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Abstract: This work was greatly influenced by the opinions of one of the authors (JS), who demon-
strated in a recent book that it is important to distinguish between “fractal models” and “fractal”
(power-law) behaviors. According to the self-similarity principle (SSP), the authors of this study com-
pletely distinguish between independent “fractal” (power-law) behavior and the “fractal models”,
which result from the solution of equations incorporating non-integer differentiation/integration
operators. It is feasible to demonstrate how many random curves resemble one another and how they
can be predicted by functions with real and complex-conjugated power-law exponents. Bellman’s
inequality can be used to demonstrate that the generalized geometric mean, not the arithmetic mean,
which is typically recognized as the fundamental criterion in the signal processing field, corresponds
to the global fitting minimum. To highlight the efficiency of the proposed algorithms, they are applied
to two sets of data: one without a clearly expressed power-law behavior, the other containing clear
power-law dependence.

Keywords: fit of the fractal curves; power-law exponents with complex arguments; Bellman’s
inequality; self-similar integral curves

1. Introduction and Formulation of the Problem

The recent publication of the book [1] where it was demonstrated that “fractal models”
should not be confounded with “fractal” behaviors, which are seen in many physical
phenomena, substantially influenced the creation of this paper. As an illustration of this
point of view, several alternative modeling tools are proposed in [2,3] to model real power-
law behaviors (also denoted “fractional behaviors”). Below, we will always refer to “fractal”
activity as “power-law” behavior. It is impossible to explicitly link this power-law behavior
with real and complex-conjugated exponents to the suggested models. The authors provide
the self-similarity principle (SSP) [4], which frequently results in the expected power-
law behavior and can be tested on actual data, in an effort to support this fundamental
separation from another angle. In the power-law behavior that results from the SSP, log-
periodic oscillations are always present. These oscillations ought to be viewed as organic
additions, augmentations or components. In paper [4], we considered many complex
systems that can be described by a combination of power-law functions with complex
additions expressed in the form of log-periodic oscillations. In this paper, we consider the
nonlinear case, and based on Bellman’s inequality [5], we prove that the global minimum in
the fitting of power-law functions corresponds to the generalized geometric mean (GGM)
and not the arithmetic mean that is conventionally used in modern signal processing theory.

Let us imagine that we have a measured curve (obtained from available measured
data) and preliminary information about its possible self-similarity and power-law behavior
is absent. Is it possible to find some additional evidence about its self-similarity at least on
the qualitative level? One can suggest a criterion (described in Section 3) that proves the
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self-similar behavior of many random curves. The basic problem that is solved in this paper
can be formulated as follows. One can prove that there is a broad class of self-similar curves
that have a power-law behavior described by the real part together with complex-conjugate
adding. This class is tightly connected with the SSP, and in many cases, the fitting function
corresponds to the GGM if the contribution of each self-similar part is properly weighted.

The content of the paper Is organized as follows. In Section 2, we consider the basics
of the theory. In Section 3, the data and proposed algorithm are described. Verification on
available data is also considered in Section 3. The final part, Section 4, contains an analysis
of the results obtained.

2. Confirmation of the SSP for the Weierstrass–Mandelbrot Function and in
Other Models

As is well-known [6,7], the Weierstrass–Mandelbrot (W-M) function is defined by the
following expression

W(t) =
N

∑
n=−N

1− exp(ibnt)eiϕnt

b(2−D)n
. (1)

For further purposes, it is convenient to present this function in a more general form

S(z) =
N

∑
n=−N

(
beiϕ

)n
f (zξn). (2)

In Equation (2), the variable z can coincide with time t, the complex frequency iω,
the Laplace complex parameter p, etc. The phase ϕ in (2) takes into account the fact that
parameter b can accept a negative value (ϕ = π) or can be complex (ϕ 6= 0). For further
manipulations with expression (2), we simply replace (beiϕ)→ b implying that number b
can accept any arbitrary value (positive, negative or even complex). The complex function
f (z) has the following decompositions

f (z) =

(
c1|z|+ c2|z|2 + . . . at|z| << 1,
A1
|z| +

A2
|z|2

+ . . . at|z| >> 1. (3)

At the conditions imposed above, one can obtain the following relationship

S(zξ) =
1
b

S(z) + bN f
(

zξN+1
)
− b−N−1 f

(
zξ−N

)
. (4)

