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Abstract: As an essential piece of infrastructure supporting cyberspace security technology verifi-
cation, network weapons and equipment testing, attack defense confrontation drills, and network
risk assessment, Cyber Range is exceptionally vulnerable to distributed denial of service (DDoS)
attacks from three malicious parties. Moreover, some attackers try to fool the classification/prediction
mechanism by crafting the input data to create adversarial attacks, which is hard to defend for ML-
based Network Intrusion Detection Systems (NIDSs). This paper proposes an adversarial DBN-LSTM
method for detecting and defending against DDoS attacks in SDN environments, which applies
generative adversarial networks (GAN) as well as deep belief networks and long short-term memory
(DBN-LSTM) to make the system less sensitive to adversarial attacks and faster feature extraction. We
conducted the experiments using the public dataset CICDDoS 2019. The experimental results demon-
strated that our method efficiently detected up-to-date common types of DDoS attacks compared to
other approaches.

Keywords: software-defined networking; distributed denial of service; deep belief networks; long
short-term memory

1. Introduction

Cyber Range [1] has become an essential piece of infrastructure as a significant scien-
tific device for network security technology research, which is applied to network attack
and defense drills, security product evaluation, network security personnel training, and
network new technology verification. Cyber Range needs to construct NIDS to define
DDoS attacks as the main target of DDoS attacks as an essential infrastructure.

At present, NIDSs have evolved to leverage ML models to cope with detecting new
attacks. Some researchers have proposed highly accurate DDoS detection methods based on
machine learning (ML) or deep learning (DL) for SDN. For instance, Hu et al. [2] proposed
a method to realize UDP, ICMP, and IP spoofing attack detection by supporting the vector
machine (SVM) classifier of ML. Abubakar and Pranggono [3] developed a flow-based
intrusion detection system (IDS), which used neural network methods to detect attack flows.
Niaz et al. [4] implemented a DDoS detection system using a stacked automatic encoder
(SAE). Khamaiseh et al. [5] proposed a variational automatic encoder (VAE) classifier to
detect saturation attacks for the OpenFlow switch. Although these schemes can achieve
high detection accuracy for DDoS attacks, the above solutions are vulnerable to adversarial
attacks [6–10]. Attackers inject small perturbed data streams to realize adversarial attacks,
which aim to reduce the accuracy of malicious attack detection for the DL algorithm.
Adversarial examples refer to samples with characteristic disturbances intended to cause
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error classification of deep neural networks (DNN). The attackers can still successfully
execute flooding DDoS attacks by adversarial attacks under IDS-based ML or DL.

The generator of the GAN model can generate many samples to construct an adver-
sarial dataset. Using this dataset, we can avoid the challenges above in the DNN model.
The GAN model is a deep generative model capable of learning the input data distribution,
then producing new similar examples. A GAN consists of two models: a discriminator and
a generator that are trained to compete with each other. The generator captures the training
data distribution to produce fake samples resembling those from the training data. The
discriminator needs to judge whether the received data are true or untruth. The generator
and discriminator are constantly competing. Finally, the discriminator and a generator
will reach a dynamic equilibrium. However, the added adversarial dataset expands the
scale and dimension of data, and the DNN model may pay enormous computing costs to
obtain suitable parameters. Obtaining or updating models is challenging and may cause
overfitting, resulting in low scalability and a high error rate. We construct a DBN-LSTM
model as the classifier model that can accurately detect DDoS attacks in the network and
uses less time to train the model.

In this paper, we propose an adversarial DBN-LSTM method for detecting and de-
fending against DDoS attacks in SDN environments, which can be divided into four
steps: data collection, data processing, adversarial DBN-LSTM anomaly detection, and
strategy distribution.

The main contributions of this paper are summarized as follows:

(1) We utilize the GAN model to generate many examples and construct an adversarial
dataset. The perturbed samples from the adversarial dataset are added to the train-
ing data, which already contains normal and unperturbed DDoS samples, creating
augmented data samples for adversarial training.

