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Abstract: As a practical application of Optical Character Recognition (OCR) for the digital situation,
the digital instrument recognition is significant to achieve automatic information management in
real-industrial scenarios. However, different from the normal digital recognition task such as license
plate recognition, CAPTCHA recognition and handwritten digit recognition, the recognition task of
multi-type digital instruments faces greater challenges due to the reading strings are variable-length
with different fonts, different spacing and aspect ratios. In order to overcome this shortcoming, we
propose a novel short-memory sequence-based model for variable-length reading recognition. First,
we involve shortcut connection strategy into traditional convolutional structure to form a feature
extractor for capturing effective features from characters with different fonts of multi-type digital
instruments images. Then, we apply an RNN-based sequence module, which strengthens short-
distance dependencies while reducing the long-distance trending memory of the reading string, to
greatly improve the robustness and generalization of the model for invisible data. Finally, a novel
short-memory sequence-based model consisting of a feature extractor, an RNN-based sequence
module and the CTC, is proposed for variable-length reading recognition of multi-type digital in-
struments. Experimental results show that this method is effective on variable-length instrument
reading recognition task, especially for invisible data, which proves that our method has outstand-
ing generalization and robustness in real-industrial applications.

Keywords: multi-type digital instruments; variable-length reading recognition; distance dependen-
cies information; shortcut connections; sequence-based; CTC

1. Introduction

Digital instruments are widely used in the fields of industrial control, device display
and testing for their high precision, strong readability and easy maintenance [1]. How-
ever, most of digital instruments are lack of communication interface due to information
security, cost control and application environment, which unable to realize automatic ac-
quisition and transmission of digital number for subsequent information processing and
data management. In this way, the recognition requirement of digital instruments is only
relying on artificial reading by worker, which is inconvenience for information manage-
ment in real-industrial scenarios. Specifically, there are many uncertain factors in artificial
reading, and the result is easy to be interfered by subjective factors, resulting in low effi-
ciency and low accuracy [2—4]. In addition, some high-risk environment with high tem-
perature, high pressure, high radiation and strong corrosion is not suitable for manual
work [5,6]. Therefore, it is of great practical value to explore an efficient, accurate and
robust method to recognize digital instrument reading automatically.

As with the regular process of Optical Character Recognition (OCR), the core steps
of digital instrument reading recognition are mainly divided into two stages, including
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reading detection and reading recognition. As the terminal step of the automatic recogni-
tion system of digital instruments, the quality of the recognition method directly deter-
mines the final recognition rate. Therefore, the recognition method has also received a lot
of attention from scholars and experts. However, most of the current related studies only
focus on a single instrument type, such as the digital multimeter [7,8], the ammeter and
voltmeter [5], the methane detecting instrument [9], the electric energy meter [10], and so
on. Additionally, some studies are only applicable to specific application scenarios with
superior imaging conditions, such as requiring the relative position of the camera and the
instrument to be fixed [6,11]. All of the above methods work well under certain circum-
stances, but they are difficult to cope with the recognition needs of real-industrial scenar-
ios in which multiple instrument types are mixed. In the real world, the reading strings of
the captured images are usually non-standardized with variable-length, due to different
instrument locations, the difficulty in building a stable image acquisition system, and dif-
ferent types of instrument displays. To be specific, the changes in string length are re-
flected in the following aspects: (1) different number of characters in character string; (2)
different character fonts and styles; (3) different character spacing and aspect ratios. Thus,
more and more researchers focus on the problem of recognizing variable-length reading
of multi-type digital instruments.

Currently, the approaches of recognizing variable-length reading strings are mainly
based on segmentation-based recognition methods by first splitting the string into indi-
vidual characters, and then recognizing each character separately. Wei Zhou et al. [12]
split the characters separately by obtaining the equations of the lines on both sides of the
character. However, this method was easily affected by position changes of characters,
not suit for the application with muti-type instruments. Studies [13,14] used vertical pro-
jection method to cut out the numbers according to the height-width ratio and other in-
formation of the image before recognition, which had the advantages of high recognition
rate, high real-time performance and good reliability. Nevertheless, the image pre-pro-
cessing algorithm is used for key operations, which may lead to segmentation failure if its
effect is not good. Montazzolli S et al. [15] directly located to each character in the string,
thus avoiding obvious segmentation steps, but it required character-level annotation. All
of the above methods have explored solutions of recognizing variable-length reading
strings to different degrees, and have achieved good results in their respective application
scenarios. However, they are all based on a segmented thinking frame, whose generaliza-
tion and robustness are extremely limited in real-industrial scenarios. Firstly, it is difficult
to find a universal segmentation method due to different digital instrument display styles.
Secondly, the error introduced by pre-processing and segmentation steps may directly
reduce the final recognition accuracy. Finally, this recognition method is still limited to
character-level classification, which requires a large amount of character-level annotation
data and a huge workload.

