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Abstract: In this paper, we study the flow of signals through linear paths with the nonlinear condition
that a node emits a signal when it receives external stimuli or when two incoming signals from
other nodes arrive coincidentally with a combined amplitude above a fixed threshold. Sets of such
nodes form a polychrony group and can sometimes lead to cascades. In the context of this work,
cascades are polychrony groups in which the number of nodes activated as a consequence of other
nodes is greater than the number of externally activated nodes. The difference between these two
numbers is the so-called profit. Given the initial conditions, we predict the conditions for a vertex
to activate at a prescribed time and provide an algorithm to efficiently reconstruct a cascade. We
develop a dictionary between polychrony groups and graph theory. We call the graph corresponding
to a cascade a chinampa. This link leads to a topological classification of chinampas. We enumerate
the chinampas of profits zero and one and the description of a family of chinampas isomorphic
to a family of partially ordered sets, which implies that the enumeration problem of this family is
equivalent to computing the Stanley-order polynomials of those partially ordered sets.

Keywords: polychrony; nonlinear signal flow graph; cellular automata; rule 192; order polynomials;
Ehrhart series

1. Introduction

Networks directly or indirectly impact many aspects of our lives via numerous modal-
ities, including the internet, telecommunications, social media, the brain, and our bodies.
These networks can be modeled through signal flow graphs, or directed graphs in which
nodes represent system variables and the edges represent functional connections between
pairs of nodes. In this paper, we investigate particular examples of nonlinear signal flow
graphs, see Section 2 in which some external stimuli are applied to the vertices of the graph,
triggering a chain reaction on these and other vertices.

A cascade refers to those chain reactions in which the number of external stimuli is
smaller than the number of reactions generated within the chain. The time duration of
these stimuli plays an important role, rendering the study of cascades nonlinear.

A vertex subjected to an external stimulus or triggered indirectly as a consequence of
reactions to the stimuli of others is considered activated. In this context, we seek answers
to the following questions:

• Is a given vertex activated at a particular time?
• Can we reconstruct all the vertices that will change their states to activated?
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Neuronal networks in which the flow of signals form time-locked patterns define the
polychrony groups [1]. The word polychrony is derived from the Greek words “poly” (i.e.,
many) and “chronous” (i.e., time).

Most of the literature focuses on linear signal flow graphs, where the edges represent
matrix operations. However, studying polychrony groups requires a language to treat the
nonlinear case. As part of our methodology, we adopt the language of graph theory to
model signal flow networks. A polychronous group without redundant information is
encoded in a graph called a chinampa. The study of chinampas is described in Sections 3–5.
Section 3 describes the signal flow networks from the point of view of graph theory. In
Section 4, we provide a topological characterization of chinampas (see Theorem 1). Section 5
explains the relationship of our work with cellular automata.

We introduce the concept of profit, a measure of how many vertices activate in response
to external stimuli. In Section 6, we give formulae for the number of pyramids in a
chinampa of profits zero and one. In Section 6.3, we provide the code to answer both of
our target questions. The algorithm we implemented is available at https://github.com/
mendozacortesgroup/chinampas/ (accessed on 3 March 2023). Note that the algorithm
works with an input network of the form 1 Ñ 2, ¨ ¨ ¨ ,Ñ n and when the input network is a
tree. Our code is optimal compared with the state of the art, as explained in the conclusions.

The study of chinampas of a profit greater than one is more difficult. In Section 7, we
describe a family of chinampas whose enumeration problem is equivalent to computing
the order polynomial of some posets. The order polynomial counts the labeling maps from
a poset to chains 1 ă 2 ă ¨ ¨ ¨ ă n, and the study of order polynomials is an active area of
research in enumerative combinatorics. Our work sets the basis for the study of polychrony
groups in combinatorics.

2. Nonlinear Signal Flow Graphs

In this article, we shall study a kind of nonlinear signal flow graph called a directed
graph. We think that a signal propagates throughout an edge by following its orientation.
When several signals reach a vertex simultaneously, a built-in condition called the threshold
determines whether it will react by firing signals. The concept of the signal flow graphs
was developed by Samuel Mason and Claude Shannon [2,3]. If the condition is linear in
the intensity of the input signals, then the graphs are called linear signal flow graphs.

We study the following nonlinear condition of a signal flow graph:

• Every signal has an intensity of one.
• Every vertex has a threshold intensity of two.
• If a vertex coincidentally receives signals of an intensity higher or equal to the thresh-

old, then the vertex fires a signal through each of its outgoing edges.

Nonlinear signal flow graphs are used to study circulatory regulation [4], to design
automatization of nonlinear data converters [5], to compare system-level and spice-level
static nonlinear circuits [6], to build models for DC-DC buck-boost converters [7], and to
analyze the problem of inverting a system consisting of nonlinear and time-varying com-
ponents [8]. The nonlinear condition of our signal flow graphs is an abstraction of neural
spikes. Neural spikes are used in cognitive computing to develop hardware that emulates
the human nervous system [9–13], to implement robust chaotic communication [14], and
to power efficient channel coding [15]. The link between neural spikes and pulse position
modulation is explained in [16].

In particular, we are interested in polychrony groups defined as a group of primary
neurons (vertices) that fire at specific times, leading to secondary neurons firing. As a result,
a cascade occurs when the number of primary neurons is below the number of secondary
neurons (see [1] for more details).

We study the general phenomena of polychronization of nonlinear signal flow graphs
of the form

1 Ñ 2 Ñ 3 Ñ ¨ ¨ ¨ Ñ n.

https://github.com/mendozacortesgroup/chinampas/
https://github.com/mendozacortesgroup/chinampas/
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Our initial objective is to characterize the polychrony groups that lead to cascades. A
second goal is to count the families of the cascades. We also explain the algebraic structure
of cascades using cellular automata theory. Our final goal is to develop an algorithm that
can answer certain types of queries without the need to compute all possible interactions.
An example of such a query might be establishing which neuron (vertex) will be activated
at some future time.