This function was analyzed in paper [8]. Four cases are possible:
Case (a) when b, ξ > 1. The contribution of two terms in (4) becomes negligible

when ξ > b.
Case (b) when b, ξ < 1. The contribution of two terms in (4) becomes negligible

when ξ < b.
Case (c) when b > 1, ξ < 1. For this case, it is necessary that bξ < 1.
Case (d) when b < 1, ξ > 1. For this case, it is necessary that bξ > 1.
For b = 1, the contribution of the last two terms is valid also, if the function f (z)

keeps its limiting values in accordance with decompositions (3). The numerical verifi-
cation of the real part of the function S(z) was realized in paper [8]. Therefore, one can
write approximately

S(zξ) ∼=
1
b

S(z), f or
∣∣∣∣A2

A1

∣∣∣∣ << |z| <<

∣∣∣∣ c1

c2

∣∣∣∣. (5)
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Let us assume that the initial function itself represents a linear combination of three
generalized W-M functions of type (2).

F0(z) =
N
∑

n=−N
bn

1 f1(zξn)+
N
∑

n=−N
bn

2 f2(zξn)+

+
N
∑

n=−N
bn

3 f3(zξn) ≡
3
∑

k=1
Sk(z).

(6)

We assume that the “microscopic” functions fk(z) fulfil comparable decompositions
and that the evaluations of each sum Sk(z) given above are still accurate. Therefore, using
the approximate relationship (5) one can write

F0(z) = S1(z) + S2(z) + S3(z),
F1(z) = r1S1(z) + r2S2(z) + r3S3(z),
F2(z) = (r1)

2S1(z) + (r2)
2S2(z) + (r3)

2S3(z).
(7)

Here Fk(z) = F(zξk), k = 0, 1, 2, rk = (bk)−1. One can solve this system relative to the
unknown sums Sk(z) and substitute them in the function F3(z)

F3(z) =
3

∑
k=1

(rk)
3Sk(z) (8)

After some algebraic manipulations, one can obtain the following self-similar func-
tional equation

F
(

zξ3
)
= w2F

(
zξ2
)
+ w1F(zξ) + w0F(z),

w2 = r1 + r2 + r3, w1 = −(r1r2 + r1r3 + r2r3), w0 = r1r2r3.
(9)

The unknown roots can be simplified if one subjects them to the normalized condition

2

∑
k=0

wk = 1 (10)

In order to satisfy condition (10), one can identify one root, for example r3 with the
unit value, i.e., r3 = 1. In this case, we have

w2 = r1 + r2 + 1, w1 = −(r1r2 + r1 + r2), w0 = r1r2. (11)

The functional Equation (9) relative to the unknown function F(z) can be solved if one
can find the solution in the form

F(z) = zνPr(ln z), where

Pr(ln z± ln ξ) = Pr(ln z) = A0 +
K
∑

k=1

[
Ack cos

(
2πk ln z

lnξ

)
+ Ask sin

(
2πk ln z

lnξ

)] (12)

The substitution of the solution (12) into (9) leads to representing the final solution in
the form

F(z) =
2
∑

l=1
zνl Prl(ln z) + Pr3(ln z), νl =

ln(rl)
lnξ ,

r3 = w2r2 + w1r + w0.
(13)

For practical purposes, it is necessary to provide a solution for two self-similar
combinations

F(z) = S1(z) + S2(z)
F(zξ) = r1S1(z) + r2S2(z)
F
(

zξ2
)
= r2

1S1(z) + r2
2S2(z)

(14)
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Eliminating S1,2(z) from two rows of (14) and substituting these expressions in the last
row, one can obtain the following functional equation

F
(

zξ2
)
= w1F(zξ) + w0F(z),

w1 = r1 + r2, w0 = −r1r2, r2 = w1r + w0.
(15)

The solution of this equation can be written in complete analogy with expressions (12)
and (13). Normalization to the unit value similar to (10) is possible if one puts r2 = 1.

