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Abstract: Clipping algorithms essentially compute the intersection of the clipping object and the
subject, so to go from two to three dimensions we replace the two-dimensional clipping object by
the three-dimensional one (the view frustum). In three-dimensional graphics, the terminology of
clipping can be used to describe many related features. Typically, “clipping” refers to operations
in the plane that work with rectangular shapes, and “culling” refers to more general methods to
selectively process scene model elements. The aim of this article is to survey important techniques
and algorithms for line clipping in 3D, but it also includes some of the latest research performed by
the authors.
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1. Introduction

In two dimensions, a section of a scene that is selected for display is called a clipping
window because all parts of the scene outside the selected section are “clipped” off. In gen-
eral, a procedure that eliminates portions of an object that are either inside or outside a
specified region is referred to as a clipping algorithm or, simply, clipping. The only part of
the scene that shows up on the screen is what is inside the clipping window [1]. Usually
a clipping region is a rectangle in a standard position, although we could use any shape.
In three dimensions, the viewing process is more complicated than its two-dimensional
analogue because of the added dimension and, moreover, the fact that display devices
are mostly two-dimensional [2]. A two-dimensional clipping window, corresponding to a
selected camera lens, is defined on the projection plane, and a three-dimensional clipping
region, called the view volume, is established. Depending on the type of projection used, the
view volume takes the form of a truncated pyramid or a rectangular parallelepiped and is
also known as the (view) frustum.

In the context of vector graphics, an image or an object is composed of straight
line segments, and, thus, the type of clipping considered in this article is line clipping
(Figures 1 and 2). As large numbers of points or line segments must be clipped for a typical
scene or picture, the efficiency of clipping algorithms is very significant. In many cases
the large majority of points or line segments are either completely interior or completely
exterior to the clipping window or volume. Therefore, it is important to be able to quickly
accept or reject a line or a point [3]. This article proposes an algorithm for line clipping
against a three-dimensional clipping region. The proposed algorithm is an extension of the
algorithm described in [4] to the three-dimensional space.

The article has the following structure. Section 2 explains the concepts of three-
dimensional viewing and clipping region; Section 3 presents the classical three-dimensional
line-clipping algorithms; Section 4 introduces the fundamental mathematical concepts
of the line in the three-dimensional space; Section 5 describes the proposed algorithm in
detail; Section 5.4 explains the steps of the algorithm in brief as well as presents a C++-
based pseudocode implementation; Section 6 evaluates the proposed algorithm and its
experimental results after comparison with other clipping algorithms; and, finally, Section 7
has a brief summary of all the above.
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Figure 1. (a) Before and (b) after application of line clipping in two dimensions.

Figure 2. A line in the three-dimensional space after clipping.

2. Three-Dimensional View Volumes and Clipping Regions

For two-dimensional graphics, viewing operations convert positions in the world
coordinate plane to pixels in a screen or any other output device. Using rectangular
boundaries for the clipping window, a clipping process clips a two-dimensional scene and
maps it to device coordinates. Three-dimensional viewing operations are more complicated
because there is an extra dimension and involves some tasks that are not present in two-
dimensional viewing. To create a display of a three-dimensional world coordinate scene,
one must first set up a coordinate reference for the viewing parameters (also known as the
camera). This coordinate reference defines the position and orientation for a view plane (or
projection plane) that corresponds to a camera film plane [1] (see Figure 3). The vertices that
make up the object are then converted to the viewing reference coordinates and projected
onto the view plane.

Figure 3. Obtaining a selected view of a three-dimensional scene (camera).

Unlike a camera picture, there are different methods for projecting a scene onto the
view plane. One method for getting the description of a solid object onto a view plane is
to project points on the object’s surface along parallel lines. This technique, called parallel
projection, is mostly used in engineering and architectural drawings to represent an object
with a set of views that show accurate dimensions of the object. Another method for
generating a view of a three-dimensional scene is to project points to the view plane along
converging paths. This process, called perspective projection, causes objects farther from
the viewing position to be displayed smaller than objects of the same size that are nearer
to the viewing position. A scene that is generated using a perspective projection appears
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more realistic because this is the way that our eyes and a camera lens form images. Parallel
lines along the viewing direction appear to converge to a distant point in the background,
and objects in the background appear to be smaller than objects in the foreground (see
Figure 4).

