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Abstract: We address the problem of evolutionary system design (ESD) by means of answer set
programming modulo difference constraints (AMT). The goal of this design approach is to synthesize
new product variants or generations from existing products. We start by formalizing the underlying
system synthesis problem and design space exploration process, which consists of finding the Pareto
front with respect to latency, cost, energy, and similarity measures between the two designs. We
then present AMT-based encodings to capture all of these aspects. The idea is to use plain ASP for
conflict detection and resolution and for routing and to use difference constraints for scheduling.
Moreover, we propose a new approach for expressing the similarity that we use at three alternative
levels of AMT-based design space exploration, namely, at the strategic, heuristic, and objective levels,
which is performed to guide the exploration towards designs of high interest. Last but not least,
we systematically evaluate the emerging techniques empirically and identify the most promising
AMT techniques.

Keywords: evolutionary system design; design space exploration; answer set programming modulo
theories; difference constraints

1. Introduction

Application-specific computer systems are the backbone of any smart product today;
such computers are usually referred to as embedded systems, as they are embedded in
a larger product. In fact, in this context, the number of embedded systems exceeds the
number of general-purpose computers by several orders of magnitude. Because of their
integration into larger products and their close interaction with their physical environment,
embedded systems must meet stringent design constraints, including size/volume, timing,
power, energy, etc. In addition, the design of an embedded system must meet extremely
tight time-to-market requirements. All of this continues to be true for embedded systems,
which are becoming increasingly more complex. This growth in complexity is due to both
more sophisticated applications and more sophisticated computing platforms. In summary,
the design of embedded systems is a complex task that must be approached in a process
that is as automated as possible.

As a consequence, implementations of embedded systems are derived from their
specifications. This step is called synthesis and involves a vast number of individual
but often interdependent design decisions. These decisions include: (a) the selection of
processors, hardware accelerators, memories, and communication infrastructures; (b) the
distribution of functions to computational cores, distribution of variables to memories,
and the routing of memory transactions through the communication infrastructure; and
(c) the scheduling of computations, memory accesses, and memory transactions. Finding a
feasible solution for all dependent design decisions is a hard problem in itself; however,
in addition, the final product must also be optimized, which leads to a multi-objective
combinatorial optimization problem. This step in the design process is called design
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space exploration (DSE), which involves the identification of optimal solutions or at least
promising candidates.

In the past, we have shown that answer set programming modulo theories [1], or AMT
for short, outperform other approaches for DSE in communication-intensive embedded
systems [2]. The general idea is to use plain ASP for conflict detection and resolution
and for routing; furthermore, difference constraints are used for scheduling. However, its
applicability is still limited to relatively small systems.

In this paper, we explore how the knowledge of a previous version of an embedded
system can be used in an AMT-based DSE to find good design candidates faster, thus
extending the applicability of this approach. Our approach is motivated by the observation
that hardly any complex system is designed from scratch but is instead derived and
extended from a previous version. In the literature, this is referred to as product generation
engineering (PGE; [3]). Even in the case of new product developments from scratch,
numerous variants are often derived from a reference configuration, thus forming an entire
product line; both scenarios can be regarded as evolutionary system design (ESD). As a
consequence, ESD leads to design approaches where new product variants or generations
are derived from existing products.

To keep the time-to-market low, the best strategy is often to leave parts that are needed
in several versions of the system unchanged, i.e., to make identical design decisions as
often as possible. To achieve the goal of retaining design decisions as much as possible,
the similarity between different system implementations must be formally defined, even
when specifications have been (slightly) changed. In a previous work, we have explored
this issue and shown how to use an initially proposed similarity measure in an ad hoc AMT-
based DSE [4]. Based on the first promising findings, we now systematically explore this
topic in greater depth with a particular focus on the impact of alternative ASP techniques.
Moreover, we take a new approach for expressing similarity and use it at three different
levels of AMT-based DSE, namely, (a) as a strategy, (b) as a heuristic, and (c) as an objective,
to guide the exploration towards the regions of high interest.

To begin with, in Section 2, we provide a brief introduction to ASP by focusing on its
modeling language. We then formalize all aspects of ESD in Section 3, namely, the system
synthesis problem along with the DSE process, which consists of finding the Pareto front
regarding the quality measures of latency, cost, and energy consumption, and similarity
measures between two implementations. Sections 4 and 5 detail our AMT-based approach
to system design and DSE, respectively. The former presents the general problem and how
binding, routing, and scheduling are addressed in AMT; furthermore, we describe how
multi-objective optimization is accomplished. The latter section deals with the encoding of
ESD in AMT, focusing on the three aforementioned alternatives for addressing similarities:
strategies, preferences, and (domain-specific) heuristics. Finally, Section 6 reports on an
extensive empirical evaluation, which contrasts 85 different setups, and the evaluation
identifies the most promising combinations of AMT techniques for ESD. We summarize
our approach in Section 7.

2. Answer Set Programming

A logic program consists of rules of the form:

a1;. . .;am :- am+1,. . .,an,not an+1,. . .,not ao

where each ai is an atom of form p(t1,. . .,tk) and all ti are terms, which are composed
of function symbols and variables. For 1 ≤ m ≤ n ≤ o, atoms a1 to am are often called
head atoms, while am+1 to an and not an+1 to not ao are also referred to as positive and
negative body literals, respectively. An expression is said to be ground if it contains no
variables. As usual, not denotes (default) negation. A rule is called a fact if m = n = o = 1,
normal if m = 1, and an integrity constraint if m = 0. In what follows, we only deal with
normal logic programs, for which m is either 0 or 1. Semantically, a logic program induces
a set of stable models, which are distinguished models of the program as determined by
the stable models’ semantics [5].
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To ease the use of ASP in practice, several extensions have been developed. First of all,
rules with variables are viewed as shorthands for the set of their ground instances. Further
language constructs include conditional literals and cardinality constraints [6]. The former
items are of the form a:b1,. . .,bm, (In rule bodies, they are terminated by ‘;’ or ‘.’ [7]); the
latter can be written as s {d1;. . .;dn} t (More elaborate forms of aggregates are obtained by
explicitly using function (e.g., #count) and relation symbols (e.g., <=) [7]), where a and bi
are possibly negated (regular) literals and each dj is a conditional literal. s and t provide
optional lower and upper bounds on the number of satisfied literals in the cardinality
constraint. We refer to b1,. . .,bm as a condition. The practical value of both constructs
becomes apparent when used with variables. For instance, a conditional literal sucha s
a(X):b(X) in a rule’s body expands to the conjunction of all instances of a(X) for which
the corresponding instance of b(X) holds. Similarly, 2 {a(X):b(X)} 4 is true whenever at
least two and at most four instances of a(X) (subject to b(X)) are true; more sophisticated
examples are given in Section 4.

A particular convenience feature is anonymous variables, which are uniformly de-
noted by an underscore ‘_’. Each underscore in a rule is interpreted as a fresh variable. In
turn, atoms with anonymous variables are replaced by new atoms dropping these vari-
ables; the new atoms are then linked to the original ones by rules expressing projections.
For instance, an atom such as task(T,_) is replaced by task’(T) while adding the rule
task’(T) :- task(T,X).

As an example, consider the rule in Line 1 of Listing 2:
1 { bind(T,R) : mapping(R,T) } 1 :- task(T).