It follows from the calculations made above that the functional Equations (9) and (15)
are derived from the approximate functional Equation (5) that is valid for variables located
in the mesoscale. It is interesting to propagate this result for the frequency variable z = iω
and consider the so-called constant-phase (CPE) or reind/recup elements. To this end, we
represent the complex impedance for a combination of RCL passive elements in the form

f (z) =
Pn−1(z)

Pn(z)
=

an−1zn−1 + an−2zn−2 + . . . + a1z + a0

bnzn + bn−1zn−1 + . . . + b1z + b0
(16)

where z is the complex/Laplace parameter. For small |z| << 1 and large values of |z| >> 1,
this function has the following behavior

f (z) =


∣∣∣ a0

b0

∣∣∣+ (∣∣∣ a1
b0

∣∣∣− ∣∣∣ b1
b0

∣∣∣)|z|+( a2
b0
− a0b1

b2
0

)
|z|2 + . . . at|z| << 1,(

an−1
bn

)
1
|z| +

(
an−2

bn
− bn−1

bn

)
1
|z|2

+ . . . at|z| >> 1.
(17)

These decompositions are similar to the previous decomposition (3). We should note
here that expression (17) is valid for cases (a) and (b) considered above. Therefore, if the
passive RCL elements are similar to each other and satisfy the scaling property Rn = R0bn,
then one might expect the appearance of a CPE with power-law behavior accompanied
always by complex-conjugate supplements. To complete the consideration of examples
(1) and (17), we can also recall the famous product first proposed by Oustaloup with his
pupils in the well-known paper [9] that also leads to the CPE from the product

sα ∼=
N

∏
n=−N

s +ω1,n

s +ωn
(18)

Instead of expression (18), we consider the more general product

P(z) =
N

∏
n=−N

f (zξn), f (zξn) =
A0 + a1z
1 + b1z

. (19)

Here z is an arbitrary complex variable z = iω, a1, b1 > 0 are some positive constants,
the constant A0 = |A0|eiϕ0 can be complex and accept any value. It is easy to note that the
product (19) satisfies the following relationship

P(zξ) =
f
(

zξN+1
)

f
(

zξ−N
) P(z) (20)

Further analysis of the product (20) at N >> 1 at different values of ξ leads to the
following expressions

P(zξ) ∼= λ1P(z) (21)
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The case (a) : ξ < 1.

P(zξ) = λ1 exp(iϕ0)P(z), λ1 = |A0|b1
a1

,

solution f or

P(z) = zνPr(ln z;ϕ0), ν = ln|λ1|
lnξ ,

Pr(ln z;ϕ0) = Ac0 cos(ϕ0)+

+
K>>1

∑
k=1

[
Ack cos

(
(2πk+ϕ0) ln(z)

lnξ

)
+ Ask sin

(
(2πk+ϕ0) ln(z)

lnξ

)]
,

Mesoscale region :

ωmin = c0
b1
ξN << ω << ΩMx = ξ−N

b1c0
, c0 =

∣∣∣|A0| − a1
b1

∣∣∣.

(22)

The case (b) : ξ > 1,

P(zξ) = 1
λ1

exp(−iϕ0)P(z), λ1 = |A0|b1
a1

,

solution f or

P(z) = z−νPr(ln z;−ϕ0), ν = ln|λ1|
lnξ ,

Pr(ln z;−ϕ0) = Ac0 cos(ϕ0)+

+
K>>1

∑
k=1

[
Ack cos

(
(2πk−ϕ0) ln(z)

lnξ

)
+ Ask sin

(
(2πk−ϕ0) ln(z)

lnξ

)]
,

Mesoscale region :

ωmin = c0
b1
ξ−N << ω << ΩMx = ξN

b1c0
, c0 =

∣∣∣|A0| − a1
b1

∣∣∣.

(23)

These general solutions (22) and (23) make it possible to consider more general cases
when we have a linear combination of the products

P(z) =
K

∑
k=1

N

∏
n=−N

fk(zξn), fk(z) =
A0,k + akz

1 + bkz
(24)

At N >> 1, expression (23) accepts the following form

P(z) =
K
∑

k=1
σk(z), σk(z) =

N
∏

n=−N
fk(zξn), fk(z) =

A0,k+a1,kz
1+b1,kz ,

P(zξ) ∼=
K
∑

k=1
λkσk(z), λk =

|A0,k|bk
ak

(ξ < 1), λk =

(
|A0,k|bk

ak

)−1

(ξ > 1).
(25)

Further analysis of the approximate expressions in (24) can be analyzed in complete
analogy with the previous expressions (7) (K = 3), (14) (K = 2) that lead again to the desired
linear Equations (9) and (15).

