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Abstract: Synchronization of food chain models is an intensely investigated area in dynamical
systems. Two pioneering models in three species food chain systems exhibiting chaotic dynamics
are the Hastings and Powell (HP) model and the Upadhyay and Rai (UR) model. These are known
to synchronize, even though the top predators in the two models behave differently. In the current
manuscript, we show that although the HP and UR models synchronize for certain initial conditions,
they do not synchronize for arbitrarily large initial conditions due to the blow-up dynamics present in
the UR model. Thus, the synchronization of these model systems is purely a local (in initial data)
phenomenon. Interestingly, we find that a similar result holds for the modified UR model as well,
which has global in-time solutions for any positive initial condition. Thus, the lack of synchrony
could also be attributed to the difference in the top predator’s feeding preferences in the model
systems. Our results have large-scale applications to population synchrony in tri-trophic food chains.

Keywords: synchronization; ordinary differential equations (ODEs); finite-time blow-up; food chain
model

1. Introduction

Synchronization is a multi-disciplinary phenomenon with a wide range of applica-
tions in chemical, physical, and biological systems [1,2]. Synchronization is pivotal to our
understanding of some natural systems, such as natural rhythms of clapping [3], cardiac
pacemakers [4], neuronal processing [5], and cell cycles [6]. Meanwhile, the excess of
synchronization in some systems may result in adverse effects such as epilepsy [7], Parkin-
son’s disease [8], and bridge oscillations [9]. Synchronization is the agreement of different
processes in time. It is a technique used in achieving related dynamics between chaotic
systems by coupling. The related dynamics are asymptotic with time. The trajectories
of the response system with that of the driver system are tracked. In 1990, Pecora and
Carroll showed that two chaotic systems were able to synchronize with each other [10].
Since then, a wide variety of methods have been devised for the synchronization of chaotic
systems. These include generalized synchronization (GS), complete synchronization (CS),
and phase synchronization (PS), among others [11]. Recently, numerical and experimental
studies on multistability and synchronization in heterogeneous interconnected networks
were carried out in [12]. The synchronous behaviors of coupled biological neurons and
four-dimensional electronic neurons, known to produce chaotic spiking–bursting behavior,
were been observed in [13].

In this paper, we focus our attention on GS. When two coupled systems are under
investigation, GS arises when the state or behavior of one of the coupled systems is
governed or influenced by the behavior of the other system. The two systems may not
necessarily be identical. GS is often seen in systems with unidirectional coupling [14].
Roy et al. [15] used a reversed engineering technique with the objective of obtaining a
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GS state as a functional relation between a driver and a response oscillator. They were
able to design an appropriate coupling between the driver and the response using an
open-plus-closed-loop (OPCL) coupling and guaranteed the stability of the GS state. Their
results showed that the OPCL method was robust to mismatching in oscillators and also
viable for nonidentical oscillators. The OPCL method is applicable to any model-based
system where ẋ = F(x, t), x ∈ Rn, which can be driven [16] and particularly chaos control
related [17]. Other techniques of exploring GS in coupled systems such as the mutual false
nearest neighbor were thoroughly discussed in [18]. Abarbanel et al. [19] also studied GS
in drive-response systems using the auxiliary system approach. The method uses a second
identical response in monitoring synchronized motions. It can also detect and characterize
forced GS.

Chaotic dynamics have been observed in some food chain dynamical systems. Hast-
ings and Powell derived a three-species food chain system that exhibited chaotic dynam-
ics [20]. Shortly thereafter, Upadhyay and Rai derived yet another three-species food
chain model exhibiting chaos. These models have been extremely thoroughly investigated,
as they exhibit a variety of rich dynamics ranging from extinction to periodic dynamics
to chaos and, most recently, finite-time blow-ups [21–26]. Species extinction and loss of
biodiversity are two coupled issues which have become increasingly relevant in ecology.
Thus, in an attempt to gain insight into an ecosystem, where there may be interactions
among different food chains, Upadhyay and Rai [11] explored synchronization of the popu-
lation fluctuations of their model with those of Hastings and Powell [20]. One of the key
differences between the two models is that the former’s top predator is a generalist, and
the latter’s predator at the same tri-trophic level is a specialist. A generalist predator has
several food choices. Of course, it may have a food item (prey) of its liking. On the other
hand, a specialist predator dies out exponentially due to a lack of additional food choices.