3. Base and Activation Diagrams

In this section, we introduce the notion of a covering graph to represent the flow
of signals in a network. As a part of our methodology, we translate the problem of
characterizing our nonlinear signal flow graphs into the problem of color-covering graphs.

3.1. Base Diagram

Consider the set of nonnegative integers N. For a directed graph A, we denote the set
of vertices and edges of A as VpAq and EpAq, respectively. We define a base diagram of A as
the pair pB, pqwhere B is a directed graph with vertices VpBq “ V ˆN and, given any edge
m Ñ n of EpAq labeled by t P N, we define an edge in EpBq as pm, iq Ñ pn, i` tq between
the vertices pm, iq and pn, i` tq of VpBq. The coordinate i in pm, iq indicates the row position
of the vertex (see Figure 1).

Figure 1. In the bottom part of the figure, a simple graph A is shown. In the top part, the correspond-
ing base diagram B is shown.

The function p : B Ñ A is the projection defined by pm, iq ÞÑ m, and the image of every
edge pm, iq Ñ pn, i` tq under p defines the edge m Ñ n of EpAqwith a label t.

We are interested in particular types of directed graphs. A singleton u is a graph with
one vertex and one self-edge with a label 1. A path of length l, denoted by pathplq, is a
directed graph with vertices t1, 2, ¨ ¨ ¨ , lu, where each vertex has a self-edge, while each
vertex i ă l has one outgoing edge to the vertex i` 1. Any edge has a label 1. A cycle of
length l, denoted by cycplq, is a path with vertices in the set t1, 2, ¨ ¨ ¨ , lu, but the vertex l has
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one outgoing edge to vertex 1 with a label 1. In other words, a cycle is a closed path. The
graphs u, pathplq, and cycplq have their own base diagrams, which we call ũ, tellisplq, and
cylinderplq, respectively. Figure 2 shows examples of a path, a cycle, and their respective
base diagrams.

(a) (b)

Figure 2. Directed labeled graphs and their correponding base diagrams. (a) A path(l) and its
corresponding base diagram tellis(l). (b) A cyc(l) and its corresponding base diagram cylinder(l).

3.2. Activation Diagram

Given a base diagram, we selected a subset of vertices and called them the primary
vertices. The activation diagram pB, Sq is a base diagram B and a subset S of the primary
vertices of VpBq. A secondary vertex with the coordinates pr, tq is a vertex in the base diagram
in which each one of pr, t´ 1q and pr´ 1, t´ 1q is either a primary vertex or a secondary
vertex. We associated the activation graph (i.e., the underlying colored graph in which
the primary and secondary vertices are black and the remaining vertices are white) to
each activation diagram. To simplify the interpretation of theactivation diagrams, we only
drew vertices which were either primary or secondary and avoided the others in the base
diagram (see Figure 3).

Figure 3. (left) An example of an activation diagram. The activation diagram turns into an acti-
vation graph. (right) A new black vertex appears in a row of the activation graph due to the two
corresponding black vertices in the previous row in the activation diagram.

Example 1. Consider P “ pathplq and its corresponding base diagram B “ tellisplq, as described
before. Fix a vertex vi P P, and consider S “ tpvi`k, tqu Ă B with k “ 0, 1, ¨ ¨ ¨ , l ´ 1 consecutive
vertices with the same time. The set S is determined by the initial vertex vi of the path P, its length
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l, and a fixed time t P N. We employ a pyramid in the activation diagram pB, Sq and denote it as
pyramidpl, i, tq. In Figure 4, the activation diagram pyramidp3, i, tq of a path with a length of three
is illustrated.

Figure 4. A ring (double circle) indicates the primary vertices. There are three secondary vertices,
forming a pyramid.

Remark 1. Suppose we have an activation diagram in which there is pyramidpl, i, tq with an
extra primary vertex pi´ 1` s, t` sq where 0 ď s ď l ´ 1. The vertex affects pyramidpl, i, tq by
activating the vertices in the diagonal tpi´ 1` k, t` kq | k “ s` 1, ¨ ¨ ¨ , lqu. On the other hand, if
the extra primary vertex is localized in pi` l ` 1, t` sq, where 0 ď s ď l ´ 1, then the vertical line
tpi` l ` 1, t` kq | k “ s` 1, ¨ ¨ ¨ , lu is activated (see Figure 5).

(a) (b)

Figure 5. Effect of adding a primary vertex to a pyramid. (a) If we add an activated vertex v to the
left side of a pyramid, then the vertices in the same diagonal with times greater than the time of v are
activated until reaching the top of the pyramid. (b) If we add an activated vertex v to the right side of
the pyramid, then the vertices in the same column with a time greater than the time of v are activated
until reaching the top of the pyramid.

With a path of secondary vertices from pi, tq to pj, sq, we define a sequence
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pi0, t0q, pi1, t1q, ¨ ¨ ¨ , pik, tkq

with the first point pi0, t0q “ pi, tq and final point pik, tkq “ pj, sq such that there is an edge
between two consecutive vertices. Here, the edges are considered while ignoring the
direction. The edges go from pi, tq to pi, t` 1q and from pi, tq to pi´ 1, t´ 1q.

We restricted our study to activation diagrams where every primary vertex contributed
to at least one secondary vertex. A redundant activation diagram occurs when a primary
vertex is also a secondary vertex (see Figure 6).

Figure 6. In this activation graph, there is a primary vertex which is also a secondary vertex.

An activation diagram C is connected if the secondary vertices of the corresponding
activation graph form a connected, undirected graph. As an example, Figures 3 and 4 are
connected activation diagrams. Figure 7 is not a connected activation diagram.