An extended review of the analysis of the realization of these power-law fractal ele-
ments can be found in [10]. The details of the appearance of many power-law dependencies
similar to the appearance of the functional Equations (9) and (15) in the corresponding
experimental measurements need special research. For us it is also important to stress one
fact. In the mesoscale region, any CPE is accompanied by complex-conjugate supplements.
In some materials modulated by RCL models, the detected impedance can be described by
a combination of power-law exponents similar to expression (13) containing a two-power
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law and more exponents. Obviously, expression (9) can be generalized. Let us assume that
from the SSP one can write the following relationship

F
(

zξL
)
=

L−1

∑
q=0

wqF(zξq),
L−1

∑
q=0

wq = 1 (26)

where the previous measurements form a specific self-similar memory. Here ξ defines the
mean scaling parameter. We also assume that the set of weights wq is normalized. In fact,
relationship (25) itself represents the functional equation with solutions similar to (13). The
complete solution of (25) can be found in [4]:

F(z) =
L−1
∑

q=1
zνq · Prq(ln(z)) + Pr(ln(z)), νk =

ln(λk)
ln(ξ) ,

where (rk)
ln(z)/ ln (ξ) = zln (rk)/ ln (ξ) ≡ zνk

Prq(ln(z) = A(q)
0 +

+
K>>1

∑
k=1

[
Ac(q)k cos

(
2πk

ln(ξ) ln(z)
)
+ As(q)k sin

(
2πk

ln(ξ) ln(z)
)]

(27)

Here the roots rq satisfy Equation (27) and they are assumed to be positive.

P(r) = rL −
L−1

∑
q=0

wqrq = 0 (28)

The log-periodic function Pr(ln(z)) in the first row in (26) should be separated because
of the normalization condition (25). It corresponds to the solution for the root r = 1 that is
verified easily by substituting solution (26) in (27).

For a negative root from (27), solution (26) should be rewritten as

F(z) = |λa|ln(z)/ lnξPa(ln z) ≡ zνa Pa(ln z), νa =
|ln(λa)|

lnξ

Pa(ln z) =
K>>1

∑
k=1

(
Ack cos

(
(2k− 1)π ln(z)

ln(ξ)

)
+ Ask sin

(
(2k− 1)π ln(z)

ln(ξ)

))
,

Pa(ln z± ln ξ) = −Pa(ln z)

(29)

If the root λg (λg > 0) found from (27) is the g-fold degenerate, then the solution for
F(z) is written as

F(z) =
(
rg
)ln z/ lnξ

g−1

∑
s=0

(
ln z
ln ξ

)s
Prs(ln z) (30)

Finally, for completeness, we should write the solution of (25) for complex-conjugate
roots rc = |rc| exp(±iϕ)

F(z) = |rc|ln z/ lnξPrc(ln z),

Prc(ln z) = A(c)
0 cos(ϕc)+

+
K>>1

∑
k=1

[
Ack cos

(
(2πk +ϕ) ln z

lnξ

)
+ Ask sin

(
(2πk +ϕ) ln z

lnξ

)]
.

(31)

We reproduce some solutions from papers [4,11,12] in order to firstly better understand
the solution of the functional Equation (25). Secondly, we would like to stress the following
fact. Irrespective of the connection with the fractional integral of a different type, the power-
law dependencies including the complex power-law part appear in the result of the solution
of the functional Equation (25) in the mesoscale region. That is why dielectric spectroscopy
can be considered as the collective motion of atoms/molecules in the mesoscale region. It
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should be stressed that the SSP is the basic one for the generation of a family of different
power-law dependencies that cannot be connected directly with the conventional fractional
integral of the R-L type or its modifications. For the interests of the fractional calculus and
its further development, it would be interesting to find the modifications of the fractional
integral for expressions (26), (27) and (30) if the variable z coincides, for example, with the
complex Laplace parameter p.

Let us take the next step and consider the nonlinear functional equation of the type

[
F
(

z · ξL
)]s

=
L−1

∑
q=0

wq[F(z · ξq)]s (32)

where the nonlinear parameter s is located presumably in the interval |s| ≤ 1 and covers
the well-known mean values for s = −1 (harmonic mean), s = 0 (geometric mean) and s = 1
(arithmetic mean). We also assume that all the functions figuring in (25) are positive. The
case s = 0 is considered as the limiting case

[
F
(

zξL
)]

= lim
s→0

[
L−1
∑

q=0
wqFs(zξq)

] 1
s
∼=

∼= lim
s→0

exp
(

1
s

)
ln

[
L−1
∑

q=0
wq(1 + s · ln(F(zξq)))

]
=

= exp

(
L−1
∑

q=0
wq ln(F(zξq))

)
=

L−1
∏

q=0
[F(zξq)]wq .