The UR model exhibits chaotic dynamics in a narrow parameter range (i.e., discon-
tinuous parameter intervals). On the other hand, the HP model displays chaos in a broad,
continuous parameter range. Synchronization of the chaotic dynamics of two drastically
different dynamical systems has interesting ecological implications. Synchrony among two
chaotic ecological systems may seem to be a mathematical artifact, but it is also evidence
of an ecological principle that generalist predators are dominant contributors that balance
food chains and webs in the wild. In [11], Upadhyay and Rai showed that the UR and
HP models can indeed synchronize, implying that under certain coupling mechanisms,
two drastically different food chains could synchronize. Therefore, we undertake a further
exploration of the synchronization between these model systems. In this work, we use the
OPCL coupling method for GS in the UR and HP models. We show the following:

• The UR and HP models individually can exhibit chaotic dynamics for the same
parameter regimes. However, they will synchronize when coupled accordingly.

• This synchronization will occur only for small-to-moderate initial conditions.
• For larger initial conditions, the UR and HP models will not synchronize. This is

shown numerically and analytically.
• For small initial conditions, the modified UR and HP models will synchronize, but for

larger initial conditions, it is numerically seen that they will not synchronize.
• Thus, we reaffirm that the synchronization of three species’ food chains with differ-

ent top-down control (differently behaving top predators) is caused solely by the
top predator.

2. Generalized Synchronization Using the OPCL Coupling Method

Definition 1. Let w ∈ Rn. Then, we define ||w||∞ = sup{|wi| : i = 1, 2, . . ., n}.

Definition 2. Given a differentiable functional relation φ : Rn → Rn between the state variables
of the driver and response system, if there exists a controller D(y(t), g(t)) such that ||y(t) −
φ(g(t))||∞ → 0 as t→ ∞, then the coupled system exhibits the property of generalized synchro-
nization [27].
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We define the OPCL coupling term (also the controller) as

D(y(t), g(t)) = ˙g(t)− G(g(t)) + (H − J(g(t)))(y(t)− g(t)), (1)

where g(t) = αx(t) is the goal state and α is a multiplicative factor [28]. Here, α can be referred to
as an n× n transformation matrix whose elements may be constants, state variables of the driver
system, or a combination of both. In general, we define the goal state of a three-dimensional system asg1

g2
g3

 =

α11 α12 α13
α21 α22 α23
α31 α32 α33

x1
x2
x3

. (2)

In addition, H is an N × N constant Hurwitz matrix with all its eigenvalues having negative
real parts.

Remark 1. J(g(t)) is the Jacobian of G(g(t)).

The OPCL coupling term is added to the RHS of the response system to obtain the
desired response dynamics. We write the GS scheme as{

˙x(t) = F(x(t)),
˙y(t) = G(y(t)) + D(y(t), g(t)).

(3)

We define the error function of the coupled system as e(t) = y(t)− g(t) and write
G(y) using Taylor series expansion as

G(y) = G(g) +
∂G(g)

∂g
(y− g) + . . . (4)

We keep the first-order terms of the series expansion and substitute them into
Equation (3) to obtain the error dynamics ė = He. Since H is a Hurwitz matrix, then
e→ 0 as t→ ∞ and thus obtain an asymptotically stable GS. The reader is referred to [15]
for how to construct the H matrix.

3. Model Systems
3.1. Upadhyay–Rai (UR) Model

This is a continuous-time three-species model known to exhibit chaotic dynamics [29].
It describes an ecological community where a predator population x2 predates a prey
population x1, and x2 is a specialist predator. The population x2 also becomes the favorite
food for individuals belonging to population x3. The UR model is given by

ẋ1 = a1x1 − b1x2
1 −

wx1x2

x1 + D
,

ẋ2 = −a2x2 +
w1x1x2

x1 + D1
− w2x2x3

x2 + D2
,

ẋ3 = cx2
3 −

w3x2
3

x2 + D3
.

