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Abstract: Gaussian mixture modeling is a generative probabilistic model that assumes that the
observed data are generated from a mixture of multiple Gaussian distributions. This mixture model
provides a flexible approach to model complex distributions that may not be easily represented by a
single Gaussian distribution. The Gaussian mixture model with a noise component refers to a finite
mixture that includes an additional noise component to model the background noise or outliers in
the data. This additional noise component helps to take into account the presence of anomalies or
outliers in the data. This latter aspect is crucial for anomaly detection in situations where a clear,
early warning of an abnormal condition is required. This paper proposes a novel entropy-based
procedure for initializing the noise component in Gaussian mixture models. Our approach is shown
to be easy to implement and effective for anomaly detection. We successfully identify anomalies
in both simulated and real-world datasets, even in the presence of significant levels of noise and
outliers. We provide a step-by-step description of the proposed data analysis process, along with the
corresponding R code, which is publicly available in a GitHub repository.

Keywords: Gaussian mixture modeling; cluster analysis; noise component; outliers; entropy of
Gaussian mixtures; EM algorithm

1. Introduction
1.1. Motivation

Anomaly detection is a critical problem in many applications, ranging from security
and fraud detection to quality control and health monitoring. With the increasing amount of
data generated in today’s world, it is becoming increasingly important to develop efficient
and accurate methods for detecting anomalies in large and complex datasets.

Finite mixture models are a popular statistical technique for modeling complex data
distributions [1]. Gaussian mixture models (GMMs), a specific type of finite mixture model,
assume that the underlying distribution of the data is composed of a mixture of multiple
Gaussian distributions. GMMs have been widely used in various scientific fields, including
computer vision, pattern recognition, and supervised and unsupervised learning. Gaussian
mixtures have also proven to be a valuable and flexile tool in analyzing biological data,
ranging from identifying different populations within a dataset to modeling complex and
multimodal distributions. For instance, Yeung et al. [2] and McLachlan et al. [3] applied
Gaussian mixtures for clustering gene expression data, while Najarian et al. [4] employed
Gaussian mixtures to identify differentially expressed genes between two or more groups
of samples. GMMs were also used for the identification of gene pathways and interactions
by Ko et al. [5] and for predictive modeling in protein dynamics by Hirsch and Habeck [6].

In the context of anomaly detection, GMMs can be used to model the distribution
of the bulk of the data and to identify those observations that deviate significantly from
the expected pattern. This can be performed by computing the density of each data point
according to the estimated GMM and flagging any observations with low densities as
anomalies. However, for this approach to be effective either reliable and robust estimates
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of the mixture parameters are required, or the model should explicitly incorporate an addi-
tional component for the presence of noise and outliers. In fact, a potential disadvantage
of the GMM framework is its sensitivity to the presence of outliers and noise in the data.
This can negatively impact the estimation of model parameters and the performance of the
model. Furthermore, outliers and noise can be especially problematic in anomaly detection
tasks, where the goal is to identify those cases that deviate from the distribution of most
data points.

1.2. Related Work

There are several commonly used approaches to accommodate noise and outliers in
GMMs, including the following: (i) adding one or more components to the mixture to
represent noise and modifying the EM algorithm accordingly to estimate parameters [7–9];
(ii) relaxing the normality assumption of the components, while preserving elliptical
contours of clusters, by using mixtures of heavy-tailed distributions, such as mixtures
of t distributions [1], mixtures of power exponential distributions [10], and mixtures of
contaminated normal distributions [11]; (iii) downweighting or completely discarding a
proportion of the observations by trimming [12–14]. The last two approaches aim to make
the statistical estimation of mixture models more robust, rather than specifically identifying
anomalies. In contrast, our proposal seeks to improve the methodology of the first approach
for the specific purpose of identifying anomalies.