(33)

Taking into account Bellman’s inequality [5] that is valid for any positive values and
also including functions, one can conclude that

L−1
∏

q=0
[F(zξq)]wq ≤

L−1
∑

q=0
wqF(zξq),

f or all F(zξq) > 0.
(34)

Inequality (33) for the normalized values wq is the basic one. It implies that the true
mean is tightly associated with the generalized geometric mean (GGM) covering part
of the self-similar processes (q = 0, 1, . . . , L) and not with the arithmetic mean that is
conventionally accepted in signal processing theory. Another important remark is related
to the value of the scaling parameter ξ. ξ accepts an arbitrary value and can be located
presumably inside the interval Rg(ln(x)) = max(lnx) −min(lnx), i.e., lnξ < Rg(lnx), or can
exceed it. Here we consider x = Re(z). If the first condition is satisfied, then this case is
determined as “internal fractality or self-similarity”. In the opposite case, lnξ > Rg(lnx), we
have “external fractality”. A possible interval for lnξ, where hidden scaling can be located,
is determined approximately from the inequality

Lξmin ∼=
(

1
L

)
Rg(ln x) ≤ ln ξ ≤ Rg(ln x) ∼= Lξmax (35)

How can the optimal values of lnξ in the analysis of the available data be defined?
The evaluation of the true value of lnξ from the minimal fitting error value is explained in
the following section.

3. Detection of the “Hidden” Power-Law Dependencies from Real Data

Before examining the measured data, we want to make a crucial point. It is possible to
demonstrate, at least qualitatively, that any random curve J(y) expressed as a distinct trend
would behave similarly. Imagine that there are N data points on the starting curve J(y).
From these locations, a minimum of b = 3 local points are needed to generate the vector yb.
Let Ymx = max(yb), Ymn = mean(yb) and Ymin = min(yb). The new values of Ymx, Ymn and
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Ymin acquired are concatenated with the prior ones after this process is repeated inside the
sequence covering J(y/b) points.

The initial integral curve J(y) is compressed as a result of this transformation into three
tightly closed curves, Jmx(y/3) = [Ymx], Jmn(y/3) = [Ymn] and Jmin(y/3) = [Ymin], and as
a result, the resultant compressed curve has N/3 data points with unchanging features.
Thus, one may write roughly

J(y/3) ∼= aJ(y), a = max(y)−min(y) (36)

The approximate expression (35) is verified easily and numerically for any data with
a clearly expressed trend. One can develop this idea and compress the initial curve
ξ < 1 times for some range of the compression parameter b > 3 keeping this compression
parameter b as unknown. In the result of this compression, we obtain

J(yξ) ∼= λJ(y), ξ < 1 (37)

If we compare Equation (36) with expression (5) and consider the unknown parameters
λ, ξ ∼= 1/b as continuous, one can notice their complete similarity. This preliminary analysis
helps to detect a “hidden” similarity among integral curves. In Figures 1 and 2, we
demonstrate this observation numerically. In Figure 1, the integral curve obtained from
TLS and corresponding to Signal 1 having initially 5000 data points, conserves its similarity
after being compressed a hundredfold times. As the measure of its similarity, one can
take the range between the limiting curves Rg(y) = Ymx − Ymn = 0.0245. In Figure 2, we
demonstrate similarity for the compressed integral curves obtained in the same conditions
(N = 5000, b = 100, Rg(y) = 0.0157) from the integral curve corresponding to Signal 2. Other
details are given in Sections 3.1 and 3.2 below.
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Figure 2. This figure demonstrates the similarity of the integral curve obtained from the TLS corre-
sponding to Signal 2. These compressed curves are obtained in the same conditions (N = 5000 data
points, a compression parameter b = 100 and a range between compressed curves of 0.0157).

3.1. Description of Real Data

To verify the efficiency of the proposed algorithms, two sets of data were generated.
The first, subsequently designated Signal 1, comes from the simulation of a first-order
system with the transfer function

Hi(z) =
1

1 + z
(38)

with a uniform noise as input. For the simulation, the sample time is chosen equal to
Te = 0.624 ms. Thus, these data do not initially exhibit a power-law behavior.