This rule has a single head atom consisting of a cardinality constraint; it comprises all
instances of bind(T,R), where T is constrained by the single body literals and R varies over
all instantiations of predicates mapping/2. Given 12 resources, this results in 12 instances
of bind(R,T) for each valid replacement of T, among which exactly one must be chosen
according to the above rule.

Finally, let us consider some system directives particular to clingo (solver directives
are preceded with a hash symbol in clingo [7]).

To begin with, objective functions minimizing the sum over the first numeral argument
wi of a set of weighted tuples (wi, t1i , . . . , tki

), whose membership is subject to condition
b1i,. . .,bli , are expressed as

#minimize{w1@l1,t11 ,. . .,tk1
:b11 ,. . .,b l1 ;. . .;wn@ln,t1n ,. . .,tkn :b1n ,. . .,b ln }.

Lexicographically ordered objective functions are (optionally) distinguished via levels that
are indicated by li. An omitted level defaults to zero.

Furthermore, clingo offers means for manipulating the solver’s decision heuristics.
Such heuristic directives are of the form

#heuristic a:b1,. . .,bm. [w,m]

where a:b1,. . .,bm is a conditional literal; w is a numeral term; and m a heuristic modifier,
indicating how the solver’s heuristic treatment of a should be changed whenever b1,. . .,bm
holds. Whenever a is chosen by the solver, sign enforces that it becomes either true or
false depending on whether w is positive or negative, respectively. The modifier level
partitions all atoms in focus according to the given weight and then selects atoms with
decreasing weight. Finally, the modifiers true and false constitute a combination of sign
and level. See [7,8] for a comprehensive introduction to heuristic modifiers in clingo.

Furthermore, clingo features an integrated acyclicity checker. Acyclicity constraints
are expressed by edge directives in the form

#edge (u,v):b1,. . .,bm.

where u and v are terms representing an edge from node u to node v and b1,. . .,bm is a
condition. The arc (u,v) belongs to a (internal) graph whenever the condition holds. Once
such directives are present, a stable model is only output by clingoif its induced graph is
acyclic [9].
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In fact, in this paper we rely on the extension of clingo with difference constraints, viz.
clingo[DL]. Difference constraints are expressed as theory atoms having the form (theory
atoms are preceded with an ampersand in clingo [1])

&diff { u-v } <= d

where u and v are terms and d is a numeral term; they may occur as head atoms or body
literals. Each such theory atom is associated with a difference constraint u− v ≤ d, where
u, v are integer variables and d is an integer. In this setting, a stable model is only obtained
if the set of difference constraints associated with the theory atoms in the stable model is
satisfiable [10]. In clingo[DL], the obtained integer assignment is captured by expressions
using predicate dl/2. For instance, the assignment u 7→ 3 is output as dl(u,3). In fact,
the satisfaction of a set of difference constraints can be reduced to an acyclicity check of a
weighted graph, where each difference constraint u− v ≤ d induces an edge from node u
to node v, weighted with d. Whenever a cycle is present whose sum of weights is negative,
the set of difference constraints is unsatisfiable. In view of this, difference constraints can
be seen as an extension of acyclicity constraints with distances.

Full details on the input language of clingo along with various examples can be found
in the Potassco User Guide [7].

3. Evolutionary Design Space Exploration

We characterize evolutionary design space exploration in three steps. First, we define
the system synthesis problems that captures a set of applications that have to be executed
on a hardware platform. Then, we identify desirable implementations with respect to
multiple objective values. Finally, we use distance metrics to identify similar solutions. We
illustrate how we can exploit the similarity to high quality implementations to identify
good implementations to different but similar system synthesis problems.

3.1. System Synthesis Problem

Given a set T of tasks and set D of dependencies among them, an application is
a directed acyclic graph (T, D) consisting of tasks T ⊆ T and dependencies D ⊆ D
among tasks.

A hardware platform is a tuple ((R, L), rd, c, se, re, p, m, e, de)where:

• (R, L) is a directed graph consisting of resources R, i.e., either routers, computational,
or memory resources, and links L between resources describing the network;

• rd ∈ N is the (uniform) routing delay, i.e., the time it takes for a communication to
traverse a link;

• c : R→ N is a total function that gives the cost of a resource;
• se : R→ N is a total function that gives the static energy consumption of a resource;
• re ∈ N is the (uniform) routing energy, i.e., the energy used whenever a link is used by

a communication;
• m : R → 2T is a total function that gives the set of tasks that may be executed on a

resource;
• p ∈ N is the (uniform) period in which applications have to be executed, i.e., the

deadline of all tasks;
• e : R×T→ N is a partial function that gives the execution time of tasks;

that is, e(r, t) is defined if t ∈ m(r) for resource r ∈ R and task t ∈ T;
• de : R×T→ N is a partial function giving the dynamic energy consumption that is

dependent on what specific task is executed on what resource;
as above, e(r, t) is defined if t ∈ m(r) for resource r ∈ R and task t ∈ T.

A system synthesis problem is a pair (A, P) consisting of a set A of applications and a
hardware platform P. We assume that no two applications share a task, that is,

⋂
(T,D)∈A T = ∅.

For illustration, we provide a small example system synthesis problem in Figure 1.
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On the left, we give the set of applications, which, in this case, is a single depen-
dency graph comprising four tasks t1, t2, t3, and t4. More precisely, the (singleton) set of
applications is

A = {({t1, t2, t3, t4}, {(t1, t2), (t1, t3), (t2, t4), (t3, t4)})}

c(r5) = 1
se(r5) = 1

r5

c(r6) = 1
se(r6) = 1

r6

c(r7) = 1
se(r7) = 1

r7

c(r8) = 1
se(r8) = 1

r8

rd = 1
re = 1
p = 20

c(r1) = 3
se(r1) = 5

r1

c(r2) = 1
se(r2) = 3

r2

c(r3) = 5
se(r3) = 5

r3

c(r4) = 2
se(r4) = 2

r4

t1

t4

t3t2

3 | 3

2 | 5

4 | 3

2 | 4

3 | 6

1
| 4

3 | 1

Figure 1. Example system synthesis problem (parent specification).

On the right, we have the hardware platform with the four computational resources
r1 to r4, and four routers r5 to r8. The architecture follows a grid-like network-on-chip
(NoC [11]) structure. This is not necessary for our formalization but is usually assumed
and present in our benchmark instances. Each computational resource ri is connected to
a router ri+4 in both directions for i ∈ {1, 2, 3, 4}. Furthermore, routers are connected via
edges:

{(r5, r6), (r5, r7), (r6, r5), (r7, r5), (r8, r6), (r8, r7), (r6, r8), (r7, r8)}

All uniform characteristics, such as routing delay rd, routing energy re, and period p,
are given in the upper right corner and are set to one, one, and twenty, respectively. The
cost and static energy consumption of the resources are given inside the rectangles labeled
with the resource names. All routers have a uniform cost and energy consumption of one,
i.e., they are all the same type of hardware component. The computational resources have
the following attributes:

c(r1) = 3, se(r1) = 5, c(r2) = 1, se(r2) = 3,

c(r3) = 5, se(r3) = 5, c(r4) = 2, se(r4) = 2.

