should satisfy

Qk ≤ L ∀ k = 1, 2, 3, . . . , n (10)

At the end of the sequence, there is no need to maintain the machine:

Yn = 0 (11)

For each job, the completion time can be given by

Cj + M·(1− Xjk) ≥ CTk ∀
{

j = 1, 2, 3, . . . , n
k = 1, 2, 3, . . . , n

(12)

For each job, tardiness can be given by

Tj ≥
(
Cj − dj

)
∀ j = 1, 2, 3, . . . , n (13)

In this model, our goal is to minimize total weighted tardiness, which is given by

Min ∑n
j=1(wj·Tj) (14)

It is worth noting from Figure 1 that the considered problem here involves two
interrelated sets of decisions: how to sequence the jobs and when to execute PM activities.
Implicitly, the decision of PM activities may affect the objective value, even for the same
job sequence. To describe this phenomenon, suppose that the job sequence of J1-J3-J4-J5-J2
is given for the 5-job instance in Table 2, and two different PM decision methods are used
for the job sequence.

Table 2. Five-job instance where L = 10 and MT = 5.

rj pj dj wj

J1 0 2 4 1

J2 8 8 17 3

J3 5 2 9 2

J4 7 4 12 2

J5 13 4 19 3

The first PM decision method is inspired by the first fit (FF) concept for bin packing
problems [33]. Thus, the jobs are assigned to the machine in orders as long as the working
time of the machine does not exceed the threshold value (L). Based on the FF concept,
the obtained TWT value is 51, according to the Gantt chart in Figure 2. The second
PM decision method is motivated by the dynamic programming (DP) method for batch
problems [34,35]. Using the DP method, the obtained TWT value is 41 to the Gantt chart in
Figure 3. Additionally, the detailed steps of the DP method are demonstrated in Appendix A
for the sake of brevity.

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 31

At the end of the sequence, there is no need to maintain the machine: 𝑌௡ = 0 (11)

For each job, the completion time can be given by 𝐶௝ + 𝑀 ∙ ൫1 − 𝑋௝௞൯ ≥ 𝐶𝑇௞ ∀ ൜𝑗 = 1,2,3, … , 𝑛𝑘 = 1,2,3, … , 𝑛 (12)

For each job, tardiness can be given by 𝑇௝ ≥ ൫𝐶௝ − 𝑑௝൯ ∀ 𝑗 = 1,2,3, … , 𝑛 (13)

In this model, our goal is to minimize total weighted tardiness, which is given by

Min ∑ (𝑤௝ ∙ 𝑇௝௡௝ୀଵ) (14)

It is worth noting from Figure 1 that the considered problem here involves two inter-
related sets of decisions: how to sequence the jobs and when to execute PM activities.
Implicitly, the decision of PM activities may affect the objective value, even for the same
job sequence. To describe this phenomenon, suppose that the job sequence of J1-J3-J4-J5-J2
is given for the 5-job instance in Table 2, and two different PM decision methods are used
for the job sequence.

Table 2. Five-job instance where L = 10 and MT = 5.

 𝒓𝒋 𝒑𝒋 𝒅𝒋 𝒘𝒋 𝐽ଵ 0 2 4 1 𝐽ଶ 8 8 17 3 𝐽ଷ 5 2 9 2 𝐽ସ 7 4 12 2 𝐽ହ 13 4 19 3

The first PM decision method is inspired by the first fit (FF) concept for bin packing
problems [33]. Thus, the jobs are assigned to the machine in orders as long as the working
time of the machine does not exceed the threshold value (L). Based on the FF concept, the
obtained TWT value is 51, according to the Gantt chart in Figure 2. The second PM deci-
sion method is motivated by the dynamic programming (DP) method for batch problems
[34,35]. Using the DP method, the obtained TWT value is 41 to the Gantt chart in Figure 3.
Additionally, the detailed steps of the DP method are demonstrated in Appendix A for
the sake of brevity.

Figure 2. Gantt chart obtained by FF method.

Figure 3. Gantt chart obtained by DP method.

From this example, adopting the DP method as the PM decision method is better than
the former. Moreover, the above two sets of decisions affect each other. In this paper, the
sequence of jobs is in the form of chromosomes, and then the DP method is used as a
decoding method to obtain an objective value for any chromosome in our GA.

J1

0 2

J3

5 7

J4

11

PM

16

J5

20

PM

25

J2

33

TWT=51

J1

0 2

PM

7

J3

9

J4

13

J5

17

PM

22

J2

30

TWT=41

Figure 2. Gantt chart obtained by FF method.

Algorithms 2023, 16, 207 7 of 33

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 31

At the end of the sequence, there is no need to maintain the machine: 𝑌௡ = 0 (11)

For each job, the completion time can be given by 𝐶௝ + 𝑀 ∙ ൫1 − 𝑋௝௞൯ ≥ 𝐶𝑇௞ ∀ ൜𝑗 = 1,2,3, … , 𝑛𝑘 = 1,2,3, … , 𝑛 (12)

For each job, tardiness can be given by 𝑇௝ ≥ ൫𝐶௝ − 𝑑௝൯ ∀ 𝑗 = 1,2,3, … , 𝑛 (13)

In this model, our goal is to minimize total weighted tardiness, which is given by

Min ∑ (𝑤௝ ∙ 𝑇௝௡௝ୀଵ) (14)

It is worth noting from Figure 1 that the considered problem here involves two inter-
related sets of decisions: how to sequence the jobs and when to execute PM activities.
Implicitly, the decision of PM activities may affect the objective value, even for the same
job sequence. To describe this phenomenon, suppose that the job sequence of J1-J3-J4-J5-J2
is given for the 5-job instance in Table 2, and two different PM decision methods are used
for the job sequence.

Table 2. Five-job instance where L = 10 and MT = 5.

 𝒓𝒋 𝒑𝒋 𝒅𝒋 𝒘𝒋 𝐽ଵ 0 2 4 1 𝐽ଶ 8 8 17 3 𝐽ଷ 5 2 9 2 𝐽ସ 7 4 12 2 𝐽ହ 13 4 19 3

The first PM decision method is inspired by the first fit (FF) concept for bin packing
problems [33]. Thus, the jobs are assigned to the machine in orders as long as the working
time of the machine does not exceed the threshold value (L). Based on the FF concept, the
obtained TWT value is 51, according to the Gantt chart in Figure 2. The second PM deci-
sion method is motivated by the dynamic programming (DP) method for batch problems
[34,35]. Using the DP method, the obtained TWT value is 41 to the Gantt chart in Figure 3.
Additionally, the detailed steps of the DP method are demonstrated in Appendix A for
the sake of brevity.

Figure 2. Gantt chart obtained by FF method.

Figure 3. Gantt chart obtained by DP method.

From this example, adopting the DP method as the PM decision method is better than
the former. Moreover, the above two sets of decisions affect each other. In this paper, the
sequence of jobs is in the form of chromosomes, and then the DP method is used as a
decoding method to obtain an objective value for any chromosome in our GA.

J1

0 2

J3

5 7

J4

11

PM

16

J5

20

PM

25

J2

33

TWT=51

J1

0 2

PM

7

J3

9

J4

13

J5

17

PM

22

J2

30

TWT=41

Figure 3. Gantt chart obtained by DP method.

From this example, adopting the DP method as the PM decision method is better
than the former. Moreover, the above two sets of decisions affect each other. In this paper,
the sequence of jobs is in the form of chromosomes, and then the DP method is used as a
decoding method to obtain an objective value for any chromosome in our GA.

4. The Proposed GA

GAs are well-known stochastic search algorithms to solve combinatorial optimization
problems. The original idea was developed by Holland [36]. In a GA, a population is
maintained by selection, crossover and mutation operators until a stopping criterion is
satisfied and an optimal/best solution is obtained. However, it is likely to be trapped in
local optima [37]. As a result, immigration strategies, such as random immigrants [38]
and elitism-based immigrants [39], have been proposed to enhance the diversity of chro-
mosomes in the population [40]. In this paper, we develop a trajectory-based immigrant
scheme to maintain the diversity of chromosomes in each population.

Trajectory-based immigration schemes are not like random-based immigrant or elitism-
based immigrant schemes. The former (random-based immigrant scheme) randomly
generated immigrants. Regarding the latter, it adopted the elite chromosome as a base to
generate immigrants with better solution quality in this way. In this paper, we develop
a solution-characteristic reserved technology based on solution extraction knowledge
matrices to extract the relation between job and position, job and job, and from job to
job for each feasible solution. The solution extraction knowledge matrices are called job-
position trajectory (JPT), job-job trajectory (JJT) and from-to trajectory (FTT). Based on the
information provided by the three matrices, we develop a trajectory-based immigration
scheme such that the generated immigrants can gain a balance between randomness and
solution quality for the GA. Next, the steps for building three trajectory matrices are
described as follows.

Step 1. Generate feasible schedules πy randomly and obtain the corresponding TWT
value xy, y = 1, 2, . . . , N. N is the number of the population.

Step 2. Calculate the mean (x = ∑ xy/N) and standard deviation (σ =
√

∑
(
xy − x

)2/N − 1)
for this group.

Step 3. Obtain a semaphore value (sy) for each schedule πy by normalization, i.e.,
sy = (x− xy)/σ. Note that a larger signal is better to minimize the TWT.

Step 4. Initialize matrices CJP, CJJ, CFT, SJP, SJJ and SFT.
Step 5. Complete count matrix (CJP) by counting the number of jobs i occupied at

position j in schedule πy, and in a similar fashion to complete matrices (CJJ and CFT) if job
i is before job j in schedule πy, and if job i is from to job j (job i and j is adjacent).

Step 6. Complete semaphore matrix SJP by accumulating semaphore value (sy) if job i
occupied position j in schedule πy, and in a similar fashion to complete matrix SJJ if job i is
before job j in schedule πy, and matrix SFT if from the job i is to job j.

Step 7. Obtain each element of the job-position trajectory (JPT) matrix by the follow-
ing equation:

JPTij =

{
0 i f CJPij = 0

SJPij
CJPij

otherwise
∀

{
i = 1, 2, 3, . . . , n
j = 1, 2, 3, . . . , n

Step 8. Obtain each element of the job-job trajectory (JJT) matrix by the following equation:

J JTij =

{
0 i f CJ Jij = 0

SJ Jij
CJJij

otherwise
∀

{
i = 1, 2, 3, . . . , n
j = 1, 2, 3, . . . , n

Algorithms 2023, 16, 207 8 of 33

Step 9. Obtain each element of the from-to trajectory (FTT) matrix by the follow-
ing equation:

FTTij =

{
0 i f CFTij = 0

SFTij
CFTij

otherwise
∀

{
i = 0, 1, 2, . . . , n
j = 0, 1, 2, . . . , n

To demonstrate the three types of trajectory forms (job-position, job-job and from-to),
we use an 8-job instance in Table 3 and generate 1000 solutions randomly, for example.
Applying the above steps, the JPT, JJT and FTT matrices are built, as shown in Tables 4–6.

Table 3. Eight-job instance with L = 15 and MT = 5.

J1 J2 J3 J4 J5 J6 J7 J8

rj 35 45 44 33 41 3 32 43

pj 8 13 3 5 3 3 4 3

wj 3 1 7 2 8 3 1 3
dj 47 55 62 44 56 16 49 58

Table 4. Job-position trajectory (JPT) matrix from 1000 random solutions for 8-job instance.