Conversely, the second data set denoted Signal 2 was obtained under the same simula-
tion conditions, but this time simulating a fractional system of the transfer function:

H f (z) =
(

1 + z/ωh
1 + z/ωl

)0.5
ωl = 0.01rd/|z|, ωh = 1000rd/|z| (39)

For the simulation, the transfer function is approximated by a 10 poles and zeros
distribution [9,13]. Thus, these data do exhibit a power-law behavior.

3.2. Detection of the Hidden Self-Similarity

Here and below the measured data are denoted “Signal-1 (S1)” and “Signal-2 (S2)”,
correspondingly. Each signal has approximately 8 × 105 data points. Signal 1 is shown
in Figure 3. How can the number of data points be reduced and the hidden self-similar
behavior found? The desired algorithm can be divided into several successive steps. These
steps are shown in an example of the processing of Signal 1.
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S1. The initial noise band/tape having Nb data points is transformed to a rectangle
matrix having N rows (=5000) ×M columns (=160) = Nb = 8 × 105.

S2. Then for each column m having N rows, we find only three invariant points
Yup(m) = max(m), Ymn(m) = mean(m) and Ydn(m) = min(m) that do not change their values
relative to N! permutations in the fixed column. As the result of this action, we obtain three
distributions over all the columns. They are shown in Figure 4. Then, in order to suppress
the high-frequency fluctuations, we integrate these three distributions numerically by a
trapezoid relative to its mean value

Jj = Jj−1 +
1
2
(
xj − xj−1

)
·
(
∆yj−1 + ∆yj

)
,

∆y = y−mean(y) ≡ y− 1
N

N
∑

j=1
yj.

(40)

These three integral curves Jup(X), Jmn(X) and Jdn(X) (0 < X = m/M < 1) are shown
in Figure 5.

S3. Verification of the self-similarity principle. Integration of the initial trendless
sequence depicted in Figure 3 with the help of expression (39) and comparison of this
integral curve Jt(x) with the reduced integral curve Jmn(m). We should stress here again
that the first curve contains 8 × 105 data points, while the second one contains only 160
points coinciding with the number of columns. Their similarity is shown in Figure 6
for Signal S1.
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Figure 6. This plot demonstrates the similarity of the integral curve Jt(x) obtained from the total
number of data points 8 × 105 (grey rhombs) and the integral curve (bolded green line) obtained
from the curve Ymn(m).

It indicates that the three integral curves shown in the previous image are self-similar
and are characterized by a linear combination of the power-law exponents.

S4. For fitting purposes, we use the functional Equation (9) that contains in solu-
tion (13) only two possible power-law terms and the term corresponding to the root r3 = 1.
It is convenient to choose the normalized curve for all integral curves defined as

Yn(m) =
Y−mean(Y)

Range(Y)
, Range(Y) = max(Y)−min(Y) (41)

where the function Y(X) coincides with that of the integral curves Jup(X), Jmn(X) and Jdn(X).
S5. If the log-periodic corrections are removed from (13), we obtain the simplified

function that enables the desired power-law exponents to be calculated

F(z) ∼=
2
∑

l=1
A(0)

l zνl + A(0)
3 , νl =

ln(rl)
lnξ ,

r3 = w2r2 + w1r + w0.
(42)

The approximate expression (41) can be transformed into the Euler equation

D3F(z)− w2D2F(z)− w1DF(z)− w0F(z) = 0, D ≡ z
d
dz

(43)

That makes it possible to find the desired roots by the EC method [14]. After that,
one can find the decomposition coefficients before the log-periodic functions in (13) and,
finally, achieve the desired fit of the integral curves Jup(X), Jmn(X) and Jdn(X). The functions
prepared for the fitting procedure are shown in Figure 7. The minimum value of the relative
error used for calculation of the optimal ln(ξ) is shown in Figure 8. The fit of the two
functions ln(Jmn(X)) and Jmn(X) is shown in Figure 9. In Figure 10, we demonstrate the
distributions of the coefficients Ac1,3(k), As1,3(k) that figure in solution (13).
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Table 1. The set of the fitting parameters for the normalized integral curves for Signal 1.