(5)

Please see Table 1 for parameter descriptions for the UR model.

Table 1. Model symbols and description for Upadhyay and Rai model.

Symbols Description

x1 prey
x2 middle predator
x3 top predator
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Table 1. Cont.

Symbols Description

a1 intrinsic growth rate of prey
b1 measure of competition among prey
a2 intrinsic death rate of x2 in the absence of food x1 only

D, D1 measure of the level of protection offered to the prey by the environment
D2 value of x2 at which its per capita removal rate becomes w2/2
D3 Loss of x3 due to lack of favorite food x2
c growth rate of x3 via sexual reproduction

w, w′is maximum value that per capital rate can attain

3.2. Hastings–Powell (HP) Model

Hastings and Powell in 1991 [20] showed the occurrence of chaos in a tri-trophic food
chain model. A Holling type II functional response was used for both predator populations
(y2 and y3). The model is given as

ẏ1 = ly1 −my2
1 −

wy1y2

y1 + D
,

ẏ2 = −a2y2 +
w1y1y2

y1 + D1
− w′y2y3

y2 + D2
,

ẏ3 = −ny3 +
w3y2y3

y2 + D3
.

(6)

A detailed description of the parameters in the system in Equation (6) can be found in [20].

4. Generalized Synchronization of the UR Model and HP Model Using the OPCL
Coupling Method

In this section, we use the OPCL coupling technique to synchronize the UR model in
Equation (5) and the HP model in Equation (6). We considered the system in Equation (5)
to be the driver system ˙x(t) = F(x(t)), x(t) ∈ Rn and the system in Equation (6) to be the
response system ˙y(t) = G(y(t)), y(t) ∈ Rn. We compute the Jacobian of the system in
Equation (6) and obtain

J(y) =


l − 2my1 −

Dwy2

(D + y1)2
−wy1

y1 + D
0

D1w1y2

(D1 + y1)2 −a2 +
w1y1

y1 + D1
− D2w′y3

(y2 + D2)2 − w′y2

y2 + D2

0
w3D3y3

(y2 + D3)2 −n +
w3y2

y2 + D3

. (7)

From the Jacobian, we can write the constant H-matrix as

H =

h1 h2 0
h3 h4 h5
0 h6 h7

. (8)

We required the constant H-matrix to satisfy the Routh–Hurwitz criterion and thus
chose the parameters h1 = −2, h2 = 0, h3 = 0, h4 = −1, h5 = 0, h6 = 0, and h7 = −3.
We next chose a transformation matrix α with arbitrary constant elements to enable us to
achieve a desired goal dynamic. For example, let

α =

−2 0 1
−2 0 0
2 −1 1

. (9)
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We achieved the goal dynamicsg1
g2
g3

 =

−2 0 1
−2 0 0
2 −1 1

x1
x2
x3

 =

 −2x1 + x3
−2x1

2x1 − x2 + x3

, (10)

In addition, the coupling term is given by

D =

 −2ẋ1 + ẋ3
−2ẋ1

2ẋ1 − ẋ2 + ẋ3

−


lg1 −mg2
1.− wg1g2

g1 + D

−a2g2 +
w1g1g2

g1 + D1
− w′g2g3

g2 + D2

−ng3 +
w3g2g3

g2 + D3

+

d11 d12 d13
d21 d22 d23
d31 d32 d33

 y1 + 2x1 − x3
y2 + 2x1

y3 − 2x1 + x2 − x3

, (11)

where

d11 = h1 − l + 2mg1 +
Dwg2

(g1 + D)2 ,

d12 = h2 +
wg1

g1 + D
,

d13 = h3,

d21 = h4 −
D1w1g2

(g1 + D1)2 ,

d22 = h5 + a2 −
w1g1

g1 + D1
+

D2w′g3

(g2 + D2)2 ,

d23 = h6 +
w′g2

g2 + D2
,

d31 = h7,

d32 = h8 −
D3w3g3

(g2 + D3)2 ,

d33 = h9 + n− w3g2

g2 + D3
.

