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Abstract: The complexity of products increases considerably, and key functions can often only be
realized by using high-precision components. Microgears have a particularly complex geometry and
thus the manufacturing requirements often reach technological limits. Their geometric deviations
are relatively large in comparison to the small component size and thus have a major impact on the
functionality in terms of generating unwanted noise and vibrations in the final product. There are
still no readily available production-integrated measuring methods that enable quality control of all
produced microgears. Consequently, many manufacturers are not able to measure any geometric gear
parameters according to standards such as DIN ISO 21771. If at all, only samples are measured, as
this is only possible by means of specialized, sensitive, and cost-intensive tactile or optical measuring
technologies. In a novel approach, this paper examines the integration of an acoustic emission sensor
into the hobbing process of microgears in order to predict process parameters as well as geometric and
functional features of the produced gears. In terms of process parameters, radial feed and tool tumble
are investigated, whereas the total profile deviation is used as a representative geometric variable
and the overall transmission error as a functional variable. The approach is experimentally validated
by means of the design of experiments. Furthermore, different approaches for feature extraction
from time-continuous sensor data and different machine-learning approaches for predicting process
and geometry parameters are compared with each other and tested for suitability. It is shown
that structure-borne sound, in combination with supervised machine learning and data analysis, is
suitable for inprocess monitoring of microgear hobbing processes.

Keywords: quality control loop; structure-borne sound; machine learning; microgears; process
monitoring; optimization

1. Introduction

Microdevices are crucial components in diverse, complex products that promise
increasingly high growth in many different industries [1]. The most common mechanical
microcomponents are microgears, which are used in a wide range of applications, e.g., in
the fields of aerospace technology, medical technology, and robotics [2,3]. Microgears have
a particularly complex geometry and thus the manufacturing requirements often reach
technological limits. In the case of dental instruments such as dental drills, the relatively
large geometric deviations of microgears, in comparison to the small component size,
have a major influence on the function as well as the generation of unwanted noises and
vibrations, which have a direct influence on patients and treating physicians. The main
cause is excitations generated during tooth meshing, which are transmitted by means of
structure-borne vibrations and radiated as airborne sound. Gear deviations such as profile
and flank deviations lead to less than ideal tooth meshing and must therefore be detected
and avoided [4,5]. Quality assurance by means of suitable measurement technologies is
therefore very important in the context of microgear production.

A comprehensive study by the Physikalisch-Technische Bundesanstalt (PTB) on the
potentials and requirements of microgear measuring technology shows, that the quality
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of the achievable measurement results is not yet sufficient for the high, and in the future
further increasing, demands placed on microgear manufacturers [6]. In addition to readily
available measurement methods for measuring samples in a measuring room, 100% inline
measurements would be necessary to enable control strategies in the sense of a closed-
loop approach to further increase the efficiency of the manufacturing processes. The lack
of accessibility due to complex geometric features is a major barrier to the use of tactile
and optical measurement methods for comprehensive quality assurance of microgears.
Furthermore, the long measurement time and the high costs for measuring machines
capable of measuring in the single-digit micrometer range represent further barriers to
economical 100% inline measurements.

This paper examines the integration of an acoustic emission sensor into the manufac-
turing process of microgears in order to predict process parameters as well as geometric
features. The developed method is investigated with a use case from the dental industry us-
ing the example of the gear hobbing process. Hobbing is the most commonly used process
for the production of gears. It is a complex process with multidimensional intersections
and simultaneous rotation of tools and workpieces. So far, hobbing has been investigated
mainly in terms of tool wear. Both electrical current signals [4] as well as airborne sound [7]
and structure-borne sound signals [8] are already being used successfully for this purpose.
The use of machine learning and data analysis in combination with structure-borne sound
signals has the potential to predict the quality of the produced gears. Furthermore, this
approach would enable process control in the sense of a closed-loop approach to further
increase the efficiency of the hobbing process.

2. State of the Art
2.1. Microgears and the Monitoring of Their Manufacturing Process

There is no universal definition of microgears, but according to the standard VDI 2731,
microgears are defined as gears that have two of the following three characteristics (see
Figure 1) [3]:

Characteristic external dimensions (e.g., diameter or edge length) < 20 mm

Module < 200 um

Structural details < 100 pm
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Figure 1. Characteristic gear parameters.

Monitoring the production of micro components requires special, highly sensitive
measurement technologies [9]. In addition to traditional measurement technologies, indi-
rect signals can also be utilized for process monitoring. The utilization of current signals
from the spindle and feed motors, as described by Ogedengbe et al. [10], has the advantage
of being simple and cost effective to measure in comparison to the use of force signals,
which contain high levels of noise [11]. Additionally, structure-borne sound signals can
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provide useful information regarding tool wear [12]. Su [13] further uses structure-borne
sound signals for the diagnosis of damaged types of microgears within microdrive systems.

2.2. Condition Monitoring with Structure-Borne Sound

Structure-borne sound is generated by a sudden, localized release of energy, such as
in plastic deformation, impacts, friction, or crack formation, and produces mechanical,
elastic waves that propagate through solid bodies [14]. Structure-borne sound is measured
using the piezoelectric effect as a voltage signal [15]. Due to their smaller dimensions,
structure-borne sound sensors are significantly more flexible and less expensive to use than
force sensors [16]. Additionally, structure-borne sound sensing is particularly sensitive
compared to force sensing and current measurements, which is particularly beneficial when
monitoring fine machining processes [17].