(2) We construct a DBN-LSTM model to represent the characteristics of DDoS attacks
in SDN. This model extracts the time series information, completes the classification
of dimension-reduction data, and significantly reduces the computational cost of
large-scale data.

The rest of this paper is organized as follows: Section 2 describes the background of
Detecting and Defending DDoS Attacks in SDN Environments. Section 3 illustrates the
structure and principles of the proposed approach. The experimental results are shown in
Section 4. Finally, the conclusion of our work is given in Section 5.

2. Related Work

Madry et al. [11] proposed the adversarial robustness of neural networks through
the lens of robust optimization. They use a natural saddle point min–max formulation to
capture the notion of security against adversarial attacks in a principled manner. Their
work showed that the specially designed deep learning structure could effectively resist
adversarial attacks.

Ujjan et al. [12] proposed sFlow and adaptive polling-based sampling with a Snort
IDS and deep-learning-based model. Based on the flexible decoupling characteristics of
SDN, this method can effectively reduce the impact of DDoS attacks. On the one hand, they
deployed sFlow and adaptive polling-based sampling individually to reduce the calculation
overhead of the SDN switch in the data plane. On the other hand, they optimized the SAE
model and combined it with IDS to detect DDoS attacks in the control plane. Their work
provides an excellent example of how to use the advantages of SDN to combine the deep
learning model to realize the identification of DDoS attacks.

Zainudin et al. [13] proposed a low-cost approach for DDoS attack classification. This
study combined CNN and LSTM and designed extreme gradient boosting. Their method
can make the device not need to pay high computational power and can be well applied
to IoT devices with low computational power. Their performance results show that the
proposed model achieves high accuracy with a low time cost.
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Razib et al. [14] proposed that the DL-model-driven SDN enabled IDS to be confronted
with significantly less frequent attacks in SDN. In this study, the DNN model processes
the data, and the corresponding data are sent into the designed LSTM model. The pro-
posed model is trained on the CICIDS 2018 dataset. This model realized the detection of
network attacks with higher accuracy and precision. However, this method does not take
advantage of the characteristics of SDN and focuses more on improving the deep learning
method itself.

Novaes et al. [15] proposed an IDS based on adversarial training in SDN. The difference
from other studies is that this study further considers the impact of adversarial attacks on
the system and implements the design of the GAN framework in the SDN environment.
Their model avoids the impact of adversarial attacks and enables the model to detect DDoS
attacks more accurately. Their experiments show higher accuracy compared with similar
schemes with the public dataset CICDDoS 2019.

Alghazzawi et al. [16] proposed an effective hybrid DL model (CNN + BiLSTM)
enhanced with the feature selection approach. This method built an x2 test for feature
selection and then utilized a CNN + BiLSTM hybrid model for DDoS attack classification.
This method used the x2 test to identify highly rated features that contribute considerably
to predicting court case judgments and used a CNN to extract such high-rated features.
Moreover, these features are then input into a BiLSTM model, which maintains the prior
and future context of the provided data. This method can predict DDoS attack outcomes
from data using both optimum feature selection and CNN and BILSTM layers.

Assis et al. [17] proposed an SDN defense system based on the analysis of single IP
flow records, which uses the gated recurrent units (GRU) deep learning method to detect
DDoS and intrusion attacks. This direct flow inspection enables faster mitigation responses,
minimizing the attack’s impact on the SDN. The proposed model is tested against several
different machine learning approaches over two public datasets, the CICDDoS 2019 and
the CICIDS 2018.

Javeed [18] developed an SDN-enabled DL-driven solution for the detection of threats
in the IoT environment that is cost-effective and highly scalable. They used a hybrid tech-
nique comprising the Cuda-deep neural network long short-term memory (CuDNNLSTM)
and Cuda-deep neural network gated recurrent unit (CuDNNGRU) algorithms for efficient
threat detection. They implemented two algorithms for the comparison of our results:
Cuda-deep neural network gated recurrent unit (CuDNN-GRU) and Cuda-bidirectional
long short-term memory (CuBLSTM). Upon their comparison, they found their algorithm
to perform both efficiently and accurately.

