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Abstract: This work presents the application of a novel evolutional algorithmic approach to determine
and reconstruct the specific 3-dimensional source location of gamma-ray emissions within the shelter
object, the sarcophagus of reactor Unit 4 of the Chornobyl Nuclear Power Plant. Despite over 30 years
having passed since the catastrophic accident, the high radiation levels combined with strict safety
and operational restrictions continue to preclude many modern radiation detection and mapping
systems from being extensively or successfully deployed within the shelter object. Hence, methods
for reconstructing the intense and evolving gamma fields based on the limited inventory of available
data are crucially needed. Such data is particularly important in planning the demolition of the
unstable structures that comprise the facility, as well as during the prior operations to remove fuel
containing materials from inside the sarcophagus and reactor Unit 4. For this approach, a simplified
model of gamma emissions within the shelter object is represented by a series of point sources, each
regularly spaced on the shelter object’s exterior surface, whereby the calculated activity values of
these discrete sources are considered as a population in terms of evolutionary algorithms. To assess
the numerical reconstruction, a fitness function is defined, comprising the variation between the
known activity values (obtained during the commissioning of the New Safe Confinement at the end
of 2019 on the level of the main crane system, located just below the arch above the shelter object)
and the calculated values at these known locations for each new population. The final algorithm’s
performance was subsequently verified using newly obtained information on the gamma dose-
rate on the roof of the shelter object during radiation survey works at the end of 2021. With only
7000 iterations, the algorithm attained an MAPE percentage error of less than 23%, which the authors
consider as satisfactory, considering that the relative error of the measurements is ±17%. While a
simple initial application is presented in this work, it is demonstrated that evolutional algorithms
could be used for radiation mapping with an existing network of radiation sensors, or, as in this
instance, based on historic gamma-field data.

Keywords: radiation mapping; evolutional algorithm; Chornobyl NPP; shelter object; New
Safe Confinement

1. Introduction
1.1. The Chornobyl Accident and New Safe Confinement

The Chornobyl Nuclear Power Plant (ChNPP) is located to the north of present-day
Ukraine, 100 km from the country’s capital, Kyiv. The site’s reactor Unit 1 commenced
operation in 1977, with reactor Unit 4 subsequently attaining criticality and entering power
generation six years later by the end of 1983. On 26 April 1986, during a routine safety test
on the reactor’s steam turbines, the RBMK-type reactor Unit 4 was inadvertently placed
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in an unstable state by its operators, with the chronology of events that subsequently
occurred in the early hours of that day leading to the greatest ever nuclear accident and
largest radioactive release event to occur at a nuclear power generation facility [1]. As
a result, 237 people suffered Acute Radiation Sickness, with 31 of these dying during
the three months immediately following the accident [2]. In addition, approximately
300,000 residents living near the Chornobyl site, mostly in the nearby town of Pripyat
(constructed for Chornobyl’s workers), were displaced from their homes. To mitigate
against the consequences of the accident and prevent the further release of radioactive
material into the local and global environments, the structure known as the “shelter object”
(SO, or more informally, the “sarcophagus”) for burying the Fourth Power Unit of the
Chornobyl Nuclear Power Plant was rapidly erected around the crippled reactor the same
year as the accident. The entire emergency response included debris removal from the
ChNPP site, the construction of the enclosing sarcophagus, and clean-up activities within
the surrounding area involving more than 500,000 personnel, termed “liquidators” [1].