Generally, condition monitoring can be divided into monitoring tool wear and tool
breakage on the one hand and detecting faulty machine states on the other [18]. Monitoring
tool wear is of great importance due to its impact on surface quality and geometric devi-
ations of the manufactured components. The emission of structure-borne sound signals
when using worn tools is stronger than when using new tools because wear causes a larger
contact surface between the tool and the workpiece. This results in increased friction,
leading to increased energy input and increased heat generation [19].

Numerous studies have successfully detected tool wear and breakage using structure-
borne sound signals in various manufacturing processes. Marinescu and Axinte [16]
investigated tool wear in milling using spectral analysis, revealing significant differences
between new and damaged tools. For gear honing, Yum et al. [19] successfully classify
tool wear into three classes using features of the frequency domain. Maia et al. [20] use
the power spectral density to characterize both tool wear and various wear mechanisms in
turning, with an increase in the power spectral density value indicating an increase in wear.

Using structure-borne sound, not only tool wear, but also faulty machine states can be
detected, in many cases even identifying the specific damaged component. For example, the
structure-borne sound is used to monitor bearings and transmissions, where strong sound
emissions are an indication of bearing damage and lubrication loss [18,21]. Additionally,
the characterization of various forms of damage in transmissions, such as tooth breakage
and pitting, is possible through acoustic emission [22]. Further, structure-borne sound
enables the detection of unwanted conditions during turning, such as continuous chip
formation, and it enables the investigation of the chip formation process itself [23,24].
Continuous components in the structure-borne sound signal can be associated with plastic
deformation and friction between the tool and chip, while chip winding, breaking, and
collisions generate burst signals. Additionally, observations show a strong relationship
between the RMS value of the acoustic signal and cutting energy.

2.3. Classification of Structure-Borne Sound

Structure-borne sound signals can be combined with various classification methods to
predict process parameters or component quality. Wantzen [25] predicted the tool wear of
a turning cutter as well as the lubrication condition of sliding bearings and compares the
different classifiers. Li et al. [8] also compared different classification methods for predicting
tool wear in the hobbing process, with a support vector machine (SVM) producing the best
results. Su [13] uses a “Wavelet Neural Network” to predict types of damage to gears in a
microdrive, using the wavelet function as an activation function. This resulted in shorter
training times, higher prediction accuracy, and reduced convergence problems compared
to traditional neural networks.

2.4. Scope of This Work

This research paper builds upon publications that examine the suitability of acoustic
signals for mainly monitoring tool conditions. Existing work in the field of hobbing
process monitoring is done for macro gears with a focus on utilizing structure-borne sound
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for condition monitoring and predictive maintenance applications. The current research
expands upon these results by investigating the suitability of structure-borne sound signals
for monitoring microhobbing processes, as well as the direct monitoring of the quality
parameters of complex geometries. This is of particular interest as microgears have a
complex geometry and thus the manufacturing requirements often reach the technological
limits with no readily available production-integrated measuring methods. The structure-
borne sound is captured via intelligent sensor integration. For the data analysis, different
classification algorithms are used, which are trained on the basis of labeled data and
subsequently tested.

3. Experimental Setup
3.1. Manufacturing Process

The component under investigation is a geared shaft. Its characteristics are specified
in Table 1. It is used in dental instruments for power transmission.

Table 1. Parameters of the investigated microgear.

Parameters Value

Number of teeth z 13

Width of teeth Wy _3 (3 teeth) 2.188 mm

Module m 0.28 mm

Tip diameter d, 4.424 mm

Root diameter d¢ 3.22 mm

Type of gearing Involute spline according to reference profile DIN 3961
Maximum speed in operation 200,000 min~?

The microgear is a standard component of a dental instrument manufacturer and is
manufactured using a Tsugami HS207-5ax CNC machine. Hobbing of the teeth is a partial
step of the three-minute machining of the finished component and takes 18.9 s. During
machining, the workpiece rotates at 150 min~! and the cutting tool rotates at 1950 min .

For the analysis of the tooth quality, only structure-borne sound signals of the hobbing
process are considered, during which the teeth are manufactured.

The main process parameters that have an effect on the running process are radial
feed and tool tumble (see Figure 2). The radial feed is the distance the tool plunges into
the workpiece and the parameter thus has a strong impact on the tooth thickness of the
manufactured teeth. The tool tumble, on the other hand, describes the axial tilt of the
cutting tool and should be avoided, as it leads to deviations in the tooth profile, and thus
reduces the quality of the manufactured teeth. A schematic representation of the parameters
is shown in the following figure.

I

Hobbmg Tool e
Gear
Radial feed, \ ,«
"
/ /

¢ s
Tool Tumble Angle

Figure 2. Sensor integration in the machine (image source: [26].)