Figure 7. An example of a non-connected activation diagram. There is no edge between the pyramid
below and the pyramid above.
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4. Chinampas

Given an activation diagram, the profit is equal to the number of secondary vertices
minus the number of primary vertices. The profit measures the maximum number of extra
vertices which are activated as a consequence of the topology of the graph. A connected,
non-redundant activation diagram is a chinampa if its profit is greater than or equal to zero.
An example of a chinampa is illustrated in Figure 8. The simplest chinampa, in the sense
that it involves the least number of vertices, is pyramidp3, i, tq, as shown in Figure 4. The
name is due to the similarity of the figures with an ancestral Mexican agricultural technique
that uses soil to grow crops on a lake. We imagine that chinampas have crops above the
soil, and underneath, there are roots.

Figure 8. Example of a chinampa.

The profit defines a function from the set of chinampas to nonnegative integers. We
denote with pro f itpCq the profit of a chinampa C.

The Topological Description of a Chinampa

We describe chinampas over a pathplq. For this goal, we will give the decomposition
of a chinampa into pyramids. Remember that we defined pyramidpl, i, tq as an activation
diagram pB, Sqwhere the primary vertices S are consecutive and have the same time. We
extend the definition of a pyramid to the activation diagram pB, Sq, in which S contains the
secondary vertices. Thus, in chinampa C of Figure 9, we have two pyramids pyramidp3, i, tq
and pyramidp3, i` 2, t` 2q, where the vertex pi` 2, t` 2q is a secondary vertex.

Note that a pyramid has only one secondary vertex at the top, which we call the
pyramidion. If P1 “ pB, S1q and P2 “ pB, S2q are pyramids in a chinampa, then we say that
pyramid P2 is stacking into pyramid P1 if the pyramidion of P2 is a secondary vertex of P1
other than the pyramidion of P1, and P2 is not contained in P1.

Remark 1 shows that the activation diagram of a pathplq is of the form pyramidpk, i, tq,
together with the primary vertices at the right or left of pyramidpk, i, tq. We will see that an
activation diagram is a sequence of stacked pyramids:
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Figure 9. pyramidp3, i, tq and pyramidp3, i` 2, t` 2q with pi` 2, t` 2q as a secondary vertex, forming
a chinampa.

Remark 2. Consider two pyramids pyramidpl1, i, tq and pyramidpl2, i` l1, tq. The pair of primary
vertices pi ` l1, tq and pi ` l1 ` 1, tq activates pi ` l1 ` 1, t` 1q, which is not part of any of the
two pyramids. Based on Remark 1, the entire diagonal to which the vertex belongs is activated,
as well as the vertical line tpi` l1 ` 1, t` kqu with k P t1, ¨ ¨ ¨ , l1 ` 1u, and so on. Therefore, we
end up with pyramidpl1 ` l2, i, tq. This argument works for two pyramids: pyramidpl1, i, tq and
pyramidpi` l1 ` k, i, tq, separated by activated vertices tpi` l1 ` j, tq | 1 ď j ď ku. Thus, in such
cases, instead of considering several small adjacent pyramids, we always consider only the biggest
pyramid that includes the small adjacent pyramids.

Proposition 1. There exists only one pyramidion with the maximum time in a chinampa. We call
this a spike.

Proof. Suppose pi, tq and pj, tq with i ă j are pyramidia with the maximum time. Through
connectedness, there is a path from pi, tq to pj, tq with only secondary vertices. Each vertex
on the path has a time lower than or equal to t. Starting from the vertices with lower times,
we use Remark 2 until we reach those vertices with a time t. At each step, we conclude
that all vertices above and between those in the path are secondary vertices. Then, those
vertices between pi, tq and pj, tq are activated, meaning that pi, tq and pj, tq are not pyramidia,
which is a contradiction.

Remark 3. If pi, tq and pj, tq are activated vertices connected by a path of activated vertices with
a time lower than or equal to t, then the argument in the proof of Proposition 1 shows that both
of them are in a pyramid whose pyramidion has a time greater than t. As a consequence, if two
pyramids P1 and P2 can be stacked under a given P, then pyramid P1 cannot be adjacent to P2,
since under Remark 2, we would instead stack the biggest pyramid, which includes both P1 and
P2. The activation diagram of Figure 10 is not a chinampa. Assume t is the minimum time of the
primary vertices. Then, pyramidp2, i, tq and pyramidp2, i` 2, tq are adjacent, and thus they are in
pyramidp4, i, tq, which implies that the middle vertex becomes a secondary vertex, which is contrary
to the non-redundancy requirement.
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Figure 10. Here is an example of an activation diagram which is not a chinampa. The copies of
pyramidp2, i, tq at the bottom are next to each other, and as a consequence, all vertices in the hole are
internally activated.

Remark 4. Another consequence of Remark 1 is that a chinampa has no activated vertex located to
the right of the spike. If the spike is pi, tq, then all activated vertices are of the form pj, t1q with j ď i
and t1 ă t.

Now, we shall give an order to the pyramids in a chinampa:

Proposition 2. In a chinampa, there exists a unique pyramidpl, i, tq with l ě 3 of the maximum
time. We call it the top pyramid.

Proof. Start with the spike pi, tq. If this is the pyramidion of pyramidpl, i, tq with l ě 3, then
we are done. If not, then we have a sequence of pyramidp2, i, tq stacked onto each other.
However, the chinampa has a profit greater than or equal to zero, so eventually, we will
come across pyramidpl, i, tq with l ě 3. Let the top pyramid be the first instance found with
this strategy. There is no other pyramid pyramidpl1, i1, t1qwith l1 ą 2, t1 ě t, since through
connectedness and Remark 2, we would conclude that there is a bigger pyramid containing
both the top pyramid and pyramidpl1, i1, t1q, which contradicts the assumption that the top
pyramid is the first instance found.

Theorem 1 (Topological classification of chinampas). Any chinampa can be described as a
sequence of pyramids stacked onto each other.