Figure 4. (a) Line AB and its perspective projection A’B’. (b) Line AB and its parallel projection A’B’.

Most of the time, the view volume is either a rectangular parallelepiped, i.e., a box or a
cuboid, or a frustum pyramid. Both of these shapes are six-sided with the following sides:
left, right, top, bottom, near (hither), and far (yon); see Figure 5.

Figure 5. Types of view volume: (a) rectangular parallelepiped, (b) truncated pyramid also known as
a frustum.

After the specification of the type of view volume, various strategies can be used
to implement the viewing process depending on the view volume and the 3D scene.
A conceptual model could be similar to the one in Figure 6: the view volume is used as
a clipping region to discard the unnecessary out-of-boundaries components of the three-
dimensional scene. The remaining components are then projected onto the projection plane.
Finally, the projection plane is transformed into two-dimensional device coordinates.

Figure 6. Conceptual model of the three-dimensional viewing process.

Unfortunately, if the viewing is perspective and the volume is a frustum, it can be
computationally expensive to check if objects exist inside the boundaries and perform
clipping; see Figure 7.
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Figure 7. A frustum-shaped clipping region is computational expensive.

In order to simplify and speed up the clipping process, an extra stage is added to the
above model; see Figure 8. Before clipping and projection stages, the frustum is firstly
transformed into a normalized canonical view volume. Clipping and hidden surface
calculations are then applied (Figure 9).

Figure 8. Implementation of three-dimensional viewing.

Figure 9. Applying clipping using a normalized canonical clipping region.

3. Line-Clipping Algorithms in Three-Dimensions

There are many line-clipping algorithms in two-dimensions such as Cohen–Sutherland,
Liang–Barsky [5], Cyrus–Beck [6], Nicholl–Lee–Nicholl [7], midpoint subdivision, Skala
2005 [8], S-Clip E2 [9], Kodituwakku–Wijeweere–Chamikara [10], and affine transormation
clipping [11]. Unfortunately, only a few of them can clip lines in three-dimensional space.
These algorithms include Cohen–Sutherland, Liang–Barsky, and Cyrus–Beck, which are
considered as the classic ones for this purpose. Over the years, other algorithms for
clipping a line in three-dimensional space have emerged such as simple and efficient 2D
and 3D span clipping algorithms [12], Kodituwakku–Wijeweera–Chamikara 3D [13], and
Kolingerova [14], but some of them do not perform clipping correctly (e.g., Kodituwakku–
Wijeweera–Chamikara) while some others are hard to implement.

3.1. Three-Dimensional Cohen–Sutherland Line Clipping

The Cohen–Sutherland algorithm is considered a classic line-clipping algorithm in two
dimensions. The three-dimensional analogue is very similar to its two-dimensional version
but with a few modifications. For an orthogonal clipping region, the three-dimensional
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space is divided again into regions but this time a 6-bit region code, instead of a four-bit
one, is used to classify the lines’ endpoints. These six bits are as in Figure 10.

Figure 10. Cohen–Sutherland 3D six-bit representation.

The regions are related to the space that is in front of the near plane, the space between
the near and the far plane, and the space behind the far plane; see Figure 11.

Figure 11. Three-dimensional six-bit region codes.

The testing strategy is virtually identical to the two-dimensional case. The bit codes
can be set to true (1) or false (0), depending on the test for these equations as follows:

Bit 1: endpoint is in front of the view volume;
Bit 2: endpoint is behind the view volume;
Bit 3: endpoint is above the view volume;
Bit 4: endpoint is below the view volume;
Bit 5: endpoint is right of the view volume;
Bit 6: endpoint is left of the view volume.

To clip a line, the classification of its endpoints with the appropriate region codes is
required. The line is as follows:

Visible: if both endpoints are 000000;
Invisible: if the bitwise logical AND is not 000000;

A clipping candidate: if the bitwise logical AND is 000000.
All lines with both endpoints in the [000000] region are trivially accepted. All lines

whose endpoints share a common bit in any position are trivially rejected. The clipped
line is derived from the parametric equation of the line in three-dimensional space using
homogeneous coordinates and by using boundary coordinates whenever it is necessary.