Now, the errors for the coupled system are given as
e1 = y1 + 2x1 − x3,

e2 = y2 + 2x1,

e3 = y3 − 2x1 + x2 − x3.

(12)

We provide a simple algorithm to achieve a GS in Appendix A.

5. Numerical Results

In this section, we explore the possible occurrence of chaotic dynamics and GS for
both the HP and UR models for small and moderate initial conditions. We used MATLAB
2019a in performing our simulations. We consider the following parameter set for the
numerical experiments:{

a1 = 1.93, b1 = 0.06, w = 1, D = 10, a2 = 1, w1 = 2, D1 = 10, w2 = 0.405,
D2 = 10, c = 0.03, w3 = 1, D3 = 20, l = 1.75, m = 0.05, n = 0.1, w′ = 0.6.

(13)

We show an example of chaos in the UR model and HP model using the parameters in
Equation (13) with the initial conditions [x1(0), x2(0), x3(0)] = [10, 10, 10] and [y1(0), y2(0),
y3(0)] = [10, 10, 10] as shown in Figures 1 and 2, respectively.
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(a) (b)

(c) (d)

Figure 1. Chaotic dynamics with initial data [x1(0), x2(0), x3(0)] = [10, 10, 10] in UR model. (a) Phase
diagram showing chaotic attractor in UR model. (b) Time series plot for x1. (c) Time series plot for x2.
(d) Time series plot for x3.

(a) (b)

(c) (d)

Figure 2. Chaotic dynamics with initial data [y1(0), y2(0), y3(0)] = [10, 10, 10] in HP model. (a) Phase
diagram showing chaotic attractor in HP model. (b) Time series plot for y1. (c) Time series plot for y2.
(d) Time series plot for y3.

5.1. Chaos in the UR Model and HP Model for Small Initial Data

In this subsection, we investigate the likelihood of observing chaotic dynamics in
both the UR and HP models. Let us consider the small initial data [x1(0), x2(0), x3(0)] =
[0.01, 0.01, 0.1] and [y1(0), y2(0), y3(0)] = [0.01, 0.01, 0.01] for the UR and HP models, re-
spectively. From Figures 3 and 4, our numerical simulations show the chaotic dynamics in
the UR and HP models, respectively. The parameters used for the simulation can be seen in
Equation (13).
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(a) (b)

(c) (d)

Figure 3. Chaotic dynamics with small initial data [x1(0), x2(0), x3(0)] = [0.01, 0.01, 0.1] in UR model.
(a) Phase diagram showing chaotic attractor in UR model. (b) Time series plot for x1. (c) Time series
plot for x2. (d) Time series plot for x3.

(a) (b)

(c) (d)

Figure 4. Chaotic dynamics with small initial data [y1(0), y2(0), y3(0)] = [0.01, 0.01, 0.01] in HP
model. (a) Phase diagram showing chaotic attractor in HP model. (b) Time series plot for y1. (c) Time
series plot for y2. (d) Time series plot for y3.

5.2. GS for the UR Model and HP Model for Small Initial Data

We used the following small initial data for the GS of the systems in Equations (5) and (6),
where [x1(0), x2(0), x3(0)] = [0.01, 0.01, 0.1] and [y1(0), y2(0), y3(0)] = [0.01, 0.01, 0.01], re-
spectively. We observed a one-to-one correlation between the response variables and the
goal dynamics, ensuring GS in Figure 5a–c. The parameters used are in Equation (13). Note
that a one-to-one correlation is the period/frequency ratio between the response variables
and their transformed driver states.
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(a) (b) (c)

(d) (e) (f)

Figure 5. GS with small initial data. (a) y1 − g1 plot showing a 1:1 correlation. (b) y2 − g2 plot
showing a 1:1 correlation. (c) y3 − g3 plot showing a 1:1 correlation. (d) Simulation showing time
evolution for x1 and y1 after transients die out. (e) Simulation showing time evolution for g1 and y1

after transients die out. (f) Time series plot showing no blow-up in x3 after transients die out.