In recent years, the continuous development of deep learning has brought new vital-
ity to digital instrument reading recognition. The alternative approaches are based on the
segmentation-free idea in which the string is recognized without having to be previously
split into isolated characters. Hochuli et al. [16] proposed a segmentation-free recognition
algorithm for handwritten digit strings of unknown length based on dynamic selection of
classifiers, including a length classifier and other three string classifiers (10 [0...9], 100
[00...99], and 1000 [000...999]). However, for the digital instrument reading recognition
task, the existence of special characters and the increase in the number of characters will
greatly increase the number of the classifiers (much larger than 1110 classes), leading to
an increased training burden. In 2018, Cai Menggqian [17] proposed a digital instrument
reading recognition algorithm based on a full convolution network, which directly ob-
tained the result of variable-length string through graph to graph prediction, but addi-
tional post-processing algorithms were needed to extract variable-length reading strings
from the prediction matrix, resulting in complex network structure, which is not condu-
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cive to practical application. In order to solve this problem more economically and effec-
tively, we expect the prediction results of deep neural networks to combine both class
information and location information of characters, and finally achieve pixel-level predic-
tion of images, thus eliminating complex segmentation strategies and reducing computa-
tional burden at the same time. In the industrial scenario with multi-type digital instru-
ments, a string in a digital instrument image can be regarded as an ordered string of char-
acters with variable styles and special small characters, therefore, we consider trying the
sequence-based segmentation-free method.

Considering that the recurrent neural network (RNN) [18] are very good at handling
sequence data and the connectionist temporal classification (CTC) [19] can solve the prob-
lem of one-dimensional sequence alignment without character-level annotations, the
RNN-CTC framework is particularly suitable for the task of sequence labels with explicit
order information, such as license plate recognition [20,21], CAPTCHA recognition [22,23]
and handwritten digit recognition [24]. However, although CTC is an effective decoding
strategy, it also has some limitations in the reading recognition task of multi-type digital
instruments: (1) It needs high requirements for feature extraction. Especially for characters
with variable styles or some small characters such as “-” “.”, CTC will output “null” for
sequences that cannot be recognized, however, its alignment rules of de-duplication and
de-blank will easily cause wrong decoding. (2) The short-distance dependencies are im-
portant. Since CTC decoding allows repeated characters and blank labels, a label, espe-
cially a wide character, can be jointly predicted by more than one sequences. Some neigh-
boring sequences have complementary features and there is some correlation within the
feature sequences that need to be captured effectively. For example, if only half of the
number “8” is seen, “8” may be misclassified as “E” or “3”, as shown in Figure 1. In addi-
tion, the characters at each position of the string are relatively random, so only the short-
distance dependencies not the long-distance dependencies among the feature sequences
are expected. Therefore, in this paper, we propose a novel short-memory sequence-based
model for variable-length reading recognition of multi-type digital instruments. In our
methods, shortcut connection strategy was involved into traditional convolutional struc-
ture to form a feature extractor for capturing effective features from raw digital instru-
ment images. Then, an RNN-based sequence module, which captured the short-distance
dependencies among feature sequences by giving up capturing long-distance trend
changes and increasing the sensitivity to local changes, was employed to greatly improve
the robustness and generalization of the model for invisible data. Finally, a novel short-
memory sequence-based model consisting of a feature extractor, an RNN-based sequence
module and the CTC, is proposed for variable-length reading recognition of multi-type
digital instruments.
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Figure 1. An example of misrecognition with incomplete information.

In summary, the contributions of this paper are as follows.

1. Considering the variable font styles and variable aspect ratios of different kinds of
digital instrument readings, as well as the difficulty in small characters recognition,
we involve shortcut connection strategy into traditional convolutional structure to
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form a skip connection structure for extracting more complex and advanced charac-
ter feature maps, taking advantage of the powerful high-dimensional function fitting
ability of residual networks and deep network optimization capability;

2. Inorder to reduce the connection between the characters of the string, while empha-
sizing the local connections, we applied an RNN-based sequence module, which re-
duced the long-distance trending memory of the string and strengthen the short-dis-
tance dependencies among adjacent sequences, obviously improving the recognition
accuracy and generalization of the model;

3. Based on the above two innovations, we propose a novel short-memory sequence-
based model, consisting of a feature extractor, an RNN-based sequence module and
the CTC, which achieves promising results in the task of multi-type digital instru-
ment reading recognition and performs robustly for invisible data.