Positions

1 2 3 4 5 6 7 8

Jobs

1 0.31917 0.02314 −0.16659 −0.21222 −0.14115 −0.02065 0.06266 0.13564
2 −1.38125 −0.79550 −0.41909 −0.10038 0.17369 0.46689 0.83788 1.21775
3 −0.22808 0.20669 0.30798 0.26575 0.15107 −0.02584 −0.23395 −0.44361
4 0.33685 0.00495 −0.12552 −0.11933 −0.08009 −0.21764 −0.46876 −0.71966
5 0.25933 0.44942 0.41268 0.25655 0.02808 −0.21764 −0.46876 −0.71966
6 0.87978 0.13539 −0.01647 −0.10382 −0.15826 −0.19973 −0.24555 −0.29134
7 0.21466 −0.05454 −0.12392 −0.11331 −0.06601 −0.00804 0.04788 0.10329
8 −0.40050 0.03045 0.13093 0.12675 0.09266 0.05228 0.00663 −0.03926

Table 5. Job-Job trajectory (JJT) matrix from 1000 random solutions for 8-job instance.

Jobs

1 2 3 4 5 6 7 8

Jobs

1 — 0.48009 −0.06691 −0.02260 −0.20985 −0.16732 0.00882 0.05005
2 −0.48009 — −0.53775 −0.48038 −0.70475 −0.62080 −0.43232 −0.40540
3 0.06691 0.53775 — 0.00448 −0.12972 −0.08990 0.07447 0.09916
4 0.02260 0.48038 −0.00448 — −0.17715 −0.13956 0.02889 0.06497
5 0.20985 0.70475 0.12972 0.17715 — 0.03882 0.20382 0.23131
6 0.16732 0.62080 0.08990 0.13956 −0.03882 — 0.16483 0.19474
7 −0.00882 0.43232 −0.07447 −0.02889 −0.20382 −0.16483 — 0.03258
8 −0.05005 0.40540 −0.09916 −0.06497 −0.23131 −0.19474 −0.03258 —

Table 6. From-to trajectory (FTT) matrix from 1000 random solutions for an 8-job instance.

To

0 1 2 3 4 5 6 7 8

From

0 — 0.31917 −1.38125 −0.22808 0.33685 0.25933 0.87978 0.21466 −0.40045
1 0.13564 — 0.18265 0.02463 −0.13640 −0.05755 −0.15306 −0.05853 0.06264
2 1.21775 −0.25050 — −0.08189 −0.19567 −0.27148 −0.27544 −0.11941 −0.02336
3 −0.44361 0.02318 0.29617 — 0.00209 0.08335 −0.08437 −0.00576 0.12895
4 0.03719 −0.10368 0.12910 0.02109 — −0.02009 −0.09564 −0.01771 0.04974
5 −0.71966 0.06846 0.39703 0.14226 0.02626 — −0.06619 0.01413 0.13772
6 −0.29134 0.03036 0.17156 0.02005 0.03065 −0.00769 — 0.01462 0.03179

Algorithms 2023, 16, 207 9 of 33

Table 6. Cont.

To

0 1 2 3 4 5 6 7 8

7 0.10329 −0.03578 0.07060 −0.00748 −0.01915 −0.03210 −0.09235 — 0.01297
8 −0.03926 −0.05121 0.13414 0.10942 −0.04461 0.04624 −0.11273 −0.04199 —

To validate whether the three matrices can help us to find good immigrants, we applied
correlation analysis to realize the correlation between the objective value and matrices. The
steps are described as follows:

Step 1. For instance, generate K feasible solutions (πy) randomly and obtain objective
values (xy) for solution y, y = 1, 2, . . . , K.

Step 2. For each solution, πy = {J[1], J[2], . . . J[i], . . . , J[j], . . . , J[n]}, obtain three feature
values based on the JPT, JJT and FTT matrices using the following equations:

Z1y = ∑n

j=1
JPTJ[j] ,j

Z2y =

n−1

∑
i=1

∑n

j=i+1
J JTJ[i] ,J[j]

Z3y = FTT0, J[1] +∑n−1

j=1
FTTJ[j] ,J[j+1]

+ FTTJ[n] , 0

Step 3. Obtain the mean and standard deviation of the objective value and feature
values for the K solutions using the following equations:

x =
1
K ∑K

y=1 xy, Sx =

√
∑K

y=1

(
xy − x

)2/(K− 1)

Z1 =
1
K ∑K

y=1 Z1y, SZ1 =

√
∑K

y=1

(
Z1y − Z1

)2/(K− 1)

Z2 =
1
K ∑K

y=1 Z2y, SZ2 =

√
∑K

y=1

(
Z2y − Z2

)2/(K− 1)

Z3 =
1
K ∑K

y=1 Z3y, SZ3 =

√
∑K

y=1

(
Z3y − Z3

)2/(K− 1)

Step 4. Calculate the correlation values between the objective value and matrices by
the following equation:

rx,Z1 =
1

(K− 1)
×

K

∑
y=1

(
xy − x

Sx

)
×
(

Z1y − Z1
SZ1

)

rx,Z2 =
1

(K− 1)
×

K

∑
y=1

(
xy − x

Sx

)
×
(

Z2y − Z2
SZ2

)

rx,Z3 =
1

(K− 1)
×

K

∑
y=1

(
xy − x

Sx

)
×
(

Z3y − Z3
SZ3

)

Algorithms 2023, 16, 207 10 of 33

For the example of Table 3 and based on the results in Tables 4–6, we determine that the
correlation values (rx,Z1, rx,Z2, rx,Z3) are −0.97130, −0.88297 and −0.81809 when K = 250.
The values are negative because the objective function is minimized. To further examine
the correlation between objective value and matrices, we randomly regenerate 80 instances
with eight jobs and follow the procedures mentioned above to obtain the correlation values
shown in Table 7.

Table 7. Obtained correlation values between the objective value and matrices for different instances.

No. rx,Z1 rx,Z2 rx,Z3 No. rx,Z1 rx,Z2 rx,Z3

1 −0.97398 −0.90259 −0.82521 41 −0.93246 −0.78268 −0.82146

2 −0.93389 −0.67382 −0.91551 42 −0.96903 −0.90456 −0.82889

3 −0.89515 −0.70715 −0.79133 43 −0.96012 −0.85805 −0.85599

4 −0.95873 −0.85844 −0.80679 44 −0.96275 −0.75995 −0.83542

5 −0.98988 −0.85009 −0.82317 45 −0.93506 −0.64075 −0.83282

6 −0.97103 −0.78600 −0.86143 46 −0.94614 −0.81629 −0.86377

7 −0.96237 −0.80414 −0.81064 47 −0.95039 −0.68591 −0.88292

8 −0.95706 −0.83210 −0.80263 48 −0.92468 −0.81150 −0.81777

9 −0.93486 −0.64478 −0.81466 49 −0.95806 −0.78674 −0.90038

10 −0.96672 −0.78058 −0.87700 50 −0.97217 −0.83153 −0.84326

11 −0.95342 −0.73581 −0.86859 51 −0.95388 −0.65682 −0.82511

12 −0.95444 −0.66436 −0.86279 52 −0.94202 −0.76971 −0.83592

13 −0.94975 −0.76062 −0.82653 53 −0.97487 −0.87496 −0.85896

14 −0.94608 −0.72400 −0.81843 54 −0.95419 −0.83605 −0.78963

15 −0.91384 −0.51343 −0.80317 55 −0.94642 −0.80198 −0.77172

16 −0.96407 −0.75132 −0.85303 56 −0.97563 −0.74293 −0.78009

17 −0.94233 −0.57961 −0.86445 57 −0.95643 −0.82493 −0.87601

18 −0.98302 −0.89270 −0.89220 58 −0.91590 −0.67764 −0.86478

19 −0.96143 −0.78270 −0.89244 59 −0.96370 −0.80954 −0.81591

20 −0.96040 −0.50497 −0.87309 60 −0.94539 −0.67941 −0.82872

21 −0.93761 −0.67141 −0.86832 61 −0.96729 −0.85690 −0.83829

22 −0.94733 −0.82641 −0.87715 62 −0.96834 −0.73018 −0.90983

23 −0.96481 −0.77928 −0.86784 63 −0.98041 −0.85956 −0.81707

24 −0.96752 −0.75952 −0.88022 64 −0.97940 −0.84165 −0.84504

25 −0.94186 −0.64615 −0.87946 65 −0.94475 −0.76231 −0.82987

26 −0.95828 −0.79151 −0.88050 66 −0.95450 −0.86418 −0.83902

27 −0.95353 −0.83410 −0.88704 67 −0.94122 −0.67374 −0.80949

28 −0.93543 −0.63366 −0.85822 68 −0.97977 −0.83760 −0.90741

29 −0.96274 −0.83366 −0.72312 69 −0.96696 −0.81004 −0.81336

30 −0.98589 −0.84328 −0.86550 70 −0.97713 −0.77468 −0.85297

31 −0.94389 −0.46264 −0.90581 71 −0.95879 −0.79762 −0.87808

32 −0.94480 −0.66877 −0.84578 72 −0.97632 −0.82410 −0.88502

33 −0.94191 −0.63167 −0.89761 73 −0.94578 −0.79615 −0.83772

34 −0.96513 −0.83834 −0.85896 74 −0.95980 −0.84630 −0.83950

Algorithms 2023, 16, 207 11 of 33

Table 7. Cont.

No. rx,Z1 rx,Z2 rx,Z3 No. rx,Z1 rx,Z2 rx,Z3

35 −0.95250 −0.78039 −0.82646 75 −0.94803 −0.79279 −0.82569

36 −0.95126 −0.79587 −0.86244 76 −0.95494 −0.68985 −0.86193

37 −0.92409 −0.67215 −0.86366 77 −0.96827 −0.86258 −0.83804

38 −0.98108 −0.91518 −0.83011 78 −0.94943 −0.80676 −0.82839

39 −0.89571 −0.57850 −0.80123 79 −0.93170 −0.61759 −0.88283

40 −0.94395 −0.81748 −0.86455 80 −0.94562 −0.77085 −0.84916

From Table 7, the results achieved for the JJT matrix are slightly worse, where the
correlation value is greater than 75% in 53 cases of the 80 total instances is 66.25%, which
is less than the 100% and 98.75% obtained by JPT and FTT, respectively. As expected, the
impact of the position information for jobs on the objective function appears to be more
significant than that of the precedence relationship of pairs of jobs. Overall, the majority
of correlation values are greater than 75%, which indicates that the proposed matrices are
highly correlated with the objective value of the schedule. That is, it is implied that we can
apply the information provided by the proposed matrices to search for better solutions.

Based on this finding, we constructed the trajectory matrices of JPT, JJT and FTT from
the previously explored chromosomes during the GA process. We did not discard or ignore
the hidden information in them. Based on the information given by the three trajectory
matrices, we developed the immigrant generation method and embedded it into the GA.
Thus, the developed GA is called the trajectory-based immigration strategy GA (TISGA) in
this paper. Each part of TISGA is described as follows:

4.1. Encoding Scheme

The encoding scheme is important in making a solution recognizable in applying
GA. Our proposed GA is based on a permutation representation of n jobs, which is the
natural representation of a solution and one of the widely used encoding schemes for
single-machine scheduling problems.

4.2. Population Initialization

To generate a variety of chromosomes, i.e., the sequence of jobs, the jobs are first sorted
according to the following dispatching rules, and then the rest of the chromosomes are
generated randomly.

• First-in, first-out (FIFO): sequence the jobs by increasing the order of their release time,
i.e., rj. Ties are broken by the EDD rule.

• Shortest processing time (SPT): sequence the jobs by increasing the order of their
processing time, i.e., pj. Ties are broken by the FIFO rule.