The mapping function m is given by the dashed gray arrows from the task nodes to the
resources that they can be executed on. The first part of the label is the execution time on the
resource, and the second part is the dynamic energy consumption. In detail, we have the
mapping options m(r1) = {t1, t4}, m(r2) = {t2}, m(r3) = {t2, t3}, m(r4) = {t1, t4}, with
execution times e and dynamic energy consumption de:

e : r1 r2 r3 r4
t1 2 − − 3
t2 − 4 2 −
t3 − − 3 −
t4 1 − − 3

de : r1 r2 r3 r4
t1 5 − − 3
t2 − 3 4 −
t3 − − 6 −
t4 4 − − 1
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Essentially, r1 and r3 can be seen as slightly more costly and energy-intensive resources
with faster execution times, while r2 and r4 are less expensive but slower.

3.2. Implementations of a System Synthesis Problem

From here on, we consider a set of applications A to determine our basic sets for task
and dependencies. That is, we have T =

⋃
(T,D)∈A

T and D =
⋃

(T,D)∈A
D.

Furthermore, consider a hardware platform with resources R. A binding is a total
function T→ R that assigns each task a resource that it is executed on.

Let R = {(ri)
n
i=1 | {r1, . . . , rn} ⊆ R, n ∈ N} be the set of subsequences of elements

of R. We sometimes abuse set notation and write r ∈ S, (r, r′) ∈ S, or S ∪ S′ for r ∈ R,
(r, r′) ∈ L, and {S, S′} ⊆ R to denote that resource r or link (r, r′) are part of a sequence
S or refer to the union of all resources occurring in S and S′, respectively. We define the
length of such a sequence as |(ri)

n
i=1| = n− 1.

A routing is a total function D → R that assigns each dependency a sequence of
resources that stand for the route of the communication between the two tasks.

A scheduling is a total function T ∪D→ N that assigns each task and dependency a
starting time, i.e., when the tasks start executing and the communication between two tasks
is initiated.

A binding b is valid if t ∈ m(b(t)) for all t ∈ T. That is, we can only bind tasks to
resources on which they may be executed.

Given a valid binding b, a routing r is valid on a hardware platform with links L if the
following conditions are satisfied:

1. if r(d) = (. . . , ri, ri+1, . . . ), then (ri, ri+1) ∈ L for all d ∈ D, i ∈ N;
2. if b(t) = r = b(t′), then r((t, t′)) = () for (t, t′) ∈ D;
3. if b(t) = r 6= b(t′) = r′, then r((t, t′)) = (r, . . . , r′) for (t, t′) ∈ D.

Condition 1 ensures that the routing respects the hardware architecture in that every
adjacent resource in a route has to be a link in the network graph. Condition 2 enforces
an empty sequence if two depending tasks are mapped to the same resource. Condition 3
requires that every route respects the binding, i.e., it starts on the resource with the send-
ing task and ends at the resource with the receiving task, whenever tasks are bound to
different resources.

Given a valid binding b and a valid routing r, a scheduling s is valid on a hardware
platform with resources R if the following conditions are satisfied:

1. 0 ≤ s(t) ≤ s(t) + e(b(t), t) ≤ p for t ∈ T;
2. s(t) + e(b(t), t) ≤ s((t, t′)) for (t, t′) ∈ D;
3. s((t, t′)) + |r((t, t′))| ∗ rd ≤ s(t′) for (t, t′) ∈ D;
4. if b(t) = b(t′), then for t 6= t′ and {t, t′} ⊆ T, either

(a) s(t) + e(b(t), t) ≤ s(t′); or
(b) s(t′) + e(b(t′), t′) ≤ s(t);

5. if r(d) = (. . . , r, r′, . . . ) and r(d′) = (. . . , r, r′, . . . ), then
for d 6= d′, {d, d′} ⊆ D and {r, r′} ⊆ R, either

(a) s(d) + |r(d)| ∗ rd ≤ s(d′); or
(b) s(d′) + |r(d′)| ∗ rd ≤ s(d).

Condition 1 enforces that every task’s start time is at least zero, and it is chosen in a
way that it finishes before the period. Condition 2 states that communications may only
start after the task that sends them has finished. Note that both conditions depend on
the binding b as the execution time may be different for different resources. Condition 3
handles dependencies between tasks in that a receiving task may only start once all tasks
it depends upon have finished executing and their messages have been received. Note
that in the case that both tasks in a dependency are mapped to the same resource, we have
|r((t, t′))| equal zero, so only the start plus the execution time of the first task delays the
second task without any communication overhead. Whenever two resources are bound to



Algorithms 2023, 16, 179 7 of 38

the same resource, Condition 4 ensures that their execution does not overlap; either the first
task has to finish before the second may start, or vice versa. Note that in case both tasks
depend on each other, satisfaction of this condition follows from Condition 3. Furthermore,
in our formalization, every resource can only execute one task at a time. Finally, whenever
two routes share a link, Condition 5 requires either communication to finish before the
other may start. This is called a circuit switching strategy [11] because the message blocks
the whole route until it is received.

A triple (b, r, s) is an implementation of a system synthesis problem (A, P) if b is a
valid binding, r is a valid routing with respect to b, and s is a valid scheduling with respect
to b and r.

The small example system synthesis problem in Figure 1 already has 17,056 implemen-
tations. When only considering schedules that are executed as early as possible, i.e., tasks
are executed as soon as they have received the necessary communications, the resources
they are bound to are free, communications are sent as soon as the sender task is finished,
and the communication’s route is free, we obtain 62 implementations.

One of these implementations is given in Figure 2. In Figure 2a, binding is repre-
sented by red arrows that select for every task an appropriate resource. In detail, we have
b(t1) = r1, b(t2) = r3, b(t3) = r3, and b(t4) = r1. Note that unused links and resources
are grayed out as they are not needed for this particular implementation. Routing and
scheduling are shown in Figure 2b. The x-axis of the graph represents time units up to the
period of 20. The y-axis are resources and links used for binding tasks and communications,
respectively. Which links are used for which communication can be seen with the label
of the dependencies at the red rectangles, and the order is given from left to right. More
precisely, r((t1, t3)) = (r1, r5, r7, r3) = r((t1, t2)) and r((t3, t4)) = (r3, r7, r5, r1) = r((t2, t4)).
The position and length of the red rectangles labeled with task names and dependen-
cies on the x-axis indicate the start time and duration of execution, respectively. While a
communication on a link uniformly takes one time unit, the durations of the tasks vary
depending on the resources that they are bound to. The precise scheduling s is as follows:
s(t1) = 0, s((t1, t3)) = 2, s(t3) = 5, s((t1, t3)) = 5, s(t2) = 8, s((t3, t4)) = 8, s((t2, t4)) = 11,
and s(t4) = 14.

3.3. Implementation Quality and Pareto Front

We evaluate an implementation of a system synthesis problem via three objective
functions: cost, energy consumption, and latency.