3.2. Three-Dimensional Liang–Barsky Line Clipping

The Liang–Barsky algorithm is a line-clipping algorithm and is considered more ef-
ficient than Cohen–Sutherland [5]. It is considered to be a fast parametric line-clipping
algorithm and can be applied to two dimensions as well as to three dimensions. The fol-
lowing concepts are used when three-dimensional clipping is applied:

1. The parametric equation of the line.
2. The inequalities describing each side (boundaries) of the clipping region, which are

used to determine the intersections between the line and each side.

The parametric equation of a line can be given by the following equations:

x = x0 + (x1 − x0) · t

y = y0 + (y1 − y0) · t
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z = z0 + (z1 − z0) · t

where t is between 0 and 1. The point-clipping conditions in the parametric form are then
written as

xmin ≤ x0 + (x1 − x0) · t ≤ xmax

ymin ≤ y = y0 + (y1 − y0) · t ≤ ymax

zmin ≤ z = z0 + (z1 − z0) · t ≤ zmax

and the above six inequalities can be expressed as

pk · t ≤ qk,

where k = 1, 2, 3, 4, 5, 6 correspond to the left (xmin), right (xmax), bottom (ymin), top (ymax),
far (zmin), and near (zmax) boundaries, respectively. The p and q are defined as follows:

p1 = −(x1 − x0), q1 = (x0 − xmin) (left boundary);

p2 = (x1 − x0), q2 = (xmax − x0) (right boundary);

p3 = −(y1 − y0), q3 = (y0 − ymin) (bottom boundary);

p4 = (y1 − y0), q4 = (ymax − y0) (top boundary);

p5 = −(z1 − z0), q5 = (z0 − zmin) (far boundary);

p6 = (z1 − z0), q6 = (zmax − z0) (near boundary).

Using the following conditions, the position of the line can be determined as follows.

• When the line is parallel to a clipping boundary, the p value for that boundary is zero.
• When pk < 0, as t increases the line goes from the outside to the inside (entering).
• When pk > 0, the line goes from the inside to the outside (exiting).
• When pk = 0 and qk < 0, the line is trivially invisible because it is outside the clipping

region.
• When pk = 0 and qk > 0, the line is inside the corresponding clipping region.

Parameters t1 and t2 can be calculated to define the part of the line that lies within the
clipping region. The following points hold:

• When pk < 0, maximum(0, qk/pk) is taken.
• When pk > 0, minimum(1, qk/pk) is taken.

If t1 > t2, the line is completely outside the clipping region and it can be rejected. Otherwise,
the endpoints of the clipped line are calculated from the two values of parameter t.

3.3. Three-Dimensional Cyrus–Beck Line Clipping

The Cyrus–Beck algorithm is another classic line-clipping algorithm in two-dimensional
space. With simple modifications, it can also clip lines in three-dimensional space. Accord-
ing to the algorithm, a straight line, intersecting the interior of a convex set, can intersect
the boundary of the set in, at most, two places. In the case where the convex set is closed
and bounded, the straight line will intersect it in exactly two places [6].

Each side of the view volume is considered as a convex polygon in three-dimensional
space and it is used as a clipping plane. This means that the algorithm examines all six
planes of the view volume and performs clipping when necessary. For each clipping plane,
the following steps are applied:

1. The inward normal of the plane (perpendicular vector to the plane) is calculated by
using three out of the four known vertices that form the plane.

2. The vector of the clipping line is calculated.
3. The dot product between the difference of one vertex per edge and one selected end

point of the clipping line and the normal is calculated (for all edges).
4. The dot product between the vector of the clipping line and the normal is calculated.
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5. The former dot product is divided by the latter dot product and multiplied by −1
(this is t).

6. The values of t are classified as entering or exiting (from all edges) by observing their
denominators (latter dot product).

7. One value of t is chosen from each group and it is put into the parametric form of a
line to calculate the coordinates.