2. Model Building

In this section, we will briefly introduce the mathematical model of our multi-type
digital instrument reading recognition method, which can be roughly divided into three
parts. In the feature extractor, a CNN-based structure with shortcut connections is for ex-
tracting effective features from raw images. In the sequence modeling module, a sequence
module based on RNN is used to obtain the short-distance dependencies information. In
the decoding module, the CTC algorithm is used to calculate the loss and derive the final
recognition results.

2.1. The Feature Extractor

CNN have led to a series of breakthroughs for image classification [25-27], due to the
characteristic of spatial subsampling, shared weights, and local receptive fields. Plain con-
volutional layers generally have pooling layers or multi-step convolution operations,
which will subsample the feature map and may cause the loss of small object features,
resulting in bad recognition performance of small characters such as “-” “.”and so on.
Motivated by the super performance of the residual network (ResNet) [28], in this paper
we involve shortcut connection strategy into traditional convolutional structure to form a
feature extractor to extract efficient features. The core idea of ResNet is to introduce a
shortcut connection in the network that can skip one or more layers and add the input of
the upper layer directly to the output of the bottom layer. Figure 2 shows the shortcut
connection structure in a residual block. Consider a reading string image I that is passed
through a plain convolutional network with convolutional layers, each layer C conducts a
non-linear transformation F;( ¢ ). For traditional plain network, the output of ~{**convo-

lutional layer is:
Ie=Fclea) 1)

where [;_; isthe output of the (- 1) layer. For residual convolutional network, the
corresponding Iy is:

Ie=FlFey(eo)l+ Ien 2)

if there is a residual connection between({ — 2)** and {*"layers, where I;_, isthe output
of the({ — 2)*layer. Figure 2 shows the shortcut connection structure in a residual block.
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Figure 2. The residual block structure [28].

This kind of connection can increase the information transmission between adjacent
network layers, which can better fit high-dimensional classification functions and greatly
enable the backbone network to learn more complex and accurate feature representation.
In practice, the non-linear function F¢( e )is always composed of batch normalization [29],
ReLU [30] and a convolution layer. In addition, the number of the shortcut connection
layers can be flexibly chosen according to the specific task. In general, the feature maps X
produced by the feature extractor in our study can be represented as:

XIFel(I), 3)

where 6; is the parameters of the feature extractor and Fy (*) denotes the designed
extractor, which is a CNN-based structure with shortcut connections to obtain high-level
feature representation of multi-type characters. Before feeding into the sequence model-
ing module, the feature map X is converted into a feature sequence. Assuming that the
length of the sequence output from the feature extractor is T, it can be denoted as:

X:{xl,...,xj,...,xT}, (4)
where x;(j = 1,2,...,T) is a vector, in the same order to the corresponding local rectangle
region of the raw image from left to right.

2.2. The Sequence Modeling Module

RNN is an important branch of deep neural network, which is very good at pro-
cessing sequence-like data. The most significant feature of RNN is that the current output
of anode in the hidden layer is not only related to the current input, but also to the output
of the hidden layer at the previous moment, and its node structure is schematically shown
in Figure 3.

ht— 1 ht

Figure 3. The structure of RNN nodes .

Neural network A is regarded as a function g, the weight matrix is w, and the RNN
recursive function can be expressed as:
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hy = g(hy, 2, w) )

In this way, it can ensure that each moment of the RNN contains information from
the previous moment, and contextual links between feature sequences can be established.
The current output of CNN is only related to the current input, leading the dependencies
of samples on time or space sequences cannot be modeled, so it is necessary to introduce
RNN for the following reasons: Firstly, RNN has a strong ability to capture contextual
information in sequences. Secondly, in the digital instrument reading recognition task, the
characters at each position of the reading string are relatively random while some neigh-
boring sequences have complementary features, so it is important to establish the short-
distance dependencies not the long-distance among the preceding and following se-
quences. Thirdly, RNN can traverse sequences of arbitrary lengths, and effectively deal
with the recognition of variable-length readings.

Traditional RNN unit (BasicRNN) [18] and Long-Short Term Memory (LSTM) [31]
unit are two representative types of RNN units, whose structures are shown in Figure 4.
From the figure, we can see that the repeated cell structure of BasicRNN is simple, and
there is only one neural network layer. Due to the chain law, the preliminary information
of BasicRNN is easier to be lost, and the information it keeps is usually short-distance. The
repeated cell structure of LSTM is complex with not only one neural network layer but
also three gating units, and these gating structures interact with each other to control cell
selects the information of interest, as shown by the horizontal line running through the
top of the cell in the figure. The cell states in LSTM only need to perform linear summation
operations to pass the hidden layer, so it is good at conveying long-term information but
lacks the ability to focus on local regions. On account of the previous analysis, we expect
the characters of the string to be relatively independent from each other, but to preserve
the short-distance dependencies among the feature sequences, in the digital instrument
reading recognition task, so we select the BasicRNN network for sequence modeling.