Given an implementation (b, r, s) of a system synthesis problem
(A, ((R, L), rd, c, se, re, p, m, e, de)), we define the following total functions:

• Cost

fc(b, r) = ∑
u∈{b(t)|t∈T}∪⋃d∈D r(d)

c(u)

• Energy consumption

fe(b, r) = ∑
u∈{b(t)|t∈T}∪⋃d∈D r(d)

se(u) + ∑
t∈T

de(b(t), t) + ∑
d∈D

(|r(d)|) ∗ re

• Latency

fl(s) = max{s(t) + e(b(t), t) | t ∈ T}
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c(r5) = 1
se(r5) = 1

r5

c(r6) = 1
se(r6) = 1

r6

c(r7) = 1
se(r7) = 1

r7

c(r8) = 1
se(r8) = 1

r8

rd = 1
re = 1
p = 20

c(r1) = 3
se(r1) = 5

r1

c(r2) = 1
se(r2) = 3

r2

c(r3) = 5
se(r3) = 5

r3

c(r4) = 2
se(r4) = 2

r4

t1

t4

t3t2

2 | 5
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(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

r1

r5 ↔ r1

r7 ↔ r5

r7 ↔ r3

r3

t1

(t1, t3)

(t1, t3)

(t1, t3)

t3

(t1, t2)

(t1, t2)

(t1, t2)

t2

(t3, t4)

(t3, t4)

(t3, t4)

(t2, t4)

(t2, t4)

(t2, t4)

t4

(b)

Figure 2. Example (parent) implementation. (a) Binding; (b) routing and scheduling.

Strictly speaking, all cost functions also depend on the system synthesis problem;
however, we refrain from making this explicit for the sake of simplicity.

The function fc sums up the cost of all resources that are used, either by having a
task bound to it or by being used as a routing device in a communication. The cost of
our example implementation in Figure 2 is 10 as we do not use r2, r4, r6, or r8. The energy
consumption fe considers the static energy required by using a resource, the dynamic
energy stemming from the execution of a task on a resource, and the energy consumption
of the links used in any communication. Note that, in contrast to the static energy of a
resource, the energy consumption of a link is counted per use in a communication. The
implementation in Figure 2 has an energy consumption of 43. Finally, latency fl calculates
the maximum of starting plus the execution time of all tasks, i.e., the time span of the entire
execution of the implementation. The example implementation in Figure 2 has a latency of
10, which is the moment that t4 finishes and the application has been executed.

The quality of an implementation (b, r, s) of a system synthesis problem (A, P) is
given by the tuple ( fc(b), fe(b, r), fl(s)). Accordingly, the quality of the implementation in
Figure 2 is (10, 43, 15).

Rather than one optimal implementation, we are interested in a set of non-dominated
implementations, the so-called Pareto front [12]. Let (b, r, s) and (b′, r′, s′) be two imple-
mentations of a system synthesis problem (A, P) and (q1, q2, q3) and (q′1, q′2, q′3) be their
respective quality; then, (b, r, s) dominates (b′, r′, s′), denoted as (b, r, s) ≺ (b′, r′, s′), if

1. qi ≤ q′i for all i ∈ {1, 2, 3}; and
2. qi < q′i for some i ∈ {1, 2, 3}.
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Note that ≺ forms a partial relation, i.e., the qualities of some implementations are
incomparable. Intuitively, the quality of an implementation has to be at least as good in
all aspects and strictly better in one to dominate another implementation’s quality. Then,
an implementation (b, r, s) of a system synthesis problem (A, P) belongs to the Pareto front
if no other implementation (b′, r′, s′) of (A, P) exists, such that (b′, r′, s′) ≺ (b, r, s).

The system synthesis problem in Figure 1 has four non-dominated implementations;
two of them bind t1 and t4 to r1 and t2 and t3 to r3, and the remaining two bind t1 and t4 to
r4 and t2 and t3 to r3. The two respective implementations have the same quality, namely,
(10, 43, 15) and (9, 35, 16), respectively, as well as identical routing and binding; the sole
difference is whether t2 or t3 is executed first. We can identify two optimal trade-offs here.
The implementations with quality (10, 43, 15) emphasize a shorter latency with higher
cost and energy consumption, and implementations with quality (9, 35, 16) save costs and
energy with a slightly longer execution time. The implementation in Figure 2 belongs to
the Pareto front and is one of the two non-dominated implementations favoring latency.

3.4. Distance between Implementations

As mentioned above, we are using distance information to foster high-quality imple-
mentations for novel but similar system synthesis problems. To this end, we start from a
system synthesis problem wherein a high-quality implementation is known; this is called
the parent specification and parent implementation, respectively. In our example, Figure 1
constitutes the parent specification and Figure 2 constitutes the parent implementation.
Then, the parent specification is changed or updated to a so-called child specification.

Such a child specification for our example is given in Figure 3. Here, task t1 was
deleted, which can be seen as a software update as this task is no longer needed to execute
the application; updates to the hardware platform are marked in green. Essentially, we
replace resource r1 with a more costly version that saves energy. Everything else remains
unchanged from the parent specification in Figure 1.

c(r5) = 1
se(r5) = 1

r5

c(r6) = 1
se(r6) = 1

r6

c(r7) = 1
se(r7) = 1

r7

c(r8) = 1
se(r8) = 1

r8

rd = 1
re = 1
p = 20

c(r1) = 6
se(r1) = 3

r1

c(r2) = 1
se(r2) = 3

r2

c(r3) = 5
se(r3) = 5

r3

c(r4) = 2
se(r4) = 2

r4

t1

t4

t3t2

4 | 3

2 | 4

3 | 6

1
| 1

3 | 1

Figure 3. Example system synthesis problem (child specification).

Next, we define a distance measure that allows us to compare implementations. We
divide the distance between two implementations of a system synthesis problem into the
distance between binding, routing, and scheduling. Before accomplishing this, we require
some intermediate definitions.
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Given a system synthesis problem(A, ((R, L), rd, c, se, re, p, m, e, de)), we define the sets:

Mm = {(t, r) | t ∈ m(r), r ∈ R, t ∈ T}
LA,L =

⋃
(T,D)∈A

{(d, l) | d ∈ D, l ∈ L}

TA =
⋃

(T,D)∈A

{t | t ∈ T ∪ D}

Intuitively, the set Mm contains all possible bindings given a mapping function; LA,L
contains all possible pairs of dependencies and links to collect which communication
routes are possible; finally, TA is the set of all entities that are scheduled, i.e., all tasks
and communications.

Given two system synthesis problems (A, ((R, L), rd, c, se, re, p, m, e, de)) and
(A′, ((R′, L′), rd′, c′, se′, re′, p′, m′, e′, de′)), we define three functions:

• For two bindings b and b′ and (t, r) ∈ Mm ∪M′m, we define

db(Mm, Mm′ , b, b′, (t, r)) =



1, if (t, r) 6∈ Mm, (t, r) ∈ Mm′ , b′(t) = r
1, if (t, r) ∈ Mm, (t, r) 6∈ Mm′ , b(t) = r
1, if (t, r) ∈ Mm, (t, r) ∈ Mm′ , b(t) = r, b′(t) 6= r
1, if (t, r) ∈ Mm, (t, r) ∈ Mm′ , b(t) 6= r, b′(t) = r
0, otherwise

• For two routings r and r′ and (d, l) ∈ LA,L ∪ LA′ ,L′ , we define

dr(LA,L, LA′ ,L′ , r, r′, (d, l)) =



1, if (d, l) 6∈ LA,L, (d, l) ∈ LA′ ,L′ , l ∈ r′(d)
1, if (d, l) ∈ LA,L, (d, l) 6∈ LA′ ,L′ , l ∈ r(d)
1, if (d, l) ∈ LA,L, (d, l) ∈ LA′ ,L′ , l ∈ r(d), l 6∈ r′(d)
1, if (d, l) ∈ LA,L, (d, l) ∈ LA′ ,L′ , l 6∈ r(d), l ∈ r′(d)
0, otherwise

• For two schedulings s and s′ and t ∈ TA ∪ TA′ , we define

ds(TA, TA′ , s, s′, t) =


1, if t 6∈ TA, t ∈ TA′

1, if t ∈ TA, t 6∈ TA′

1, if t ∈ TA, t ∈ TA′ , s(t) 6= s′(t)
0, otherwise

These four functions determine one specific possible mapping, communication link,
and start time, and whether a different decision has been made in two bindings, routings,
and schedulings, respectively. The multiple cases stem from the possibility that both system
synthesis problems are different. We have to take into account that certain possibilities do
not exist in one or the other system synthesis problem. In case an option is unavailable but
used by the other implementation, it should constitute a difference. If the missing option is
not employed, the implementations are equal with respect to that option.