8. If the entering t value is greater than the exiting t value, then the clipping line is
rejected.

3.4. Three-Dimensional Kolingerova Line Clipping

In 1994, Ivana Kolingerova presented a comparative study on 3D line-clipping algo-
rithms. Based on the Cyrus–Beck algorithm, she proposed improvements for increasing its
speed. Some of these improvements were related to the way that the algorithm calculated
intersection points, e.g., by using orthogonal planes, since the new methods use the fact
that each line can be described as the intersection of two planes. Furthermore, unlike
Cyrus–Beck, she proposed ways to end the computation earlier when finding the two
intersections of the line segment against the clipping volume.

4. Mathematical Background

We consider a line L that passes through two points P0(x0, y0, z0) and P1(x1, y1, z1) in
three-dimensional space (see Figure 12).

Figure 12. Line L passing through points P0(x0, y0, z0) and P1(x1, y1, z1).

For an arbitrary point P(x, y, z) on the line, the parametric equation of the line is

x = x0 + (x1 − x0) · t

y = y0 + (y1 − y0) · t

z = z0 + (z1 − z0) · t.

The equation of the line may also be written symmetrically as

x− x0

x1 − x0
=

y− y0

y1 − y0
=

z− z0

z1 − z0
(1)

and, if we assume that
a = x1 − x0 (2)

b = y1 − y0 (3)

c = z1 − z0, (4)

then the equation of the line can also be written as

x− x0

a
=

y− y0

b
=

z− z0

c
. (5)

5. The Proposed Method
5.1. Nomenclature

Suppose that we want to clip a line inside the rectangular parallelepiped volume in
Figure 13. The dimensions of the volume range from xmin to xmax for the X axis (width),
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from ymin to ymax for the Y axis (height), and from zmin to zmax for the Z axis (depth).
The line L that is going to be clipped has endpoints P0(x0, y0, z0) and P1(x1, y1, z1) (see
Figure 14).

Figure 13. Rectangular parallelepiped clipping volume.

Figure 14. Line L in three-dimensional space.

5.2. Description

The first step of the algorithm checks, if both of the endpoints are outside the clipping
region and at the same time in the same region (left, right, bottom, top, near, far). If one of
the following occurs, then the line is being rejected and the algorithm draws nothing; see
examples of Figure 15:

x0 < xmin AND x1 < xmin (the line is left of the clipping region);
x0 > xmax AND x1 > xmax (the line is right of the clipping region);
y0 < ymin AND y1 < ymin (the line is under the clipping region);
y0 > ymax AND y1 > ymax (the line is above the clipping region);
z0 < zmin AND z1 < zmin (the line is behind the clipping region);
z0 > zmax AND z1 > zmax (the line is in front of the clipping region).

Figure 15. Rejected lines: line A is left of the clipping region, line B is right of the clipping region, line
C is in front of the clipping region, and line D is on the back of the clipping region.

In the second step, the algorithm compares the coordinates of the two endpoints of the
line along with the boundaries of the clipping region. It compares the x0 and x1 coordinates
with the xmin and xmax boundaries, respectively, then it compares the y0 and y1 coordinates
with the ymin and ymax boundaries and, finally, it compares the z0 and z1 coordinates with
the zmin and zmax boundaries. If any of these coordinates are outside the clipping boundary,
then the boundary cordinates are used instead for limiting the line inside the volume and
achieving clipping (see Figure 16).
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Figure 16. Using the boundary coordinates for the endpoints of the line.

For each of the coordinates of the two endpoints, and according to Equations (2)–(5),
the comparisons and the new coordinates are as follows:

• If xi < xmin, then

xmin − x0

a
=

y− y0

b
⇒ y =

b
a
· (xmin − x0) + y0;

xmin − x0

a
=

z− z0

c
⇒ z =

c
a
· (xmin − x0) + z0.

• If xi > xmax, then

xmax − x0

a
=

y− y0

b
⇒ y =

b
a
· (xmax − x0) + y0;

xmax − x0

a
=

z− z0

c
⇒ z =

c
a
· (xmax − x0) + z0.

• If yi < ymin, then

ymin − y0

b
=

x− x0

a
⇒ x =

a
b
· (ymin − y0) + x0;

ymin − y0

b
=

z− z0

c
⇒ z =

c
b
· (ymin − y0) + z0.

• If yi > ymax, then

ymax − y0

b
=

x− x0

a
⇒ x =

a
b
· (ymax − y0) + x0;

ymax − y0

b
=

z− z0

c
⇒ z =

c
b
· (ymax − y0) + z0.