The chain structure of BasicRNN chain structure of LSTM

o — = =

MNeural Network Layer Pointwise Operation Vector Transfer Concatenate Copy

Figure 4. The chain structures of two typical recurrent neural networks. The arrow represents pass-
ing a complete vector, and the yellow box represents the neural network layer; Purple circles repre-
sent point-by-point operations; A merge line means that two inputs are in series, and a forked line
means that content is sent to different locations.

To be specific, given the feature sequence X = {xy,..., xj,..., xr}{from the extractor, in
order to get the contextual information, the recurrent neural network G(e) generates the
contextual representati C = {c,...,cj,...,cr} through the recurrent connection ¢, =
G (cy—1, x¢). Finally, for the generated sequence, we obtain the posteriori probability distri-
bution over the label space for per-frame in the sequence via a linear layer:

yj= soft max(cj),j =12,...,T 6)

Then the whole label distributionY = {y,,...,y;,...,yr}are made based on C =
{ci,)---, Cirerns cr}. The entire process of the sequence modeling module can be represented
as:
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Y = Ry, (X), ?)

where 6,is the parameters of the feature extractor Ry, (*) denotes the whole sequence
module based on Bi-BasicRNN, which capture the short-distance sequential dependencies
with both directions.

2.3. The Decoding Module: CTC

Connectionist temporal classification (CTC) [19] is a kind of output layer. It has two
main functions. One is to calculate the loss, the other is to decode the output of RNN. CTC
introduces an identifier “blank” ( CD) to indicate that there is no character predicted at that
position, thus achieving the purpose of occupancy and alignment. The “blank” can only
repeat or go to the next non-empty sequence. With the introduction of “blank”, the model
does not need to struggle with which label should be aligned to a certain time step, and
all paths conforming to the CTC topology are a legal alignment path, and the purpose of
network training is to find the optimal path.

Using N to denote all possible output characters in the recognition task, the total
character set of the reading string recognition task can be expressed as:

N' = N U{®}, (8)

Taking the digital instrument reading string recognition in this paper as an example,
N contains 10 numbers and “E”, “-”, “.”, a total of 13 characters, while there are 14 char-
actersin N'.

For the predicted sequence Y = {y;,...,¥;,...,yr} output from the sequence model-
ing module, each y; of predictions corresponds to a character in N’, then there is a total of

AT
N prediction sequences, so the probability of each possible path (sequence) m is:

p(m|Y) = [1i=y p(m, t]Y), )

where m; is the label in path m at time step t.

After removing the repeated labels and blanks of the sequence m, the final predicted
string is obtained, and this mapping process can be expressed as a many-to-one func-
tion Q(m) . For example, the sequences m, = "00PEEP555¢0P8" and m, =
"00PPEEPP55@P88" all satisfy "Q(m,) = Q(m,) = 0E58". Assuming that the corre-
sponding label is denoted as Z over N, a conditional probability is defined as the sum of
probabilities of all t, which are mapped by Q() onto Z:

P(ZIY) = Xram=zp(@Y), (10)

Generally, for a given sequence Z, there are a huge number of possible paths. Direct
computation of the summation in Equation (10) will cost too much time, thus, we choose
the forward-backward algorithm described in [32] to calculate it in a reasonable time.

In the inference phase, the sequence Z* defined in Equation (10) with the highest
probability is chosen as the prediction. However, it is extremely difficult to find the opti-
mal solution precisely. In this paper, we choose the Greedy Algorithm adopted in [33] to
approximate the result:

Z* = ()(argmax_p(r1Y)) (11)

At each time step ¢, we just choose the most probable label, and obtain the final pre-
diction output after Q(7r) mapping.
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3. The Proposed Network
3.1. Architecture and Parameters of the Novel Short-Memory Sequence-Based Model

The detailed information of the architecture is shown in Figure 5 Table. The architec-
ture of the novel short-memory sequence-based model consists of three parts: (1) the fea-
ture extractor; (2) the sequence modeling module; (3) the decoding module.

CTC: Decoding

]
i1

i
111

LI_) ‘_I_/ \ J o
I I
Feature Feature Bidirectional Result before Predicted
Input image
= extractor sequence BasicRNN decoding sequence

Figure 5. The network architecture of the novel short-memory sequence-based model.