• Largest processing time (LPT): sequence the jobs by decreasing the order of their
processing time. Ties are broken by the FIFO rule.

• Weight shortest processing time (WSPT): sequence the jobs by increasing the order of
the index pj/wj. Ties are broken by the FIFO rule.

• Earliest due date (EDD): sequence the jobs by increasing the order of their due date,
i.e., dj. Ties are broken by the FIFO rule.

4.3. Fitness Function and Evaluation

In this study, our objective was to minimize the TWT, and it was expected that a
chromosome with a smaller TWT would have a larger fitness value for survival. Thus, the
fitness value of a chromosome is evaluated by the inverse of its value as follows:

fitness
(
πy
)
= 1/

[
TWT

(
πy
)
+ ε
]
, y = 1, 2, . . . , population size, where fitness (πy) is

the fitness value for the yth chromosome; TWT(πy) is the TWT value; and ε is the smallest

Algorithms 2023, 16, 207 12 of 33

value (ε = 0.000001), which aims to keep the denominator greater than zero. To obtain the
TWT value for each chromosome, we use the DP method, as mentioned above. In this
decoding, the job sequence is based on the relative order in the chromosome, but when to
execute PM activities depends on the proposed DP method, as mentioned above. Suppose
one of the chromosomes is represented by J1-J3-J4-J5-J2 for the 5-job instance shown in
Table 2. Using the proposed decoding method, the feasible schedule for the chromosome of
J1-J3-J4-J5-J2 is obtained, as shown in Figure 3, where the corresponding TWT and fitness
values are 41 and 0.0244, respectively.

4.4. Crossover/Mutation

For recombination/crossover to generate offspring, we applied bias roulette wheel
selection to choose parents from the pool of the population, which was the first selection
operator proposed by Holland in 1975 (Goldberg, 1989). Since then, it has become a common
method used in a variety of GA applications. For crossover, we consider order crossover
(OX). In the OX crossover, two cutoff points from parent one are randomly selected, and
the information between the two cutoff points is added to the generated offspring. The
remaining jobs are filled in the order from parent 2. In this way, OX crossover always
generates feasible offspring. Figure 4 illustrates an example of an OX crossover.

Algorithms 2023, 16, x FOR PEER REVIEW 11 of 31

representation of a solution and one of the widely used encoding schemes for single-ma-
chine scheduling problems.

4.2. Population Initialization
To generate a variety of chromosomes, i.e., the sequence of jobs, the jobs are first

sorted according to the following dispatching rules, and then the rest of the chromosomes
are generated randomly.
• First-in, first-out (FIFO): sequence the jobs by increasing the order of their release

time, i.e., 𝑟௝. Ties are broken by the EDD rule.
• Shortest processing time (SPT): sequence the jobs by increasing the order of their pro-

cessing time, i.e., 𝑝௝. Ties are broken by the FIFO rule.
• Largest processing time (LPT): sequence the jobs by decreasing the order of their pro-

cessing time. Ties are broken by the FIFO rule.
• Weight shortest processing time (WSPT): sequence the jobs by increasing the order

of the index 𝑝௝ 𝑤௝⁄ . Ties are broken by the FIFO rule.
• Earliest due date (EDD): sequence the jobs by increasing the order of their due date,

i.e., 𝑑௝. Ties are broken by the FIFO rule.

4.3. Fitness Function and Evaluation
In this study, our objective was to minimize the TWT, and it was expected that a chro-

mosome with a smaller TWT would have a larger fitness value for survival. Thus, the
fitness value of a chromosome is evaluated by the inverse of its value as follows: fitness ൫π୷൯ = 1 ൣ𝑇𝑊𝑇൫π୷൯ + ε൧⁄ , y = 1, 2,…, population size, where fitness (𝜋௬) is the
fitness value for the yth chromosome; TWT(𝜋௬) is the TWT value; and 𝜀 is the smallest
value (𝜀 = 0.000001), which aims to keep the denominator greater than zero. To obtain the
TWT value for each chromosome, we use the DP method, as mentioned above. In this
decoding, the job sequence is based on the relative order in the chromosome, but when to
execute PM activities depends on the proposed DP method, as mentioned above. Suppose
one of the chromosomes is represented by J1-J3-J4-J5-J2 for the 5-job instance shown in Table
2. Using the proposed decoding method, the feasible schedule for the chromosome of J1-
J3-J4-J5-J2 is obtained, as shown in Figure 3, where the corresponding TWT and fitness val-
ues are 41 and 0.0244, respectively.

4.4. Crossover/Mutation
For recombination/crossover to generate offspring, we applied bias roulette wheel

selection to choose parents from the pool of the population, which was the first selection
operator proposed by Holland in 1975 (Goldberg, 1989). Since then, it has become a com-
mon method used in a variety of GA applications. For crossover, we consider order cross-
over (OX). In the OX crossover, two cutoff points from parent one are randomly selected,
and the information between the two cutoff points is added to the generated offspring.
The remaining jobs are filled in the order from parent 2. In this way, OX crossover always
generates feasible offspring. Figure 4 illustrates an example of an OX crossover.

Figure 4. Illustration of OX crossover.

parent1 J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8 J 9 J 10

parent2 J 2 J 1 J 4 J 7 J 10 J 3 J 6 J 8 J 9 J 5

offspring J 2 J 1 J 7 J 4 J 5 J 6 J 10 J 3 J 8 J 9

Figure 4. Illustration of OX crossover.

For each offspring generated by OX crossover, the parent solution’s features may be
randomly modified by the mutation operator. The mutation operator preserves a reasonable
level of population diversity that helps the GA escape local optima. In this paper, we adopt
a swap mutation. More precisely, we produced a random number rmut from uniformly
distributed between 0 and 1. If the random number rmut is less than or equal to a given
mutation probability pmut, i.e., rmut ≤ pmut, then the contents of two random genes of the
offspring are swapped.

4.5. Immigration

In immigrant schemes, a certain number of immigrants are generated and added to
the pool of the population by replacing the worst individuals from the current generation.
In this paper, we applied random immigration and trajectory-based immigration strategies
addressed in this paper to create immigrants for the next population. For the trajectory-
based immigration strategy, the percentage of immigrants generated from JPT, FTT and JJT
is 37%, 33% and 30%, respectively, since the first two matrices have a higher correlation
with the objective value mentioned above. A bias roulette wheel as the basic selection
mechanism is used for producing immigrants based on the information of JPT, JJT and FTT
matrices in which a job of higher vjk has a large chance to be selected.

The pseudocode of the trajectory-based immigration procedure and immigrant-creation
procedure based on JPT, JJT and FTT are described in Procedure_TBI (seen in Figure 5),
Procedure_JPTimm, Procedure_JJTimm and Procedure_FTTimm. Note that the main dif-
ference among the three procedures is that the given information to generate immi-
grants is different, i.e., provided by either JPT, JJT or FTT matrices. Here, we only use
Procedure_JPTimm as an illustration in the following (seen in Figure 6).

Algorithms 2023, 16, 207 13 of 33

Algorithms 2023, 16, x FOR PEER REVIEW 12 of 31

For each offspring generated by OX crossover, the parent solution’s features may be
randomly modified by the mutation operator. The mutation operator preserves a reason-
able level of population diversity that helps the GA escape local optima. In this paper, we
adopt a swap mutation. More precisely, we produced a random number 𝑟௠௨௧ from uni-
formly distributed between 0 and 1. If the random number 𝑟௠௨௧ is less than or equal to a
given mutation probability 𝑝௠௨௧, i.e., 𝑟௠௨௧ ≤ 𝑝௠௨௧, then the contents of two random genes
of the offspring are swapped.

4.5. Immigration
In immigrant schemes, a certain number of immigrants are generated and added to

the pool of the population by replacing the worst individuals from the current generation.
In this paper, we applied random immigration and trajectory-based immigration strate-
gies addressed in this paper to create immigrants for the next population. For the trajec-
tory-based immigration strategy, the percentage of immigrants generated from JPT, FTT
and JJT is 37%, 33% and 30%, respectively, since the first two matrices have a higher cor-
relation with the objective value mentioned above. A bias roulette wheel as the basic se-
lection mechanism is used for producing immigrants based on the information of JPT, JJT
and FTT matrices in which a job of higher 𝑣௝௞ has a large chance to be selected.

The pseudocode of the trajectory-based immigration procedure and immigrant-cre-
ation procedure based on JPT, JJT and FTT are described in Procedure_TBI (seen in Figure
5), Procedure_JPTimm, Procedure_JJTimm and Procedure_FTTimm. Note that the main differ-
ence among the three procedures is that the given information to generate immigrants is
different, i.e., provided by either JPT, JJT or FTT matrices. Here, we only use Proce-
dure_JPTimm as an illustration in the following (seen in Figure 6).

Figure 5. Pseudo code of Procedure_TBI.

Procedure_TBI
Data: population size, JPT, JJT, FTT matrices for current generation
Result: the generate immigrants
1 counter←1

2 while (𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≤ (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 × 10%)) do
3 generate a random number, rand

4 case 1: 𝑟𝑎𝑛𝑑 < 0.37

5 Procedure_JPTimm based on JPT matrix

6 case 2: 0.37 ≤ 𝑟𝑎𝑛𝑑 < 0.67

7 Procedure_JJTimm based on JJT matrix

8 case 3: 𝑟𝑎𝑛𝑑 ≥ 0.67

9 Procedure_FTTimm based on FTT matrix

10 counter←(counter+1)

11 end while

Figure 5. Pseudo code of Procedure_TBI.

Algorithms 2023, 16, x FOR PEER REVIEW 13 of 31

Figure 6. Pseudo code of Procedure_JPTmin.

It is noted that the value of k in Procedure_𝑭𝑻𝑻𝒊𝒎𝒎 begins from 0, not 1, which is the
main difference between Procedure_𝑭𝑻𝑻𝒊𝒎𝒎 and the other two procedures.

4.6. New Generation
For a subsequent generation, first, we used the elitist strategy for reproduction,

where 10% of the chromosomes with higher fitness values are automatically copied to the
next generation. Second, the worse 10% of chromosomes are directly replaced by new
chromosomes generated by “immigration” in the next generation. Finally, 80% of the
chromosomes in the next generation come from crossover/mutation. If GA has no immi-
gration scheme, then the rates for reproduction and crossover/mutation are changed to
10% and 90%, respectively.

The pseudocode for the proposed TISGA is described in Figure 7.

Figure 6. Pseudo code of Procedure_JPTmin.

It is noted that the value of k in Procedure_FTTimm begins from 0, not 1, which is the
main difference between Procedure_FTTimm and the other two procedures.

Algorithms 2023, 16, 207 14 of 33

4.6. New Generation

For a subsequent generation, first, we used the elitist strategy for reproduction, where
10% of the chromosomes with higher fitness values are automatically copied to the next gen-
eration. Second, the worse 10% of chromosomes are directly replaced by new chromosomes
generated by “immigration” in the next generation. Finally, 80% of the chromosomes in the
next generation come from crossover/mutation. If GA has no immigration scheme, then the
rates for reproduction and crossover/mutation are changed to 10% and 90%, respectively.

The pseudocode for the proposed TISGA is described in Figure 7.

Algorithms 2023, 16, x FOR PEER REVIEW 14 of 31

Figure 7. Pseudo code of TISGA.