Given two implementations (b, r, s) and (b′, r′, s′) of two system synthesis problems
(A, P) and (A′, P′), respectively, we define the following distance functions:
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• Binding distance

Db(m, m′, b, b′) = ∑
(t,r)∈Mm∪Mm′

db(Mm, Mm′ , b, b′, (t, r))

• Routing distance

Dr(A, A′, L, L′, r, r′) = ∑
(d,l)∈LA,L∪LA′ ,L′

dr(LA,L, LA′ ,L′ , r, r′, (d, l))

• Scheduling distance

Ds(A, A′, s, s′) = ∑
t∈TA∪TA′

ds(TA, TA′ , r, r′, t)

• Overall distance

D((A, P), (r, b, s), (A′, P′), (r′, b′, s′)) = Db(m, m′, b, b′) + Dr(A, A′, L, L′, r, r′) + Ds(A, A′, s, s′)

The binding distance Db, routing distance Dr, and scheduling distance Ds now merely
sum up values of the functions db, dr, and ds, respectively, for all possible options of both
system synthesis problems, depending on both implementations. To obtain the relative
distance from zero (implementations are identical) to one (implementation are completely
different), we can normalize the four absolute distances by dividing by |Mm ∪Mm′ |, |LA,L ∪
LA′ ,L′ |, |TA ∪ TA′ |, and |Mm ∪Mm′ |+ |LA,L ∪ LA′ ,L′ |+ |TA ∪ TA′ |, respectively.

Returning to our child implementation in Figure 3, we can now select from among the
71,818 implementations using the distance measures.

Figure 4 shows an implementation that is very similar to the implementation in
Figure 2. In fact, if we let (A, P) be the system synthesis problem in Figure 1, (A′, P′) the
system synthesis problem in Figure 3, (b, r, s) the implementation in Figure 2, and (b′, r′, s′)
the implementation in Figure 4, then we have Db(m, m′, b, b′) = 1, Dr(A, A′, L, L′, r, r′) = 6,
and Ds(A, A′, s, s′) = 8. Here, the binding and routing distance are minimal because
distance one and six, respectively, are the lower bound of changes induced by removing
task t1. On the contrary, the scheduling distance has a maximum value of eight, as there are
eight entities that have to be scheduled overall: four tasks and four dependencies, which
are either removed or have different starting times.

This shows that the scheduling distance as defined above might be too granular for
an effective comparison; we also observed this in our experiments, which we present in
Section 6. Different scheduling distances could be employed, such as absolute distance
between two start points, but this is computationally difficult, and we relegate this task to
future work. Just considering the minimal binding and routing distance, we actually obtain
an non-dominated child implementation in Figure 3.
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Figure 4. Example implementation (child implementation).

4. Encoding the System Synthesis Problem with ASP Modulo Difference Constraints

As is typical for ASP, our approach to solving the system synthesis problem with ASP
modulo difference constraints (AMT) is also separated into a problem instance specifying
the system synthesis problem and a general problem encoding. We start by describing the
fact format; then, we present the general problem encoding facilitating binding, routing,
and scheduling. We also describe how our encoding produces valid bindings, routings,
and schedulings. This does not constitute a formal proof but rather intuitive explanations
of the encoding techniques involved. We further provide different routing schema that
use shortest path information to achieve better solution quality and runtime performance.
Following that, we describe how multi-objective optimization is accomplished. Finally,
we finish this section by providing the means of achieving evolutionary design space
exploration, i.e., how we implement a similarity measure in ASP and how we can encourage
finding similar solutions via strategies, preferences, and domain-specific heuristics.
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4.1. Fact Format

Given a system synthesis problem (A, ((R, L), rd, c, se, re, p, m, e, de)), we create the
following facts:

• task(t), send(t′,t′′) for t ∈ T, (t′, t′′) ∈ D and (T, D) ∈ A;
• link(r,r′) for (r, r′) ∈ L;
• cost(r,c(r)) for r ∈ R;
• static_energy(r,se(r)) for r ∈ R;
• mapping(r,t), execution(r,t,e(r, t)); and dynamic_energy(r,t,de(r, t))

for t ∈ m(r) and r ∈ R;
• routing_delay(rd), routing_energy(re), and period(p)

For instance, Listing 1 shows the facts representing the system synthesis problem
in Figure 1. We obtain the instance capturing the child implementation in Figure 3 by
removing facts referencing t1 from Listing 1 and changing values for r1 to cost(r1,6),
static_energy(r1,3), and dynamic_energy(r1,t4,1).

Note that it is necessary to capture the existence of tasks via an atom, while this is not
necessary for resources. This enables us to have single-task applications, and the resources
can be extracted from either cost or static energy consumption.

4.2. General Problem Encoding

Listing 2 shows the succinct binding encoding that consists of one choice rule assigning
exactly one resource to each task on which it can be mapped. Atoms over predicate bind/2
describe the binding b. That is, bind(t,r) represents that b(t) = r for task t and resource r.
Bindings can only be chosen among possible mappings and are therefore valid. For instance,
facts bind(t1,r1), bind(t2,r3), bind(t3,r3), and bind(t4,r1) capture the binding of
the parent implementation in Figure 2.

In Listing 3, we find the routing encoding. The routing r is captured via atoms
over predicate route/3. In more detail, for every atom route((t, t′),u,u′), we have
(u, u′) ∈ r((t, t′)) for dependency (t, t′) and link (u, u′). Choice rules in Lines 3 and 4
allow every resource in the network at most one outgoing route and at most one ingoing
route per communication, respectively. As a result, every communication now has possibly
disconnected paths or cyclic routes; however, we ensure that there is no branching. That is,
at this point, routes are possibly disconnected or are cycles. Lines 6 to 10 enforce that for
each communication, routes are connected and start and end at the correct resources. First,
we require that routes are connected by recursively deriving resources that are visited via
routes connected to the resource with the sending task. Then, we state that no route may
end at a resource that is not visited, i.e., not connected to the sender of the communication.
Second, we select the resource with the receiving task and require this resource to be visited
and disallow routes originating from there. This expresses that the communication arrives
at the target location, and we stop once this is achieved.
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Listing 1. Facts representing our example parent specification in Figure 1.

1 task(t1). task(t2). task(t3). task(t4).
2 send(t1,t2 ). send(t1,t3 ). send(t2,t4). send(t3,t4).