In order to extract the best possible representation of feature sequences from images
and retain useful information at different levels, we design a skip connection structure
based on CNN, consisting a plain CNN network and three shortcut connections, as shown
in Figure 6. To be specific, a convolutional layer and a pooling layer are first designed to
obtain low-level features and down-sample the feature dimension. The intermediate con-
volution part has six convolutional layers with three shortcut connections, which are im-
plemented to reuse the activations of the previous layers. In addition, we perform
downsampling directly by strided convolutional layers instead of the max pooling layers,
which increases the number of network-trainable parameters and improves the expres-
siveness of the model. The main purpose of this part is to achieve high-level information
extraction through the stacked convolutional layers. The network ends with two convo-
lutional layers with appropriate parameters to achieve cross-channel information interac-
tion and strengthen the connection among adjacent frames in the feature map.

After the convolutional layers, in order to capture local dependencies from both the
front and back directions and obtain a higher and more abstract feature level, we employ
a deep bi-directional BasicRNN (Bi-BasicRNN) network with 2 layers for sequence mod-
eling, whose output sequences are the probability distributions over 14 classes in N'. Fi-
nally, CTC is adopted to train the whole network and translate the per-frame prediction
by the recurrent layers into a label sequence.
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Figure 6. The architecture of the feature extractor.

3.2. Network Training

If the training set is denoted as S = {I, Z} and (I, Z) is one of the samples in S, where (
I'eI) is the training image and (£€Z) is the ground truth of label sequence. Then the
loss function I(S) can be calculated as the negative log probability of ground truth on all

training examples in training set S.

I(S)=- | Z|Y
(s) (I’Zz)esog p(Z| ), 12)
= = Yunes 109 (Znam=zp(TY)), (13)

The framework of the proposed method consists of three parts. The sequence mod-
eling module can back-propagate the error differentials to the feature extractor and the
CTCis a cost function independent of the neural network architecture. Therefore, we can
train the whole network simultaneously by adding a CTC layer. To be specific, Equation
(13) can calculate a cost value directly from an image €I and its ground truth label
sequence Z€Z . Thus, the network can be end-to-end trained on the training set S. The
network is trained with stochastic gradient descent (SGD) with the back-propagation
through time (BPTT) [34] algorithm and the network parameters 6 including 6, and
0,, which can be denoted as follows:

a1(S)

O0«<0-u 0

(14)

where u is the learning rate.

Once the network has been trained, the best decoding path is applied to the output
sequence predictions of the sequence modeling module. The decoder concatenates the
most probable labels at each time step and obtains the final reading string after removing
the duplicate characters and all the blanks.

4. Experimental Analysis
4.1. Datasets and Implementation Details
4.1.1. Datasets

Considering that there are relatively few such studies at present, in order to carry out
this work, 1723 images of different types of digital instruments were collected with CDC
industrial camera in real working scenarios. Then, in order to improve the detection per-
formance, 10,520 images were crawled through web crawling techniques in various web-
sites as the initial data samples. On this basis, the standard rectangular enclosing box was
used to crop the images of small reading area with accurate positioning and less noise
interference by conventional detection algorithm. Then we manually label the cropped
images to construct a basic dataset containing multi-type digital instrument reading im-
ages of variable length from 1-6 digits, and Figure 7 shows some raw images and some
samples of the basic dataset.
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Figure 7. Some raw images and some samples in the basic dataset.

In our experiments, we constructed two different datasets A and B depending on the
base dataset, both of them containing pictures with all length of 1-6 digits. For A, the
training set(A1) and testing set(A2) are constructed based on the principle of independent
and identically distributed, where the testing data and training data are in equilibrium
distribution on the kinds of strings, character fonts, character spacing and aspect ratios,
according to the training test ratio of 10:1. To further verify the capability to combat me-
morial errors and generalization of our model, we construct dataset B. In B, 23% kinds of
strings in testing set(B2) do not appear in the training set(B:), while the other 77% pictures
in testing data are quite different from training data on character fonts or character spac-
ing and aspect ratios. Similarly, the ratio of the training set to the testing set is still about
10:1. In addition, the training set A1 and training set B1 contain a considerable number of
0-9 and “E” “-” “.”, totaling 13 characters. The distribution of the datasets is shown in
Table 1.

Table 1. The datasets distribution used in our experiment.

Number of Number of
Dataset .. . Notes
Training Samples Testing Samples

Containing 1-6 digits images, the testing data and training

A 4213 412 data are in equilibrium distribution on the kinds of strings, char-

acter fonts, character spacing and aspect ratios.

Containing 1-6 digits images, about 23% of the reading

B 4150 01 strings in the test set were not found in the training set, while

77% pictures in testing data are quite different from training data
for character fonts or character spacing and aspect ratios.