Proof. We showed that in a chinampa, there is a unique top pyramid (Proposition 2). This
top pyramid is stacked onto a sequence of pyramidp2, i, tq unless the spike belongs to the top
pyramid (Proposition 1). Any other pyramidpn, i1, t1q (n ě 3) must have t1 ă t (Remark 4).
Pyramids are connected, which is only possible if they are stacked onto each other.

The average chinampa is described in Figure 11.
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Figure 11. Standard example of a chinampa. (left) Zoomed-out image of a chinampa, where the
chinampa can be represented by stacking pyramids. (right) Zoomed-in image of a chinampa, where
we see the details of the activation diagram. The lines in the left figure are groups of activated vertices.

We define an abstract pyramid pyramidplq as an activated diagram without an initial
vertex or an initial time. In pyramidplq, we always consider that the vertices at the bottom
are primary ones. Then, pyramidplq turns into pyramidpl, i, tq if placed in a base diagram
(i.e., if we choose an initial vertex i and a time t).

Consider a chinampa C. Let P be the set of pyramidplq, with one for each stacking of
pyramidpl, i, tq in a chinampa C. We recover the chinampa by stacking abstract pyramids
from the set P. We associate the corresponding pyramidion with any P P P. If the
pyramidion of P belongs to the pyramid Q, then we call Q the parent of the pyramid P.
Note that after stacking, some primary vertices of the parent become secondary vertices.

We describe an algorithm to create the list P. We can use the breadth-first search
(BFS) or depth-first search (DFS) algorithm [17]. Algorithm 1 is the pseudocode of an
implementation of BFS. In this algorithm, the pyramidion and the parent of P are attached
to P as P.pyramidion and P.parent, respectively.

Algorithm 1: Factorization via BFS
Data: A chinampa
Result: A Unique factorization
Pyramid0 = pyramid whose pyramidion is the spike.;
Cache = [Pyramid0];
factorization = [ ];
while Cache != [ ] do

init = pop(Cache);
/* compare the vertices of init with pyramidion */
for v in Vpinitq do

if v==init.pyramidion then
continue;

else if there is P P P with P.parent ““ init and P.pyramidion ““ v then
Add P to Cache

end
factorization.append(init)

end
return factorization

Remark 5. The vertices in a pyramid are ordered. For example, the dictionary order starts at the
top and proceeds from left to right. Provided a fixed order for abstract pyramids, as described above,
our algorithm is deterministic. Thus, we consider the returned list as a factorization of the chinampa
in terms of pyramids.
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5. Cascades and Cellular Atomata

We adopted the convention from [18], stating that “the network, node, link combina-
tion often refers to real systems ... In contrast, we use the terms graph, vertex, edge when
we discuss the mathematical representation of these networks”.

5.1. Base Diagrams as a Model of a Network

Our networks are such that there exist nodes p firing due to external stimuli and nodes s
firing when the sum of the input signals from other nodes exceed their thresholds. Our goal
is the study of cascades, which are networks whose number of nodes s is greater or equal
to the number of nodes p. We translated the networks to a base diagram pB, P : B ÞÑ Aq,
where a node p firing due to external stimuli at time t in the network corresponded to a
primary vertex pp, tq of VpBq, and a node s firing as a consequence of the signals of other
nodes corresponded to a secondary vertex in VpBq. In this way, a cascade in a network
corresponded to an activation diagram. The activation diagram in Figure 3 is associated to
a cascade.

Table 1 resumes the relation between the definitions of networks and the corresponding
definitions of the base diagrams. The terms on the left relate to network theory, and the
terms on the right are the equivalent concepts in the base diagrams.

Table 1. Equivalent definitions between networks and base diagrams.

Network Theory Base Diagram

External stimulated node Primary vertex
Internal stimulated node Secondary vertex

(Network, external stimuli) Activation diagram (AD)
Cascade AD with equal or more

secondary vertices than primary ones

5.2. Cellular Automata

As we will see in this subsection, a cascade can be interpreted as a cellular automaton.
We considered cellular automata [19] in which three consecutive colored (black or white)
cells determined the color of the middle cell in the next iteration. In particular, we were
interested in rule 192. This rule dictates that cell C will be black if C and the one to the left
were black in the previous iteration (see Figure 12).

Figure 12. Rule 192. Only the first and second stages lead to a black cell, similar to our hypothesis on
the signal flow graphs.

In Figure 13, the vertical axis is the time, and we thought of the yellow blocks as the
stimuli to keep alive the cells of the game of life [20]. The lowest row represents a cell
which survived for three units of time under rule 192. The next row shows 3 automata
which survived 4 units of time, 6 which survived 5 units of time, and 12 which survived 6
units of time.
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Figure 13. Cellular automata with less than six external stimuli.

Thus, a cascade on networks can be seen as the evolution of cellular automata, where
we fixed the external stimuli and applied rule 192 to evolve the cells. More specifically,
we employed rule 192 [19] but allowed the initial conditions to occur at different times.
Accordingly, we could use the language of graph theory to describe the behavior of the
cellular automata (cascade).

6. Combinatorial Description of Chinampas

Since a base diagram is a set of chinampas, we studied the properties of chinampas.
As a part of our contributions, we present some combinatorial properties of a chinampa.
For example, we will give a formula for the number of chinampas inside a pyramid. This
formula is given in terms of a generating function. Another result is the prediction of when
a vertex appears as a secondary vertex in a chinampa. This can be accomplished by using
algorithms to find the pyramids in a chinampa.

6.1. Profit Properties

In the current context, since there is no confusion between a pyramid and an abstract
pyramid, we sometimes refer to both as pyramids. From now on, we will construct
chinampas via the stacking process. Remember that we do not allow the stacking of
two pyramids when one ends inside the other, neither one is adjacent to the other, or
some primary vertices in the abstract pyramid turn into secondary vertices once we stack
a pyramid.