3.2. Sensor Integration

The application of the structure-borne sound sensor greatly affects its signal quality.
The location must be chosen so that a direct sound transfer is allowed, with the sound
passing through as few interfaces or sound-generating components, such as bearings
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and gears, as possible. Wang and Liu [23] and Carrino et al. [27] proposed attaching the
structure-borne sound sensor to the workpiece, while Inasaki [24] preferred attaching it to
the tool with the advantage of a constant distance between the sensor and the cutting point.
Variable distances could lead to dynamic damping and distort the signal.

If a direct attachment to the tool and workpiece is not possible, as for our use case
due to the small dimensions of the tool and workpiece, Wantzen [25], Maia, et al. [20],
and Yum et al. [19] suggested attaching it to the tool holder. The chosen attachment of the
sensor is shown in Figure 3. In this case, a bracket is mounted with four screws on the
gear-hobbing apparatus that holds the cutting tool. The sensor is attached to the bracket
with a torque, defined by the sensor manufacturer, of 8 Nm. The surface where the sensor
touches the bracket has a low roughness to ensure optimal sound transmission and constant
coupling conditions [28]. The wire for data transmission is guided from the machine to the
preamplifier using a pneumatic hose. To protect against environmental influences such as
chips and oil, the structure-borne sound sensor has a housing consisting of two bent and
bonded aluminum parts. This allows for optimal sealing while simultaneously reducing
the weight of the bracket.

Figure 3. CAD layout of the sensor integration (sensor in blue on the left, sensor with protecting
housing on the right).

The integration of the sensor, including the mount and cover in the machine, can be
seen in Figure 4.

Structure borne sound

sensor in housing Sensor cable routing

Tool Gearing apparatus

Workpiece

Figure 4. Sensor integration in the machine.

3.3. Data Acquisition

In order to capture the structure-borne sound signal, a piezoelectric sensor from the
company QASS is used. This sensor records the high-frequency vibrations generated during
hobbing and converts them into an electrical signal. This signal is then routed through
a cable to the preamplifier and then to the Optimizer4D, an evaluation unit. A study
by Gauder et al. has demonstrated that microgear measurements using focus-variation
technology can achieve low, single-digit micrometer measurement uncertainties [29]. Based
on the findings of Gauder et al., the geometric reference measurements are performed
analogously using an optical coordinate measuring machine “nCMM” from Bruker Alicona.
To do this, the manufactured microgear is placed in ethanol and cleaned to exclude any
measurement deviations caused by contamination. The coordinate measuring machine
works on the principle of focus variation. Light is projected onto the measurement object
and reflected from its surface. The reflected light is focused by precision optics and hits a
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light-sensitive sensor. Depending on the distance of the sensor from the component surface,
only certain areas of the component are in focus. By moving the sensor vertically and
analyzing the sharpness of different areas, the topography of the component surface can be
reconstructed. In this way, point clouds of the gear geometry are created in a four-minute
measurement program, from which the gear characteristics such as profile deviations, flank
line deviations, and transmission errors, are calculated using commercial gear inspection
software “Reany”.

The structure-borne sound and geometry data, as well as the specified process pa-
rameters of the experiment, are fused together and evaluated in Matlab (see Figure 5).

r Input — — Reference data set
Multiplexer

4
Process Measured gear geometry
parameters Bruker Alicona pCMM

Data Analysis

Sensor
Feature Feature . .
QASS-System extraction selection Classification Trained ML model

Figure 5. Data acquisition and analysis workflow [30,31].

4. Methodology

In previous work, various sensor integration layouts were compared using a cost—
benefit analysis in terms of signal quality, sensor accessibility, and sensor protection from
chips and oil. The selected layout is described in Section 3.2. In the “Data Acquisition”
step, structure-borne sound signals of the hobbing process are subsequently recorded
using the design of experiments, which will serve as the data basis. To investigate the
relationship between the structure-borne sound signals and the process parameters or
the quality of the manufactured gears, the process parameters of tool tumble and radial
feed are varied in a full factorial experimental design. The geometry of all manufactured
microgears is then optically measured and evaluated according to standard DIN ISO 21771.
The data-analysis approach follows the procedure presented by Mikut [32] for designing
a data-mining method as shown in Figure 6. Initially, features are extracted from the
structure-borne sound signals. These are calculated both from the time signal itself and from
various spectral analyses such as short-time Fourier transform (STFT), continuous wavelet
transform (CWT), discrete wavelet transform (DWT), and wavelet packet transform (WPT).
In the feature selection, two different approaches are applied. Features are selected using
both multivariate analysis of variance (MANOVA) and a combined method of analysis
of variance (ANOVA) and rank correlation coefficient for redundancy reduction. As
input variables, the features extracted from the raw signal and the features of one spectral
transformation are used together to evaluate the suitability for classification. The restriction
to use only features of one spectral transformation in addition to features of the raw signal
is for efficiency reasons. Both the prediction of process parameters as well as quality
variables are investigated using three different classification methods: a Bayes classifier,
a support-vector machine, and a k-nearest-neighbor classifier. These are evaluated and
compared based on their prediction accuracy.
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Prediciton of process parameters

Sensor Integration

— Data acquisition

Process Structure borne Geometry data
parameters sound
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Offset SFRT Total profile deviation

[ Prediction of product quality

Figure 6. Classification data pipleine.