6. Possible Causes of a Lack of Synchronization

We investigate the possible causes of no synchronization, as seen in Figure 6. Although
the HP model has bounded solutions for any initial condition [20], this is not true in the
case of the UR model. The UR model possesses the dynamics of a finite-time blow-up [24].
We present a few details for completeness.

(a) (b) (c)

(d) (e) (f)

Figure 6. No GS with large initial data. (a) y1 − g1 plot showing no 1:1 correlation. (b) y2 − g2 plot
showing no 1:1 correlation. (c) y3 − g3 plot showing no 1:1 correlation. (d) Simulation showing time
evolution for x1 and y1. (e) Simulation showing time evolution for g1 and y1. (f) Time series plot
showing blow-up occurring in x3 and estimated at time T∗ ≈ 0.00048.

We first prove a variation of a classical result for this system:
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Theorem 1. The solution x3(t) to the top predator equation in Equation (5) blows up in a finite
time such that

lim sup
t→T∗<∞

|x3(t)| = ∞, (14)

for the initial data (x1(0), x2(0), x3(0)), which is sufficiently large.

Remark 2. The proof follows [24].

Proof. Consider Equation (5) with positive initial conditions.
By integrating the top predator equation for x3, we obtain

− 1
x3

+
1

x3(0)
= −ct + w3

∫ t

0

ds
x1(s) + x2(s) + D3

which gives

x3 =
1

1
x3(0)

− ct + w3
∫ t

0
ds

x1(s)+x2(s)+D3

.

We can then show the following function:

ψ(t) =
1

1
x3(0)

− ct + w3
∫ t

0
ds

x1(s)+x2(s)+D3

→ 0 as t→ T∗ < ∞. (15)

This will then show that the solution x3 will blow up at the finite time t = T∗.
Essentially, for a chosen (x1(0), x2(0)) that is sufficiently large, there exists a δ > 0 such that

1
1

x3(0)
− ct + w3

∫ t
0

ds
x1(s)+x2(s)+D3

<
1

x3(0)
− c

2
t, for all t ∈ (0, δ). (16)

This is because under the continuity of the state variables x1, x2, we have the following
for when δ is sufficiently small and t ∈ (0, δ):

w3

∫ t

0

ds
x1(s) + x2(s) + D3

<
ct
2

(17)

and thus

w3

∫ t

0

ds
x1(s) + x2(s) + D3

<
c
2

. (18)

If x3(0) is then chosen to be sufficiently large, then we can find T∗∗ ∈ (0, δ) such that

1
x3(0)

− c
2

T∗ = 0 => T∗ =
2

cx3(0)
.

Now, through application of the classical intermediate value theorem on the continu-
ous function ψ, we obtain the existence of some T∗ ∈ (0, δ), T∗ < T∗∗, s.t ψ(T∗) = 0. This
implies that x3(t), the solution to the top predator equation (Equation (5)), blows up in a
finite time at t = T∗, and the theorem is proven.

Remark 3. Note that an explicit representation of the blow-up time T∗ is derived in terms of the
initial conditions. Essentially, T∗ = 2

cx3(0)
, and thus the larger the initial condition for the top predator

x3 in Equation (5), the quicker the blow-up occurs. Additionally, through the “large” initial data in
Theorem 1, we mean we can find a constant large C such that ||(x1(0), x2(0), x3(0))||∞ > C.
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Theorem 2. The models in Equations (5) and (6) cannot synchronize for arbitrarily large initial
conditions, where Equation (5) is considered the driver system.