Let P1 and P2 be two abstract pyramids, and let C be the chinampa obtained by
stacking P1 into P2. We define the intersection P1 X P2 of two abstract pyramids P1 and P2 as
the abstract pyramid with activated vertices at the intersection of the activated vertices of
P1 and P2. Given the definition of an abstract pyramid, if a vertex is primary in one vertex
and secondary in the other, then the vertex is primary in P1 X P2.

Remember that we defined the profit as the difference between the secondary vertices
and the number of primary vertices. If the intersection of two pyramids is only one point,
hen we assume a profit of ´1. We have the following result for vertical stacking:

Lemma 1. Let C be a chinampa obtained by vertical stacking of two abstract pyramids P1 and P2.
The profit function satisfies

pro f itpCq “ pro f itpP1q ` pro f itpP2q ´ pro f itpP1 X P2q.

Proof. Suppose pyramid P1 is above P2. Then, the abstract pyramid P3 “ P1 X P2 is once
again a pyramid. Let n1, n2, and n3 be the number of primary vertices of P1, P2, and P3,
respectively. Then, the n3 primary vertices of P1 turn into secondary vertices in C, and
therefore the number of primary vertices of C is given by

pn1 ´ n3q ` n2,
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What is more, let m1, m2, and m3 be the number of secondary vertices of P1, P2, and
P3, respectively. Then, the number of secondary vertices of C is

pm1 ` n3q `m2 ´ pm3 ` n3q.

Therefore, the results follow.

Note that the arguments in the proof of Lemma 1 are standard and can be used to
prove the following proposition:

Proposition 3. Let C be a chinampa with a set of abstract pyramids P. The profit function satisfies
the inclusion-exclusion principle

pro f itpCq “
ÿ

PPP

pro f itpPq ´
ÿ

P1,P2PP

pro f itpP1 X P2q `
ÿ

P1,P2,P3PP

pro f itpP1 X P2 X P3q ˘ ¨ ¨ ¨ . (1)

There are two approaches to stacking one pyramidp2q into another pyramidp2q. Ac-
cording to Equation (1), stacking pyramidp2q into a chinampa does not change the profit.
We describe how the action of stacking affects the profit:

Lemma 2. Let C be a chinampa with profit n. Stacking a pyramidpl, i, tq with l ě 3 into C creates
a chinampa C1 with profit m ą n.

Proof. Assume that we stack pyramidpl, i, tq into C. Locally, pyramidpl, i, tq is stacked in
a pyramid P of C so that the primary vertices of P with time t ` s where 0 ă s ă l
are replaced by secondary vertices (see Figure 14). The number of primary vertices of
C increases by l ´ pl ´ sq “ s, although the number of secondary vertices increases by
pl ´ 1` l ´ 2` ...` l ´ sq because stacking only affects the vertices of P. The result follows
since l ě 3 implies pl ´ 1` l ´ 2` ...` l ´ sq ą s.

Figure 14. Here, pyramidpl, i, tq with l “ 4 is stacked into a chinampa C. In this example, the two
primary vertices of C at t` 2 become secondary.

Remark 6. Stacking one pyramid with a length of three and several pyramids with a length of two
returns a chinampa with a profit of zero. Conversely, under Lemma 2, if we have a chinampa with
a profit of zero, then it must be the result of stacking one pyramid with a length of three and some
pyramids with a length of two. Similarly, a chinampa with a profit of one has two copies of pyramids
with a length of three and several copies of pyramids with a length of two. For a profit of two, we
can have either one pyramidp4q and several pyramidp2q instances stacked on or below it or three
pyramidp3q instances and several pyramidp2q instances.
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In general, a chinampa with a profit k is made by stacking several tpyramidpliqu so
that they satisfy Equation (1). We know that pro f itppyramidplqq “ lpl´3q

2 , which is less than
or equal to k under Lemma 2. This gives a bound on the largest pyramid contained in a
chinampa in terms of the profit of the chinampa

li ď
3`

?
9` 8k
2

, (2)

for all li.

6.2. Combinatorial Description of Chinampas with Profits of Zero and One

We aim to find the number of chinampas inside pyramidpnq. A general chinampa
can always be considered as part of pyramidpnq (see Remark 4). Therefore, consider
P “ pyramidpnq in tellispnq. We define

chrn; p2, a2q, p3, a3q, . . . , pk, akqs

to be the number of all chinampas contained in P and obtained by stacking ai copies of
pyramidpiq, where 2 ď i ď k.

Example 2. It is clear that chrn; pn, 1qs “ 1, chrn` k; pn, k` 1qs “ 2k for k ě 0 and

chrn; p2, n´ 1qs “ 2n´2 (3)

To simplify the notation, from now on, we will omit the terms corresponding to
pyramidp2q, although they remain a part of the calculations. Thus, chrn; p2, 1q, pn´ 1, 1qs
becomes chrn; pn´ 1, 1qs.

In Figure 15, we show three of the elements identified by chr4; p3, 1qs. The three
chinampas with a profit of zero have pyramidp3q at the top.

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure 15. Three chinampas with a profit of zero having pyramidp3q at the top. Note that the stages
were obtained from pyramidp3q, replacing one of the three primary vertices v at a time of zero by two
primary vertices at the time ´1 so that v becomes a secondary vertex.

To count the number of zero-profit chinampas within an instance of pyramidpnq, we
consider the formal series

ÿ

n
chrn` 3; p3, 1qs

xn

n!
.

Following [21], we use the calculus of formal exponential generating functions to
determine all coefficients. Note that chrn` 3; p3, 1qs “ 0 for n ă 0.

We will use the fact that

ppxq “ 2
ż

ppxqdx` f pxqe2x ` hpxq
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has the solution

ppxq “
d

dx

ˆ

e2x
ż

f pxq ` hpxqe´2xdx
˙

. (4)

Proposition 4. In pyramidpn` 3q, for the nonnegative integer n, there are p2` 3nq2n´1 possible
zero-profit chinampas. Furthermore, these numbers are given by the coefficients of the generat-
ing function

8
ÿ

n“0

chrn` 3; p3, 1qs
xn

n!
“ p3x` 1qe2x.