At the time of construction, the design lifetime of the SO was estimated at 30 years [3].
Following the collapse of the USSR in 1992, the Government of Ukraine announced an
international competition for projects and technical solutions for the transformation of
the shelter object facility. In 1995, the President of Ukraine signed a memorandum of
collaboration with leaders of the G7 group of leading industrialized countries, as well as the
Commission of European Communities, to support Ukraine in its activities at Chornobyl.
A core condition of this involvement was the shutdown of the other RBMK units at ChNPP
that were still operational, despite the earlier accident at the neighboring reactor Unit 4. A
year later, in December 1997, the Chornobyl Shelter Fund (CSF) was established with the
purpose of funding the Shelter Implementation Plan (SIP). This multinational program was
completed in 2020 with the construction and commissioning of the New Safe Confinement
(NSC), the dome-shaped, environmentally sealed structure that attracted enormous global
media coverage as it slowly slid into place to completely enclose reactor Unit 4 alongside
the surrounding SO. Such a momentous engineering accomplishment ensured compliance
with safety and operational requirements for the next 100 years, including during the
planned decommissioning and dismantling of both reactor Unit 4 and the SO.

However, delivery of the NSC is only an intermediate milestone in the multi-faceted
and extensive journey to de-risk the considerable global hazard represented by Chornobyl.
The program of fuel-containing material (FCM) removal and radioactive waste (RAW)
processing, including its subsequent disposal in a RAW repository (whether near-surface
or deep geological), needs to be completed within the operational lifetime of the NSC.
As the structures within the NSC rapidly fatigue and degrade with age, prompt action
is necessary to prevent the failure of the SO that could collapse onto the destroyed and
itself very fragile Unit 4 and result in the release of highly radioactive dust, including
particles of nuclear fuel, alongside an accompanying surge in dose-rate [4]. However, little
or no meaningful work inside the NSC can be reliably designed and undertaken without
accurate estimates of the radiation levels (and the associated distribution) that will likely
affect both personnel and equipment. The basis for such assessments is radiation mapping,
and, more appropriately for Chornobyl, three-dimensional and time-resolved gamma-field
determination, both prior to as well as continually throughout operations.

1.2. Radiation Detection, Localisation, and Mapping

The scientific and engineering concepts and principles underlying radiation detection
and the subsequent use of such technologies for mapping variations in both gamma
and neutron field(s) are long-established [5], with series of technical papers having been
published detailing the processes and best practices [6–8]. Although technologies have seen
continued advancement over recent decades, following the March 2011 accident at Japan’s
Fukushima Daiichi Nuclear Power Plant (FDNPP)notable advancements in the unmanned
aerial vehicle (UAV) [9–11], unmanned ground vehicle (UGV) [12,13], and static/mobile
distributed detection systems [14] were realized. Even years after this driver, progress
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continues across radiation detection, localization, and mapping, whether in underpinning
detector materials research (e.g., novel plastics, high-dose semiconductors, dual gamma-
neutron scintillators) [15–18]; innovative, autonomous, and miniaturized deployment
mechanisms [19–21]; or sensor-fusion/data visualization methodologies, progressing from
2D to 3D scenarios [22–27]. This research is not just occurring at a small number of
institutions and laboratories, but it is a promising and increasingly cross-disciplinary area
of active research around the world, applicable for nuclear plant decommissioning, nuclear
security, and safeguards applications, whether or not in accident response [25].

1.3. 3-Dimensional Radiation Analysis

As formerly mentioned, one active research area that has evolved alongside increas-
ingly powerful miniaturized computing and post-processing is the 3D radiation mapping
technique known as “scene data fusion” (SDF). The graphic representation of complex
geospatial datasets by rendering radiometric data onto scenic, context-providing data was
initially developed by researchers at Lawrence Berkeley National Laboratory (LBNL) and
the University of California, Berkeley (UCB), for illicit source detection and emergency
response situations [28]. The LBNL SDF approach uses a localization and mapping platform
(LAMP) in combination with CsI-based gamma-ray spectrometers and a CdZnTe-based
Polaris gamma-ray imaging system. Such sensing platforms employ sensor fusion methods
that integrate Lidar, visual (optical) cameras, and radiation interaction data from an array
of composite detectors to cumulatively develop 3-dimensional scenic maps of radiological
environments that are intuitive to end-users and non-experts alike [28,29].