Saini [19] used a machine-learning-based approach to detect and classify different
types of network traffic flows. The proposed approach is validated using a new dataset
experiencing various modern types of attacks such as HTTP flood, SID DoS and normal
traffic. They claimed that their algorithm produced the best results as compared to Random
Forest and Naïve Bayes algorithms.

As mentioned, DL algorithms have shown enhanced results for detecting normal
DDoS attacks. Furthermore, researchers improve DL algorithms or combine them with
relevant technologies so that their solution can perform better in an SDN environment.
However, these solutions encounter the problem of further increases in training data. That
said, the authors of [20] have already impacted the problem of adversarial attacks, simply
by applying the most basic GAN framework instead of improving it to make it applicable to
the SDN environment. Moreover, Mittal et al. [21] proposed that the deep learning model’s
accuracy depends on the preprocessed data quality. Therefore, efficient training of the DL
model requires suitable preprocessing techniques.

To solve these problems, we proposed an adversarial DBN-LSTM method for detecting
and defending DDoS attacks in SDN environments.
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3. Proposed System

We proposed architecture using an adversarial DBN-LSTM framework to detect and
defend against DDoS attacks to protect the controllers.

As shown in Figure 1, we proposed a system that consisted of four independent
modules in the application layer to protect the SDN controllers in the control plane (the
source codes cannot be shared due to privacy and the development of our application).
The system can be summarized as follows:

1. Data Collection: the SDN controller collects data from the physical and virtual
switches in the data layer.

2. Data Processing: non-numerical features collected from the switch will be converted
into numerical features.

3. Adversarial Deep Learning Anomaly Detection: this module will detect and mark the
DDoS attack through the trained deep learning model.

4. Abnormal Defensing: this module will perform corresponding operations on DDoS
attacks to avoid the harm of DDoS attacks.
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3.1. Data Collection

In this module, the SDN controller in the control layer will collect data from the
virtual and physical switches in the data layer. This work provides preconditions for the
subsequent detection of abnormal data. In the SDN environment, we use flows to define the
data passing through the switch. The flows are a packet sequence passing an observation
point in the network during a specific time interval. Previous works proposed that the data
flow collection interval should generally be 1–5 min [17]. With the increase in network
transmission bandwidth, it is feasible to reduce this time interval [18,19]. This paper defines
the collection interval as 1 s to respond to the anomalies hidden in the rapid data flows.

After an interval t, the SDN controller will send requests to switches to collect IP flow
records by OpenFlow messages. After the switches receive a request message from the
SDN controller, they will send IP flow records in time intervals t. Figure 2 represents this
process. This paper defines these IP flow records as a set βt= {α1, α2, . . . , αn}, where each
αi is a flow record.



Algorithms 2023, 16, 197 5 of 15Algorithms 2023, 16, x FOR PEER REVIEW 5 of 16 
 

 

Figure 2. The process of data collection. 

3.2. Data Processing 

We will process non-numerical and numerical features from IP flow records in data 

preprocessing. For the non-numerical features, it is necessary to use one-hot encoding to 

transform the numerical features. For original numerical features, they need to be normal-

ized in the range of (0,1) to reduce the impact of the different scales of features. The pro-

cessing above assists the next module in the anomaly detection approach. 

According to the public dataset CICDDoS 2019, this paper received 88 attributes from 

IP flow records as its features. The following attributes are included: bits/s, packets/s, 

Source IP Entropy, Source Port Entropy, Destination IP Entropy, Destination Port En-

tropy, and 82 other digital features, which include time stamp. 