4.1. Design of Experiments

In the test, the parameters of tool tumble and radial feed were varied. The radial
feed influences the distance the tool plunges into the workpiece, and therefore has a direct
influence on tooth thickness, which is a central parameter for gears. The tool tumble
describes the axial inclination of the milling tool and leads to unwanted deviations of
the profile line. With large tumble values, the profile line deviates more strongly from its
nominal curve, since the skewing of the tool produces wavy tooth flanks. A full-factorial
experimental design is used so that data is recorded for each combination of radial feed
and tool tumble settings. Four equidistant steps are used to vary the tumble between 0 pm
and 21 um. Measuring the tumble with a dial gauge only allows the setting of a tumble
value close to 0 um. This setting of minimum tumble will be referred to as tumble class 0
pum in the following. For each tumble step, the radial feed is varied in five steps between
—0.02 mm and +0.02 mm in randomized order, with each parameter set being repeated
ten times. A total of 200 components were manufactured with 20 different combinations
of tumble and radial feed settings. The structure-borne sound signals are recorded at
a sampling frequency of 3.125 MHz, which, according to the sampling theorem, allows
frequencies up to 1.5625 MHz to be investigated.

By varying the radial feed and the tool tumble, the relationship between the process
parameters, the emitted structure-borne sound, and the component quality of the manu-
factured gears are investigated. The question to be answered is whether structure-borne
sound measurements offer the potential to predict the two process parameters tool tumble
and radial feed directly in the process. In the next step, it is to be investigated whether
structure-borne sound signals, in addition to the process parameters, also allow direct
conclusions to be drawn about the component quality. The quality variables used here
as examples to characterize the component quality of gears are the median-profile total
deviation over all teeth (see DIN ISO 1328-1 [33]) and the offset of the single flank rolling
test (STFT), which is defined as the overall transmission error (OTE) in the further discus-
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Time Domain

sion. Both values refer to the left tooth flanks. The median profile total deviation over all
teeth was chosen since it is one of the most characteristic parameters for describing gears.
The OTE, on the other hand, was chosen since it can be calculated from the deviation of
rotation measured in the STFT (Figure 7 in blue) during one revolution of the microgear
(13 teeth), which represents a functional test of gears. If a sine function is fitted into this
data (red curve), the deviation of the axis around which this sine oscillates (green) from the

axis without rotation deviation describes the OTE.

Overall Transmission Error (OTE)
207

| I STFT Data
18 A

‘ " Adjusted Sinus Function
\ OTE

i
S
!

-
N
-

A

Amplitude
=

-]
g o

[=2]

LS -

Tooth

Figure 7. Visualization of the overall transmission error (OTE).

With increased tooth thickness, the master gear and the tested microgear are engaged
earlier in the STFT, resulting in a large rotational-angle deviation and a larger OTE. For the
later classification of the geometry data, five classes of the OTE and four classes of the total
profile deviation are defined in an equidistant discretization. Classes are then assigned to
the value-continuous quality data.

4.2. Data Analysis
4.2.1. Feature Extraction

The reliability of the prediction of output variables such as tool wear, process parame-
ters, or component quality depends on the quality of the extracted features [8]. The vast
majority of research already conducted extracts features using spectral analysis [16,25,27].

Extraction from time signals is also used [8,25,34,35]. An overview of the features used in
the aforementioned works can be seen in Table 2.

Table 2. Selection of possible features in the time and frequency domain according to Mikut [32],
Wantzen [25], Li et al. [8], and Meng-Kun Li.u et al. [34].

Mean value of the amplitudes

Frequency Domain

Signal energy

Skewness
Kurtosis

RMS value of the amplitudes (energy equivalent)
Standard deviation of the amplitudes

Maximum/minimum of the amplitudes

Sum of all amplitudes

Span between maximum and minimum amplitudes
Mean value of the envelopes of all amplitudes

Mean value of the amplitudes of a frequency band
RMS value of the amplitudes of a frequency band
Signal energy of a frequency band
Maximum/minimum amplitude

Frequency of maximum/minimum amplitude
Percentile

Mean value of the 1st derivative of the signal
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Wantzen [25] extracted features from both the time and frequency domains using the
short-time Fourier transform (STFT) and the wavelet transform (WT). Since the features
extracted using STFT and from the time domain carry more relevant information, they are
selected more frequently than the WT features in the feature selection discussed below.
Meng-Kun Liu et al. [34] also extracted statistical features such as the RMS value, mean,
standard deviation, and maximum values from the spectrum using the wavelet packet
transform (WPT).

The feature types used here can be seen in Table 3. These are chosen due to their
good results in the literature. Features of the recorded structure-borne sound signals are
extracted both from the raw signal itself and from the time-frequency spectra of various
spectral analyses.

Table 3. Types of extracted features from the raw signal and time-frequency spectra.