Proof. Recall that according to Remark 6, a zero-profit chinampa has only one stacked
pyramidp3q. First, we can explicitly count the number of chinampas in pyramidpn` 3qwhen
pyramidp3q is at the top of pyramidpn` 3q. For each integer n ě 0, there are 3p2n´1q such
possible chinampas. This is because for each element in Figure 15, we create new elements
by stacking a sequence of pyramidp2q below the element. Therefore, the result follows from
Equation (3). The remaining chinampas in pyramidpn` 3q are those for which pyramidp3q
is not at the top, namely 2chrn´ 1` 3; p3, 1qs. This follows because pyramidp3q is within
one of the two subpyramids pyramidpn´ 1` 3q: one given by ignoring the main diagonal
of pyramidpn` 3q or the other by ignoring the right vertical column of pyramidpn` 3q.

Therefore, for n ą 0, we have

chrn` 3; p3, 1qs “ 2chrn´ 1` 3; p3, 1qs ` 3p2n´1q.

Now, we define

ppxq “
8
ÿ

n“0

chrn` 3; p3, 1qs
xn

n!
.

so

ppxq “
8
ÿ

n“0

chpn` 3, p3, 1qq
xn

n!

“ 1` 2
8
ÿ

n“1

chpn´ 1` 3, p3, 1qq
xn

n!
`

8
ÿ

n“0

3p2n´1q
xn

n!

“ 2
ż

ppxqdx`
3e2x ´ 1

2

Using Equation (4) and the condition chr3; p3, 1qs “ 1, we obtain

8
ÿ

n“0

chrn` 3; p3, 1qs
xn

n!
“ p3x` 1qe2x

“

8
ÿ

n“0

p2` 3nq2n´1 xn

n!

Proposition 5. Chinampas of a certain unit of profit have the generating function

8
ÿ

n“0

chrn` 4; p3, 2qs
xn

n!
“ p9x2 ` 18x` 4q

e2x

2
.

Proof. A chinampa unit of profit can only be formed by two copies of pyramidp3q and
chains of pyramidp2q, as shown in Remark 6. We define the formal series



Algorithms 2023, 16, 193 16 of 24

qpxq “
8
ÿ

n“0

chrn` 4; p3, 2qs
xn

n!
,

and consider the following cases:

• None of the instances of pyramidp3q are at the top. We then have subpyramids as in
the previous proposition, so we count 2chrn` 3; p3, 2qs.

• One pyramidp3q instance is at the top. Then, the remaining pyramidp3q instances
can be placed in 2chrn` 3; p3, 1qs ways on the two subpyramids. However, the two
subcases have chrn` 2; p3, 1qs terms in common, as shown in Figure 16. Thus, the
correct number of combinations is 2chrn` 3; p3, 1qs ´ chrn` 2; p3, 1qs.

Figure 16. Stacking any pyramid onto pyramid(3) in the vertex, where the red and blue lines collide
and continue the process of stacking pyramids iteratively. This process describes a family of pyramids
counted twice: once under the blue region and once under the red region.

We conclude that for each nonnegative integer n, we have

chrn` 4; p3, 2qs “ 2chrn` 3; p3, 2qs ` 2chrn` 3; p3, 1qs ´ chrn` 2; p3, 1qs.

Then, using the generating series ppxq found in Lemma 4, we compute

qpxq “

8
ÿ

n“0

chrn` 4; p3, 2qs
xn

n!

“ 2
8
ÿ

n“1

chrn` 3; p3, 2qs
xn

n!
` 2

8
ÿ

n“0

chrn` 3; p3, 1qs
xn

n!
´

8
ÿ

n“1

chrn` 2; p3, 1qs
xn

n!

“ 2
ż

qpxqdx` 2p3x` 1qe2x ´

ż

p3x` 1qe2xdx

“ 2
ż

qpxqdx`
18x` 9

4
e2x

By solving Equation (4), we obtain

8
ÿ

n“0

chrn` 4; p3, 2qs
xn

n!
“

9` 2c` 36x` 18x2

4
e2x

We compute chr4; p3, 2qs “ 2 to conclude
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8
ÿ

n“0

chrn` 4; p3, 2qs
xn

n!
“ p4` 18x` 9x2q

e2x

2
.

6.3. Algorithms for Activated Vertices

We will describe an algorithm to construct stacked pyramids of chinampas and to
predict whether a vertex is activated at a given time within a chinampa.

Building Chinampas

Following ideas from dynamical programming, we compute the pyramids that make
up a chinampa. As a reminder, we assume that each pyramidplq comes with a natural time
ordering on its vertices.

We first construct a chinampa with a known set of primary vertices sorted by their
time of occurrence, followed by a secondary sorting of the vertex labels. For every sequence
of n consecutive primary vertices with the same time t, we assign a new structure named
an interval. An interval only remembers the coordinates pn0, tq, pn1, tq of the first and last
primary vertices, while t is the time of the interval’s occurrence. We assign the order
inherited from the set of primary vertices to the set of intervals. The left vertex of the
interval establishes the order.

Next, we associate pyramidplq with the interval with the lowest parameter t that has l
consecutive vertices. An iterative process to build the chinampa is as follows. Given the
next interval, defined by consecutive vertices lk with t1 ě t, we check whether the first or
last term is next to a pyramid built previously. If so, then we extend the interval to include
the secondary vertices of the pyramid, whose time equals t1. Once we grow the interval
from lk to lk ` dk, we assign to the interval the pyramidplk ` dkq (see Algorithm 2). The
auxiliary Algorithm 3 removes duplicates.