1.3. Aim and Organization of the Paper

In this paper, we address the issue of noise and outliers in GMMs for anomaly detection.
This is pursued by introducing a novel entropy-based procedure for initializing a uniform
noise component in the Gaussian mixture model.

This paper is organized as follows. Section 2 provides an overview of the mixture-
based approach that includes an additional noise component to improve the robustness of
GMMs in the presence of contaminants. Next, a novel solution based on estimating the
entropy of a GMM is presented and discussed. This solution can be used to initialize the
noise component in the EM algorithm and mitigate the impact of noise and outliers on
the performance of GMMs in anomaly detection tasks. Section 3 presents some examples
of data analysis using both simulated and real datasets to illustrate the effectiveness of
the proposed approach. The final section of this paper concludes by highlighting the key
contributions of our work.

2. Materials and Methods
2.1. Gaussian Mixtures in Model-Based Clustering and Density Estimation

Model-based clustering assumes that the observed data are generated from a mixture
of G components, each representing the probability distribution for a different group
or cluster [1,15]. For continuous data, the density of each mixture component is often
described by the multivariate Gaussian distribution. Thus, the general form of a Gaussian
mixture model (GMM) is

f (x) =
G

∑
k=1

πkφ(x|µk, Σk), (1)

where πk represents the mixing probabilities, so that πk > 0 and ∑G
k=1 πk = 1, φ(·)

is the multivariate Gaussian density with parameters (µk, Σk) (k = 1, . . . , G). Clusters
described by a GMM are ellipsoidal, centered at the means µk, and with other geometric
characteristics (such as volume, shape, and orientation) determined by the covariance
matrices Σk. Parsimonious parameterization of covariance matrices can be controlled by
introducing some constraints on the covariance matrices through the following eigen-
decomposition [16,17]:

Σk = λkUk∆kU>k , (2)
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where λk = |Σk|1/d is a scalar, which controls the volume, ∆k is a diagonal matrix, such that
|∆k| = 1 and with the normalized eigenvalues of Σk in decreasing order, which controls
the shape, Uk is an orthogonal matrix of eigenvectors of Σk, which controls the orientation.
A list of 14 parameterizations available in the R [18] package mclust [19] is included in
Scrucca et al. ([20], Table 3).

Given a random sample of observations {x1, x2, . . . , xn} in d dimensions, the log-
likelihood of a GMM with G components is given by

`(θ) =
n

∑
i=1

log

{
G

∑
k=1

πkφ(xi; µk, Σk)

}
. (3)

where θ = (π1, . . . , πG−1, µ1, . . . , µG, Σ1, . . . , ΣG) are the parameters to be estimated.
Maximizing the log-likelihood function (3) directly is often complicated, so maximum

likelihood estimation (MLE) of θ is usually performed using the EM algorithm [21] by
including component membership as a latent variable. The EM algorithm consists of two
steps: the E-step (Expectation step) and the M-step (Maximization step). In the E-step, the
algorithm calculates the expected membership probabilities of each data point to each of
the mixture components based on the current estimates of the model parameters. In the
M-step, the algorithm updates the model parameters by maximizing the likelihood of the
observed data given the estimated membership probabilities. These two steps are repeated
until convergence or a maximum number of iterations is reached. Details on the use of the
EM algorithm in finite mixture modeling is provided by McLachlan and Peel [1], while a
thorough treatment and further extensions can be found in McLachlan and Krishnan [22].

Following the fitting of a GMM and the determination of the MLEs of parameters, the
maximum a posteriori (MAP) procedure can be used to classify the observations into the
most likely cluster. For an observation xi, the posterior conditional probability of it coming
from the mixture component k is given by

ẑik =
π̂kφ(xi; µ̂k, Σ̂k)

G

∑
g=1

π̂gφ(x; µ̂g, Σ̂g)

. (4)

Then, the observation is assigned to the mixture component with the largest posterior
conditional probability, i.e., xi ∈ Ck∗ with k∗ = arg maxk ẑik.