4.1.2. Implementation Details

The network configuration of the proposed method is summarized in Table 2. The
architecture of the feature extractor is inspired from the VGG architecture [35] and the
residual network. Some improvement is made in order to make it suitable for recognizing
the variable-length reading of muti-type digital instruments. To reduce the computational
burden, the first convolutional layer uses 64 filters with a (3,3) kernel size and stride of
(2,2). The kernel size and stride for the pooling layer are set to (2,2) and (1,2) respectively,
for two reasons. On the one hand, there will be overlap and coverage between the output
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features in the horizontal direction, which can enhance the feature richness, on the other
hand, the stride set to (1,2) can produce a rectangular perceptual field with narrow width,
and it is easier to recognize small characters with narrow width, such as “.” “1”, etc. To
ensure that the height dimension of the output feature sequence is 1 and that the number
of feature sequences is appropriate (much larger than the number of characters in the
reading string), while retaining more spatial information. The first two residual modules
use convolutional layers with stride of (1,2) to down-sample only the height of the feature
map, while keeping the width unchanged. Then, the last module performs downsampling
in both the height and width directions by convolutional layer with stride of (2,2). It
should be noted that the downsampling only happen in their first convolutional layer. In
the same residual module, each convolutional layer has the same number of filters. The
number of filters is doubled one by one for each of the three residual blocks. In addition,
we use a convolutional layer with a (1,1) kernel size and stride of (1,2) to reduce the num-
ber of parameters while achieving cross-channel interaction and information integration.
In the end, between two feature sequences, the last a convolutional layer with a (2,1) ker-
nel size and stride of (1,1) is adopted to strengthen the adjacent connection in the feature
map. Finally, the new 512-dimensional feature sequences with a height of 1 are generated
as the input of the recurrent layer.

The network is implemented within the tensorflow1.14 deep learning framework un-
der Python 3.7. Experiments are carried out on a workstation with Intel(R) i7 processor,
RTX1070 Ti discrete graphics card, 32G RAM. The AdaDelta is chosen to update the net-
work parameters, while the learning rate is set to 0.0001. ReLu is used as the activation
function of each layer, and CTC _loss is used as the loss function to achieve end-to-end
network training with a total of 200 epochs. In order to speed up the training process, each
convolutional layer is followed by a BN layer. It is found that the value of batch_size has
a great impact on the results. If batch_size is too small, training process is time-consuming
and bad for convergence. If batch_size is too large, it will easily fall into the local mini-
mum. Therefore, batch_size was finally set to 32, after several training comparisons.

Table 2. Parameters of the proposed model. An input instrument image of 100 x 32 will generate a
feature sequence with the dimensions 1 x 24 x 512 after the feature extractor. The outputs from the
sequence modeling part have the same dimensions as the inputs.

Layer Input Shape Kerner Size Filter Stride Output Shape
Convl (batch,100,32,1) 3x3 64 2x2 (batch,49,15,64)
MaxPooll (batch,49,15,64) 2x2 - 1x2 (batch,48,7,64)
Conv2_x (batch,48,7,64) 11,128, 1x2 (batch,48,4,128)
- 3x3,128,1x1

Conv3_x (batch,48,4,64) ; ) ; igg 1 ) f (batch,48,4,128)
Convé x (batch,48,2,128) ; ) ; :ii i ) i (batch,48,4,128)
Convb (batch,24,1,512) 1x1 512 1x1 (batch,24,1,512)
Convé (batch,24,1,512) 2x1 512 1x1 (batch,24,1,512)
Bi-BasicRNN (batch,24,1,512) Hidden units:256 (batch,24,1,512)
Bi-BasicRNN (batch,24,1,512) Hidden units:256 (batch,24,1,512)

CTC Layer
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4.2. Data Pre-Processing and Evaluation Metrics
4.2.1. Data Pre-Processing

The sizes of images vary in these datasets. For efficient training and the requirement
of downsampling operations, the input dimension of models should be fixed. In this pa-
per, we resize all images to a fixed height of 32 with remaining the image respect ratio. In
addition, we gray-scale the obtained picture to facilitate the calculation.

4.2.2. Evaluation Metrics

Inspired by the evaluation metrics of OCR, the proposed network model in this ex-
periment can be also measured by hard metric and soft metric. Hard metric, also known
as string-level recognition accuracy (SRA), is more rigorous, as it recognizes the predicted
reading string as a correct when all the characters in the ground truth label are identified.
The SRA is calculated as:

SRAZMS/M, (15)

where M is the total number of testing images and Ms s the number of correctly rec-
ognized images.