Raw Signal

Per Frequency Band of the

Total Time-Frequency Spectrum Time-Frequency Spectrum

Maximum and minimum

amplitudes as well as their ¢  Maximum and minimum amplitude as well as

occurring timestamp
Range

Mean value
Standard deviation
RMS value

Signal energy

Signal power

their frequency and time of occurrence e RMSvalue
° Mean value ° Mean value
° Median ° Standard deviation
° Standard deviation ° Median
) RMS value

In addition to the short-time Fourier transform, the best-known spectral transform,
various types of wavelet transforms are used here for feature extraction. Compared to STFT,
these have the advantage that the resolution is not constant in the time-frequency domain.
This results in a fine-frequency resolution at low frequencies, which becomes coarser as
the frequency increases. With the wavelet packet transform (WPT) the resolution can even
be adapted to the signal under consideration. For theoretical background, the reader is
referred to Puente Le6n 2019 [36]. For feature extraction, the time-frequency spectra STFT,
a continuous wavelet transform (CWT), a discrete wavelet transform (DWT), and the WPT
with two different resolutions (15 and 128 coefficients), are used here.

Features can be extracted from the complete time series as well as from single intervals.
Marinescu and Axinte [16] analyze the spectrum of effective cutting times at which the tooth
of the tool is engaged. As a result, less data has to be transformed into the time-frequency
domain, which increases the efficiency of feature extraction.

A time interval of either the raw signal or a spectrum is used here to determine a
feature. Four time intervals are defined for feature extraction. Time interval one covers
the entire hobbing process, while time intervals two to four cover only partial sections.
The division into different time intervals allows the individual phases of the process to be
considered separately and their characteristics to be examined individually. In this way,
characteristics that only occur in one of the process steps become visible. The extracted
feature is named based on the underlying data form (raw signal or spectral transform), its
type, and the time interval used.

A raw signal acquired at 0 pum tumble and a radial feed of 0 mm and the time intervals
used can be seen in Figure 8.
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Figure 8. Raw signal with a tumble of 0 um and a radial feed of 0 mm as well as overview of the time
intervals used and the process steps of the hobbing process.

4.2.2. Feature Selection

Since a large number of features would negatively influence the computation time
and would not improve the classification result due to redundant information, a feature
selection is performed.

There are many different approaches to feature selection in the literature. Wantzen [25]
and Yum et al. [19] selected suitable features for classification using an analysis of variance.
Here, features are either evaluated individually based on their suitability for classification
(ANOVA), or the best feature combination is searched for iteratively (MANOVA) (see [32]).
To further reduce the number of features and redundancy, Yum et al. [19] combined
correlated features and thereby achieve a 4.2% increase in tool wear prediction accuracy.
Li et al. [8], on the other hand, fused the extracted features using principal component
analysis. The features selected in this way achieved significantly better classification results
than using all extracted features.

All extracted features of the raw signal and one spectral transform each are used
as input for feature selection. Since the raw signal, which is the basis of the spectral
transformations, is always recorded, raw signal features are always used. For reasons of
efficiency, only one spectral transformation is to be calculated in the application and its
features are to be used. Two alternative methods of feature selection, MANOVA and a
combination of ANOVA and rank correlation coefficient rg, are used to select information-
bearing features from the input variables, which allow a good separability of the output
variables into their classes. For the four output variables of radial feed, tool tumble,
OTE, and total profile deviation, suitable feature combinations are selected separately in
each case.

The first feature selection method investigated selects the best feature combination
for classification using MANOVA. Depending on the considered output variable, different
numbers of features are selected by the MANOVA.

In the second feature selection procedure investigated, the features evaluated in the
ANOVA are sorted according to their suitability for classification, and redundant features
are removed. Only features with a rank correlation coefficient of less than 0.5 are retained.
Thus, the highest-ranked 60 least redundant features per combination of raw signal features
and features of a spectral transformation were selected.
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4.2.3. Classification

The whole data set contains 200 structure-borne sound signals at 20 different com-
binations of radial feed and tool tumble. Seven structure-borne sound signals of each of
the ten repetitions per parameter setting are used as labeled learning data sets for the
model training (140 structure-borne sound signals). Three signals per parameter setting
(60 structure-borne sound signals) are randomly selected, excluded from model training,
and later classified with the trained model in order to validate the models found. All data
are also variance normalized.

For the classification of the process parameters and quality parameters, three different
classification methods are tested with the selected features. The chosen methods, the
Bayes classifier, the support vector machine, and the nearest-k-neighbor classifier, are
selected since they are commonly used in literature and based on different principles.
While in the Bayes classifier, the decision is made probability based and in the SVM the best
separation plane to separate the different classes is searched in an optimization problem.
In the KNN classifier, unknown data points are compared with similar (small-distance or
large-correlation coefficient) training objects.

The models of the classification methods are trained using the learning data set in
fivefold cross validation. The standard hyperparameters of the different models (see Table 4)
are varied in 30 iterations. In an automatic optimization, the classification model with the
minimum classification error is searched for.

Table 4. Varying model parameters in the search for the optimal classification model.

Bayes Classifier SVM KNN Classifier
o e  Training method for multiclass problems e  Number of nearest neighbors
d Data distribution ) Kernel function, kernel scale . Distance measure

e  Weighting factor (penalization of misclassification) e  Distance weighting

The model found is then used to predict the output variables of the validation data set.
With the evaluation measure, accuracy, the models trained per feature combination and
classification method are evaluated with respect to their suitability for the prediction of the
respective output variable. The calculation of the accuracy can be seen in Equation (1). The
evaluation allows statements about which combination of feature extraction and selection,
as well as classification methods for the prediction of process parameters and quality
variables, are potentially promising in the practical application.