5. Computational Experiment
The A comprehensive experiments are conducted; there are 23 test problem sizes n

={5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500}. Job
processing time, release time and weights are generated uniformly on the interval [2, 15],
[0, 50] and [1, 10], respectively. The maximum working time limit and maintenance time
are L = {15, 30} and MT = 5. Additionally, the due date of each job was generated from a
uniform distribution ൫𝑟௝ + 𝑝௝൯ + 𝑈[(1 − TF − R 2)𝑃ത, (1 − TF + R 2⁄)⁄ 𝑃ത], where 𝑃ത is the av-
erage processing time of all jobs, tardiness factor TF = {0.4, 0.6} and relative range factor
of the due date R = {0.4, 0.6}. Ten instances were generated for each of the eight combina-
tions of parameter values (L, TF, R), yielding 80 instances for each value of n. Our MIP

TISGA
Data: the problem’s data, population size, percentages of reproduction,
crossover/mutation, immigration, stopping criterion

Result: the best solution
1 generation←0, initialize the JPT, JJT, and FTT matrices to be 0

2 apply five dispatching rules to generate chromosomes, and then the rest of the
chromosomes are generated randomly.

3 decode each individual by the proposed DP method to obtain the TWT value
and fitness

4 built three trajectory matrices JPT, JJT, and FTT based on the current
population

5 while (stopping criterion not satisfied) do
6 create three new matrices (newJPT, newJJT, newFTT) and initialize

them to be 0.
7 Reproduction: Copy directly 10% of the best individuals from the

current population to the next population.
8 Crossover/mutation: Using the roulette wheel method to choose two

parent chromosomes to produce the child chromosomes, 80% of the
chromosomes in the next generation come from crossover/mutation.

9 Immigration: Replace 10% of the worst individuals of the current
population with the immigrants generated by Procedure_TBI

10 Decoding: apply the proposed DP method to obtain the TWT value
and fitness for each individual

11 reconstruct the new matrices (newJPT, newJJT, and newFTT) based
on the chromosomes of the next population.

12 update the current matrices (JPT, JJT and FTT) by the following
equation: 𝐽𝑃𝑇 ← 𝑛𝑒𝑤𝐽𝑃𝑇 × 0.5 + 0.5 × 𝐽𝑃𝑇 , 𝐽𝐽𝑇 ← 𝑛𝑒𝑤𝐽𝐽𝑇 ×0.5 + 0.5 × 𝐽𝐽𝑇 , 𝐹𝑇𝑇 ← 𝑛𝑒𝑤𝐹𝑇𝑇 × 0.5 + 0.5 × 𝐹𝑇𝑇

13 generation←generation+1

14 end while

15 output the best solution

Figure 7. Pseudo code of TISGA.

Algorithms 2023, 16, 207 15 of 33

5. Computational Experiment

The A comprehensive experiments are conducted; there are 23 test problem sizes
n ={5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500}.
Job processing time, release time and weights are generated uniformly on the interval [2,
15], [0, 50] and [1, 10], respectively. The maximum working time limit and maintenance
time are L = {15, 30} and MT = 5. Additionally, the due date of each job was generated
from a uniform distribution

(
rj + pj

)
+ U[(1− TF− R/2)P, (1− TF + R/2)P], where P is

the average processing time of all jobs, tardiness factor TF = {0.4, 0.6} and relative range
factor of the due date R = {0.4, 0.6}. Ten instances were generated for each of the eight
combinations of parameter values (L, TF, R), yielding 80 instances for each value of n. Our
MIP model is executed by IBM ILOG CPLEX Optimization Studio Version 12.7.1, and the
proposed GA is coded in C++. All tests were conducted on a PC with an Intel Xeon E-2124
3.4 GHz CPU with 32 GB of RAM.

To examine the performance of the proposed TISGA, we also proposed a basic GA
without immigration and a GA with a random immigration strategy (GARI). For a fair
comparison, all versions of the proposed GAs have (2× n) and 100 chromosomes for
(n ≤ 50) and (n > 50), respectively, and their parameter settings mentioned above are the
same. Each version of the GA algorithm is run five times repeatedly to obtain the best
result for each instance, and the computational time limit is set to (n× 0.01) CPU seconds
as the stopping criterion for each version of the GAs.

First, we aim to show the efficiency of the proposed GAs. The proposed MIP model
is built to find optimal solutions for small-sized problems since the considered problem
here is NP-hard. Table 8 shows the average TWT values (AveTWT) and the number of
optimal solutions found by each algorithm for small-sized problems. The results obtained
by the GA algorithms that are worse (higher) than those obtained by the MIP model are
presented in boldface. From Table 8, even with a small increment of n (n = 15), it becomes
impossible for the MIP model to reach optimal solutions within a reasonable computational
time, where the computational time limit for the MIP model is set to 7200 s. Additionally,
the three versions of the proposed GAs are almost equivalent when comparing the average
TWT value and Nopt. Regarding the average computational time shown in Table 9, note
that the computational time limit of all versions of the GAs is the same as (n× 0.01)
seconds. This experiment demonstrates that the MIP model is very expensive regarding the
computational cost when n = 15. On the other hand, the GA performances are very reliable
in finding the optimal solutions in less than 0.15 s. Therefore, this experiment justified
that the development of GAs can reduce the computational effort without seriously losing
solution quality.

Table 8. Comparison of results for MIP and GAs for small-sized problems.

n Combinations
(L, TF, R)

AveTWT Nopt

MIP Basic GA GARI TISGA MIP Basic GARI TISAB

5 (1,1,1) 75.700 75.700 75.700 75.700 10 10 10 10

(1,1,2) 108.900 108.900 108.900 108.900 10 10 10 10

(1,2,1) 217.000 217.000 217.000 217.000 10 10 10 10

(1,2,2) 203.200 203.200 203.200 203.200 10 10 10 10

(2,1,1) 35.700 35.700 35.700 35.700 10 10 10 10

(2,1,2) 50.900 50.900 50.900 50.900 10 10 10 10

(2,2,1) 127.800 127.800 127.800 127.800 10 10 10 10

(2,2,2) 132.900 132.900 132.900 132.900 10 10 10 10

6 (1,1,1) 178.300 178.300 178.300 178.300 10 10 10 10

(1,1,2) 119.200 119.200 119.200 119.200 10 10 10 10

Algorithms 2023, 16, 207 16 of 33

Table 8. Cont.

n Combinations
(L, TF, R)

AveTWT Nopt

MIP Basic GA GARI TISGA MIP Basic GARI TISAB

(1,2,1) 229.800 229.800 229.800 229.800 10 10 10 10

(1,2,2) 207.300 207.300 207.300 207.300 10 10 10 10

(2,1,1) 62.600 62.600 62.600 62.600 10 10 10 10

(2,1,2) 94.500 94.500 94.500 94.500 10 10 10 10

(2,2,1) 190.000 190.000 190.000 190.000 10 10 10 10

(2,2,2) 226.900 226.900 226.900 226.900 10 10 10 10

7 (1,1,1) 283.200 283.200 283.200 283.200 10 10 10 10

(1,1,2) 227.700 227.700 227.700 227.700 10 10 10 10

(1,2,1) 340.900 340.900 340.900 340.900 10 10 10 10

(1,2,2) 321.700 324.700 324.700 324.700 10 9 9 9

(2,1,1) 101.100 101.100 101.100 101.100 10 10 10 10

(2,1,2) 173.900 173.900 173.900 173.900 10 10 10 10

(2,2,1) 185.800 185.800 185.800 185.800 10 10 10 10

(2,2,2) 245.300 245.300 245.300 245.300 10 10 10 10

8 (1,1,1) 343.200 343.200 343.200 343.200 10 10 10 10

(1,1,2) 252.300 252.600 252.600 252.600 10 9 9 9

(1,2,1) 556.300 556.300 556.300 556.300 10 10 10 10

(1,2,2) 337.900 337.900 337.900 337.900 10 10 10 10

(2,1,1) 134.700 134.700 134.700 134.700 10 10 10 10

(2,1,2) 181.000 181.000 181.000 181.000 10 10 10 10

(2,2,1) 224.300 224.300 224.300 224.300 10 10 10 10

(2,2,2) 356.400 356.400 356.400 356.400 10 10 10 10

9 (1,1,1) 336.700 336.700 336.700 336.700 10 10 10 10

(1,1,2) 461.200 461.200 461.200 461.200 10 10 10 10

(1,2,1) 595.500 595.500 595.500 595.500 10 10 10 10

(1,2,2) 477.100 478.400 478.400 478.400 10 8 8 8

(2,1,1) 331.200 331.200 331.200 331.200 10 10 10 10

(2,1,2) 148.100 148.100 148.100 148.100 10 10 10 10

(2,2,1) 357.000 357.000 357.000 357.000 10 10 10 10

(2,2,2) 463.500 463.500 463.500 463.500 10 10 10 10

10 (1,1,1) 432.100 432.100 432.100 432.100 10 10 10 10

(1,1,2) 565.500 565.500 565.500 565.500 10 10 10 10

(1,2,1) 612.500 612.500 612.500 612.500 10 10 10 10

(1,2,2) 659.900 667.900 667.900 667.900 10 9 9 9

(2,1,1) 421.000 421.000 421.000 421.000 10 10 10 10

(2,1,2) 475.000 475.000 475.000 475.000 10 10 10 10

(2,2,1) 328.900 328.900 328.900 328.900 10 10 10 10

(2,2,2) 525.500 525.500 525.500 525.500 10 10 10 10

Algorithms 2023, 16, 207 17 of 33

Table 8. Cont.

n Combinations
(L, TF, R)

AveTWT Nopt

MIP Basic GA GARI TISGA MIP Basic GARI TISAB

15 (1,1,1) 1158.800 1158.800 1158.800 1158.800 8 8 8 8

(1,1,2) 1284.500 1293.300 1284.500 1284.500 8 7 8 8

(1,2,1) 1982.300 1982.300 1982.300 1982.300 5 5 5 5

(1,2,2) 1613.700 1612.000 1612.000 1612.000 6 6 6 6

(2,1,1) 1210.600 1210.600 1210.600 1210.600 7 7 7 7

(2,1,2) 1038.100 1038.100 1038.100 1038.100 10 10 10 10

(2,2,1) 1284.300 1284.300 1284.300 1284.300 7 7 7 7

(2,2,2) 1079.500 1079.500 1079.500 1079.500 10 10 10 10

Table 9. The average computational time required by the MIP model and GAs.

n MIP All Versions of GAs

5 0.050 0.050

6 0.061 0.059

7 0.083 0.070

8 0.212 0.079

9 0.536 0.090

10 1.663 0.100

15 2854.086 0.150
Remark: For n = 15, there are 19 instances in which computational time solved by the MIP model exceeds 7200 s.

Recall that the MIP model cannot find all optimal solutions within 7200 s, and the basic
GA becomes slightly worse on solution quality when n = 15. Thus, we further investigate
the performances of different GAs for large-sized problems in the second experiment.
Please note that the computational time limits of the GAs are the same, i.e., (n× 0.01)
seconds, for each n. For comparison, we apply the relative percentage deviation (RPD) of
each instance computed as follows.

RPD = [(TWT(A)−Min)/Min] × 100%, where Min is the lowest TWT value for
a given instance obtained by any of the GA algorithms, and TWT(A) is the TWT value
obtained for a given algorithm and instance. AveRPD refers to Average RPD. Table 10
shows the AveRPD and the total number of best solutions (Nbest) obtained by each GA.
As depicted in the table, GARI finds slightly better solutions than the basic GA; that is,
1.937% is obtained by GARI, while the basic GA gives a mean AveRPD value of 2.341%.
Overall, TISGA significantly outperforms GARI and basic GA because the total number
of best solutions obtained by the proposed TISGA is 1269, 136 for basic GA, and 156 for
GARI among 1280 instances. The results support our inference that GAs maintain the
diversity level of the population through immigration strategy to achieve a better quality
of solutions. Furthermore, the proposed trajectory-based immigration strategy enhances
the effectiveness of the GA method more than the random immigration strategy.