Another approach, exploiting a system that utilizes a reduced number of detectors
over LAMP, is termed Projective Linear Reconstruction (PLR), a technique presented by
scientists from the University of Bristol. The PLR approach uses a computational method of
radiological source localization from scanning survey measurements. The procedure uses
an experimentally derived Detector Response Function (DRF) to perform a randomized
Kaczmarz deconvolution on radiation field measurements acquired to date via a robotic
deployment platform [30]. A simultaneous use of mathematical data processing tools for
radiation mapping is also ongoing at the Institute of Environmental Geochemistry at the
National Academy of Sciences of Ukraine [31].

Alongside these modern systems, which exploit enhanced back-end signal processing
and numerical, graphic reconstruction/representation, other long-established methods of
radioactive source localization and scene reconstruction also exist based on established
detection technologies and data processing [32]. One such approach is the use of Compton
Cameras, which exploit differential, consecutive scatter and absorption detectors to progres-
sively reconstruct the “cone of incidence” or “conic projection” of the incident gamma-ray
photons, thereby determining the position of the radioactive source [5,33,34].

A second class of established systems is the Gamma Camera, also termed a Scintillation
Camera or Anger camera [5], which reconstructs the source position via a technique known
as scintigraphy, a process originally developed for medical imaging applications where
gamma-emitting radioactive tracers are utilized to explore and assess bodily functions.
Unlike source reconstruction using a Compton Camera, a Gamma Camera uses only a single
scintillator rather than a pair. To define the location of the source that would otherwise
yield an uninformative (non-directional) detection event within the photon-counting, pulse-
shaping, electronic-augmented scintillator monolith, either an array of collimators or a
rotating and intricately patterned “coded-mas” is placed in front of the detection face
between the source and camera [35,36]. While being vastly less computationally intensive
as well as faster at reconstructing a scene containing a radioactive source than a Compton
Camera system, the Gamma Camera requires an appreciable level of post-processing to
accurately derive the position (in both 2D and 3D, with depth) of one or more radiation
sources. Despite both approaches representing established means of radioactive source
localization, advancements continue to improve on acquisition rates, positional accuracy,
multiple-source delineation, dosimetric calibration, and size/mass reduction, with single-
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pixel compressive gamma-ray imaging using randomly encoded masks based on the
principles of compressed sensing possessing the potential to exploit the sparsity typically
found in Gamma Camera imagery. This work has led to a new class of fast and low-cost
imaging systems [37].

1.4. Technology Application to the ChNPP

Despite many developments in modern detection hardware and accompanying soft-
ware, there still exists a significant number of scenarios where practical application is
impossible owing to the high dose rates that would be encountered, combined with com-
plex and intricate deployment environments. The SO is one example of such a high-hazard
and challenging site, where safety restrictions do not permit the involvement of people
to undertake routine measurements and inspections within the confines of the NSC. As
has been shown following several earlier deployments, the significant gamma and neu-
tron radiation levels under the NSC and inside the SO can rapidly disable the sensitive
electronics of measurement equipment and control systems of robotic carriers, rendering
them inoperable. In addition, the inability to deploy any form of radio communication
infrastructure or provisioning of a wired communication network throughout the maze
of rooms that comprised Chornobyl reactor Unit 4 (destroyed during the accident and
now contained within the SO) also limits the use of robotic devices, alongside the basic
installation and usage of a comprehensive sensor network inside the SO.

These limitations are not trivial and, therefore, require the development and applica-
tion of innovative approaches to properly understand the distribution of potentially lethal
radiation levels under the NSC and to inform crucial future hazard-reduction and decom-
missioning operations. In the absence of a comprehensive detection/monitoring network
within the SO that would accompany modern/current nuclear installations to provide
operational and critical dosimetric information, the modern reprocessing of historical data
provides the only practical solution. One such method of interpreting legacy data to derive
a 3D representation of the present gamma radiation field surrounding the SO is presented
in this work.