TP : Truepositive
accuracy — TP +TN with FP : Falsepositive 1)
YT TP+ FP+ IN + EN TN : Truenegative

FN : Falsenegeative

5. Results
5.1. Suitability of Structure-Borne Sound for Monitoring the Hobbing Process

To check whether the measured structure-borne sound contains information about
the hobbing process, structure-borne sound signals are recorded in each case with and
without the engagement of the milling tool. In this way, it is possible to determine which
characteristics of the spectrum are generated by the gear hobbing process.

In the spectra generated by means of the STFT in Figure 9, it can be seen that the
spectra with and without hobbing intervention differ significantly in the frequency range
of 400-2000 Hz. These differences are caused by the material removal during the gear
manufacturing process. The frequency spectrum shows a high amplitude of the frequency
487.5 Hz. This corresponds to the tooth engagement frequency of the milling tool. The
engagement of the teeth of the tool results in an energy input, which leads to increased
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Frequency (Hz)

STFT GearHobbing Process

amplitudes of the structure-borne sound signal. It is thus shown that the sensor integration
used enables the measurement of the structure-borne sound generated during hobbing.

<10" STFT Gear Hobbing Process without Milling

6

10’
6

Frequency (Hz)
5.-
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Figure 9. Comparison of the spectra of the hobbing process with cutter contact (left) and without
contact (right).

The frequencies contained in the spectrum without milling intervention originate
from the ambient influences and can possibly be assigned to oil cooling, bearing and
gear vibrations of the tool, workpiece spindle or vibrations of the coolant pump, the
power supply, and any ambient noise. The environmental influence will not be further
investigated here.

5.2. Analysis of the Spectra for Varying Process Parameters

Figure 10 shows the STFT spectra of different settings of the radial feed process
parameter at a tumble of 0 um. In order to determine whether visual differences between the
spectra of the different process parameters can be detected, extreme values are considered.
For completeness, the classes of the total profile deviation Fa and the OTE are also given.

The spectrum with a radial feed of —0.02 mm has a higher energy effect in the fre-
quency range 1000-2000 Hz between second four and second six and in the frequency
range 400-700 Hz between second 12 and second 18 due to higher amplitude values than
the spectrum of the radial feed of 0.02 mm. This can be explained by the fact that at the
smallest step of the feed, the tool and workpiece have the smallest distance from each
other. Thus, the cutter penetrates deeper into the workpiece, has a larger contact area, and
consequently provides a larger energy input than the other stages of the radial feed, where
the penetration depth is smaller.

Cross influences between the radial feed and the tumble can be assumed, however,
they are not considered here due to the separate classification of the process parameters
and quality data. Further disturbing influences such as the temporal change of the tumble
and tool wear during the test execution probably also influence the structure-borne sound
signal and the spectra calculated from it. The heating of the machine and the resulting
temperature influences can be ruled out since the machine had already warmed up before
the start of the tests and after the tumble stage was changed.

Since hardly any differences between various process parameters and quality variables
can be seen with the naked eye, features are extracted from the spectra as described in the
methodology.

5.3. Classification Results

Three different classification methods are used to predict the process parameters,
radial feed, and tool tumble. For each selected feature combination, models of the three
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classification methods are trained for each output variable. The validation results of these

models are presented in the following.
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Figure 10. STFT spectra at different radial feeds and a tool tumble of Opm.

5.3.1. Radial Feed

For the classification of radial feed into five equidistant steps from —0.02 mm to
0.02 mm, the values of the accuracy of the different classification methods with different
feature combinations are shown in Table 5.

For the classification of the radial feed, the SVM is best suited with the highest accuracy
of 0.9, which works with five features of the raw signal determined by MANOVA and the
WPT with 15 coefficients. The learning data set and the predicted output variables of the
best two of these five features can be seen in Figure 11, as well as the confusion matrix
of the SVM on the right. The plot of the best two of the five features used only gives an
impression of the separability of the different classes, but not of the class boundaries in
the five-dimensional space. The confusion matrix is a method to assess the quality of a
classification model in machine learning. It visualize the number of predictions that were
correct or incorrect. The numbers entered in the main diagonal correspond to the number
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Standard Deviation WPT 15 Coeff. 1 — 6s Frequency Band 3052 - 6104Hz

of correctly classified test data. The color scale (from blue to red) represents the proportion
of correctly and incorrectly classified data.

Table 5. Evaluations of the classification models for the classification of radial feed.