Algorithms 2023, 16, 207 18 of 33

Table 10. Comparison of results for GAs for large-sized problems.

AveRPD Nbest

n Basic GA GARI TISGA Basic GA GARI TISGA

20 0.126 0.180 0.000 68 64 80

25 0.545 0.369 0.015 40 48 79

30 0.731 0.490 0.005 19 22 79

35 1.121 0.834 0.000 4 6 80

40 1.012 0.908 0.001 2 8 78

45 0.997 0.994 0.000 1 1 80

50 1.409 1.325 0.005 2 1 79

60 1.209 1.317 0.000 0 0 80

70 1.440 1.271 0.001 0 1 79

80 1.384 1.188 0.000 0 0 80

90 1.733 1.349 0.000 0 0 80

100 2.045 1.419 0.000 0 0 80

200 4.572 3.315 0.000 0 0 80

300 6.110 4.896 0.000 0 0 80

400 7.074 6.055 0.000 0 0 80

500 5.944 5.083 0.028 0 5 75

mean 2.341 1.937 0.003 8.50 9.75 79.31

We also examined the performance of GAs under different combinations of (L, TF, R)
for each problem. Figures 8–23 illustrate the comparison results under eight combinations of
(L, TF, R) for large-sized problems. From these figures, in some cases, GARI is worse than the
basic GA; that is, the performances of GARI and the basic GA are influenced by the values
of (L, TF, R). However, as the number of jobs increases, GARI becomes gradually better
than the basic GA for any combination of (L, TF, R) because adding randomly generated
immigrants helps increase the diversity of solutions for the GA method, especially for
larger job sizes. The proposed TISGA overcomes the influence of combinations of (L, TF, R)
on solutions and is robust in obtaining better solutions.

Algorithms 2023, 16, x FOR PEER REVIEW 18 of 31

gradually better than the basic GA for any combination of (L, TF, R) because adding ran-
domly generated immigrants helps increase the diversity of solutions for the GA method,
especially for larger job sizes. The proposed TISGA overcomes the influence of combina-
tions of (L, TF, R) on solutions and is robust in obtaining better solutions.

Better convergence is another important topic for designing a good GA method.
Thus, we compared the convergence of the basic GA, GARI and TISGA using instances
with n = 50 and n = 200, respectively, as shown in Figures 21 and 22. From Figures 24 and
25, the convergence speed in TISGA is highest among GARI and the basic GA, and the
solutions obtained by TISGA require less computation time than those required by GARI
and the basic GA. Through these experimental results, we conclude that coupling a GA
with the trajectory-based immigration scheme accelerates the convergence speed and sig-
nificantly improves the performance of the basic GA.

Figure 8. Comparison results for n = 20 with combinations of (L, TF, R).

Figure 9. Comparison results for n = 25 with eight combinations of (L, TF, R).

Figure 8. Comparison results for n = 20 with combinations of (L, TF, R).

Algorithms 2023, 16, 207 19 of 33

Algorithms 2023, 16, x FOR PEER REVIEW 18 of 31

gradually better than the basic GA for any combination of (L, TF, R) because adding ran-
domly generated immigrants helps increase the diversity of solutions for the GA method,
especially for larger job sizes. The proposed TISGA overcomes the influence of combina-
tions of (L, TF, R) on solutions and is robust in obtaining better solutions.

Better convergence is another important topic for designing a good GA method.
Thus, we compared the convergence of the basic GA, GARI and TISGA using instances
with n = 50 and n = 200, respectively, as shown in Figures 21 and 22. From Figures 24 and
25, the convergence speed in TISGA is highest among GARI and the basic GA, and the
solutions obtained by TISGA require less computation time than those required by GARI
and the basic GA. Through these experimental results, we conclude that coupling a GA
with the trajectory-based immigration scheme accelerates the convergence speed and sig-
nificantly improves the performance of the basic GA.

Figure 8. Comparison results for n = 20 with combinations of (L, TF, R).

Figure 9. Comparison results for n = 25 with eight combinations of (L, TF, R). Figure 9. Comparison results for n = 25 with eight combinations of (L, TF, R).

Algorithms 2023, 16, x FOR PEER REVIEW 19 of 31

Figure 10. Comparison results for n = 30 with eight combinations of (L, TF, R).

Figure 11. Comparison results for n = 35 with eight combinations of (L, TF, R).

Figure 12. Comparison results for n = 40 with eight combinations of (L, TF, R).

Figure 10. Comparison results for n = 30 with eight combinations of (L, TF, R).

Algorithms 2023, 16, x FOR PEER REVIEW 19 of 31

Figure 10. Comparison results for n = 30 with eight combinations of (L, TF, R).

Figure 11. Comparison results for n = 35 with eight combinations of (L, TF, R).

Figure 12. Comparison results for n = 40 with eight combinations of (L, TF, R).

Figure 11. Comparison results for n = 35 with eight combinations of (L, TF, R).

Algorithms 2023, 16, 207 20 of 33

Algorithms 2023, 16, x FOR PEER REVIEW 19 of 31

Figure 10. Comparison results for n = 30 with eight combinations of (L, TF, R).

Figure 11. Comparison results for n = 35 with eight combinations of (L, TF, R).

Figure 12. Comparison results for n = 40 with eight combinations of (L, TF, R). Figure 12. Comparison results for n = 40 with eight combinations of (L, TF, R).

Algorithms 2023, 16, x FOR PEER REVIEW 20 of 31

Figure 13. Comparison results for n = 45 with eight combinations of (L, TF, R).

Figure 14. Comparison results for n = 50 with eight combinations of (L, TF, R).

Figure 15. Comparison results for n = 60 with eight combinations of (L, TF, R).

Figure 13. Comparison results for n = 45 with eight combinations of (L, TF, R).

Algorithms 2023, 16, x FOR PEER REVIEW 20 of 31

Figure 13. Comparison results for n = 45 with eight combinations of (L, TF, R).

Figure 14. Comparison results for n = 50 with eight combinations of (L, TF, R).

Figure 15. Comparison results for n = 60 with eight combinations of (L, TF, R).

Figure 14. Comparison results for n = 50 with eight combinations of (L, TF, R).

Algorithms 2023, 16, 207 21 of 33

Algorithms 2023, 16, x FOR PEER REVIEW 20 of 31

Figure 13. Comparison results for n = 45 with eight combinations of (L, TF, R).

Figure 14. Comparison results for n = 50 with eight combinations of (L, TF, R).

Figure 15. Comparison results for n = 60 with eight combinations of (L, TF, R). Figure 15. Comparison results for n = 60 with eight combinations of (L, TF, R).

Algorithms 2023, 16, x FOR PEER REVIEW 21 of 31

Figure 16. Comparison results for n = 70 with eight combinations of (L, TF, R).

Figure 17. Comparison results for n = 80 with eight combinations of (L, TF, R).

Figure 18. Comparison results for n = 90 with eight combinations of (L, TF, R).

Figure 16. Comparison results for n = 70 with eight combinations of (L, TF, R).

Algorithms 2023, 16, x FOR PEER REVIEW 21 of 31

Figure 16. Comparison results for n = 70 with eight combinations of (L, TF, R).

Figure 17. Comparison results for n = 80 with eight combinations of (L, TF, R).

Figure 18. Comparison results for n = 90 with eight combinations of (L, TF, R).

Figure 17. Comparison results for n = 80 with eight combinations of (L, TF, R).

Algorithms 2023, 16, 207 22 of 33

Algorithms 2023, 16, x FOR PEER REVIEW 21 of 31

Figure 16. Comparison results for n = 70 with eight combinations of (L, TF, R).

Figure 17. Comparison results for n = 80 with eight combinations of (L, TF, R).

Figure 18. Comparison results for n = 90 with eight combinations of (L, TF, R). Figure 18. Comparison results for n = 90 with eight combinations of (L, TF, R).

Algorithms 2023, 16, x FOR PEER REVIEW 22 of 31

Figure 19. Comparison results for n = 100 with eight combinations of (L, TF, R).

Figure 20. Comparison results for n = 200 with eight combinations of (L, TF, R).

Figure 21. Comparison results for n = 300 with eight combinations of (L, TF, R).

Figure 19. Comparison results for n = 100 with eight combinations of (L, TF, R).

Algorithms 2023, 16, x FOR PEER REVIEW 22 of 31

Figure 19. Comparison results for n = 100 with eight combinations of (L, TF, R).

Figure 20. Comparison results for n = 200 with eight combinations of (L, TF, R).

Figure 21. Comparison results for n = 300 with eight combinations of (L, TF, R).

Figure 20. Comparison results for n = 200 with eight combinations of (L, TF, R).

Algorithms 2023, 16, 207 23 of 33

Algorithms 2023, 16, x FOR PEER REVIEW 22 of 31

Figure 19. Comparison results for n = 100 with eight combinations of (L, TF, R).

Figure 20. Comparison results for n = 200 with eight combinations of (L, TF, R).

Figure 21. Comparison results for n = 300 with eight combinations of (L, TF, R). Figure 21. Comparison results for n = 300 with eight combinations of (L, TF, R).

Algorithms 2023, 16, x FOR PEER REVIEW 23 of 31

Figure 22. Comparison results for n = 400 with eight combinations of (L, TF, R).

Figure 23. Comparison results for n = 500 with eight combinations of (L, TF, R).

Figure 22. Comparison results for n = 400 with eight combinations of (L, TF, R).

Algorithms 2023, 16, x FOR PEER REVIEW 23 of 31

Figure 22. Comparison results for n = 400 with eight combinations of (L, TF, R).

Figure 23. Comparison results for n = 500 with eight combinations of (L, TF, R).
Figure 23. Comparison results for n = 500 with eight combinations of (L, TF, R).

Algorithms 2023, 16, 207 24 of 33

Better convergence is another important topic for designing a good GA method. Thus,
we compared the convergence of the basic GA, GARI and TISGA using instances with
n = 50 and n = 200, respectively, as shown in Figures 21 and 22. From Figures 24 and 25, the
convergence speed in TISGA is highest among GARI and the basic GA, and the solutions
obtained by TISGA require less computation time than those required by GARI and the
basic GA. Through these experimental results, we conclude that coupling a GA with the
trajectory-based immigration scheme accelerates the convergence speed and significantly
improves the performance of the basic GA.

Algorithms 2023, 16, x FOR PEER REVIEW 24 of 31

Figure 24. TWT value vs. computation time for TISGA, GARI and basic GA, for instance, with 50
jobs.

Figure 25. TWT value vs. computation time for TISGA, GARI and basic GA, for instance, with 200
jobs.

Figure 24. TWT value vs. computation time for TISGA, GARI and basic GA, for instance, with 50 jobs.

Algorithms 2023, 16, x FOR PEER REVIEW 24 of 31

Figure 24. TWT value vs. computation time for TISGA, GARI and basic GA, for instance, with 50
jobs.

Figure 25. TWT value vs. computation time for TISGA, GARI and basic GA, for instance, with 200
jobs.

Figure 25. TWT value vs. computation time for TISGA, GARI and basic GA, for instance, with
200 jobs.