Let n be the number of primary vertices, and let n0 “ intpn{2q. To compute the time
complexity of Algorithm 2, we analyzed the best-case and worst-case scenarios. The best-
case scenario is where all vertices are part of the base of a pyramid. In the best-case scenario,
the computational complexity is Opnq. The worst-case scenario is where we have n0 copies
of pyramidpn0q concatenated such that two consecutive pyramids with different times share
the maximum area possible. In the worst-case scenario, the algorithm complexity is Opn2q

due to the double loop.
To determine whether a vertex is activated, we must determine whether it is contained

within a pyramid. Therefore, for each pyramid, one must verify whether the vertex satisfies
the constraints necessary to keep them within the region defined by the corners of the
pyramid. See Algorithm 4 for the time complexity Opnq in the best case and Opn2q in
the worst case (because it calls back to Algorithm 2). The source code of this algorithm
can be accessed at https://github.com/mendozacortesgroup/chinampas/ (accessed on 3
March 2023).

https://github.com/mendozacortesgroup/chinampas/
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Algorithm 2: Build chinampas
Input: An ordered list of primary vertices PV.
Result: A list of pyramids;
listOfPyramids = r s;
interval.t= PV[0].time, interval.lP=PV[0].position,

interval.rP=PV[0].position;// time, left pos,right pos
for vertex in PVr1 :s do

if vertex.time == interval.t and vertex.position = interval.rP+1 then
interval.rP = vertex.position

else
listOfPyramids.append(interval);
interval.t=vertex.time, interval.lP=vertex.position,
interval.rP=vertex.position;

end
end
listOfPyramids.append(interval);
pastPyramids = copy(listOfPyramids);
for interval in ListOfPyramids do

for lowerPyramid in pastPyramids do
deltaT=(interval.t-lowerPyramid.t);
if lowerPyramid.t+(lowerPyramid.rP-lowerPyramid.lP) ăinterval.t then

pastPyramids.remove(lowerPyramid)
else if lowerPyramid.tąinterval.t +interval.rP-interval.lP then

break
else if interval.lP==lowerPyramid.rP+1 then

interval.lP=lowerPyramid.lP+deltaT
else if interval.rP==lowerPyramid.lP+deltaT-1 then

interval.rP=lowerPyramid.rP
end

end
end
listOfPyramids = removeDuplicates(listOfPyramids); // see Algorithm 3
return listOfPyramids

Algorithm 3: Remove duplicates

Input: An ordered list of intervals listO f Pyramids;
Result: An ordered list of intervals without intersection;
dynamicCopy=copy(listOfPyramids);
previous = dynamicCopy[0];
index = 1;
for walker in listO f Pyramidsr1 :s do

if previous.rP==walker.lP-1 and previous.t==walker.t then
previous.rP=walker.rP

dynamicCopy=dynamicCopy[:index]+dynamicCopy[index+1:];
else

previous =dynamicCopy[index];
index = index+1;

end
end
return dynamicCopy
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Algorithm 4: Will_vertex_be_activated
Input: A vertex pn, t0q, a list of primary vertices PV.
Result: Boolean explaining if the vertex n will be activated at time t0;
if pn, t0q in PV then

return True ;
end
orderedListOfPyramids = buildPyramidspPVq;
for pyramid in orderedListOfPyramids do

deltaT=(t0 ´ pyramid.t);
if pyramid.lP` deltaT ď n ď pyramid.rP and

pyramid.t ď t0 ď n´ pyramid.lP` pyramid.t then
/* pn, t0q in a pyramid */
return True;

else if pyramid.t ą t0 then
break;

end
end
return False;

7. Triangular Sequences

We study the chinampas obtained by stacking several pyramidp2q instances below
pyramidpnq for n ě 4. For ease of exposition, we define roots as the sequences of pyramidp2q
stacked on top of each other. Note that pyramidpnq with n ě 4 can have multiple roots. For
simplicity, we let pyramidpnq have n “ 3K and K P N, and all roots had the same number R
of pyramidp2q.

Example 3. Consider the two extreme cases for pyramidp6q, whose roots are depicted in Figure 17.
In Figure 17a, the roots are formed by stacking pyramidp2q vertically, while in Figure 17b, the
pyramidp2q instances are stacked along diagonals.

(a) Vertical roots (b) Diagonal roots

Figure 17. Roots in pyramidp6q. We show all activated vertices except those above the primary
vertices of pyramidp6q.
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Given K and R, we define a KR-triangular sequence as a sequence with two indexes tsj
iu,

where the coefficients are integers and they satisfy the constraints

K` R K` R´ 1 K` i K` 2 K` 1

ď ď ď ď ď

sR
R ą sR´1

R´1 ą ¨ ¨ ¨ ą si
i ą ¨ ¨ ¨ ą s2

2 ą s1
1

ď ď ď ď ď

R sR´1
R ą ¨ ¨ ¨ ą si

i`1 ą ¨ ¨ ¨ ą s2
3 ą s1

2

ď ď ď ď

R´ 1
...

...
...

ď ď ď

¨ ¨ ¨ ą si
R ¨ ¨ ¨ ą s2

j`1 ą s1
j

ď ď ď

i
...

...

ď ď

s2
R ą s1

R´1

ď ď

2 s1
R

ď

1

(5)

Remark 7. The particular relation si
j ą si´1

j´1 prevents redundancy of the roots.

Proposition 6. Consider a chinampa with multiplicity roots n “ 3K, where each root with R
copies pyramidp2q. The number of KR-triangular sequences tsi

ju counts the number of possible
roots on pyramidpnq with the previous conditions.

Proof. Given the KR-triangular sequence tsi
ju, consider a rectangular board B of pK` Rq

columns and R rows.
Step 1: We place a white mark at the cell of B, given by the intersection of row 1 and

column s1
1. Step 2: We place a white mark at the cell intersection of row 2 and column s1

2
and another white mark at the cell intersection of row 2 and column s2

2. Step i requires us
to place marks at cells pi, si

jq with j ď i. Now, for each i, we take the ith row and color all
non-white cells in black from columns 1 to n` i.