Proof. We proceed by contradiction. Assume that Equations (5) and (6) do indeed synchro-
nize. Then, a necessary and sufficient condition for the synchronization is that a Lyapunov
function V exists for the response system. A standard one considered in most works on
synchronization is

V = (e1)
2 + (e2)

2 + (e3)
2. (19)

By definition of this Lyapunov function, we have

V ≥ (e1)
2 = (y1 + 2x1 − x3)

2 > (x3)
2 − (y1 + 2x1)

2. (20)

Thus, we obtain

lim sup
t→T∗<∞

|x3(t)|2 < lim sup
t→T∗<∞

|V(t)|2 + lim sup
t→T∗<∞

|y1 + 2x1|2 (21)

where T∗ is the blow-up time, as derived in Theorem 1. Note that by a simple comparison,
we have

|y1 + 2x1|2 < 2
(
|y1|2 + |2x1|2

)
< C < ∞. (22)

This follows from the standard estimates [20,24]. However, under Theorem 1, we have

lim sup
t→T∗<∞

|x3(t)| = ∞ => lim sup
t→T∗<∞

|x3(t)|2 = ∞. (23)

Thus, we must have via Equation (21) that

lim sup
t→T∗<∞

|V(t)|2 = ∞, (24)

and thus one cannot have dV
dt < 0, and V cannot be a Lyapunov function, which is a

contradiction. This proves the result.

No Synchronization for the UR Model or HP Model for Large Initial Data

We use the following large initial data to investigate the possible occurrence of GS
between the systems in Equations (5) and (6). Consider [x1(0), x2(0), x3(0)] = [69516,
49912, 53580] and [y1(0), y2(0), y3(0)] = [44518, 12390, 49036]. We do not see a one-to-one
correlation between the response variables and the goal dynamics to ensure GS, as seen in
Figure 6a–c. The parameters used are in Equation (13):

Remark 4. The initial conditions for the HP model were selected from its basin of attraction. In
the chaotic attractor case, this was all of R3

+. This was because the chaotic attractor was globally
attracting. However, caution is required with the UR model due to the blow-up dynamic. The basin
of attraction for the UR model is actually an open problem. Essentially, for the UR model, the large
initial condition would blow-up and thus not be in the basin of attraction. Thus, we selected the
initial conditions numerically; that is, we tested what initial conditions would blow up versus which
ones would not numerically to ascertain what initial data should be used to show synchronization
versus a lack thereof.

Consider a modified UR model given by

ẋ1 = a1x1 − b1x2
1 −

wx1x2

x1 + D
,

ẋ2 = −a2x2 +
w1x1x2

x1 + D1
− w2x2x3

x2 + D2
,

ẋ3 = cx3 −
w3x2

3
x2 + D3

.

(25)
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Here, the top predator grows linearly as opposed to quadratically, yielding bounded
solutions for all times [30]. We used the GS scheme in Equation (3) to couple the modified
UR model in Equation (25) and the HP model in Equation (6).

For the numerical simulations, we used the parameter set in Equation (13) and obtained
the following dynamics in Figure 7a–c.

(a) (b) (c)

(d) (e) (f)

Figure 7. GS for modified UR model and HP model with initial data [x1(0), x2(0), x3(0)] =

[0.0055, 0.0014, 0.0015] and [y1(0), y2(0), y3(0)] = [0.0026, 0.0084, 0.0025]. (a) Phase plot for x1 and x2.
(b) Phase plot for y1 and y2. (c) Time series plot for x3 and y3. (d) y1 − g1 plot showing 1:1 correlation.
(e) y2 − g2 plot showing 1:1 correlation. (f) y3 − g3 plot showing 1:1 correlation.

Figure 7d–f shows GS in the systems in Equations (6) and (25) after coupling.
Now, let us consider another parameter set:{

a1 = 1, b1 = 0.6, w = 10, D = 0.1, a2 = 1, w1 = 20, D1 = 0.1, w2 = 4.05,
D2 = 10, c = 0.03, w3 = 1, D3 = 20, l = 1.75, m = 0.05, n = 0.1, w′ = 0.6.

(26)

From the numerical simulations shown in Figure 8d–f, when using the parameter set
in Equation (26), there was GS in the modified UR model and HP model for small data.

We used the parameter set in Equation (13) to simulate the coupled modified UR
model in Equation (25) and the HP model in Equation (6) for large initial data. The results
are presented in Figure 9.