Parameters Jmn(X) Jup(X) Jdn(X)

w2 2.42217 4.32286 1.05046

w1 −12.6581 −13.5107 −4.49261

w0 11.2359 10.1879 4.44215

lnξopt 2.68233 1.184 1.25414

|r1| 3.35201 3.19184 2.10764

arg(ϕ) 1.35704 1.02333 1.55883

ν1 0.45093 0.98023 0.59449

RelErr(Yn(X)) 1.79668 1.61183 1.58858

RelErr(ln[Yn(X)] 4.87448 3.85476 6.10436

A0 2.45115 −1.02715 0.11986
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error is given in Table 1.

S6. If the calculated weights are normalized and satisfy condition (25), then the
Bellman’s inequality is satisfied. In our case, it is expressed in the form (33). Figure 11
demonstrates the numerical verification of expression (43), relative to nonlinear parameter
s that enters into expression (31)

RelErr(s) = min
s

(
stdev

[
Yn(z)− Fit

(
[Yn(z)]s

)]
mean|Yn(z)|

)
· 100% (44)
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troduce the scaling operator as  
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Figure 11. Numerical verification of Bellman’s inequality (33) for all three functions: Jmn(X), Jup(X)
and Jdn(X).

The additional fitting parameters for the normalized integral curve Jmn(X) are shown
in Table 1. Explanation of the fitting procedure and detection of the power-law dependen-
cies requires nine figures. Therefore, for the remaining two normalized integral curves
Jup(X), Jdn(X), we show only the desired fitting parameters in Table 1. However, for Sig-
nal 2, we are forced to show some important figures for comparison with the processing
procedure of Signal 1 shown above. Figures 12–18 and their captions demonstrate the
details of the processing procedure related to Signal 2. Again, we confirm the criterion
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of a “hidden” self-similarity associated with the compressed integral curves shown in
Figures 1 and 2 and Figures 6 and 15 and show the accurate fit of the normalized function
for Jmn(X) (Figure 16).
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Here F(z1,z2,z3) is an arbitrary given function. Equation (48) represents the most gen-
eral case of the SSP for the 3D case.  
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Figure 13. Distribution of three functions Yup(m) = max(m), Ymn(m) = mean(m) and Ydn(m) = min(m)
over all the columns (M = 160) that are obtained from the initial noise band S2 depicted in Figure 12.
We note that the functions Yup(m), Ydn(m) repeat, approximately, the envelopes of the initial Signal 2.
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Figure 14. Integral distributions that are obtained from the distributions depicted in Figure 13.
The numerical integration plays the role of a specific filter helping to remove the high frequency
fluctuations and decreasing the number of the fitting parameters.
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Figure 15. This plot demonstrates the similarity of the integral curve Jt(x) obtained from the total
number of data points 8 × 105 (black balls) and the integral curve (bolded red line) obtained from the
curve Ymn(m).
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Figure 18. Numerical verification of Bellman’s inequality for all three functions Jmn(X), Jup(X) and
Jdn(X) obtained for Signal 2.

Table 2. The set of the fitting parameters for the normalized integral curves for Signal 2.

Parameters Jmn(X) Jup(X) Jdn(X)

w2 1.43606 2.37 1.65648

w1 −5.9006 −13.172 −11.2695

w0 5.46453 11.802 10.6131

lnξopt 1.75812 2.19726 1.79376

|r1| 2.33763 3.43541 3.25777

arg(ϕ) 1.47739 1.37006 1.46987

ν1 0.48298 0.56167 0.65842

RelErr(Yn(X)) 1.04105 1.33646 1.70876

RelErr(ln[Yn(X)] 3.84489 4.55068 5.14187

A0 −4.98628 171.163 −0.52067

To conclude this section, one can give the following “reading” of the SSP. Let us
introduce the scaling operator as

ÊξS(z) = S(zξ) (45)

Based on this operator, one can rewrite the basic SSP Equation (25) in the following
form

L

∏
l=1

(
Êξ − rl

)
S(z) =

((
Êξ
)L − wL−1

(
Êξ
)L−1 − . . .− w0

)
S(z) = 0 (46)
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where the decomposition coefficients in (25) (wl,) are related to the “roots” rl (l = 1, . . . , L)
in (45) as

wL−1 = (−1)L−1(r1 + r2 + . . . + rL),
.
.
.
w0 = (−1)L−1r1r2 . . . rL.