2.2. Model Selection

Given that a wide variety of GMMs in (1) can be estimated by varying the number of
mixture components and the covariances’ decomposition in (2), selecting the appropriate
model is a crucial matter. A popular option consists of choosing the “best” model using the
Bayesian information criterion (BIC; [23]), which for a given modelM is defined as

BICM = 2`M(θ̂)− νM log(n),

where `M(θ̂) stands for the maximized log-likelihood of the data sample of size n under
modelM and νM for the number of independent parameters to be estimated. Another
available option in clustering is the Integrated Complete Likelihood (ICL; [24]) criterion
given by

ICLM = BICM + 2
n

∑
i=1

G

∑
k=1

cik log(ẑik),

where ẑik is the conditional probability that xi arises from the kth mixture component from
Equation (4), and cik = 1 if the ith observation is assigned to cluster Ck and 0 otherwise.

Both criteria evaluate the fit of a GMM to a given set of data by considering both the
likelihood of the data given the model and the complexity of the model itself, represented
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by the number of parameters to be estimated. Compared to the BIC, the ICL introduces a
further penalization for the overlap of the clusters. For this reason, the ICL tends to select
models with well-separated clusters.

2.3. Including a Noise Component in Gaussian Mixtures

In the finite mixture framework, noisy data are characterized by the presence of
outlying observations that do not belong to any mixture component. A strategy for accom-
modating noise is to include a uniform component with support in the convex hull of the
data [7] resulting in the following mixture log-likelihood:

`(θ, π0) =
n

∑
i=1

log

{
π0

V
+

G

∑
k=1

πkφ(xi | µk, Σk)

}
, (5)

where V is the hyper-volume of the data region and π0 is the mixing weight associated
with the noise component, with the mixing weights under the constraint ∑G

k=0 πk = 1.
An observation contributes V−1 to the likelihood if it belongs to the noise component;
otherwise, its contribution comes from the Gaussian components.

The effectiveness of this approach hinges on obtaining an estimate of the hyper-
volume and a good initial specification of the noise to be used for starting the EM algorithm.
The estimate of the hyper-volume can be computed using different approaches, such as
the following:

1. The volume of the convex hull, i.e., the smallest convex polygon that contains all the
data points;

2. The volume of the ellipsoid hull, i.e., the ellipsoid of minimal volume such that all
observed points lie either inside or on the boundary of the ellipsoid;

3. The volume computed as the minimum between the hyper-rectangle containing the
observed data and the box obtained from principal components.

The first option would be the most accurate, but computing the convex hull of high-
dimensional data can be challenging, as the number of vertices of the hull grows expo-
nentially with the number of dimensions. The second option is computationally feasible
even in high dimensions, but it is often inaccurate, as the volume of the ellipsoid hull can
be significantly larger than the volume of the convex hull. A simple and fast approxima-
tion to the hyper-volume of the data can be computed using the last option. In fact, the
hyper-rectangle is the simplest bounding box that can be used to enclose the data, while
the box obtained from the principal components is a more sophisticated method that takes
into account the shape and orientation of the data. By taking the minimum between these
two volumes, an estimate of the volume of the convex hull can be obtained. Note that the
function hypvol() of R package mclust uses this approach by default.

Regarding the initial denoising, some possible strategies include methods based on
Voronoï tessellation [25], nearest neighbors [26], and robust covariance estimation [27]. In
this paper we propose the use of data points’ contribution to the entropy of the estimated
GMM to obtain an initial specification of noisy and outlying data points.