To recover the roots of pyramidpnq, we substitute each black cell with three consecutive
cells: one white and two black. The black cells are the activated vertices of the roots
of pyramidpnq. The fact that each of the sequences tsi

juj is decreasing translates into a

movement of the roots to the left. The condition si
j ą si´1

j´1 appears because the roots can
move only one unit to the left. The map from one black block to a white block with two black
blocks prevents redundancy. This assignment can be verified to be an isomorphism.

Example 4. We examine the white spaces as shown in Figure 18. They correspond to the roots of
Figure 17. According to Proposition 6, the sequences corresponding to Figure 18a are

s1
1

s2
2 s1

2
s3

3 s2
3 s1

3
s4

4 s3
4 s2

4 s1
4

“

3
4 3

5 4 3
6 5 4 3

For Figure 18b, they are

s1
1

s2
2 s1

2
s3

3 s2
3 s1

3
s4

4 s3
4 s2

4 s1
4

“

1
2 1

3 2 1
4 3 2 1.
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(a) (b)

Figure 18. The corresponding triangular sequences come from counting blocks. (a) Vertical roots.
(b) Diagonal roots.

Ehrhart Series and Order Polynomials

The order polynomial ΩpP, xq of a partially ordered set (poset) P was introduced by
Stanley [22]. The polynomial evaluated on n returns the number of labels ΩpP, nq on the
poset P, which preserves the order.

Similar to the construction of TR,n, we can construct a poset PR containing only the
symbolě by subtracting i´ 1 units from the column i from right to left, where i P r1, ¨ ¨ ¨ , Rs.
The poset only depends on the variable R and not on the variables k and n:

Lemma 3. Consider chinampas with roots of multiplicity n “ 3K, where each root with R is a copy
of pyramidp2q. Then, the number of such chinampas is ΩpPR, k` 1q.

Proof. The number of triangular sequences TR,n is ΩpPR, k` 1q.

This connection with combinatorics allowed us to determine the properties of the
generating functions. For a poset P, one can associate the order polytope [23,24] PolypPq.
Then, the generating function of the order polynomial is the variable x times the Ehrhart
series. For example, when R “ 3, the triangular sequence corresponds to the poset
ta ă b ă c ă d ă e, b ă f ă du, and we obtain the generating function ´x

p1´xq6 ` 2 x
p1´xq7 .

Ehrhart series of order polytopes are known to be of the form h˚pxq
p1´xqd`1 , or in our case

d “ RpR`1q
2 . The term h˚pxq is a polynomial of a degree of at most d, where its coefficients

satisfy the Dehn–Sommerville equations and are unimodal.
The previous result relates the enumeration of chinampas with polytopes of the form

PolypPRq.
We counted chinampas with the help of Mathematica [25] and a topological version of

the calculus of species [26]. These calculations gave us evidence of the validity of Lemma 3
and led to the concept of triangular sequences. For details on the use of Mathematica for
counting order polytopes, see [27].

8. Conclusions

In this paper, we introduced activation diagrams, chinampas, and pyramids to study
the effect of signals on the vertices of a nonlinear signal flow path. Furthermore, we
demonstrated that pyramids are the simplest possible activation diagrams. Finally, we
presented a deterministic algorithm to construct chinampas out of pyramids (see Remark 5).
Chinampas were conceived to serve as an idealized model for cascades, with sequences of
neural spikes forming a polychrony group.

To support our conclusions, we developed an optimal code to answer the following
introductory questions: “Will a fixed vertex be activated at a particular time? Can we
reconstruct all the vertices that will be activated?” We also achieved the enumeration of
chinampas of profits of zero and one. The problem of finding all chinampas of profits
bigger than two remains open. Our techniques for counting the chinampas of profits of zero
and one cannot be adapted to this case, as the techniques miss a large family of elements
(see Remark 6). We established that for a family of chinampas represented by triangular
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sequences, their enumeration problem is equivalent to computing the Stanley-order poly-
nomial of a family of posets. To the best of our knowledge, finding the order polytope or
Erhart series of these posets remains an open problem in enumerative combinatorics.

Modern algorithms aim to emulate the behavior of brain regions by simulating poly-
chrony groups across multiple neurons [28,29]. Our approach differs in that we focus on a
particular path of neurons and study the possible polychrony groups on that network.

Our contribution to computational neuroscience is not only theoretical. For example,
the algorithm included in [1] and the software of [16,30–33] each emulate multiple cascades
in parallel. When studying individual cascades along a line or in a tree, the software
evaluates each cascade with a computational complexity of Opn2q, where n is the number of
neurons. In comparison, our algorithms scale as Opnq and Opn2q in the best and worst cases,
respectively. Optimization is important, since brain-like hardware is known to perform
poorly [10,34]. We believe that our code can help to better understand the patterns of large
polychrony groups efficiently.

Our work is limited to the study of signal flow paths. Possible continuations of
this work include modeling triple-spike timing-dependent plasticity [35–38], for example
in this paper we used self edges to model long-term potentiation. Inspired by [39], a
machine learning algorithm such as genetic algorithms, combined with our software,
should produce an algorithm with input of experimental measurements of spikes and
output of the most likely topology of the network. Another possibility is to study redundant
polychrony groups, where redundancy is applied to assure that software will work even
if some components are damaged. Following [40], we would like to introduce noise in
the theory of chinampas. Perhaps polycrhony groups can be used to study sparse neural
networks [41–45] when the neuronal network uses a sigmoid activation function which is
equivalent to our nonlinearity condition for the signal flow graphs. In relation to the theory
of species [21,46], the first and second author are currently developing a topological version
of species [26]. Topology is needed because our generating functions are parameterized by
posets, as in Lemma 3. Finally, we believe it may be of interest to study signal flow graphs
that admit cycles according to Figure 2. The feedback enables the existence of perpetual
chinampas, the feedback in [14] is used to encode messages.
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