(47)

If the scaling operator’s link in Equation (44) is successful, Equation (45) immediately
provides all the potential “scalings” that may be applied to the system under consideration.
In our example, analysis of the integrated curves generated in various scales supports
Equation (44) (see Figures 1, 2, 6 and 15). As seen above, the generalized geometric mean
defined by (32) finds the global fitting minimum in perfect compliance with inequality (33)
if one of the roots in (46) coincides with the unit value.

Equation (45) admits the further generalization for the 3D case. In this case, one can
define a more general scaling operator

3

∏
k=1

Êξk S(z1, z2, z3) = S(z1ξ1, z2ξ2, z3ξ3) (48)

3

∏
k=1

Lk

∏
lk=1

(
Êξk − rlk

)
S(z1, z2, z3) = F(z1, z2, z3) (49)

Here F(z1,z2,z3) is an arbitrary given function. Equation (48) represents the most
general case of the SSP for the 3D case.

It indicates that the three integral curves shown in the previous image are self-similar
and are characterized by a linear combination of the power-law exponents.

One can note that in [15], a similar algorithm was applied to real acoustic data (sounds
captured from “a wind” and these data are available at “soundspunos.com” site), demon-
strating that the envelopes of these “noisy” data totally confirm the self-similarity principle
and can be fitted by functions containing complex-conjugated power-law addings.

4. Results and Discussion

In this paper, we demonstrated how the self-similarity principle leads to a broad
class of power-law dependencies. For linear circumstances, this concept is expressed by
expression (25), whereas for nonlinear cases, it is expressed by expression (31). As a result,
there are two categories into which all researchers studying fractional operators might be
placed. In many common equations such as diffusion, Schrödinger, wave, etc., the majority
of researchers start with mathematical generalizations of fractional integrals/derivatives
and “swap” integer operators with non-integer ones, enabling them to obtain the necessary
power-law dependencies as a result of this replacement. They acquire fresh power-law
dependencies that must be contrasted with actual data.

The lack of a tangible meaning for such mechanical replacement is its weak point.
A small portion of the research adopts a more skeptical approach and attempts to assess
experimental data and connect empirical relationships with power-law exponents related
to microscopic matter structure. This tendency is seen, for instance, in the mechanical
relaxation of viscous materials [16] and dielectric spectroscopy [17]. A large number of
studies merely ignore a group of functional equations that result in the desired power-law
dependence. The suggested self-similarity concept in this study can be a reliable source of
new power-law dependencies because it can be simply and regularly applied to numerous
complicated systems, even in the most basic scenario

F(xξ) = bF(x) + a (50)



Algorithms 2023, 16, 199 21 of 22

This functional Equation (50), as it is shown above, can be applied to many random
curves with a clearly expressed trend. It has a solution

F(x) = xνPr(ln x) + c, ν = ln b
lnξ , c = a

1−b , b 6= 1,
F(x) = Pr(ln x) + a

lnξ · ln(x), b = 1.
(51)

and contains the power-law dependencies with complex-conjugate exponents. Therefore,
rather than replacing equations containing integer powers by fractional operators, perhaps
it would be wise to pay closer attention to the SSP if we carefully evaluate the data that
are described by power laws? One of us (RRN) would like to recall the building of
the mesoscopic theory of percolation currents in electrochemistry, which was based on
the derivation of a linear self-similar Equation (15) for L = 2 [18]. Taking into account
the information on how to measure the spatial fractal dimensions provided in [19,20], it
might be useful to start with the analysis of a self-similar dynamic process and discover a
suitable fractal that corresponds to the required fractional integral in order to obtain the
matching fractional integral or derivative. Finding a class of fractals that, for example,
fulfills Equations (25) and (31) related to the self-similar principle, would be particularly
intriguing. Some efforts were made in this direction in [21]. If such a general connection
were found, then these modified fractals generated by SSP would give rise to a new class of
fractional integrals. Instead of imposing replacement equations (without clearly justifying
their physical significance) for the fitting of real data, this is a more natural technique to
connect fractals with various versions of fractional integrals. We provide the following
scheme to provide a deeper understanding of “the location” that distinguishes power-law
models from fractional models. We provide the following scheme (Figure 19).
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The SSP was founded on a dynamic/static fractal geometry model that results in the
desired power-law behavior. To establish the origin of the observed power-law behavior
with the fractal structure of the matter and likely with the fractional operator that can
accurately describe the measured data, it would be desirable for any researcher to have the
corresponding fractal model that exists in a mesoscale region.
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