4 link(r1,r5 ). link(r5,r1 ). link(r2,r6). link(r6,r2).
5 link(r3,r7 ). link(r7,r3 ). link(r4,r8). link(r8,r4).
6 link(r5,r6 ). link(r6,r5 ). link(r5,r7). link(r7,r5).
7 link(r6,r8 ). link(r8,r6 ). link(r7,r8). link(r8,r7).

9 cost(r1,3). cost(r2,1).
10 cost(r3,5). cost(r4,2).
11 cost(r5,1). cost(r6,1).
12 cost(r7,1). cost(r8,1).

14 static_energy(r1,5). static_energy(r2,3).
15 static_energy(r3,5). static_energy(r4,2).
16 static_energy(r5,1). static_energy(r6,1).
17 static_energy(r7,1). static_energy(r8,1).

19 mapping(r1,t1). mapping(r1,t4 ).
20 mapping(r2,t2).
21 mapping(r3,t2). mapping(r3,t3 ).
22 mapping(r4,t1). mapping(r4,t4 ).

24 execution(r1,t1,2 ). execution(r1,t4,1 ).
25 execution(r2,t2,2 ).
26 execution(r3,t2,2 ). execution(r3,t3,3 ).
27 execution(r4,t1,3 ). execution(r4,t4,1 ).

29 dynamic_energy(r1,t1,5 ). dynamic_energy(r1,t4,4 ).
30 dynamic_energy(r2,t2,3 ).
31 dynamic_energy(r3,t2,4 ). dynamic_energy(r3,t3,6 ).
32 dynamic_energy(r4,t1,3 ). dynamic_energy(r4,t4,1 ).

34 routing_delay (1).
35 routing_energy (1).
36 period (20).

Listing 2. Binding encoding.

1 1 { bind(T,R) : mapping(R,T) } 1 :- task(T).

Listing 3. Routing encoding.

1 resource(R;R’) :- link(R,R ’).

3 { route((T,T ’),R,R ’) : link(R,R ’) } 1 :- resource(R), send(T,T ’).
4 { route((T,T ’),R,R ’) : link(R,R ’) } 1 :- resource(R’), send(T,T ’).

6 visit((T,T ’),R) :- send(T,T ’), bind(T,R).
7 visit(C,R ’) :- visit(C,R), route(C,R,R ’).
8 :- route(C,_,R), not visit(C,R).
9 :- send(T,T ’), bind(T’,R), not visit((T,T ’),R).

10 :- send(T,T ’), bind(T’,R), route ((T,T ’),R,_).

Because we may only choose our routing among links, Condition 1 is trivially satisfied.
Condition 2 is met as we may not start a route from the target resource of a communication,
and if that is the same as the source resource, we have no route. Finally, Condition 3 is
satisfied, firstly because routing may only take place over visited resources, and the only
resource that is visited without condition is the resource the sending task is bound to;



Algorithms 2023, 16, 179 15 of 38

secondly, the route ends at the receiving task’s resource because it has to be visited, but no
further routing from that point is allowed. Therefore, routings produced by this encoding
are valid. Note that this encoding does not produce all valid routings but only valid
routings with acyclic routes. To facilitate cyclic routes, one must add an additional order
when resources are visited, akin to a time step in action encodings. We decided against this
since cycles offer little merit because we use a circuit switching scheduling strategy.

For our parent implementation in Figure 2, the atoms capturing the routing are as
follows:

route(( t1,t2),r1,r5) route ((t2,t4),r3,r7)
route(( t1,t2),r5,r7) route ((t2,t4),r7,r5)
route(( t1,t2),r7,r3) route ((t2,t4),r5,r1)

route(( t1,t3),r1,r5) route ((t3,t4),r3,r7)
route(( t1,t3),r5,r7) route ((t3,t4),r7,r5)
route(( t1,t3),r7,r3) route ((t3,t4),r5,r1)

For several conditions on valid schedulings, we require the number of links used
in every communication, the so-called hops. Listing 4 achieves this goal via a technique
called chaining. First, we need to find an upper bound to the possible number of hops so
that grounding is possible. This is the number of links in the network (Line 1). Then, we
initialize the count with zero at the resource where the sending task is bound to (Line 2).
Recursively, we add one to our count for every link the communication uses in Line 3 if we
have not yet reached the maximum limit. Finally, we can determine the number of hops by
selecting the hop count at the resource that the receiving task is bound to (Line 5). In detail,
atom hops(d,n) determines that communication d takes n hops. Note that we can use the
#count directive to count the links as this is static information and the count is determined
at grounding time. On the other hand, it would lead to an exponential number of rules
if we encoded the counting of the hops in the same way because all possible subsets of
routes taken need to be considered. Our chaining encoding scales with the number of links
multiplied by the number of resources. So, in the worst case, it is cubic in the number of
resources and has better propagation properties compared with the #count-based method.

Listing 4. Calculating number of hops for every communication.

1 nr_links(NR) :- NR=#count{ link(N,N ’) : link(N,N ’) }.
2 hops((T,T ’),R,0) :- send(T,T ’), bind(T,R).
3 hops(C,R ’,H+1) :- hops(C,R,H), route(C,R,R ’),
4 H<NR, nr_links(NR).
5 hops(C,H) :- hops(C,R,H), send(T,T ’), bind(T’,R).

Because scheduling relies on deciding what tasks to execute first on the same resource,
or what communications to send first if they use the same link, we need to facilitate that
choice in our encoding. Listing 5 detects conflicts among tasks and communications and
assigns priorities via atoms over predicate priority/2. In detail, atom priority(t,t′)
expresses that t is executed before t′ may start for t ∈ T∪D. In order to narrow the search
for conflicts, we first analyze which tasks and communications depend on each other, i.e.,
which are sequentially executed in one application and therefore cannot be simultaneously
executed. We first determine direct dependencies in Lines 1 to 2; here, task dependencies
are directly given and communication dependencies arise whenever the receiver task of
a communication becomes a sender task of another communication. Then, we build the
transitive closure in Lines 4 to 5. Note that this is usually expensive with respect to memory
and performance, but here, we only build the transitive closure on domain predicates
that are decided during grounding. The rule in Line 7 determines the conflicts between
resources. Two tasks are in a conflict if they are bound to the same resource and they do
not depend on each other. Note that the grounding is quadratic in the number of tasks. We
reduce the problem size by ordering the tasks alphanumerically and by only considering
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conflicts where the first task is smaller. We explain in the scheduling encoding that this
does not lead to a loss of information. Similarly, Line 12 determines conflicts between
communications. Two communications are in conflict whenever they share at least one link
and do not depend on each other. We use the same alphanumeric ordering as for resource
conflicts. Finally, Line 19 decides the priority between two tasks or communications that
are in conflict. Again, the choice rule only allows for deciding that an alphanumerically
smaller task or communication is executed first, but we take the absence of this priority to
mean the opposite.

Listing 5. Conflict detection and resolution.

1 depends(T,T ’) :- send(T,T ’).
2 depends ((T,T ’),(T’,T ’’)) :- send(T,T ’), send(T’,T ’’).

4 depends_trans(T,T ’) :- depends(T,T ’).
5 depends_trans(T,T ’) :- depends_trans(T,T ’), depends(T,T ’).

7 conflict(T,T ’) :- task(T), task(T’), T < T’,
8 bind(T,R), bind(T’,R),
9 not depends_trans(T’,T),

10 not depends_trans(T,T ’).