2.4. Initial Noise Detection Using Entropy Contribution of Data Points

Entropy is a measure of average uncertainty or information content in a random
variable that plays a central role in information theory [28]. For a multivariate continuous
random variable X ∈ Rd with probability density function f (x), the entropy is defined as

H(X) = −
∫
X

f (x) log f (x) dx = −E[log f (x)], (6)

where X = {x : f (x) > 0} is the support of the random variable [29].
A mixture-based estimate of the entropy has been recently proposed by Robin and

Scrucca [30]. Assuming that the distribution of the multivariate random variable X can
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be expressed as a finite mixture of Gaussian components, the proposed estimate is easily
obtained in practice using

Ĥ(X) = − 1
n

n

∑
i=1

log f̂ (xi; θ̂) =
n

∑
i=1

hi. (7)

where f̂ (xi; θ̂) is the mixture-based estimate of the density from Equation (1) with θ̂ the
MLE of the mixture parameters. Thus, an estimate of the entropy is obtained by summing
over the contribution

hi = −
1
n

log f̂ (xi; θ̂)

from each data point. This can also be interpreted as a measure of the degree of anomaly or
outlierness of each observation.

A data-driven automatic procedure for selecting the initial outlying observations can
be based on a comparison of the entropy contributions hi, for i = 1, . . . , n, with those arising
from a uniform distribution over the hyper-rectangle enclosing the data. Recalling that the
entropy of a multivariate continuous uniform distribution is given by

H(U) = −
∫
U1

∫
U2

· · ·
∫
Ud

V−1 log(V−1) du1du2 . . . dud = log(V).

Then, the contribution of each data point under the uniform distribution model can be
computed as

ui = log(V)/n for all i = 1, . . . , n.

A preliminary noise assignment is made by defining the set C̃0 = {xi : hi > ui}, with
ñ0 = #{C̃0} giving the number of initial noisy data. The remaining n− ñ0 observations are
then partitioned using, for instance, model-based agglomerative clustering [31], to obtain
C̃k = {xi : hi ≤ ui ∧ xi ∈ Pk}, where Pk is the kth part of the partition with size ñk = #{C̃k}
for k = 1, . . . , G, so that n = ñ0 + ñ1 + · · ·+ ñG. With this initial partition, the log-likelihood
in (5) can be maximized using the EM algorithm. As a final result, the clusters C1, . . . , CG and
the group of anomalies C0 are estimated, such that {C0 ∪ C1 ∪ · · · ∪ CG} = {x1, x2, . . . , xn}
and Cj ∩ Ck = ∅ for j 6= k.

The general approach to anomaly detection proposed in this paper is summarized in
Algorithm 1.

Algorithm 1: Anomaly detection algorithm

Input:
• Data matrix X of n observations on d variables or features.
Steps:
1. Fit a GMM by maximizing the log-likelihood in (3) via the EM algorithm.
2. Compute the contribution of each data point hi to the entropy.
3. Select the initial noisy data by comparing the hi values with the reference

values ui derived assuming a uniform distribution for the anomalies.
4. Fit a GMM with the noise component by maximizing the log-likelihood in (5)

via the EM algorithm.
Output:
• Parameters estimate (π̂0, π̂1, . . . , π̂G, µ̂1, . . . , µ̂G, Σ̂1, . . . , Σ̂G);
• Probability for each data points to belong to one of the cluster or the noise

component;
• Clustering partition C = {C0, C1, . . . , CG}.
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3. Results

In this section, the proposed methodology for anomaly detection will be illustrated
through examples utilizing both simulated and real datasets. The effectiveness of the
approach will be showcased under controlled conditions through the use of simulated
datasets and its practical utility in a real-world scenario will be discussed. Through these
examples, the strengths of the approach and its ability to accurately detect anomalies in
complex data will be highlighted.