We define the number of bits and packets, source IP address and port number, and 

destination IP address and port number, which belong to αi, as 

𝑘∈𝛼𝑖
𝑏𝑖𝑡𝑠,  𝑘∈𝛼𝑖

𝑝𝑎𝑐𝑘𝑒𝑡𝑠
,  𝑘∈𝛼𝑖

𝑠𝑟𝑐𝐼𝑃, 𝑘∈𝛼𝑖
𝑠𝑟𝑐𝑃𝑜𝑟𝑡 ,  𝑘∈𝛼𝑖

𝑑𝑠𝑡𝐼𝑃, and 𝑘∈𝛼𝑖
𝑑𝑠𝑡𝑃𝑜𝑟𝑡 . Other 82 digital features are the same as 

these examples. 

As non-numerical features, IP addresses and port numbers differentiate addresses. 

Under a DDoS attack occurrence, the destination IP address and destination Port number 

distribution may become concentrated due to the high number of connections requested 

by the attackers [15]. So, we need to process the data through the Shannon entropy for-

mula to evaluate whether the address of IP flow records is centralized. We define 𝑘∈𝛼𝑖
𝑠𝑟𝑐𝐼𝑃 =

{𝑘1, 𝑘2, … , 𝑘𝑛} as a set of the source IP feature belonging to αi. 𝑘𝑗 means the frequency of 

occurrences of a source IP in αi. S is the sum of all occurrences of all source IPs in αi. n 

means the number of source IPs in αi. 

For each αi, the Shannon entropy H(·) for the flow feature 𝑘∈𝛼𝑖
𝑠𝑟𝑐𝐼𝑃 is defined as source 

IP entropy, which can be processed as follows: 

𝐻(𝑘∈𝛼𝑖
𝑠𝑟𝑐𝐼𝑃) = − ∑ (

𝑘𝑗

𝑆
)

𝑛

𝑗=1
𝑙𝑜𝑔2 (

𝑘𝑗

𝑆
),  

𝑆 = ∑ 𝑘𝑗

𝑛

𝑗=1

  

The source port number, destination IP address, and port number are the same as the 

source IP.  

As the numerical features, the rate of bits and packets per second can be processed 

as follows: 

∑ 𝑘∈𝛼𝑖
𝑏𝑖𝑡𝑠

𝑛

𝑗=1
;  

∑ 𝑘∈𝛼𝑖

𝑝𝑎𝑐𝑘𝑒𝑡𝑠
𝑛

𝑗=1
.  

Moreover, the other 82 digital features that can be processed are the same as the 

above features. 
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3.2. Data Processing

We will process non-numerical and numerical features from IP flow records in data
preprocessing. For the non-numerical features, it is necessary to use one-hot encoding
to transform the numerical features. For original numerical features, they need to be
normalized in the range of (0,1) to reduce the impact of the different scales of features. The
processing above assists the next module in the anomaly detection approach.

According to the public dataset CICDDoS 2019, this paper received 88 attributes from
IP flow records as its features. The following attributes are included: bits/s, packets/s,
Source IP Entropy, Source Port Entropy, Destination IP Entropy, Destination Port Entropy,
and 82 other digital features, which include time stamp.

We define the number of bits and packets, source IP address and port number, and desti-
nation IP address and port number, which belong toαi, as kbits

∈αi
, kpackets
∈αi

, ksrcIP
∈αi

, ksrcPort
∈αi

, kdstIP
∈αi

,
and kdstPort

∈αi
. Other 82 digital features are the same as these examples.

As non-numerical features, IP addresses and port numbers differentiate addresses.
Under a DDoS attack occurrence, the destination IP address and destination Port number
distribution may become concentrated due to the high number of connections requested
by the attackers [15]. So, we need to process the data through the Shannon entropy
formula to evaluate whether the address of IP flow records is centralized. We define
ksrcIP
∈αi

= {k1, k2, . . . , kn} as a set of the source IP feature belonging to αi. k j means the
frequency of occurrences of a source IP in αi. S is the sum of all occurrences of all source
IPs in αi. n means the number of source IPs in αi.