Soft metric, also known as character-level recognition accuracy (CRA), is defined
based on the edit distance, which is the minimum number of edit operations required to
convert from the predicted string to the ground truth string. There are three types of ed-
iting operations allowed: substituting one character with another, inserting a character or
deleting a character. The smaller the edit distance, the more similar the two reading strings
are. In other words, a smaller sum of the edit distance indicates a higher CRA, which is
calculated as:

CRA=-2d, (16)

7

where % is the edit distance of each incorrectly recognized character.

In addition, according to the characteristics of incorrect test results, we divide the
mis-recognition into two categories: memorial errors and the other recognition errors. The
memorial error refers to a situation where a reading string in the test set does not appear
in the training set, and the model recognizes it as a reading string similar to the one in the
training set. Some examples of memory errors are shown in Figure 8. The other recogni-
tion errors mainly refer to over-recognition, under-recognition and mis-recognition of
some characters in the reading string without obvious patterns other than memory errors.

0'ST6[0c-ol 77/ ec- 0 FGc
tB.E‘.S

EE 0N HE = EEEEE
E_g

Figure 8. Some examples of memorial errors.
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4.3. Experimental Result and Analysis
4.3.1. The Effectiveness of the Feature Extractor in the Proposed Method

To verify that our feature extractor can extract effective feature representations than
a plain CNN structure without shortcut connections, we first compared the performance
of our feature extractor combined with CTC and a plain CNN structure with CTC, which
both eliminated sequential modeling. In order to verify our hypothesis more comprehen-
sively, we conducted experiments on both simple dataset A and complex dataset B and
measured the experimental results both on SRA and CRA. The test results of the two mod-
els are shown in Table 3.

From the result, we saw that the SRA of the skip connection structure model reached
96.9% and 83.1% for dataset A and dataset B, respectively. This was an improvement of
1.1% and 9.1% compared with the plain CNN structure model for the two datasets, re-
spectively. In order to validate our hypothesis, the skip connection structure model can
achieve a better performance more comprehensively, we calculated the CRA as a supple-
ment for the SRA. The CRA of skip connection structure model reached —13 and -95 for
dataset A and dataset B, respectively. This was an improvement of 4 and 48 compared
with the plain CNN structure model for the two datasets, respectively. As we discuss
above, dataset A is simpler compared with B, resulting in easy recognition of other char-
acters in A except for the small character recognition errors, while dataset B is more com-
plex. In this way, the 9.1% accuracy improvement on B, a small portion of which is at-
tributable to avoiding the loss of small object feature, is mostly attributable to the effec-
tiveness of the residual net-work feature extraction advantage on the overall recognition
performance improvement. As a result, there is a minor accuracy impact obtained from
dataset A, while a greater accuracy impact obtained from dataset B. In conclusion, the
improvement from the plain CNN structure model to the skip connection structure model
proved that our novel feature extractor was capable of learning more effective features
from characters with complex and diverse forms, which indicates our novel feature ex-
tractor is more suitable for the variable-length reading recognition task of multi-type dig-
ital instruments.

Table 3. Recognition accuracy of the skip connection structure + CTC and the plain CNN structure
+CTC.

Train on A1 Train on B1
Network Model Test on Az Test on B2
SRA CRA SRA CRA
The skip connection structure + 0.969 13 0.831 95
CTC
The plain CNN structure 0.958 17 0.740 143
+CTC

4.3.2. The Necessity of the Sequence Modeling

To verify the necessity of the sequence modeling, we applied a sequence module to
the framework the skip connection structure + CTC for sequence modeling, constructing
two models: the model without sequence module, the model with sequence module, then
trained and tested on dataset A. The parameters of recurrent layers are the same as in
Table 2 and the rest of the two models stay the same for a fair comparison. The perfor-
mances of the models are summarized in Table 4.

As shown in Table 4, the test accuracy (SRA) of the model without sequence module
reached 96.9%, which was 2.1% lower than that of the model with sequence module. It
shows that the network model with a sequence modeling part is tested with high accuracy
on the dataset with balanced distribution of the training and test sets, which indicates that
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there is a certain dependency between the feature sequences of instrument readings and
the role of sequence modeling of the recurrent layer is necessary.

To further understand how RNN help to improve the model performance, we visu-
alized the feature sequence of three samples in the test set A2 output directly from the
CNN layers or from recurrent layers in Figure 9. As indicated in this figure, we observed
that the feature sequences from recurrent layers are more distinctive than that directly
from the CNN layers, which is more dispersive. This means that RNN can enhance the
contextual information among feature sequences, which is very beneficial to model better

feature sequences.