• If zi < zmin, then

zmin − z0

c
=

x− x0

a
⇒ x =

a
c
· (zmin − z0) + x0;

zmin − z0

c
=

y− y0

b
⇒ y =

b
c
· (zmin − z0) + y0.

• If zi > zmax, then

zmax − z0

c
=

x− x0

a
⇒ x =

a
c
· (zmax − z0) + x0;

zmax − z0

c
=

y− y0

b
⇒ y =

b
c
· (zmax − z0) + y0.

In the above we have that i vary from 0 to 1. In the third and final step, the algorithm draws
the line between the two endpoints.
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5.3. Considerations

If we look carefully at Equation (1), it seems that for certain values a division by zero
may occur. Let us examine the case of the x coordinate of an endpoint. According to the
second step of the algorithm, the x coordinate is being checked as to whether it is less than
xmin or greater than xmax. If we replace x = xmin and solve for y and z the new coordinates
will be

x− x0

x1 − x0
=

y− y0

y1 − y0
⇒ y =

y1 − y0

x1 − x0
· (xmin − x0) + y0

x− x0

x1 − x0
=

z− z0

z1 − z0
⇒ z =

z1 − z0

x1 − x0
· (xmin − x0) + z0.

Likewise, if we replace x = xmax and solve for y and z the new coordinates will be as
follows:

y =
y1 − y0

x1 − x0
· (xmax − x0) + y0

z =
z1 − z0

x1 − x0
· (xmax − x0) + z0.

Division by zero will occur, only if x0 = x1. However, when x0 = x1 and x < xmin
or x > xmax the line is vertical to the Y axis and is totally outside the clipping region, so
division by zero will never occur according to the first step’s condition. On the other hand,
if xmin ≤ x ≤ xmax then there is no need to apply clipping for the specific coordinate, so,
again, division by zero will not occur in this range. Similarly, division by zero will never
occur for all other coordinates.

5.4. The Steps in Brief and the Pseudocode

The steps of the algorithm are as follows:

1. Check, if both endpoints of the line are outside the same side of the rectangular
parallelepiped clipping region. If this is true then stop and draw nothing or else
proceed to Step 2.

2. Compare each coordinate of each endpoint of the line along with the boundaries of
the clipping region (left, right, top, bottom, near, and far). If a coordinate is outside
the clipping boundary, then use the boundary coordinate instead and calculate the
other coordinates of the endpoint, respectively.

3. Draw the clipped line between the two endpoints.

6. Evaluation and Experimental Results

To determine the efficiency of the proposed algorithm, we evaluate it against the
Cohen–Sutherland, Liang–Barsky, Cyrus–Beck and Kolingerova algorithms. Each algorithm
had to clip a large number of arbitrary lines generated in a three-dimensional space.
The boundaries of this space were defined by the points (−400, −400, 400) and (400, 400,
−400). The clipping region has the following dimensions: 200 pixels width, 150 pixels
height, and 100 pixels depth with its centre at the centre of the screen and the start of
the axes X, Y, and Z (Figure 17). The lines were randomly generated anywhere in the
three-dimensional space and each algorithm drew only the visible part of the lines inside
the clipping region. The time that each algorithm needed to clip the lines was recorded in
every execution. The whole process was repeated ten times and, in the end, the average
time was calculated.
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Figure 17. The three-dimensional space used for generating arbitrary lines and setting the clip-
ping volume.

The hardware, as well as the software, specifications for our evaluation were as follows:
(a) AMD FX Quad-Core 4300@3.80 GHz CPU, (b) RAM 16 GB, (c) NVIDIA GeForce GTX-
1050 GPU, (d) Windows 10 Professional operating system, (e) C++ with OpenGL/FreeGLUT
under the Code::Blocks environment. Each algorithm should have clipped and drawn one
million lines in every execution. The visual result was a rectangular parallelepiped volume
full of clipped lines (Figure 18), whereas the evaluation results are shown in Table 1.

Figure 18. One million clipped lines inside the clipping volume.

Table 1. Execution times of each algorithm when clipping one million lines.