For each αi, the Shannon entropy H(·) for the flow feature ksrcIP
∈αi

is defined as source
IP entropy, which can be processed as follows:

H
(

ksrcIP
∈αi

)
= −∑n

j=1

( k j

S

)
log2

( k j

S

)
,

S =
n

∑
j=1

k j

The source port number, destination IP address, and port number are the same as the
source IP.

As the numerical features, the rate of bits and packets per second can be processed
as follows:

∑n
j=1 kbits

∈αi
;

∑n
j=1 kpackets

∈αi
.

Moreover, the other 82 digital features that can be processed are the same as the above
features.
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3.3. Adversarial DBN-LSTM Anomaly Detection

In this module, we will judge whether the IP flow record is abnormal according to
its features by sending it into the adversarial DBN-LSTM model. Firstly, we propose an
effective method to produce many normal, DDoS, and adversarial DDoS samples by the
GAN model. Then, the Classifier model will be trained by the above samples. DBN and
LSTM construct the Classifier model. In the following, we briefly introduce the training
process based on the GAN and Classifier models used in this work. The whole training
process is shown in Figure 3.
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The GAN model mainly includes the generator (G) and discriminator (D) models. The
G model needs to learn the original data distribution to generate untruth data to fake the D
model. The discriminator needs to judge whether the received data are true or untrue.

The generated samples come from the G model by random noise in this paper. Further-
more, some of the data in the original dataset receive disturbance to generate adversarial
samples. The generated samples and adversarial samples will be sent to the D model. More-
over, the D model determines the probability that the samples belong to the adversarial
samples. This competition is equivalent to a minima x two-player game. The generator
and discriminator are constantly competing. Finally, the G model and D model will reach a
dynamic equilibrium.

The structure of the D model is the same as the G model. However, they have different
objective functions and stochastic gradients.

For the D model, its objective function and stochastic gradients are presented as follows:

MaxEx∼Pdata [logD(x)] + Ey∼PG [log(1− D(y))]

∇θD

1
m + 1

m+1

∑
i=1

[
logD

(
xi
)
+ log

(
1− D

(
yi
))]

For the G model, its objective function and stochastic gradients are presented
as follows:

min MaxEx∼Pdata [logD(x)] + Ey∼PG [log(1− D(y))]

∇θG

1
m + 1

m+1

∑
i=1

[
log
(

1− D
(

yi
))]
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x ∼ Pdata is the data from the original distribution, xi is the No. i IP flow record, D(x)
is the probability of the original adversarial data, y ∼ PG is the data from the generated
distribution by G, and D(y) is the probability of generated data. In particular, we obtained
the initial y ∼ PG based on the perturbation of x ∼ Pdata, which is based on the FGSM
algorithm, as follows:

WT ·yi
1 = WT ·xi + WT ·εsign(∆JX(x, x∼, θ))

The GAN model training steps are continuously implemented until the D model
cannot identify the generated samples from the G model or reach t iterations training. The
whole process is as Algorithm 1.

Algorithm 1 The GAN model training steps

Require: the G model; the D model; the Training dataset
1: Initialize θD and θG
2: while t iterations training or stop condition not met do
3: for depoch do
4: Sample

{
x1, x2, . . . , xm+1} from Pdata

5: Sample
{

y1
1, y2

1, . . . , ym+1
1

}
from PG

6: Generates zi = G
(

yi
)

by G

7: Calculate θD = θD − η∇θD
1

m+1 ∑m+1
i=1

[
logD

(
xi
)
+ log

(
1− D

(
zi
))]