. Number of Accuracy Accuracy Accuracy
Feature Selection Features Bayes SVM KNN
MANOVA RS + STFT 1 0.60 0.53 0.55
MANOVA RS + CWT 1 0.60 0.67 0.62
MANOVA RS + DWT 1 0.68 0.69 0.62
MANOVA RS + WPT with 15 coeff. 1 0.83 0.88 0.83
MANOVA RS + WPT with 128 coeff. 1 0.83 0.83 0.85
ANOVA + 15 RS + STFT 60 1.00 1.00 1.00
ANOVA + 15 RS+ CWT 60 1.00 1.00 1.00
ANOVA + 15 RS+ DWT 60 0.97 1.00 1.00
ANOVA + 15 RS + WPT with 15 coeff. 60 0.70 1.00 0.97
ANOVA + rg RS + WPT with 128 coeff. 60 0.98 1.00 1.00
SVM for Classification of Radial Feed Confusion Matrix of the Radial Feed Classification
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Figure 11. Best two features and confusion matrix of SVM for radial-feed classification (feature
selection: MANOVA, features from raw signal and WPT with 15 coefficients).

From the confusion matrix, it can be seen that misclassifications are only assigned to
adjacent levels of radial feed, but not to levels further away. The reason for this can be the
overlapping of the different classes in the multidimensional feature space, whereby no clear
separation plane can be found. Consequently, misclassifications occur in the border area.

The other features selected using MANOVA are also able to correctly classify at least
83% of the validation data when using an SVM. The KNN method, on the other hand, is
poorly suited for predicting radial feed, especially in combination with feature selection
using ANOVA and the rank correlation coefficient, since only low accuracy values are
achieved. The features of the raw signal selected by ANOVA and the DWT also provide low
accuracy values for the classification with the KNN method as well as when using an SVM.
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5.3.2. Tool Tumble

The validation results of the Bayes classifiers, SVMs, and KNN classifiers trained for
tool tumble prediction per feature combination are shown in Table 6.

Table 6. Classification model evaluations for tool tumbling classification.

Feature Selection Foatures . Bayes VM KAN
MANOVA RS + STFT 1 0.60 0.53 0.55
MANOVA RS + CWT 1 0.60 0.67 0.62
MANOVA RS + DWT 1 0.68 0.69 0.62
MANOVA RS + WPT with 15 coeff. 1 0.83 0.88 0.83
MANOVA RS + WPT with 128 coeff. 1 0.83 0.83 0.85
ANOVA + s RS + STFT 60 1.00 1.00 1.00
ANOVA + 15 RS + CWT 60 1.00 1.00 1.00
ANOVA +rs RS+ DWT 60 0.97 1.00 1.00
ANOVA + r5 RS + WPT with 15 coeff. 60 0.70 1.00 0.97
ANOVA + 15 RS + WPT with 128 coeff. 60 0.98 1.00 1.00

All feature combinations selected with ANOVA and the rank correlation coefficient
can separate the validation data into the four tumble classes without error with an SVM.
The feature combination of raw signal and STFT, as well as raw signal and CWT, can even
make error-free predictions with all three classification methods examined. For the two
best evaluated of the 60 selected features from the raw signal and the STFT, the training and
predicted validation data of the SVM and its confusion matrix are given in Figure 12. The
features selected by MANOVA from the raw signal and STFT cause the most classification
errors with all trained models. The worst prediction is made by the SVM, which achieves
an accuracy of 0.53.

SVM for Classification of Tool Tumble Confusion Matrix of the Tool Tumble Classification
25 T T T T .
T w0
g - . |::1
2 2 .Q)E%; & ;21
c ) Training Data
o 'C% e ‘alidation Data correctly classifie
c:- 151 L] @ Qj. Q:Q:iga:ion ga:a falsaly c’:‘as;i‘ic; ‘
2 09
] it °
=]
o
ol &
% 05 kL
q . =
L ol o | 2
= Iy é’s'-,_ ? <
w & an®, b * 5
5 o5t . _ 0.8%. & . 4
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s . . ]
c LR 5 OO
-1} L]
s -15— ! . . . . .
-1 -0.5 0 05 1 15 2 25 0 7 14 21
Standard Deviation STFT 1-6s Frequency Band 476Hz Predicted Class

Figure 12. Best two features and confusion matrix for tool tumble classification (feature selection:
ANOVA +rs from raw signal and STFT).

5.3.3. Transmission Error

The scores of the classifications with different feature selections using different classifi-
cation methods are shown in Table 7.
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Table 7. Classification model evaluations for OTE classification.

Feature Selection FNel;It?ll:: of gac}c:;acy Q‘C;;/l[racy QCNCKIMCY
MANOVA RS + STFT 4 0.69 0.88 0.69
MANOVA RS + CWT 5 0.57 0.86 0.78
MANOVA RS + DWT 8 0.79 0.83 0.67
MANOVA RS + WPT with 15 coeff. 6 0.74 0.78 0.79
MANOVA RS + WPT with 128 coeff. 5 0.67 0.84 0.72
ANOVA + 15 RS + STFT 60 0.76 0.81 0.60
ANOVA + 15 RS+ CWT 60 0.59 0.72 0.59
ANOVA + 13 RS + DWT 60 0.52 0.43 0.45
ANOVA + 15 RS + WPT with 15 coeff. 60 0.57 0.53 0.36
ANOVA + rs RS + WPT with 128 coeff. 60 0.72 0.64 0.62

The SVM achieves the highest accuracy of 0.88 using the MANOVA selected features
from the raw signal and the STFT. The highest-scoring two-way combination of the four
selected features and the confusion matrix of the model are shown in Figure 13. When the
trained model misclassifies data points, they are in adjacent classes to the true class. The
KNN method, which uses a combination of features extracted from the raw signal, and the
WPT, with 15 coefficients using ANOVA and the rank correlation coefficient, is the worst
at predicting the OTE. It has an accuracy of 0.36 and assigns misclassified data points to
distant classes.