This paper first provides a brief introduction to the tools used to collect input data for
the reconstruction of the radiation map surrounding the SO collected during the commis-
sioning of the NSC over the old sarcophagus. The subsequent section details a model used
to reconstruct the radiation map of the SO alongside the assumptions and simplifications
applied to this model. Next, the algorithm used to reconstruct the distribution of the
gamma field directly on the roof of the SO is presented. The paper concludes by comparing
and validating the outputs of this reconstruction algorithm with physical dose-rate mea-
surements obtained on the SO roof by a group of reconnaissance scientists from the Institute
of Safety Problems of NPPs of the National Academy of Sciences of Ukraine. It is shown
that with an increase in the number of iterations of the processing algorithm, the reliability
of the approximation and convergence onto the true scenario increases. This reliability
underlines the potential for the technique to be used to reconstruct the extant radiation
environment from historical data, therefore facilitating safe future on-site activities and, in
the case of Chornobyl, efficient decommissioning and dismantling of both reactor Unit 4
and the surrounding SO within the NSC.

2. Evolutional Computational Methodology for Radiation Mapping
2.1. Available Historic NSC and SO Radiometric Datasets

The dataset used in this study was obtained during the commissioning of the Main
Cranes System (MCS) of the NSC. The MCS integrates two overhead bridge cranes with
two 50 tonnes (55 US tons) trolley hoists that together work in tandem to handle loads
up to 100 tonnes (110 US tons). Both the cranes and hoists are managed via a dedicated
control system to allow their integrated usage within the NSC. The MCS bridges are each
96 m (315 feet) long and operate along a 150 m (492 foot) long runway track with six rails
under the roof of the NSC building, above the shelter object at a height of 80 m. A third
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trolley suspends a Mobile Tool Platform (MTP) that is eventually to be equipped with a
robotic arm system comprising various function-specific tools. It is here that the detector
instrument was placed on the “safe trolley” of the MCS, with a slight offset from the center
of its movement axis, on the north side of the trolley under its floor, at the level of the lower
plane of the MCS movement, such that the detector is shielded from above by the MCS
structural elements.

The radiation detection system mounted onto the MCS comprises ruggedized
ECOTEST® Group BDBG-09 “Intelligent Detecting Unit of Gamma Radiation” dual scin-
tillator and Geiger-Muller devices combined with an ARM-based single board computer,
with communication provided through a dedicated Wi-Fi interface [38,39]. A BDBG-09
detector is capable of outputting gamma dose-rate (GDR) measurement across a dose-rate
range of 0.05 µSv/h to 10 Sv/h, with a relative error of ±17% [39]. With its environmen-
tally sealed nature, wide dose range, broad thermal operating window, and low power
consumption, it is widely used across the nuclear industry in Ukraine, France, Bulgaria,
and Korea. The aforementioned single board ARM-based computer hosts the software
developed for this application, providing an interface with the intelligent detector BDBG-09,
processing primary information, and accumulating information in a local database (in case
of a connection failure), as well as an interface with the existing NSC radiation monitoring
system via a secure, encrypted Wi-Fi channel [38,40].

During the routine operation of the MCS, trolley movements and GDR measurements
were continually obtained by the sensor, with values from 230 µSv/h to 28,490 µSv/h
recorded by the NSC’s Integrated Control System (ICS) and subsequently archived on
the historical server. All measurements were obtained in the same horizontal plane. As a
result, data on the GRD distribution (at the level of the MCS equipment above the SO) was
obtained [38]. All of the gamma-ray point sources are, therefore, considered to be isotropic,
with the detector uncollimated but omnidirectional. As a result, the subsequently detailed
model does not consider the existing but poorly studied effect of gamma-ray re-reflection
from the shell of the New Safe Confinement since the real detector is shielded from such
radiation by the MCS.

For each square meter in that plane under the MSC, the pair (x, y) were assigned as
coordinates, where x and y are integer numbers of meters from the beginning of the MCS
coordinate system. If the MCS trolley visited a certain square with coordinates (x, y), then
all GDR measurement values for that location were recorded, and the arithmetic mean
for all such records was calculated as value γxy. Each γxy is linked as a value of «virtual
detector» Sj (x, y) coordinates.