8: end for
9: Sample

{
y1

2, y1
2, . . . , ym+1

2

}
from PG

10: Calculate θG = θG − η∇θG
1

m+1 ∑m+1
i=1

[
logD

(
xi
)
+ log

(
1− D

(
yi

2

))]
11: end while
12:
13: return G and D

After reaching a dynamic equilibrium, the G model generates many samples, which
are used to fool the Classifier model, to construct an adversarial dataset. Then, the Classifier
model randomly extracts n samples from the adversarial dataset and m samples from the
training dataset. After aggregating into a complete set, these samples will be extracted
features by the Classifier model. We use the DBN algorithm to complete the process of
extracting features. In this paper, we define v(0) as the visible layer. The complete set,
which the Classifier model constructs, provides its data. For a neuron h(0)j in the hidden
layer, the activation function is as follows:

P
(

h(0)j

∣∣∣ν(0)) = σ
(

Wj · ν(0) + aj

)
In the above function, σ is the activation function, ai is a bias coefficient and Wj is

the weight. For these neurons in the same layer, their activation functions are calculated
independently, so they can be identified as follows:

P
(

h(0)
∣∣∣ν(0)) = ΠN

j=1P
(

h(0)j

∣∣∣ν(0))
In the above function, N is the number of neurons in the hidden layer. Then, we need

to implement one-step Gibbs sampling to obtain the value. The calculation function is
as follows:

h(0) ∼ P
(

h(0)
∣∣∣ν(0))

Then, the visible layer and h(0) will reconstruct the following calculation, which is
shown as follows:

P
(

v(1)i

∣∣∣h(0)) = σ
(

WT
i · ν(0) + bi

)
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bi is a bias coefficient. The activation functions are also calculated independently for
the visible layer’s probability distribution. So, they can be calculated as follows:

P
(

ν(1)
∣∣∣h(0)) = ΠM

i=1P
(

v(0)i

∣∣∣h(0))
In the above formula, M is the number of neurons in the visible layer. We will

implement one-step Gibbs sampling to obtain the value as well as the calculation function
of ν(1), as follows:

v(1) ∼ P
(

v(1)
∣∣∣h(0))

Then, we need to recalculate the activation functions of the hidden layer. The specific
calculation is as follows:

P
(

h(1)i

∣∣∣v(1)) = σ
(

WT
i · v(1) + ai

)
Finally, we can update the W, a, and b according to the previously calculated functions.

The calculation is as follows:

W = W + λ·
(

P
(

h(0)
∣∣∣ν(0))·ν(0)T − P

(
h(1)

∣∣∣ν(1))·ν(1)T)

a = a + λ·
(

P
(

h(0)
∣∣∣ν(0))− P

(
h(1)

∣∣∣ν(1)))
b = b + λ·

(
ν(0) − ν(1)

)
In the above formula, λ is the learning rate of the DBN algorithm. When the parameters

of W, a, and b are not changing, the parameters will stop updating. It means these features
in the hidden layer can represent the data in the visible layer. Furthermore, the dimension
of the hidden layer is significantly less than the visible layer, reducing the difficulty of data
processing. After the DBN algorithm steps, the complete set aggregated by the Classifier
model can effectively represent the original data with fewer dimension features.

Then, the extracted features and reduced dimensions will be sent to the LSTM. In the
LSTM, in the training of the time sequence t, the output of the forget gate ft is determined
by the hidden state of the previous sequence ht−1 and current sequence data xt as follows:

ft = σ(Wt·ht−1 + U f ·xt + b f )

Wt and U f represent the weights of the hidden state of the previous sequence and the
current sequence data, respectively, and b f is the bias coefficient of the forget gate. The
output ft represents the probability of forgetting the previous hidden cell state. Moreover,
σ is the sigmoid function.