(a) (b) (c)

Figure 8. Cont.
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(d) (e) (f)

Figure 8. GS for modified UR model and HP model with initial data [x1(0), x2(0), x3(0)] =

[0.001, 0.001, 0.001] and [y1(0), y2(0), y3(0)] = [0.001, 0.001, 0.001]. (a) Phase plot for x1 and x2.
(b) Phase plot for y1 and y2. (c) Time series plot for x3 and y3. (d) y1 − g1 plot showing 1:1
correlation. (e) y2 − g2 plot showing 1:1 correlation. (f) y3 − g3 plot showing 1:1 correlation.

(a) (b) (c)

(d) (e) (f)

Figure 9. No synchronization for modified UR model and HP model with initial data
[x1(0), x2(0), x3(0)] = [1000, 1000, 1000] and [y1(0), y2(0), y3(0)] = [1000, 1000, 1000]. (a) y1 − g1

plot showing 1:1 correlation. (b) y2 − g2 plot showing no 1:1 correlation. (c) y3 − g3 plot showing no
1:1 correlation. (d) Simulation showing time evolution for x1 − y1. (e) Time series plot for y1 − g1.
(f) Time series plot showing blow-up occurring in y3 and estimated at time T∗ ≈ 0.1008.

7. Discussion and Conclusions

Real-world species are composed of multiple populations distributed over different
geographical locations coupled by migration. Chaotic dynamics reduces the degree of
synchrony among populations and thus reduces the chance of all of them being wiped out
in the event of an exogenous stochastic perturbation [31]. In the current manuscript, we
explored synchronization phenomena in two different but related model population sys-
tems. The existence of chaos in the linear version of the UR model suggests that ecological
chaos has a larger role to play than previously thought. The effect of animal movements
among different patches is replaced by prey–predator interactions. No synchronization of
chaotic dynamics in the linear version of the UR model with the HP model for large initial
populations affirms that generalist predators are major contributors toward the balance of
natural food webs.

Synchronization of chaotic dynamics in UR and HP model systems is dependent on the
initial data (i.e., initial population numbers). For small initial data, the UR and HP models
synchronized as well as the modified UR and HP models after coupling. This is seen in
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Figures 5 and 8. We saw no synchronization when the UR and HP models were coupled for
the large initial data. Similarly, the modified UR and HP models did not synchronize for
the large initial data after coupling. This reaffirms that the synchronization of three-species
food chains with differently behaving top predators is caused solely by the initial numbers
of the species, particularly the top predator.

The lack of synchronization results can be seen in Figures 6 and 9. Note that the
modified UR model had bounded solutions for all times, and yet we could see a lack of
synchrony in Figure 9. This reaffirms that a lack of synchronization is not solely a feature
of the blow-up dynamic but of the top predator being a generalist in UR models versus a
specialist in HP models. It would be interesting to test this synchronization or lack thereof
in other variations of the UR and HP models. Several improvements have been made
to the UR class of models. The spatially explicit and ODE UR model has been shown to
have bounded solutions in certain regimes of parameters or initial data via non-monotonic
functional responses [32], as well as via refuge effects [33]. Cannibalism effects have also
been considered herein [34], and testing the synchronization of such improved models with
HP models will make for interesting future work. Another possible direction is to think of
realization of the dynamics displayed by the current models via an actual hardware circuit.
This has been achieved in the neuronal modeling literature [12,13]. Although obtaining
ecological data is much more of a challenge than neuronal data obtained from, for example,
EEG devices, it does beg the question of how such devices could be thought about in the
ecological setting.

An absence of synchrony for large populations means that the delicate balance of
nature is destroyed in the event of a blow up in population numbers. It will be interesting
to explore different synchronization behaviors for different initial conditions in chaotic
food chain models. As future endeavors, we could consider spatial UR and HP model
systems to explore waves of synchrony or no synchronization, which would help us gain
insight into the loss of biodiversity and eventual species extinction.
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Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We give a simple algorithm for achieving GS via the following steps:

Step 1. Identify the driver and response systems.
Step 2. Compute the Jacobian of the response system.
Step 3. Construct an H-matrix from the Jacobian and choose values for the H-matrix such

that the Routh–Hurwitz criterion is satisfied.
Step 4. Construct the α transformation matrix which ensures the desired goal dynamics.
Step 5. Propose a coupling to achieve the GS state.
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