3.1. Gaussian Distribution with Outliers

Consider the dataset shown in Figure 1a generated from a bivariate Gaussian distribu-
tion with additional outliers added at the outskirts. According to the BIC criterion shown
in Figure 1c, the optimal GMM estimated on this dataset is a two-component Gaussian
mixture with covariance matrices having equal shape and orientation but different volume
(VEE,2). Figure 1b shows the scatterplot with data points marked according to the GMM
classification and the ellipses corresponding to the estimated cluster covariances. The
presence of anomalies leads to the selection of a larger number of components, with an
inflated covariance matrix for the second Gaussian component.
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Figure 1. Scatterplot of first synthetic data example with data points generated from a Gaussian
distribution with outliers at the outskirts (a). Estimated GMM with points marked by colors and
symbols according to the GMM classification, ellipses corresponding to estimated cluster covariances,
dashed lines referring to principal axes, and ∗ to the cluster means (b). BIC traces for the selection of
the optimal GMM model (c).
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Figure 2a shows a plot of the entropy contribution values hi against the probability
points pi = (i− 0.5)/n, for i = 1, . . . , n. Note that the hi values are sorted in non-decreasing
order, which explains the increasing pattern observed in the graph. The dashed line refers
to the entropy contribution from the uniform noise, so observations above that line can
be included in the initial set of anomalies. Figure 2b shows a scatterplot with data points
marked according to the initial classification of noise and with size proportional to the
entropy contribution. It is easily seen that the points with the largest contribution are those
far from the bulk of the data.
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Figure 2. Entropy contribution of each data point in the first synthetic dataset, with dashed horizontal
line from uniform noise for reference (a). Scatterplot of data points marked according to the initial
classification of noise and with size proportional to the entropy contribution (b).

We then initialized the noise component using the identified data points as shown in
Figure 2. The BIC traces in Figure 3a provide clear evidence that the data can be modeled
using a single Gaussian component along with a noise component. Figure 3b confirms
that the model successfully identifies the presence of a single Gaussian component despite
the presence of some outliers in the data. A comparison of entropy contribution from the
model without and the model with a noise component can be seen in Figure 3c. In the
latter, the contribution from the outliers appears to flatten.

Finally, we note that for this simple case the anomaly detection procedure has both
sensitivity and specificity equal to 1.
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Figure 3. BIC traces for the selection of the optimal GMM with the noise component on the first
synthetic data example (a). Scatterplot of data points marked by colors and symbols according to the
classification (identified anomalies are represented with the + symbol) from the estimated GMM with
the noise component, ellipse corresponding to estimated cluster covariance, dashed lines referring to
principal axes, and ∗ to the cluster means (b). Plot of entropy contribution values hi for the model
without and with the noise component (c).

3.2. Three-Component Gaussian Mixture with Uniform Random Noise

In this second synthetic data example, a bivariate dataset is simulated from a three-
component Gaussian mixture with equal mixing weights, different covariance matrices
across components, and several noisy data points added from a uniform distribution over
a square. The resulting dataset is shown in Figure 4a. The optimal GMM selected by BIC
is a four-component Gaussian mixture with covariance matrices having varying volume,
shape, and orientation (VVV,4; see Figure 4c). Figure 4b shows the scatterplot with data
points marked according to the GMM classification and the ellipses corresponding to the
estimated cluster covariances. A component with a large covariance is also necessary in
this scenario to account for the noise present in the data.

Figure 5a contains the graph employed for the identification of the observations to be
used in the initialization of the noise component, while the scatterplot in Figure 5b shows
their distribution in the features space.

The optimal GMM with an additional component to account for anomalies is the three-
component Gaussian mixture with covariance matrices having equal shape but varying
volume and orientation (VEV,3; see Figure 6a). Figure 6b shows the scatterplot with data
points marked according to the GMM classification (including the noise component). As a
result, most of the simulated outliers are identified by the final model. Finally, a comparison
of the entropy contribution from the model without and the model with a noise component
can be seen in Figure 6c. From this graph it can be seen that the contribution to the overall
entropy is mostly reduced for the observations assigned to the noise component.