Execution CS 3D LB 3D CB 3D KG 3D Proposed
(s) (s) (s) (s) (s)

1 0.094 0.100 0.152 0.137 0.070
2 0.114 0.103 0.145 0.136 0.069
3 0.102 0.105 0.138 0.143 0.064
4 0.107 0.102 0.139 0.133 0.068
5 0.116 0.106 0.149 0.140 0.066
6 0.104 0.107 0.153 0.136 0.070
7 0.105 0.115 0.132 0.134 0.069
8 0.115 0.090 0.137 0.135 0.064
9 0.106 0.100 0.140 0.137 0.067
10 0.101 0.106 0.135 0.141 0.070

Avg. time: 0.106 0.103 0.142 0.137 0.068
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Using the above results, a graph for the clipping times of each algorithm was created
(Figure 19).

Figure 19. Average time of each algorithm when clipping one million lines (lower is better).

By using the formula
proposed− other

proposed
· 100

we can evaluate the speed of the proposed algorithm in percent compared to the other
algorithms. Compared to the Cohen–Sutherland algorithm, the proposed algorithm was
faster by 57.16%; compared to the Liang–Barsky algorithm, our algorithm was faster by
52.73%; compared to the Cyrus–Beck algorithm, our algorithm was faster by 109.75%; and
compared to the Kolingerova algorithm, our algorithm was faster by 102.66%.

The experiment was also performed for similar types of line segments, e.g., segments
that were strictly inside the clipping region and did not intersect it. The results were in
accordance with the above results; there were no different running times for all algorithms.

7. Summary

Line clipping is a technique that is widely used in computer graphics. The three-dimensional
viewing pipeline involves many more complicated stages than its two-dimensional analogue.
When a three-dimensional scene is projected onto a two-dimensional plane by using perspective
projection, transforming the frustum-shaped view volume into a canonical one (rectangular
parallelepiped) is considered good practice and speeds up the process since clipping against a
frustum-shaped view volume is computationally expensive. In the present article, an overview
of the most common, as well as of the lesser-known, algorithms for clipping a line against a
rectangular region in a three-dimensional space was presented. Moreover, a simple and fast
algorithm (see Algorithm 1) for clipping a line segment against a rectangular parallelepiped view
volume was proposed. The algorithm is straightforward to implement in any programming
language.
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Algorithm 1 The proposed algorithm
void clip_3d_line(double x[], double y[], double z[], double xmin, double xmax, double
ymin, double ymax, double zmin, double zmax)
{

if( !((x[0] < xmin && x[1] < xmin) || (x[0] > xmax && x[1] > xmax) ||
(y[0] < ymin && y[1] < ymin) || (y[0] > ymax && y[1] > ymax) ||
(z[0] < zmin && z[1] < zmin) || (z[0] > zmax && z[1] > zmax)) )

{
double a = x[1] − x[0];
double b = y[1] − y[0];
double c = z[1] − z[0];
for(int i = 0; i <= 1; i++)
{

if(x[i] < xmin)
{

y[i] = b / a * (xmin − x[0]) + y[0];
z[i] = c / a * (xmin − x[0]) + z[0];
x[i] = xmin;

}
else if(x[i] > xmax)
{

y[i] = b / a * (xmax − x[0]) + y[0];
z[i] = c / a * (xmax − x[0]) + z[0];
x[i] = xmax;

}
if(y[i] < ymin)
{

x[i] = a / b * (ymin − y[0]) + x[0];
z[i] = c / b * (ymin − y[0]) + z[0];
y[i] = ymin;

}
else if(y[i] > ymax)
{

x[i] = a / b * (ymax − y[0]) + x[0];
z[i] = c / b * (ymax − y[0]) + z[0];
y[i] = ymax;

}
if(z[i] < zmin)
{

x[i] = a / c * (zmin − z[0]) + x[0];
y[i] = b / c * (zmin − z[0]) + y[0];
z[i] = zmin;

}
else if(z[i] > zmax)
{

x[i] = a / c * (zmax − z[0]) + x[0];
y[i] = b / c * (zmax − z[0]) + y[0];
z[i] = zmax;

}
}

}
draw_line(x[0], y[0], z[0], x[1], y[1], z[1]);

}
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