The model without The model with
sequence module sequence module

1.0

0.8

o
(=]
heat value

T
o
=

] 5 10 15 20 o 3 10 15 20
24 feature sequence number (0-23) 24 feature sequence number (0-23)

- 0.2

0 5 10 15 20 0 5 10 15 20
24 feature sequence number (0-23) 24 feature sequence number (0-23)

Figure 9. Heat map of the feature sequence output from sequence module or not. Left shows the
heat map of the feature sequence directly output from the feature extractor without sequence mod-
ule, and right shows the feature sequence output from the sequence module.

Table 4. SRA on dataset A when applying a sequence module or not.

Train on As

Network Model Test on Az
SRA
The model without sequence module 0.969
The model with sequence module 0.990

4.3.3. The Proposed Sequence Module Focuses on Short-Distance Dependencies to Im-
prove Model Generalization

Except for BasicRNN and LSTM, there are many other RNN evolutionary variants to
choose from the RNNs family. For example, Gated Recurrent Unit (GRU) [36] structure
removes the cell states and uses hidden states to transfer information with only two gate
structures simpler than LSTM, while Simple Recurrent Unit (SRU) [37] reduces front-to-
back computational dependencies and enables parallel computation of RNNs. However,
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they are all good at capturing long-distance dependencies. In order to verify the hypoth-
esis that short-distance dependencies is better than long-distance dependencies in the
multi-type digital instrument reading recognition task, where the characters at each posi-
tion of the reading string are relatively independent from each other. We applied LSTM,
GRU and SRU for sequence modeling to compare with our BasicRNN-adopted sequence
modeling module. Then we trained and tested the BasicRNN-adopted model, the LSTM-
adopted model, the GRU-adopted model and the SRU-adopted model on dataset B, which
is designed for invisible data. The test results of the four models for the SRA and the num-
ber of memorial errors are shown in Table 5.

Table 5. The test results of the BasicRNN-adopted model, the LSTM-adopted model, the GRU-
adopted model and the SRU-adopted model on B

Train on B:

Test on B2
Network Model
SRA The Number
of Memorial Errors

The BasicRNN-adopted model 0.897 6
The LSTM-adopted model 0.815 44
The GRU-adopted model 0.839 36
The SRU-adopted model 0.808 35

In Table 5, it was shown that the performance of the BasicRNN-adopted model pre-
sented a significant improvement compared with the other three models. The BasicRNN-
adopted model achieved an 89.7% accuracy. This was 8.2%, 5.8% and 8.9% higher than
the accuracy of the LSTM-adopted model, the GRU-adopted model and the SRU-adopted
model, respectively. Looking at it another way, there were 44, 36, and 35 memorial errors
for the three models respectively, much more than that of the BasicRNN-adopted model.
This fully proved that LSTM, GRU and SRU were good at establishing long-distance de-
pendencies and prone to endorsement style memorial errors. The test results indicate that
BasicRNN has good generalization and obtain high classification accuracy for invisible
data and is more suitable than LSTM, GRU and SRU for digital instrument variable-length
reading recognition where the correlation between characters is relatively weak and local
area features need to be focused.

To clearly describe how sequence modeling with BasicRNN not LSTM and so on can
help improve the performance of digital instrument reading recognition, Figure 10a,b
show the label distribution after softmax layer of two representative examples in Bz,
whose reading strings didn’t appear in training set Bi. Since LSTM, GRU and SRU are
good at capturing long-distance dependencies, they are very prone to memorial errors.
For example, in Figure 10a,b, the test results of the two samples both could be predicted
correctly trough BasicRNN-adopted model, while decoded to the similar reading strings
in training set B: trough the other three models.
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Figure 10. Correct prediction of BasicRNN-adopted model. (a) The label distribution of “7.8E-3”
through the four models. “7.8E-3” didn’t appear in Bi, while “7.6E-3”and “6.8E-3" appeared in Bu.
(b) The label distribution of “01576” through the four models. “01576” didn’t appear in B1, while
“01575” appeared in Bi.

5. Conclusions

In this paper, we proposed a novel short-memory sequence-based model for varia-
ble-length reading recognition of multi-type digital instruments. By using a skip connec-
tion structure, our proposed method was able to automatically extract more effective fea-
ture representations from complex and diverse characters, which outperformed the plain
CNN structure. On the basis of the feature extractor, we applied an RNN-based sequence
modeling module, which abandoned capturing long-distance trend memory while focus-
ing on the correlation of local sequences. Experiments showed that our model had good
generalization to invisible data and obtains high recognition accuracy in the variable-
length reading recognition task of multi-type digital instruments. In addition, we analyze
the feature extraction capability of our feature extractor by using SRA combined with
CRA, and visualize the feature sequences output from the recurrent layer and the label
distribution after softmax layer to gain insight into the reason why modeling local se-
quence dependencies can improve model performance.
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