SVM for Classification of OTE Confusion Matrix of the OTE Classification
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Figure 13. Best two features and confusion matrix of SVM to classify the OTE (feature selection:
MANOVA, features from raw signal, and STFT).
5.3.4. Total Profile Deviation

The accuracy values of the classification of the profile total deviation with different
classification methods and feature selections are shown in Table 8.
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SVM for Classification of Total Profile Deviation

Table 8. Evaluations of the classification models for the classification of the profile total deviation.

Feature Selection FNel;It?,lE:: of g:;lel;acy Q‘C]Cl\l/l[racy ﬁchlliIracy
MANOVA RS + STFT 2 0.76 0.76 0.76
MANOVA RS + CWT 2 0.81 0.76 0.72
MANOVA RS + DWT 2 0.71 0.76 0.72
MANOVA RS + WPT with 15 coeff. 2 0.71 0.76 0.67
MANOVA RS + WPT with 128 coeff. 2 0.67 0.76 0.67
ANOVA + 15 RS + STFT 60 0.79 0.78 0.79
ANOVA + 15 RS+ CWT 60 0.71 0.72 0.76
ANOVA + 13 RS + DWT 60 0.76 0.16 0.36
ANOVA + 15 RS + WPT with 15 coeff. 60 0.67 0.72 0.78
ANOVA + rs RS + WPT with 128 coeff. 60 0.72 0.81 0.78

Both the SVM with features selected by ANOVA and the rank correlation coefficient
from the raw signal and the WPT with 128 coefficients, and the Bayes classifier with features
selected by MANOVA from the raw signal and the STFT, achieve the highest accuracy of
0.81. The SVM, with features selected by ANOVA and the rank correlation coefficient from
the raw signal and the WPT with 128 coefficients, achieves the highest accuracy of 0.81. For
the two best performing of the 60 features selected from the raw signal and the WPT, the
training and validation data and the SVM confusion matrix are shown in Figure 14. The
SVM that selects features from the raw signal and the DWT using ANOVA and the rank
correlation coefficient is the worst suited for the classification of the profile total deviation.
It misclassifies 84% of the data points with an accuracy of 0.16.

Confusion Matrix of the Total Profile
Deviation Classification

Standard Deviation WPT 128 Coeff. 6-12s Frequency Band 668-763Hz
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Figure 14. Best two features and confusion matrix of SVM for classification of profile total deviation
(feature selection: ANOVA+rs, features from raw signal and WPT with 128 coefficients).

In general, the results have demonstrated that employing a support vector machine
(SVM) leads to the minimum number of classification errors. However, the precision of
classification predictions significantly relies on the chosen features, which are determined
by the applied feature extraction and selection techniques, that should be tailored to the
specific parameter of interest. For future research, we propose exploring smaller parameter
ranges and additional influencing variables through a long-term experiment that should run
parallel to the production process. This long-term experiment would enable investigating
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tool wear and significantly increase the size of the training data set. In this context, the
use of neural networks is promising, which, in addition to a regression, also enables an
image-based evaluation of the recorded acoustic signals in the frequency domain. There
are already studies, on which to build on, which investigate the suitability of convolutional
neural networks and deep belief network for the classification of faulty tool states by means
of image-based acoustic data [37,38].

6. Conclusions

The focus of this study was to investigate the suitability of process-integrated structure-
borne sound measurements for monitoring the hobbing process of microgears. The study
aimed to use machine learning models to predict process parameters, such as radial feed
and tool tumble, and evaluate quality characteristics, such as overall transmission error
and total profile deviation. Additionally, a data processing chain was shown, from feature
extraction to predicting the desired parameters. In this process, methods for feature
selection and various classification algorithms were compared and evaluated. Overall,
the results have shown that the use of an SVM generates the least classification errors.
However, the prediction accuracy of the classification depends heavily on the features used,
which are in turn determined by the applied feature extraction and selection. These are
to be chosen according to the parameter of interest. Overall, at least 90% of the process
parameters and at least 81% of the quality characteristics can be predicted correctly. Thus,
it was shown that structure-borne sound in combination with machine learning and data
analysis, was suitable for classifying process parameters as well as quality characteristics
and hence enables economical, 100% inline measurements of microgears.

For future works, an investigation of smaller parameter ranges and additional influ-
encing variables in a long-term experiment is proposed. Model augmentation could be a
way to adjust the robustness of the model to changing conditions in the long-term test [39].
In addition, the approach may need to be adapted to include continuous trainability in
order to constantly adapt to changing conditions (tool replacement or wear, environmental
noise, etc.). This should be carried out in parallel to production in order to depict tool
wear as well as to increase the size of the training data set considerably. The focus of
future studies is on using regression models for a more accurate prediction of the process
parameters and quality characteristics to enable the implementation of adaptive process
control strategies.
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