2.2. Simplified Radioactivity Model of the Shelter Object

The 3D geometric model of the SO is simplified for the purposes of this study, com-
pounded by the limited amount of detailed information that exists relating to the Ma-
tryoshka doll-like configuration of the structure (the original concrete building and other
materials, enclosed by the outer shell) and the unknown source-term contained within.
As such, the SO was modeled as a suite of isotropic gamma point sources with a step of
1 m, located on its outer shell, as shown in Figure 1. No internal sources or other available
information is hence used.

As a true model of the SO would possess considerable uncertainties, predominantly
because of the unknown “media” between the real, multiple sources and sensors, this
evolutional algorithm approach simplifies the scenario by representing the radioactivity as
external “contamination” of the SO shell via point sources with a consistent step spacing
of 1 m. Owing to workers and equipment operating outside the SO exterior during
decommissioning activities, it is of limited significance if the radioactive source is on the
shell or behind the shell in 30 m, under 15 cm of concrete or debris. Therefore, such a
surface-based model can be considered applicable and appropriate.
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Figure 1. Simplified 3D geometric model of the shelter object, which houses the Unit 4 reactor.

The model does not consider the existing but poorly studied effect of gamma-ray
re-reflection from the shell of the NSC since the real detector is shielded from such radiation
by the above-mounted MCS.

Here, the photon flux reaching the omnidirectional detector from each point source,
accounting for the decrease with increasing distance (inverse square law), is modeled. In
this simplified model, S = F(a1, . . . , an×m; x1, . . . , xn), the activity measured by the sensor,
Sj within coordinates (x, y), is expressed in (1).

Sj =
n

∑
i=1

aij × xi + ϕj (1)

where xi is the activity in the point i, aij is the coefficient of decrease that depends on the
distance between sensor Sj, and point xi, and ϕj represent the uncertainty associated with
measurement error and other random factors. This is represented graphically in Figure 2.

Then, for all “virtual detectors” and all point sources, modeling SO as an underdeter-
mined system of linear Equation (2) can be constructed.

S1 =
n
∑

i=1
ai1 × xi + ϕ1

. . .

Sj =
n
∑

i=1
aij × xi + ϕj

. . .

Sm =
n
∑

i=1
aim × xi + ϕm

(2)

However, some constraints in (3) are linked to the fact that the photon flux cannot not
be negative and practically could not exceed a reasonable value. It should be noted that
the set of equations in (3) does not comprise an Objective Function, instead comprising a
constraint only, with the Objective Function that which is being optimized, while the fitness
function is used to guide to such an optimization. The Objective Function is the value of
the approximation error.

∀i ∈ (1, n), j ∈ (1, m)
∣∣Vmin < xi < Vmax, aij > 0 (3)

Here Vmax and Vmin are a maximum and a minimum of the dose-rate in the actual
system. Thus, the construction of the gamma-ray map is reduced to finding some approxi-
mation to the solution of this system of equations with practical accuracy.
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2.3. Algorithm Description

Evolutionary algorithms comprise search algorithms that operate by evolving a popu-
lation of solutions through repeated transformations [41], with such an implementation
representing an adaptation of evolutionary algorithm computing. The foundational tech-
niques of evolutionary algorithms were inspired by biological evolution, the change in the
heritable characteristics of biological populations over successive generations. There exist
two primary ways in which such algorithms can be represented; pseudocode and flowchart.
In this instance the pseudocode representation of the general evolutionary algorithm is
considered to be more informative and is detailed simplistically below (Algorithm 1);

Algorithm 1 Pseudocode

BEGIN
INITIALISE population;
DEFINE FUNCTION Mutation();
DEFINE FUNCTION Fitness();
DEFINE FUNCTION Terminal_Condition();
REPEAT

new_population:= Mutation(population);
IF (Fitness(new_population) BETTER THAN Fitness(population))
THEN population:= new_population;
END IF
IF