12 conflict ((T,T ’),(T’’,T ’’’)) :- send(T,T ’), send(T’’,T ’’’),
13 (T,T ’) < (T’’,T ’’’),
14 1 #sum{ 1 : route((T,T ’),R,R ’),
15 route((T’’,T ’’’),R,R ’)},
16 not depends_trans((T,T ’),(T’’,T ’’’)),
17 not depends_trans((T’’,T ’’’),(T,T ’)).

19 {priority(C,C ’)} :- conflict(C,C ’).

Listing 6 gives our scheduling encoding. We facilitate scheduling via difference con-
straints, where the name of a task or communication is the name of the integer variable that
represents their starting time in scheduling s. In the following, we argue on the ground
level and with the mathematical entities of the system synthesis problem. That is, every T
and T’ in the encoding is instantiated by all tasks {t, t′} ⊆ T, as well as every C and C’ is
instantiated with all communications {c, c′} ⊆ D. Lines 1 to 2 implement Condition 1 on a
valid scheduling; they derive difference constraint &diff{0-t}<=0 ensuring 0 ≤ s(t) and
&diff{t-0}<=p− e(b(t), t) ensuring s(t) + e(b(t), t) ≤ p for t ∈ T. Lines 4 and 5 handle
dependencies between tasks and communications. Specifically, Line 4 encodes Condi-
tion 2 by deriving difference constraint &diff{t-(t, t′)}<=−e(b(t), t) for every dependency,
which means that s(t) + e(b(t), t) ≤ s((t, t′)) for (t, t′) ∈ D. Similarly, Line 5 handles
Condition 3 via difference constraint &diff{(t, t′)-t′}<=−|r((t, t′))| ∗ rd, where the number
of hops is used to determine |r((t, t′))|. Then, we have s((t, t′)) + |r((t, t′))| ∗ rd ≤ s(t′)
for (t, t′) ∈ D. Lines 8 to 13 handle conflict resolution between tasks. For two conflicting
tasks {t, t′} ⊆ T with t 6= t′ so that b(t) = b(t′), we obtain either difference constraint
&diff{t-t′}<=−e(b(t), t) enforcing s(t) + e(b(t), t) ≤ s(t′) if t is prioritized over t′ or
difference constraint &diff{t′-t}<=−e(b(t′), t′) and therefore s(t′) + e(b(t′), t′) ≤ s(t) if
there is no prioritization. Note that the conflict relation is symmetrical; thus, we only
need to consider one ordering of the task names to obtain Condition 4. A drawback
when compared wtih symmetrical conflict and priority atoms is having to duplicate the
rules that derives the difference constraints in the encoding; however, the number of
rule instantiations overall is halved. Similarly, Lines 15 to 18 resolve communication
conflicts. For two conflicting communications {d, d′} ⊆ D with d 6= d′, i.e., we have
r(d) = (. . . , r, r′, . . . ) and r(d′) = (. . . , r, r′, . . . ), we derive either difference constraint
&diff{d-d′}<=−|r(d)| ∗ rd leading to s(d) + |r(d)| ∗ rd ≤ s(d′) if d has priority over d′ or
difference constraint &diff{d′-d}<=−|r(d′)| ∗ rd giving rise to s(d′) + |r(d′)| ∗ rd ≤ s(d) if
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no priority exists. Again, Condition 5 is satisfied by only considering one ordering of the
communications due to symmetry, and the symmetry breaking technique is identical to
the one used for resource conflicts. Now, our encoding produces valid schedules as we
implemented all conditions via difference constraints.

Listing 6. Scheduling encoding.

1 &diff { 0-T } <= 0 :- task(T).
2 &diff { T-0 } <= V :- period(P), bind(T,R), execution(R,T,E), V=P-E.

4 &diff { T-(T,T ’) } <= -E :- send(T,T ’), bind(T,R), execution(R,T,E).
5 &diff { (T,T ’)-T’} <= -S :- send(T,T ’), hops(C,N), routing_delay(D),
6 S=N*D.

8 &diff { T-T’} <= -E :- conflict(T,T ’), priority(T,T ’),
9 task(T), task(T’),

10 execution(R,T,E ).
11 &diff { T’-T} <= -E :- conflict(T,T ’), not priority(T,T ’),
12 task(T), task(T’),
13 execution(R,T ’,E).

15 &diff { C-C’ } <= -S :- conflict(C,C ’), priority(C,C ’),
16 hops(C,N), routing_delay(D), S=N*D.
17 &diff { C’-C } <= -S :- conflict(C,C ’), not priority(C,C ’),
18 hops(C’,N), routing_delay(D), S=N*D.

For example, the valid schedule of our parent implementation in Figure 2 is
dl(t1,0) dl(t2,8) dl(t3,5) dl(t4,14)
dl((t1,t2),5) dl((t1,t3),2) dl(( t2,t4),11) dl(( t3,t4),8)

4.2.1. Routing Variants

In this section, we show how we can use information about the location of resources
to obtain shortest path information and improve solution quality and runtime performance.
More specifically, we view our architecture as a three-dimensional grid on which our
resources have specific locations that can be used to easily calculate the shortest paths
between them. For that purpose, we define a function l : R→ N×N×N that assigns each
resource their location and, given a set of resources R, add facts location(r,l(r)) to our
instance for each resource r ∈ R. We use this information to firstly restrict routes to the
length of the shortest path possible to improve solution quality and solving time; secondly,
we use this information to enable dimension-ordered routing, which essentially removes
routing from the solving process, i.e., the possible routes are known at grounding time.

Listing 7 shows the coordinates of resources of our parent specification in Figure 1.
Note that the computational resources have the same coordinates as the routers they are
connected to. The scheme we use for our instances assumes that every computational
resource has a router that it is closely and exclusively attached to, and the shortest paths
are then considered between the routers. In that sense, we have a two-dimensional NoC in
our example as the z-coordinate is always zero.

Listing 7. Locations of resources of the parent specification.

1 location(r1,(0,1,0 )). location(r2,(1,1,0 )).
2 location(r3,(0,0,0 )). location(r4,(1,0,0 )).
3 location(r5,(0,1,0 )). location(r6,(1,1,0 )).
4 location(r7,(0,0,0 )). location(r8,(1,0,0 )).
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Bound Routing

Listing 8 shows how we calculate the number of hops and restrict the routes using the
locations of resources. Line 1 calculates the former for two tasks that are bound to different
resources. The number of hops required to route the message is exactly the Manhatten
distance between the coordinates plus two. The two hops are added to account for the
segment from the sending resource to its router and from the final router to the receiving
resource. Line 4 covers the case when both tasks in communication are bound to the same
resource, where the number of hops is then zero. Finally, Line 5 restricts the routing of
every communication to the calculated number of hops, where it is either the shortest path
across the network or zero depending on the binding.

Listing 8. Bind number of hops to shortest path according to grid coordinates.

1 hops((T,T ’),N) :- bind(T,R), bind(T’,R ’), R!=R’, send(T,T ’),
2 location(R,(X,Y,Z )), location(R’,(X’,Y’,Z ’)),
3 N = |X-X’|+|Y-Y’|+|Z-Z ’|+2.
4 hops((T,T ’),0) :- bind(T,R), bind(T’,R), send(T,T ’).
5 :- hops(C,N), not N { route(C,_,_) : route(C,_,_) } N.