Algorithms 2023, 16, 207 25 of 33

6. Discussions

Based on the comparison results in Section 5, we use nonparametric tests under
α = 0.05 confidence level to examine the superiority of the proposed TISGA; it was veri-
fied that, when the size of the problem is small, the immigrant strategy does not induce
significantly the quality of the final solution, since the hypothesis Basic GA = GARI and
GARI = TISGA cannot be rejected with significance 0.317 and 1.000, respectively. It is
reasonable that, when the problem is small, solution space can almost be searched by
basic GA without adding any improved scheme. For large-size problems, the hypothesis
Basic GA = GARI and GARI = TISGA are rejected with the significance of 0.002 and 0.000,
respectively, which showed that the proposed immigrant strategy induces significantly the
solution quality of GA.

Overall, the proposal TISGA has the following features and advantages when com-
pared with GAs:

• With the problem being NP-hard, it is tough to search for all solutions when the
size of the problem increases. In this case, a good search scheme, such as the pro-
posed trajectory-based immigration strategy to direct GA to obtain a better or optimal
solution, is important.

• The possibility to converge to solutions with good quality more quickly due to the
trajectory-based immigration strategy.

7. Conclusions

In this paper, we have addressed the single-machine scheduling problem with job
release time and flexible preventive maintenance to minimize TWT. To the best of our
knowledge, this problem with the TWT objective has not yet been addressed in the literature.
For this problem, some JPT, JJT and FTT matrices are established based on the concept of
the experience-driven knowledge scheme. Equipped with these matrices, we proposed
a GA coupled with a trajectory-based immigration strategy, called TISGA, to generate
immigrants to maintain the population diversity of a GA.

To examine the performance of TISGA, we formulated a MIP model and two GAs; one
is the basic GA without an immigration strategy, and the other is GARI with a randomly
generated immigration strategy. For small-sized problems, GARI and TISGA exhibited
the same performances in terms of AveTWT and Nopt as compared to the MIP model.
For large-sized problems, 1269 of the 1280 (99.14%) best solutions were found by TISGA,
and then 12.18% and 10.63% were obtained by GARI and the basic GA, respectively. The
results showed that TISGA outperformed the GARI and basic GA methods. Furthermore,
our TISGA showed robust performance with respect to different values of (L, TF, R). More
specifically, the results have shown that embedding the proposed trajectory-based immigra-
tion strategy in a GA has been enough to obtain excellent solutions for the problem under
consideration. Consequently, further research could come in developing more efficient
and advanced metaheuristics, successfully adapting the concept of an experience-driven
knowledge scheme. Additionally, other potential extensions of this study, including parallel
machines, job shops and sequence-dependent setup times, can be made for future research.

Author Contributions: S.H. and F.-D.C.: Conceptualization, methodology, validation, investigation,
project administration, funding acquisition. F.-D.C.: software, validation. S.H., Y.-C.T. and F.-D.C.:
formal analysis, resources, data curation, Y.-C.T. and F.-D.C.: writing—original draft preparation,
writing—review and editing, S.H. and F.-D.C.: visualization, supervision. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Zhejiang Province Natural Science Foundation of China
(Grant No. LY18G010012).

Data Availability Statement: https://drive.google.com/drive/folders/1AJEEGrYIrbdOV9iuj4vYTI
iKyOKeENz9?usp=share_link (accessed on 17 February 2023).

Conflicts of Interest: The authors declare no conflict of interest.

https://drive.google.com/drive/folders/1AJEEGrYIrbdOV9iuj4vYTIiKyOKeENz9?usp=share_link
https://drive.google.com/drive/folders/1AJEEGrYIrbdOV9iuj4vYTIiKyOKeENz9?usp=share_link

Algorithms 2023, 16, 207 26 of 33

Appendix A

To describe the proposed DP method, we first define some notations as follows:
πy: a given feasible sequence of jobs, i.e., πy = {J[1], J[2], . . . , J[n]}.
∆k: a subset of πy that contains the first k jobs in order, i.e., ∆k = {J[1], J[2], . . . , J[k]}.
∇k

g: a subset of ∆k that contains g jobs from position k − g + 1 through position k in
order, i.e., ∇k

g = {J[k−g+1], . . . , J[k]}, 1 ≤ g ≤ k.
C(∆k): minimum makespan of a partial schedule that contains the first k jobs in order.

Initially, C(∆0) = 0.
Z(∆k): minimum TWT value of a partial schedule that contains the first k jobs in order

where Z(∆k) = min1≤g≤k{ f 1
g (∇k

g, Z(∆k−g))}. Initially, Z(∆0) = 0.
To calculate the makespan, there are four cases below:
Case 1: δ = 1 and k = g

C(∆k) = f 0
δ

(
∇k

g, C(∆k−g)
)
= max

(
C(∆0), r[1]

)
+ p[1]

Case 2: δ = 1 and k > g

C(∆k) = f 0
δ

(
∇k

g, C(∆k−g)
)
= max

(
C(∆k−g) + MT, r[k−g+1]

)
+ p[k−g+1]

Case 3: δ > 1 and ∑ρ∈∇k
g

pρ ≤ L

(∆k) = f 0
δ

(
∇k

g, C(∆k−g)
)
= max

(
f 0
δ−1

(
∇k−1

δ−1, C(∆k−g)
)

, r[k−g+δ]

)
+ p[k−g+δ]

Case 4: δ > 1 and ∑ρ∈∇k
g

pi > L

C(∆k) = f 0
δ

(
∇k

g, C(∆k−g)
)
= ∞

To calculate the TWT, there are three cases below:
Case 1: δ = 1

f 1
δ

(
∇k

g, Z(∆k−g)
)
= Z(∆k−g) + max

(
f 0
1

(
∇k

g, C(∆k−g)
)
− d[k−g+1], 0

)
× w[k−g+1]

Case 2: δ > 1 and ∑ρ∈∇k
g

pρ ≤ L

f 1
δ

(
∇k

g, Z(∆k−g)
)
= f 1

δ−1

(
∇k−1

g−1, Z(∆k−g)
)
+ max(f 0

δ

(
∇k

g, C(∆k−g)
)

−d[k−g+δ], 0)× w[k−g+δ]

Case 3: δ > 1 and ∑ρ∈∇k
g

pρ > L

f 1
δ

(
∇k

g, Z(∆k−g)
)
= ∞

Here, we use the 5-job instance in Table 2 as an example and suppose that
πy = {J[1], J[2], J[3], J[4], J[5]} = {J1, J3, J4, J5, J2}. Initially, ∆0 = ∅, C

(
∆0) = 0, Z

(
∆0) = 0.

Begin
k = 1, ∆1 = {J[1]} = {J1}

g = 1, ∇k
g = ∇1

1 = {J[1]} = {J1}, ∑ρ∈∇k
g

pρ = 2 ≤ L

Calculating makespan

f 0
g

(
∇k

g, C(∆k−g)
)

= f 0
1
(
∇1

1, C
(
∆1−1)) = f 0

1
(
∇1

1, C
(
∆0)) = max

(
C
(
∆0), r[1]

)
+p[1] = max(0, 0) + 2 = 2

Algorithms 2023, 16, 207 27 of 33

Calculating TWT

f 1
g

(
∇k

g, Z(∆k−g)
)

= f 1
1
(
∇1

1, Z
(
∆1−1)) = f 1

1
(
∇1

1, Z
(
∆1−1))

= Z
(
∆0)+ max

(
f 0
1
(
∇1

1, C
(
∆0))− d[1], 0

)
× w[1]

= 0 + max(2− 4, 0)× 1 = 0

Therefore, in this stage

Z(∆1) = min1≤1≤1{ f 1
1 (∇1

1, Z(∆1−1))} = min1≤1≤1{ f 1
1 (∇1

1, Z(∆0))} = 0

k = 2, ∆2 =
{

J[1], J[2]
}
= {J1, J3}

For g = 1, ∇k
g = ∇2

1 =
{

J[2]
}
= {J3}, ∑ρ∈∇k

g
pρ = 2 ≤ L

Calculating makespan

f 0
g

(
∇k

g, C(∆k−g)
)

= f 0
1
(
∇2

1, C
(
∆1)) = max

(
C
(
∆2−1)+ MT, r[2−1+1]

)
+ p[2−1+1]

= max
(

C
(
∆1)+ 5, r[2]

)
+ p[2] = max(2 + 5, 5) + 2 = 9

Calculating TWT

f 1
g

(
∇k

g, Z
(

∆k−g
))

= f 1
1
(
∇2

1, Z
(
∆2−1)) = f 1

1
(
∇2

1, Z
(
∆1))

= Z
(
∆2−1)+ max

(
f 0
1
(
∇2

1, C
(
∆2−1))− d[2−1+1], 0

)
× w[2−1+1]

= Z
(
∆1)+ max

(
f 0
1
(
∇2

1, C
(
∆1))− d[2], 0

)
× w[2]

= 0 + max(9− 9, 0)× 2 = 0

For g = 2, ∇k
g = ∇2

2 =
{

J[1], J[2]
}
= {J1, J3}, ∑ρ∈∇k

g
pρ = 4 ≤ L

Calculating makespan

f 0
g

(
∇k

g, C(∆k−g)
)

= f 0
2
(
∇2

2, C
(
∆0)) = max

(
f 0
1
(
∇1

1, C
(
∆0)), r[2]

)
+ p[2]

= max(2, 5) + 2 = 7

Calculating TWT

f 1
g

(
∇k

g, Z
(

∆k−g
))

= f 1
2
(
∇2

2, Z
(
∆2−2)) = f 1

2
(
∇2

2, Z
(
∆0))

= f 1
δ−1

(
∇k−1

δ−1, Z
(

∆k−g
))

+max
(

f 0
δ

(
∇k

g, C
(

∆k−g
))
− d[k−g+δ], 0

)
× w[k−g+δ]

= f 1
2−1

(
∇2−1

2−1, Z
(
∆2−2))

+max
(

f 0
2
(
∇2

2, C
(
∆2−2))− d[2−2+2], 0

)
× w[2−2+2]

= f 1
1
(
∇1

1, Z
(
∆0))

+max
(

f 0
2
(
∇2

2, C
(
∆0))− d[2], 0

)
× w[2]

= 0 + max(7− 9, 0)× 2 = 0

For this stage (k = 2)

(∆2) = min1≤g≤2

{
f 1
g (∇k

g, Z(∆k−g))
}
= min1≤g≤2{0, 0} = 0

k = 3, ∆3 =
{

J[1], J[2], J[3]
}
= {J1, J3, J4}

Algorithms 2023, 16, 207 28 of 33

For g = 1, ∇k
g = ∇3

1 =
{

J[3]
}
= {J4}, ∑ρ∈∇k

g
pρ = 4 ≤ L

Calculating makespan

f 0
g

(
∇k

g, C(∆k−g)
)

= f 0
1
(
∇3

1, C
(
∆2)) = max

(
C
(
∆3−1)+ MT, r[3−1+1]

)
+ p[3−1+1]

= max
(

C
(
∆2)+ 5, r[3]

)
+ p[3] = max(7 + 5, 7) + 4 = 16

Calculating TWT

f 1
g

(
∇k

g, Z
(

∆k−g
))

= f 1
1
(
∇3

1, Z
(
∆3−1)) = f 1

1
(
∇3

1, Z
(
∆2))

= Z
(
∆3−1)+ max

(
f 0
1
(
∇3

1, C
(
∆3−1))− d[3−1+1], 0

)
× w[3−1+1]

= Z
(
∆2)+ max

(
f 0
1
(
∇3

1, C
(
∆2))− d[3], 0

)
× w[3]