Finally, we note that for this dataset the anomaly detection procedure has sensitivity
equal to 0.84 and specificity 0.99. Thus, the procedure appears to be quite goood at
distinguishing normal data from anomalous data without mistakenly flagging normal data
as anomalous.
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Figure 4. Scatterplot of second synthetic data example with data points generated from a three-
component Gaussian mixture with equal mixing weights and different covariance matrices across
components (represented with the • symbol), and with several noise data points added from a
uniform distribution over a square (represented with the ◦ symbol) (a). Estimated GMM with
points marked by colors and symbols according to the GMM classification, ellipses corresponding to
estimated cluster covariances, dashed lines referring to principal axes, and ∗ to the cluster means (b).
BIC traces for the selection of the optimal GMM (c).
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Figure 5. Entropy contribution of each data point in the second synthetic dataset, with dashed
horizontal line from uniform noise for reference (a). Scatterplot of data points marked according to
the initial classification of noise and with size proportional to the entropy contribution (b).
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Figure 6. BIC traces for the selection of the optimal GMM with the noise component on the second
synthetic data example (a). Scatterplot of data points marked by colors and symbols according to the
classification (identified anomalies are represented with the + symbol) from the estimated GMM with
the noise component, ellipse corresponding to estimated cluster covariance, dashed lines referring to
principal axes, and ∗ to the cluster means (b). Plot of entropy contribution values hi for the model
without and with the noise component (c).

3.3. Wisconsin Diagnostic Breast Cancer Data

This dataset, available at the UCI Machine Learning Repository [32], contains mea-
surements for 569 patients on 30 features of the cell nuclei obtained from a digitized image
of a fine needle aspirate (FNA) of a breast mass Mangasarian et al. [33]. Each patient’s
breast mass was later analyzed and classified as either malignant (212 cases) or benign
(357 cases). In accordance with Mangasarian et al. [33] and Fraley and Raftery [15], we
rely on three features for clustering: extreme area, extreme smoothness, and mean texture.
Furthermore, the following analysis does not assume knowledge of either the covariance
eigen-decomposition or the number of mixture components.

We start our analysis by fitting several GMMs with all the available eigen-decomposition
of covariance matrices and with number of mixture components from 1 to 9. The “optimal”
model is selected using ICL, as described in Section 2.2, with ICL traces shown in Figure 7.
Based on this criterion, we selected the VVE model with 2 clusters. Table 1 provides a
summary and clustering results for the estimated model.
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Figure 7. ICL traces from fitting GMMs without the noise component to the Wisconsin diagnostic
breast cancer data.

Table 1. Summary and clustering results provided by mclust package for the model GMM(VVE,2)
estimated on the Wisconsin diagnostic breast cancer data.

----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------

Mclust VVE (ellipsoidal, equal orientation) model with 2 components:

log-likelihood n df BIC ICL Entropy
-4449.632 569 16 -9000.766 -9099.815 7.820091

Clustering table:
1 2

240 329

Confusion matrix:
Cluster

Diagnosis 1 2
B 40 317
M 200 12

Figure 8 shows the scatterplots between pairs of features with data points marked
according to the estimated clusters from model (VVE,2) and corresponding ellipses repre-
senting estimated cluster covariances. There is clearly a strong overlap between the two
groups, which roughly represent the two types of diagnoses. Note that some data points
from one group are located around the majority of data points from the other group. This
is the consequence of an inflated covariance matrix. One further characteristic that emerges
from the plots in Figure 8 is the presence of many data points that are distant from the bulk
of the data, particularly for the malignant cases.
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Figure 8. Scatterplots of selected features for the Wisconsin diagnostic breast cancer data with data
points marked according to the GMM(VVE,2) classification and ellipses representing estimated cluster
covariances. Data points represented by • are assigned to the cluster predominantly composed of
malignant cases, while those represented by � refers to the cluster mainly composed of benign cases.