UNTIL Terminal_Condition();
END

Wherein “population” holds the representation of the current solution in the form of
a set of individuals (partial solutions of the problem); “mutation” represents a function
whose inputs change to individuals’ properties in the next generation of the population;
“fitness function” accepts the candidate solution and outputs a value that evaluates the
suitability of the candidate solution to the target goal; and “terminal condition” is a criterion
for termination of the algorithm. Typically, the algorithm ceases when a solution with
acceptable accuracy is found or other limiting parameters are attained (e.g., the maximum
number of iterations or time, the value does not improve). This approach represents general
evolutional rather than a variation of a genetic algorithm, resulting from the authors’ wish
to keep the mutation function open for future developments, such as the parallelization of
the main loop with different concurrent mutation functions.

To solve (3), the general evolutionary method of problem-solving was modified and
is presented in the DRAKON visual programming language notation [41], as shown in
Figure 3.
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In this case, we consider vector
(
x′1, . . . x′i , . . . x′n

)
as a population of individuals. The

fitness function will be the computation of distance between vectors
(
S1, . . . Sj, . . . Sm

)
and

(
S′1, . . . S′j, . . . S′m

)
, where S′j = ∑n

i=1 aij × x′i . So, the population
(

x′1, . . . x′i , . . . x′n
)

will be “better” than
(

x′′1 , . . . x′′i , . . . x′′n
)

if the distance between vectors
(
S1, . . . Sj, . . . Sm

)
and

(
S′1, . . . S′j, . . . S′m

)
will be less than distance between vectors

(
S1, . . . Sj, . . . Sm

)
and(

S′′1 , . . . S′′j , . . . S′′m
)

.

3. Results and Discussion

Figure 4 details the result of 7000 iterations of the algorithm detailed above, with
visualization using the Mayavi 3D visualization library for the Python programming
language [42]. Each modeled point source on the shell of the shelter object is represented
as virtual cubes, with edge lengths of 1 m. The color of the cube displays the activity value
in the range from blue (low) to red (high). The “virtual detectors” are represented in the
form of spheres, each with a conventional diameter of 0.75 m, wherein the colour of the
sphere is also coded, in the range from blue to red, with increasing dose-rate.

The quality of the implementation of the proposed algorithm was assessed by compar-
ing both individual values of the activities Sj, measured by the sensor in the coordinates
(x, y) and activity evaluations Ŝj, obtained with the algorithm, as well as arrays of measure-
ments and their estimates. The following were used as quality measures for the arrays of
activity values: approximation error σapprox (4), Mean Absolute Percentage Error (MAPE)
(5), approximation reliability R2

Sj ,Ŝj
(6):
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σaprox =

√√√√∑n
j=1
(
Sj − Ŝj

)2

(n−m)
(4)

where n is the volume of the array under study and m is the number of parameters in the
model (1),

MAPE =
1
n

n

∑
j=1

∣∣∣∣∣Sj − Ŝj

Sj

∣∣∣∣∣× 100% (5)

R2
Sj ,Ŝj

=
∑n

j=1
(
Sj − Ŝj

)2

∑n
j=1
(
Sj − Sj

)2 (6)

where Sj =
1
n ∑n

j=1 Sj, arithmetic average of the activity values measured by the sensor.
While the authors note that other differing and complementary error quantifications

such as Mean Absolute Error (MAE), Root-Mean-Square Deviation (RMSE), and, especially,
Mean Relative Error (MRE) could be used, this work proceeded by assessing the quality of
the model and the simulation results, considering the structure of the model over the entire
range of values of the measured quantities and iterations. Hence, MAE was not used since
it is a linear estimate whereby all errors are weighted equally on average.