= 0 + max(16− 12, 0)× 2 = 8

For g = 2, ∇k
g = ∇3

2 =
{

J[2], J[3]
}
= {J3, J4}, ∑ρ∈∇k

g
pρ = 6 ≤ L

Calculating makespan

f 0
g

(
∇k

g, C
(

∆k−g
))

= f 0
2
(
∇3

2, C
(
∆1))

= f 0
2
(
∇3

2, C
(
∆1)) = max

(
f 0
δ−1

(
∇k−1

δ−1, C
(

∆k−g
))

, r[k−g+δ]

)
+ p[k−g+δ]

= max(f 0
1

(
∇2

1, C
(
∆1), r[3]

)
+ p[3] = max(9, 7) + 4 = 13

Calculating TWT

f 1
g

(
∇k

g, Z
(

∆k−g
))

= f 1
2
(
∇3

2, Z
(
∆3−2)) = f 1

2
(
∇3

2, Z
(
∆1))

= f 1
δ−1

(
∇k−1

δ−1, Z
(

∆k−g
))

+max
(

f 0
δ

(
∇k

g, C
(

∆k−g
))
− d[k−g+δ], 0

)
× w[k−g+δ]

= f 1
2−1

(
∇3−1

2−1, Z
(
∆3−2))

+max
(

f 0
2
(
∇3

2, C
(
∆3−2))− d[3−2+2], 0

)
× w[3−2+2]

= f 1
1
(
∇2

1, Z
(
∆1))+ max

(
f 0
2
(
∇3

2, C
(
∆1))− d[3], 0

)
× w[3]

= 0 + max(13− 12, 0)× 2 = 2

For g = 3, ∇k
g = ∇3

3 =
{

J[1], J[2], J[3]
}
= {J1, J3, J4}, ∑ρ∈∇k

g
pρ = 8 ≤ L

Calculating makespan

f 0
g

(
∇k

g, C
(

∆k−g
))

= f 0
3
(
∇3

3, C
(
∆0))

= max
(

f 0
δ−1

(
∇k−1

δ−1, C
(

∆k−g
))

, r[k−g+δ]

)
+ p[k−g+δ]

= max(f 0
2

(
∇2

2, C
(
∆0), r[3]

)
+ p[3] = max(7, 7) + 4 = 11

Algorithms 2023, 16, 207 29 of 33

Calculating TWT

f 1
g

(
∇k

g, Z
(

∆k−g
))

= f 1
3
(
∇3

3, Z
(
∆3−3)) = f 1

3
(
∇3

3, Z
(
∆0))

= f 1
δ−1

(
∇k−1

δ−1, Z
(

∆k−g
))

+max
(

f 0
δ

(
∇k

g, C
(

∆k−g
))
− d[k−g+δ], 0

)
× w[k−g+δ]

= f 1
3−1

(
∇3−1

3−1, Z
(
∆3−3))

+max
(

f 0
3
(
∇3

3, C
(
∆3−3))− d[3−3+3], 0

)
× w[3−3+3]

= f 1
2
(
∇2

2, Z
(
∆0))+ max

(
f 0
3
(
∇3

3, C
(
∆0))− d[3], 0

)
× w[3]

= 0 + max(11− 12, 0)× 2 = 0

For this stage (k = 3)

Z
(

∆3
)
= min1≤g≤3

{
f 1
g

(
∇k

g, Z
(

∆k−g
))}

= min1≤g≤3{8, 2, 0} = 0

k = 4, ∆4 =
{

J[1], J[2], J[3], J[4]
}
= {J1, J3, J4, J5}

For g = 1, ∇k
g = ∇4

1 =
{

J[4]
}
= {J5}, ∑ρ∈∇k

g
pρ = 4 ≤ L

Calculating makespan

f 0
g

(
∇k

g, C
(

∆k−g
))

= f 0
1
(
∇4

1, C
(
∆3)) = max

(
C
(
∆4−1)+ MT, r[4−1+1]

)
+ p[4−1+1]

= max
(

C
(
∆3)+ 5, r[4]

)
+ p[4] = max(11 + 5, 13) + 4 = 20

Calculating TWT

f 1
g

(
∇k

g, Z
(

∆k−g
))

= f 1
1
(
∇4

1, Z
(
∆4−1)) = f 1

1
(
∇4

1, Z
(
∆3))

= Z
(
∆4−1)+ max

(
f 0
1
(
∇4

1, C
(
∆4−1))− d[4−1+1], 0

)
× w[4−1+1]

= Z
(
∆3)+ max

(
f 0
1
(
∇4

1, C
(
∆3))− d[4], 0

)
× w[4]

= 0 + max(20− 19, 0)× 3 = 3

For g = 2, ∇k
g = ∇4

2 =
{

J[3], J[4]
}
= {J4, J5}, ∑ρ∈∇k

g
pρ = 8 ≤ L

Calculating makespan

f 0
g

(
∇k

g, C
(

∆k−g
))

= f 0
2
(
∇4

2, C
(
∆2))

= max
(

f 0
δ−1

(
∇k−1

δ−1, C
(

∆k−g
))

, r[k−g+δ]

)
+ p[k−g+δ]

= max(f 0
1

(
∇3

1, C
(
∆2), r[4]

)
+ p[4] = max(16, 13) + 4 = 20

Calculating TWT

f 1
g

(
∇k

g, Z
(

∆k−g
))

= f 1
2
(
∇4

2, Z
(
∆4−2)) = f 1

2
(
∇4

2, Z
(
∆2))

= f 1
δ−1

(
∇k−1

δ−1, Z
(

∆k−g
))

+max
(

f 0
δ

(
∇k

g, C
(

∆k−g
))
− d[k−g+δ], 0

)
× w[k−g+δ]

= f 1
2−1

(
∇4−1

2−1, Z
(
∆4−2))

+max
(

f 0
2
(
∇4

2, C
(
∆4−2))− d[4−2+2], 0

)
× w[4−2+2]

= f 1
1
(
∇3

1, Z
(
∆2))+ max

(
f 0
2
(
∇4

2, C
(
∆2))− d[4], 0

)
× w[4]

= 8 + max(20− 19, 0)× 3 = 11

Algorithms 2023, 16, 207 30 of 33

For g = 3, ∇k
g = ∇3

2 =
{

J[2], J[3], J[4]
}
= {J3, J4, J5}, ∑ρ∈∇k

g
pρ = 10 ≤ L

Calculating makespan

f 0
g

(
∇k

g, C
(

∆k−g
))

= f 0
3
(
∇4

3, C
(
∆1))

= max
(

f 0
δ−1

(
∇k−1

δ−1, C
(

∆k−g
))

, r[k−g+δ]

)
+ p[k−g+δ]

= max(f 0
2

(
∇3

2, C
(
∆1), r[4]

)
+ p[4] = max(13, 13) + 4 = 17

Calculating TWT

f 1
g

(
∇k

g, Z
(

∆k−g
))

= f 1
3
(
∇4

3, Z
(
∆4−3)) = f 1

3
(
∇4

3, Z
(
∆1))

= f 1
δ−1

(
∇k−1

δ−1, Z
(

∆k−g
))

+max
(

f 0
δ

(
∇k

g, C
(

∆k−g
))
− d[k−g+δ], 0

)
× w[k−g+δ]

= f 1
3−1

(
∇4−1

3−1, Z
(
∆4−3))

+max
(

f 0
3
(
∇4

3, C
(
∆4−3))− d[4−3+3], 0

)
× w[4−3+3]

= f 1
2
(
∇3

2, Z
(
∆1))+ max

(
f 0
3
(
∇4

3, C
(
∆1))− d[4], 0

)
× w[4]

= 2 + max(17− 19, 0)× 3 = 2

For g = 4, ∇k
g = ∇4

2 =
{

J[1], J[2], J[3], J[4]
}
= {J1, J3, J4, J5}, ∑ρ∈∇k

g
pρ = 12 ≤ L

Calculating makespan

f 0
g

(
∇k

g, C
(

∆k−g
))

= f 0
4

(
∇4

4, C
(

∆0
))

= ∞

Calculating TWT

f 1
g

(
∇k

g, Z
(

∆k−g
))

= f 1
4

(
∇4

4, Z
(

∆4−4
))

= f 1
4

(
∇4

4, Z
(

∆0
))

= ∞

For this stage (k = 4)

Z
(

∆4
)
= min1≤g≤4

{
f 1
g

(
∇k

g, Z
(

∆k−g
))}

= min1≤g≤4{3, 11, 2, ∞} = 2

k = 5, ∆5 =
{

J[1], J[2], J[3], J[4], J[5]
}
= {J1, J3, J4, J5, J2}

For g = 1, ∇k
g = ∇5

1 =
{

J[5]
}
= {J2}, ∑ρ∈∇k

g
pρ = 8 ≤ L

Calculating makespan

f 0
g

(
∇k

g, C
(

∆k−g
))

= f 0
1
(
∇5

1, C
(
∆4)) = max

(
C
(
∆5−1)+ MT, r[5−1+1]

)
+ p[5−1+1]

= max
(

C
(
∆4)+ 5, r[5]

)
+ p[5] = max(17 + 5, 8) + 8 = 30

Calculating TWT

f 1
g

(
∇k

g, Z
(

∆k−g
))

= f 1
1
(
∇5

1, Z
(
∆5−1)) = f 1

1
(
∇5

1, Z
(
∆4))

= Z
(
∆5−1)+ max

(
f 0
1
(
∇5

1, C
(
∆5−1))− d[5−1+1], 0

)
× w[5−1+1]

= Z
(
∆4)+ max

(
f 0
1
(
∇5

1, C
(
∆4))− d[5], 0

)
× w[5]

= 2 + max(30− 17, 0)× 3 = 41

For g = 2, ∇k
g = ∇5

2 =
{

J[4], J[5]
}
= {J5, J2}, ∑ρ∈∇k

g
pρ = 12 > L

Algorithms 2023, 16, 207 31 of 33

Calculating makespan

f 0
g

(
∇k

g, C
(

∆k−g
))

= f 0
2

(
∇5

2, C
(

∆3
))

= ∞

Calculating TWT

f 1
g

(
∇k

g, Z
(

∆k−g
))

= f 1
2

(
∇5

2, Z
(

∆5−2
))

= f 1
2

(
∇5

2, Z
(

∆3
))

= ∞

For g = 3, ∇k
g = ∇5

3 =
{

J[3], J[4], J[5]
}
= {J4, J5, J2}, ∑ρ∈∇k

g
pρ = 16 > L

Calculating makespan

f 0
g

(
∇k

g, C
(

∆k−g
))

= f 0
3

(
∇5

3, C
(

∆2
))

= ∞

Calculating TWT

f 1
g (∇k

g, Z(∆k−g)) = f 1
3

(
∇5

3, Z
(

∆5−3
))

= f 1
3

(
∇5

3, Z
(

∆2
))

= ∞

For g = 4, ∇k
g = ∇5

4 =
{

J[2], J[3], J[4], J[5]
}
= {J3, J4, J5, J2}, ∑ρ∈∇k

g
pρ = 18 > L

Calculating makespan

f 0
g

(
∇k

g, C
(

∆k−g
))

= f 0
4

(
∇5

4, C
(

∆1
))

= ∞

Calculating TWT

f 1
g

(
∇k

g, Z
(

∆k−g
))

= f 1
4

(
∇5

4, Z
(

∆5−4
))

= f 1
4

(
∇5

4, Z
(

∆1
))

= ∞

For g = 5, ∇k
g = ∇5

5 =
{

J[1], J[2], J[3], J[4], J[5]
}
= {J1, J3, J4, J5, J2},

∑ρ∈∇k
g

pρ = 20 > L

Calculating makespan

f 0
g

(
∇k

g, C
(

∆k−g
))

= f 0
5

(
∇5

5, C
(

∆0
))

= ∞

Calculating TWT

f 1
g

(
∇k

g, Z
(

∆k−g
))

= f 1
5

(
∇5

5, Z
(

∆5−5
))

= f 1
5

(
∇5

5, Z
(

∆0
))

= ∞

For this stage (k = 5), i.e., the final stage(
∆5
)
= min1≤g≤5

{
f 1
g

(
∇k

g, Z
(

∆k−g
))}

= min1≤g≤5{41, ∞, ∞, ∞, ∞} = 41

References
1. Chiang, T.-C.; Cheng, H.-C.; Fu, L.-C. A memetic algorithm for minimizing total weighted tardiness on parallel batch machines

with incompatible job families and dynamic job arrival. Comput. Oper. Res. 2010, 37, 2257–2269. [CrossRef]
2. Sbihi, M.; Varnier, C. Single-machine scheduling with periodic and flexible periodic maintenance to minimize maximum tardiness.