Figure 9a shows the contribution of each case to the overall entropy, with the reference
dashed line representing the entropy contribution from the uniform noise. Using the obser-
vations above the uniform-noise reference line for initialization of the noise component,
and the default estimate of the volume of the data, GMMs with an additional component
for the noise can be estimated. A summary of the “optimal” model according to ICL is
reported in Table 2, while Figure 10 shows the ICL traces that lead to the selection of model
GMM(EVI,2).
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Figure 9. Entropy contribution of each data point in the Wisconsin diagnostic breast cancer data,
with dashed horizontal line from uniform noise for reference (a). Plot of entropy contribution values
hi for the model without and with the noise component (b).
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Figure 10. ICL traces from fitting GMMs with the noise component for the Wisconsin diagnostic
breast cancer data.

Table 2. Summary and clustering results for the model GMM(EVI,2) with the noise component
estimated on the Wisconsin diagnostic breast cancer data.

----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------

Mclust EVI (diagonal, equal volume, varying shape) model with 2 components and
a noise term:

log-likelihood n df BIC ICL Entropy
-4457.913 569 14 -9004.64 -9077.593 7.834645

Clustering table:
1 2 0

142 412 15

Confusion matrix:
Cluster

Diagnosis noise 1 2
B 1 0 356
M 14 142 56

Figure 11 shows the scatterplots between pairs of features with data points marked
according to the classification provided by the GMM with the noise component reported in
Table 2, and ellipses corresponding to the estimated cluster covariances. Data points drawn
with the + symbol represent the detected outliers. According to the Maximum a Posteriori
(MAP) principle, these are classified as belonging to the noise component due to their
highest posterior conditional probabilities compared to the probabilities of belonging to
any of the Gaussian components. Note that the two clusters identified by this model appear
to be more clearly separated than in Figure 8. Almost all malignant cases are included in
the first cluster, which presents the characteristic of having Area_extreme > 1000. Outliers
clearly appear to be located around the edge of the two main groups. Moreover, except for
one instance, all the cases belong to the malignant class, suggesting that diseased tissues
are more likely to result in abnormal values.
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Figure 11. Scatterplots of selected features for the Wisconsin diagnostic breast cancer data with data
points marked according to the classification from the GMM(EVI,2) with the noise component model
and ellipses representing estimated cluster covariances. The 1st cluster is represented using the •
symbol and it is made by all malignant cases, while the 2nd cluster is represented using the � symbol
and it is mainly composed by benign cases. Finally, data points classified as noise are represented
using a + symbol.

4. Conclusions

In this paper, we presented a novel approach to the initial specification of the noise
component in a Gaussian mixture model, offering a new and effective methodology for the
challenging problem of anomaly detection. Our proposed approach involves an automatic
procedure for selecting the initial outlying observations to be used in the EM algorithm
for Gaussian mixture models with a noise component. Specifically, the initialization of the
noise is based on a comparison of the contribution of each data point to the entropy of
the Gaussian mixture with the contribution arising from a uniform distribution over the
hyper-rectangle that encloses the data.

We demonstrated the effectiveness of our proposal by successfully identifying anoma-
lies in both simulated and real-world datasets, even in the presence of significant levels
of noise and outliers. However, there is still much room for improvement and future
research in this area. A comprehensive comparison with other state-of-the-art methods
would be valuable for evaluating the effectiveness of our proposal. Another promising
avenue for future research is to expand the scope of our study by using simulated data
from a broad parameter landscape. This would allow for the investigation of the sensitivity
and specificity of the procedure under a wider range of conditions and the identification
of areas where further improvements are needed. In particular, close attention should be
devoted to the specificity of the procedure, which is a critical measure of its performance in
distinguishing normal data from anomalous data without mistakenly flagging normal data
as anomalous.

Finally, we mentioned that our proposal is applicable to a wide range of applications,
making it a valuable contribution to the field of anomaly detection using Gaussian mixture
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models. Overall, this paper can help advance the state of the art in robust and effective
anomaly detection, and it will be of interest to researchers and practitioners working in
this field.
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