Furthermore, since no anomalous values of simulation results were observed during
the simulation, even on a small number of iterations, the RMSE metric, which can be
considered sensitive to anomalous values (large errors have a disproportionately large
effect on the RMSE), was also not used. In the case of MRE, this measure shows the
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magnitude of the absolute error relative to the actual value of the output variable (hence,
this error is often referred to as the average relative absolute error, or MRAE) and can show
significant variation with input variable magnitude. In contrast, the MAPE error is easy to
interpret and has a scale for evaluating the quality of simulation results.

The dependence of the approximation absolute error on the number of iterations of the
algorithm are shown in Figure 5, with this approximation error used not only as a measure
of model quality, but also to control the number of iterations, reaching the minimum error
value indicating the end of the algorithm. An R2 error can also be used to evaluate the
quality of a regression model. However, in this instance, error values are not considered,
rather the value that depicts how much better the given model works than the model
where only the constant is present, while the input variables are absent or the regression
coefficients with them are equal to zero. In this work, the R2 value shows the proportion of
variance of the dependent variable explained by the regression model.
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evolutional method.

The best approximation of true measurements by activity estimates obtained by the
algorithm is achieved at the minimum value of the approximation error, which corresponds
to 2000 iterations. It is noted that the algorithm’s execution time has no importance and
could be optimized by parallelization of the main loop, with the number of iterations in
this proof-of-concept study limited for practicality reasons. Without the optimization of the
mutation function, the ability to obtain a “better” population decreases with the growth of
the number of iterations. Such a behavior could also be used as a termination condition of
the algorithm.

The dependence of the MAPE percentage error on the number of iterations of the
algorithm is shown in Figure 6. Supporting other assessment metrics, this MAPE error is
easy to interpret and has a scale for assessing the quality of modeling results, allowing an
assessment of the quality of the model.

The mean absolute percentage error of MAPE (Figure 6) indicates the quality of the approx-
imation and if MARE ≤ 10%, the approximation accuracy is excellent; 10% < MARE ≤ 20%,
the approximation accuracy is good; 20% < MARE ≤ 50%, then this accuracy is satisfactory;
and if MARE > 50%, then the solution is deemed unsatisfactory.

Such dependence of the approximation accuracy (percentage error) on the number of
iterations of the algorithm is subsequently shown in Figure 7.
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Together, the analysis results of the algorithm show that, as the number of iterations
increases, the reliability of the approximation also increases. This correlates with the values
of the MAPE error, whereby the value decreases with increasing the number of iterations
of the algorithm. The utilization of these three aforementioned metrics together provides
a means to evaluate the modeling results obtained from the perspective of algorithm
implementation, alongside the quantitative and qualitative aspects of the results obtained.

4. Conclusions

This works provides application-specific results from which to further consider evo-
lutionary computational methods for radiation mapping problems in conditions where
the use of other solutions is not advisable based on the As Low as Reasonable Acceptable
(ALARA) principle for radiation protection.

Under the conditions of Chornobyl, where the radiation source term is characterized
by significant non-uniformity and irregularity, the only practical method is the construction
of radiation maps by the method of spatial interpolation using a regular network of
measurements. Such an interpolation network is formed directly from measurement
outputs of radiation survey meters operated by humans or a remotely controlled apparatus,
and therefore has a high dose “cost”. At the same time, the accuracy of the method
utilized in this work on a complex scenario such as the Chornobyl sarcophagus, where
any measurement is a superposition from many sources, significantly exceeded the initial
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expectations of the results. However, further research and evolution of the approach is
needed, including improvements to the method for parallelizing the evolution of solutions
and population control in addition to validating the method on other objects with more
complex radiation emission characteristics.

It is noted that the purpose of this study was not to present the most complete
and perfect algorithm, but to provide a real-world example of the practical possibility
of using evolutionary algorithms in complex radiation mapping scenarios. There exist
several ways to improve this algorithm. For example, it is apparent that the speed of the
algorithm significantly depends on the initial approximation and mutation strategies. It is
the viewpoint of the authors that the most important result is that despite its simplicity,
it is possible to obtain an acceptable result in a comparatively small number of iterations
(generations, in evolutionary parlance).
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