The input gate consists of two parts, one of which uses sigmoid as the activation
function to obtain the intermediate variable it and the other of which uses tanh as the
activation function to obtain the intermediate variable at, as follows:

it = σ(Wi·ht−1 + Ui·xt + bi)

at = tan h(Wa·ht−1 + Ua·xt + ba)

The current cell state ct will update by it, at and ft as follows:

ct = ct−1 ∗ ft + it ∗ at

ct−1 is the previous hidden cell state. With the updated hidden cell state, the output of
the LSTM unit can be calculated through the output gate, which is also the third gate in the
LSTM unit. There are two outputs of the output gate as follows:
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ot = σ(Wo·ht−1 + Uo·xt + bo)

ht = tan h(Wh·ht−1 + Uh·xt + bh)

After obtaining the two variables, the output gate transmits them to the next time
step (the next LSTM unit). In this paper, we use four-layer LSTM units to construct the
LSTM network by training the accuracy of different numbers of layers of LSTM. After
multiple training rounds, the Classifier model can output a judgment result about the IP
flow records.

3.4. Abnormal Defending

Once the adversarial DBN-LSTM anomaly detection module detects a DDoS attack,
this module will execute an exception prevention mechanism. Based on event-condition-
action (ECA), we can set the corresponding trigger rules for the SDN controller at the
application layer. Once the previous module detects a DDoS attack, it will send a message
to the SDN controller to drop corresponding packets. We will set a list to record these
IPs’ ports to avoid some normal packets being discarded, similar to DDoS attacks. The
mitigation process is summarized as follows in Algorithm 2.

Algorithm 2 Abnormal Defending Process

Require: Suspect flows βt
1: Identify the suspect flows based on IP addresses and ports that make the analysis interval
anomalous
2: Identify the destination IP address that receives the most flows
3: Identity in those flows the attackers’ IP address, which has the same destination port
4: If IPs e ports are on the Safe List then
5: Forward packets
6: Else
7: Drop packets
8: End if

4. Experimental Results and Discussion

This section introduces evaluating indicators and experimental parameter settings.
In addition, we selected some documents of the same type for performance comparison.
Our experimental environment is a computer with an intel Core 12700H processor with
fourteen cores, 16 GB RAM, and NVIDIA® GeForce GTX 3060 6 GB laptop GPU.

4.1. Evaluating Indicator

To better compare the performance with similar papers, we adopt four traditional
indicators: Accuracy (A), Precision (P), Recall (R), and F1 Score (F1). The A represents the
probability of the IP flow records being correctly identified. The P represents the percentage
of actual DDoS attacks in determined DDoS attacks. The R represents the percentage of
DDoS attacks detected in all DDoS attacks. As for F1, it is the harmonic between R and P.
Their specific formula is defined as follows:

Accracy =
TP + TN

TP + FP + TP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2× Precision× Recall
Precision + Recall
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TP means True Positive. TN represents True Negative. FP means False Positive.
Moreover, FN means False Negative.

4.2. Experimental Setup

To improve the performance of the adversarial DBN-LSTM anomaly detection module,
we evaluate the impact of the minibatch size, the learning rate on the DBN algorithm,
and the number of layers of LSTM in the Classifier model. As for the GAN model, part
parameters were set as dropout with 0.1, the learning rate with 0.001, and the optimizer
with Adam. These parameters can achieve quite good performance.

Firstly, we set six different minibatch sizes to evaluate the length of epoch required for
the convergence of different sizes. As shown in Figure 4, when we set the minibatch size to
32, we can obtain convergence with 86 batches. The convergence speed is superior to other
minibatch sizes.
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Figure 4. Accuracy of different Minibatch sizes.

Then, we compare the effect of the learning rate on the convergence training time.
As shown in Figure 5, we can obtain the best result when we set the learning rate as 1.00.
Therefore, the learning rate should be set as 1.00.

Finally, we need to determine the effect of an LSTM structure with different layers on
the results. We selected LSTM structures with two, three, and four layers for a performance
test in the rate of decline of training loss and the training accuracy of discrimination. As
shown in Figures 6 and 7, four layers of LSTM obtain the best performance.

To avoid the difference between the training and test datasets, we compare the accuracy
of LSTM structures with different layers in the test dataset. As shown in Figure 8, four-layer
LSTM obtained higher accuracy than other LSTM structures. Therefore, we use a four-layer
LSTM to construct the Classifier model with DBN.