Comput. Ind. Eng. 2008, 55, 830–840. [CrossRef]
3. Low, C.; Ji, M.; Hsu, C.-J.; Su, C.-T. Minimizing the makespan in a single machine scheduling problems with flexible and periodic

maintenance. Appl. Math. Model. 2010, 34, 334–342. [CrossRef]
4. Detienne, B. A mixed integer linear programming approach to minimize the number of late jobs with and without machine

availability constraints. Eur. J. Oper. Res. 2014, 235, 540–552. [CrossRef]

https://doi.org/10.1016/j.cor.2010.03.017
https://doi.org/10.1016/j.cie.2008.03.005
https://doi.org/10.1016/j.apm.2009.04.014
https://doi.org/10.1016/j.ejor.2013.10.052

Algorithms 2023, 16, 207 32 of 33

5. Cui, W.W.; Lu, Z. Minimizing the makespan on a single machine with flexible maintenances and jobs’ release dates.
Comput. Oper. Res. 2017, 80, 11–22. [CrossRef]

6. Pang, J.; Zhou, H.; Tasi, Y.C.; Chou, F.D. A scatter simulated annealing algorithm for the bi-objective scheduling problem for the
wet station of semiconductor manufacturing. Comput. Ind. Eng. 2018, 123, 54–66. [CrossRef]

7. Lawler, E.L. A pseudo-polynomial algorithm for sequencing jobs to minimize total tardiness. Ann. Discrete Math. 1977, 1, 331–342.
8. Ma, Y.; Chu, C.; Zuo, C. A survey of scheduling with deterministic machine availability constraints. Comput. Ind. Eng. 2010, 58,

199–211. [CrossRef]
9. Qi, X.; Chen, T.; Tu, F. Scheduling maintenance on a single machine. J. Oper. Res. Soc. 1999, 50, 1071–1078. [CrossRef]
10. Su, L.-H.; Wang, H.-M. Minimizing total absolute deviation of job completion times on a single machine with cleaning activities.

Comput. Ind. Eng. 2017, 103, 242–249. [CrossRef]
11. Su, L.-H.; Hsiao, M.-C.; Zhou, H.; Chou, F.-D. Minimizing the number of tardy jobs on unrelated parallel machines with dirt

consideration. J. Ind. Prod. Eng. 2018, 35, 383–393. [CrossRef]
12. Campo, E.A.; Cano, J.A.; Gomez-Montoya, R.; Rodriguez-Velasquez, E.; Cortes, P. Flexible job shop scheduling problem with

fuzzy times and due-windows: Minimizing weighted tardiness and earliness using genetic algorithms. Algorithms 2022, 15, 334.
[CrossRef]

13. Yang, D.L.; Hung, C.L.; Hsu, C.J.; Chen, M.S. Minimizing the makespan in a single machine scheduling problem with flexible
maintenance. J. Chin. Inst. Ind. Eng. 2002, 19, 63–66. [CrossRef]

14. Luo, W.; Cheng, T.C.E.; Ji, M. Single-machine scheduling with a variable maintenance activity. Comput. Ind. Eng. 2015, 79, 168–174.
[CrossRef]

15. Chen, J.S. Scheduling of nonresumable jobs and flexible maintenance activities on a single machine to minimize makespan. Eur. J.
Oper. Res. 2008, 190, 90–102. [CrossRef]

16. Yang, S.-J.; Yang, D.-L. Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance
activities. Omega 2010, 38, 528–533. [CrossRef]

17. Sadfi, C.; Penz, B.; Rapine, C.; Blazewicz, J.; Frmanowicz, P. An improved approximation algorithm for the single machine total
completion time scheduling problem with availability constraints. Eur. J. Oper. Res. 2005, 161, 3–10. [CrossRef]

18. Yang, S.L.; Ma, Y.; Xu, D.L.; Yang, J.-B. Minimizing total completion time on a single machine with a flexible maintenance activity.
Comput. Oper. Res. 2011, 38, 755–770. [CrossRef]

19. Batun, S.; Aziaoglu, M. Single machine scheduling with preventive maintenance. Int. J. Prod. Res. 2009, 47, 1753–1771. [CrossRef]
20. Ying, K.-C.; Lu, C.-C.; Chen, J.-C. Exact algorithms for single-machine scheduling problems with a variable maintenance.

Comput. Ind. Eng. 2016, 98, 427–433. [CrossRef]
21. Lee, C.Y. Machine scheduling with an availability constraint. J. Glob. Optim. 1996, 9, 395–416. [CrossRef]
22. Kacem, I.; Chu, C. Efficient branch-and-bound algorithm for minimizing the weighted sum of completion times on a single

machine with one availability constraint. Int. J. Prod. Econ. 2008, 112, 138–150. [CrossRef]
23. Kacem, I. Approximation algorithm for the weighted flow-time minimization on a single machine with a fixed non-availability

interval. Comput. Ind. Eng. 2008, 54, 401–410. [CrossRef]
24. Kacem, I.; Chu, C.; Souissi, A. Single-machine scheduling with an availability constraint to minimize the weighted sum of the

completion times. Comput. Oper. Res. 2008, 35, 827–844. [CrossRef]
25. Mosheiov, G.; Sarig, A. Scheduling a maintenance activity to minimize total weighted completion time. Compu. Math. Appl. 2009,

57, 619–623. [CrossRef]
26. Graves, G.H.; Lee, C.Y. Scheduling maintenance and semiresumable jobs on a single machine. Nav. Res. Logist. 1999, 46, 845–863.

[CrossRef]
27. Ganji, F.; Mslehi, G.; Ghalebsax Jeddi, B. Minimizing maximum earliness in single-machine scheduling with flexible maintenance

time. Sci. Iran 2017, 24, 2082–2094. [CrossRef]
28. Liao, C.J.; Chen, W.J. Single-machine scheduling with periodic maintenance and nonresumable jobs. Comput. Oper. Res. 2003, 30,

1335–1347. [CrossRef]
29. Chen, W.J. Minimizing number of tardy jobs on a single machine subject to periodic maintenance. Omega 2009, 37, 591–599.

[CrossRef]
30. Lee, J.-Y.; Kim, Y.-D. Minimizing the number of tardy jobs in a single-machine scheduling problem with periodic maintenance.

Comput. Oper. Res. 2012, 39, 2196–2205. [CrossRef]
31. Ganji, F.; Jamali, A. Minimizing the number of tardy jobs on single machine scheduling with flexible maintenance time.

J. Algorithm Comput. 2018, 50, 103–109.
32. Chen, L.; Wang, J.; Yang, W. A single machine scheduling problem with machine availability constraints and preventive

maintenance. Int. J. Prod. Res. 2020, 59, 2708–2721. [CrossRef]
33. Johnson, D.S. Near-Optimal Bin Packing Algorithms. Ph.D. Thesis, MIT, Cambridge, MA, USA, 1973.
34. Lee, C.Y.; Uzsoy, R. Minimizing makespan on a single processing machine with dynamic job arrivals. Int. J. Prod. Res. 1999, 37,

219–236. [CrossRef]
35. Chou, F.-D.; Wang, H.-M. Scheduling for a single semiconductor batch-processing machine to minimize total weighted tardiness.

J. Chin. Inst. Ind. Eng. 2010, 25, 136–147. [CrossRef]
36. Holland, J.H. Adaptation in Natural and Artificial Systems; The University of Michigan Press: Ann Arbor, MI, USA, 1975.

https://doi.org/10.1016/j.cor.2016.11.008
https://doi.org/10.1016/j.cie.2018.06.017
https://doi.org/10.1016/j.cie.2009.04.014
https://doi.org/10.1057/palgrave.jors.2600791
https://doi.org/10.1016/j.cie.2016.11.009
https://doi.org/10.1080/21681015.2018.1508082
https://doi.org/10.3390/a15100334
https://doi.org/10.1080/10170660209509183
https://doi.org/10.1016/j.cie.2014.11.002
https://doi.org/10.1016/j.ejor.2007.06.029
https://doi.org/10.1016/j.omega.2010.01.003
https://doi.org/10.1016/j.ejor.2003.08.026
https://doi.org/10.1016/j.cor.2010.09.003
https://doi.org/10.1080/00207540701636348
https://doi.org/10.1016/j.cie.2016.05.037
https://doi.org/10.1007/BF00121681
https://doi.org/10.1016/j.ijpe.2007.01.013
https://doi.org/10.1016/j.cie.2007.08.005
https://doi.org/10.1016/j.cor.2006.04.010
https://doi.org/10.1016/j.camwa.2008.11.008
https://doi.org/10.1002/(SICI)1520-6750(199910)46:7<845::AID-NAV6>3.0.CO;2-
https://doi.org/10.24200/sci.2017.4296
https://doi.org/10.1016/S0305-0548(02)00074-6
https://doi.org/10.1016/j.omega.2008.01.001
https://doi.org/10.1016/j.cor.2011.11.002
https://doi.org/10.1080/00207543.2020.1737336
https://doi.org/10.1080/002075499192020
https://doi.org/10.1080/10170660809509079

Algorithms 2023, 16, 207 33 of 33

37. Li, F.; Xu, L.D.; Jin, C.; Wang, H. Intelligent bionic genetic algorithm (IB-GA) and its convergence. Expert Syst. Appl. 2011, 38,
8804–8811. [CrossRef]

38. Cobb, H.G.; Grefenstette, J.J. Genetic algorithms for tracking changing environments. In Proceedings of the Fifth International
Conference on Genetic Algorithms, San Francisco, CA, USA, 1 June 1993; pp. 523–530.

39. Yang, S. Genetic algorithms with elitism-based immigrants for changing optimization problems. In Workshops on Applications of
Evolutionary Computation; Springer: Berlin, Germany, 2007; pp. 627–636.

40. Muhuri, P.K.; Rauniyar, A. Immigrants based adaptive genetic algorithms for task allocation in multi-robot systems. Int. J. Comput.
Intell. Appl. 2017, 16, 1750025. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2011.01.091
https://doi.org/10.1142/S1469026817500250

	Introduction
	Literature Review
	Problem Description and Methodology
	Problem Description
	Mixed Integer Programming (MIP) Model

	The Proposed GA
	Encoding Scheme
	Population Initialization
	Fitness Function and Evaluation
	Crossover/Mutation
	Immigration
	New Generation

	Computational Experiment
	Discussions
	Conclusions
	Appendix A
	References