4.3. Experimental Results

To accurately evaluate the performance comparison of this paper in real situations,
we select CICDDoS2019. The CICDDoS 2019 dataset separates the data into two days. The
first one is a training day, containing 12 types of different DDoS attacks, including DNS,
MSSQL, Syn, NetBIOS, LDAP, SNMP, NTP, UDP-Lag, SSDP, WebDDoS, TFTP and UDP.
The second is a testing day, containing six different types of DDoS attacks, which are Syn,
UDP, NetBIOS, LDAP, UDP-Lag, and MSSQL. To make it easier for readers to understand,
the above description has been added to the paper. The dataset uses CICFlowMeter to
extract more than 80 features from the dataset and has a total of 50063112 records, including
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50006249 DDoS attacks and 56863 normal samples. As for the evaluating indicators, we
have given these indicators in Section 4.1. They are the Accuracy, Precision, Recall, and
F1 Score.
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We select four representative deep learning methods from GAN [15], CNN [22],
LSTM [23], and MLP [24]. For the above paper, we reset and verified the results based on
CICDDoS2019. The division of the training set and the test set is the same as that of this
article. Moreover, we have not changed the relevant parameter settings. Figure 9 shows
that we give comparison results based on the evaluating indicators. Additionally, we took
the average of five experiments after stabilization.
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For Accuracy, our method reached an accuracy rate of 96.55%, which is higher than
other methods. In the evaluating indicator, refs. [15,22] obtained virtually identical results
(their difference is less than 0.12%). For [23,24], they reached 90.39% and 92.12%, respec-
tively. For Precision, our method reached a rate of 96.44%. Ref. [22] reached a similar result
(0.236% less than our method). Refs. [15,23,24] achieved results of 94.08%, 90.12%, and
92.12%, respectively. Like Recall, our method achieves a rate of 98.53% for the evaluating
indicator. Compared with [15,22–24], our method is 0.64%, 6.12%, 9.1%, and 13.75% higher
than these methods. As the harmonic between Recall and Precision, our method reaches
the best result with 97.47%. The methods of [15,22–24] reach 95.94%, 92.81%, 89.77%, and
88.80%, respectively.

Furthermore, we construct a testing dataset of adversarial DDoS attacks based on
the testing day of CICDDoS2019 using the FGSM algorithm. We used this dataset to test
whether our method can resist adversarial attacks. We compared the DBN-LSTM and LSTM
models without GAN. As shown in Table 1, the accuracy of our method in identifying
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adversarial DDoS attacks can reach 91.23%. The DBN-LSTM and LSTM models without
GAN can hardly resist adversarial DDoS attacks (less than 8%).
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Table 1. Comparison outcomes on our method, DBN + LSTM, and LSTM.

Accuracy False

Our method 91.23% 8.77%
DBN + LSTM 7.62% 92.38%

LSTM 6.34% 93.77%

As mentioned above, we reached the best outcomes on the evaluating indicators. Our
proposed method can effectively detect DDoS attacks and adversarial DDoS attacks.

5. Conclusions

This paper proposed an adversarial DBN-LSTM method for detecting and defending
DDoS attacks. We designed four modules on the application plane: data collection, data
processing, adversarial DBN-LSTM anomaly detection, and abnormal defending. First, the
SDN controller realizes the fine-grained monitoring and collection of IP flow records in a
complex network environment. Then, the IP flow records are preprocessed by normaliza-
tion and the Shannon entropy formula. Finally, we designed the adversarial DBN-LSTM
anomaly detection method. We can quickly generate many adversarial samples and build
adversarial datasets using the GAN model. Furthermore, we introduced DBN for data
dimensionality reduction and used LSTM to extract sample timing features to detect IP
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flow records and identify adversarial DDoS attacks. Finally, we designed an abnormal
defending strategy to provide SDN controllers. Our experiments show that our method can
effectively detect DDoS attacks and make the system less sensitive to adversarial attacks.
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