Our parent implementation in Figure 2 fulfills this property. We have as coordinates
(0, 1, 0) and (0, 0, 0) for r1 and r3, respectively. Then, the shortest number of hops is
|0 − 0| + |1 − 0| + |0 − 0| + 2 = 3 for all communications, which is the amount each
communication requires in this implementation. This encoding ensures the shortest paths
while allowing for variable routes. Furthermore, we restrict the search space, which should
lead to an improvement in the solving performance.

Dimension-Ordered Routing

Listing 9 shows the encoding for dimension-ordered routing. The basic idea is to find a
path from the source to the target that first diminishes the distance in the x-coordinates until
no distance remains, then the same for the y-coordinates and z-coordinates accordingly.
For that purpose, the encoding creates a routing table that is stored in atoms over predicate
next/3 (Lines 1–13). Essentially, an atom next((x, y, z),(x′, y′, z′),(x′′, y′′, z′′)) indicates
that the shortest path from (x, y, z) to (x′, y′, z′) involves the link from (x, y, z) to (x′′, y′′, z′′).
For every two locations (x, y, z) and (x′, y′, z′), the rules identify in order whether x-, y-,
or z-coordinates are equal and make the case distinction of whether one has to increment
or decrement the respective unequal coordinate to get closer to the target. Depending on
the case, x-, y-, or z-coordinate are incremented or decremented by one to determine the
next destination. Then, Lines 14 to 21 use the routing table to determine the route for all
communications given the specific binding of the tasks involved. Furthermore, we can use
the same calculation in Listing 8 to determine the number of hops. Note that routing now
completely depends on binding and no longer involves independent planning. As above,
we guarantee the shortest paths and we restrict the search space even further. However, this
routing is the most inflexible, so we might discard implementations that achieve a better
quality as communication may evade each other with the more flexible routing variants.

4.2.2. Preference Encoding

This section describes how we implement Pareto optimization. To describe preferences,
we use the fact format of the system asprin described in [13], and to achieve grounding, solv-
ing, and optimization, we employ a Python script based on clingo’s theory and application
framework [14]; the script is a re-implementation of the design space exploration system de-
scribed in [2]. The general idea is that difference constraints as well as Pareto optimization
are handled by background theories that are integrated via clingo’s theory interface. While
the former sanctions thne validity of answer sets with respect to schedulability, the latter
holds an archive of currently non-dominated implementations, updates this archive when
new and better solutions are found, and adds conflict clauses whenever (partial) answer
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sets are dominated by members of the archive. In this way, the quality of implementations
in the archive improves over time as more answer sets are found; eventually, the archive is
equal to the Pareto front once no more non-dominated implementations can be found.

Listing 9. Routing encoding via dimension-ordered routing.

1 coord(X,Y,Z) :- location(_,(X,Y,Z )).
2 next((X,Y,Z),(X’,Y ’,Z ’),(X+1,Y,Z)) :- coord(X,Y,Z), coord(X’,Y’,Z ’),
3 coord(X+1,Y,Z), X < X’.
4 next((X,Y,Z),(X’,Y ’,Z ’),(X-1,Y,Z)) :- coord(X,Y,Z), coord(X’,Y’,Z ’),
5 coord(X-1,Y,Z), X > X’.
6 next((X,Y,Z),(X,Y ’,Z ’),(X,Y+1,Z)) :- coord(X,Y,Z), coord(X,Y ’,Z ’),
7 coord(X,Y+1,Z), Y < Y’.
8 next((X,Y,Z),(X,Y ’,Z ’),(X,Y -1,Z)) :- coord(X,Y,Z), coord(X,Y ’,Z ’),
9 coord(X,Y -1,Z), Y > Y’.

10 next((X,Y,Z),(X,Y,Z ’),(X,Y,Z +1)) :- coord(X,Y,Z), coord(X,Y,Z ’),
11 coord(X,Y,Z +1), Z < Z’.
12 next((X,Y,Z),(X,Y,Z ’),(X,Y,Z -1)) :- coord(X,Y,Z), coord(X,Y,Z ’),
13 coord(X,Y,Z -1), Z > Z’.
14 route((T,T ’),R,R ’) :- bind(T,R), bind(T’,R ’), send(T,T ’),
15 location(R,C), location(R’,C), R!=R’.
16 route((T,T ’),R,R ’’) :- route ((T,T ’),_,R), bind(T’,R ’),
17 location(R,C), location(R’,C ’),
18 next(C,C ’,C ’’), location(R’’,C ’’),
19 not bind(T’,R ’’).
20 route((T,T ’),R’,R) :- bind(T’,R), send(T,T ’),
21 location(R,C), location(R’,C), R!=R’.

To determine the quality of an implementation, we first determine which resources are
allocated. This can be seen in Listing 10. Here, we derive atoms over predicate allocated/1,
where allocated(r) signifies that resource r is used in an implementation. A resource is
considered to be in use if a task is bound to it (Line 1) or if it is included in the routing of a
communication (Lines 3–4).

Listing 10. Deriving allocation of an implementation.

1 allocated(R) :- bind(T,R).

3 allocated(R) :- route(_,R,_).
4 allocated(R) :- route(_,_,R).

The preference encoding in Listing 11 makes use of this information. Preference
definitions rely on atoms over predicates preference/2 and preference/5. Additionally,
rules are provided that capture atoms that the preferences relate to via atoms over pred-
icate holds/2. These predicates are known to the Pareto optimization system and are
used to communicate the desired preferences. All preference definitions follow the same
scheme. First, an atom preference(n,t) declares preference n of type t; in our case, we
have preference(cost,sum), preference(energy,sum), and preference(latency,max).
Here, sum and max are predefined preference types that are known to our Pareto preference
propagator. The former determines the sum of elements that are added if certain condi-
tions hold, and the latter determines the maximum of integer variables, optionally with
a constant offset. For those preference types, smaller values are preferred, and we use
Pareto optimization over all preferences. In contrast to asprin, preference types cannot be
added via ASP but are Python classes that implement certain methods. This is due to the
fact that the values of the start times have to be considered to calculate the latency. These
values are only known to the difference constraints propagator and are never reified in the
ASP encoding. Then, the preference elements are defined, i.e., what quality holds under
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what conditions. To determine the cost of an implementation, the rule in Line 2 states that
whenever allocated(r) holds, we add c(r) to the value of preference cost for r ∈ R. The
energy consumption is split into several preference statements. Line 7 adds se(r) whenever
allocated(r) holds for r ∈ R. Line 11 sums up the energy consumption of every link used
in a communication by adding re for every route((t, t′),r,r’) that holds for (t, t′) ∈ D
and {r, r′} ⊆ R. Finally, Line 15 states that whenever bind(t,r) holds, we add se(r, t) for
r ∈ R and t ∈ T. For latency, Line 21 states that whenever bind(t,r) holds, we add the
value s(t) + e(r, t) to the set over which the maximum is calculated for t ∈ T and r ∈ R.
Essentially, we build the maximum over all starting times plus execution times, which is
the latency of the implementation. The third and final part of each preference description
reifies atoms that are conditions for the preference elements into holds/1 atoms. Note
that this is the only non-domain part of the preference encoding. In detail, holds/1 atoms
describe the part of the answer set that determines the quality. For more information on
the fact format and methodology see [2,13]. Similar to clingo[DL], our Pareto optimization
framework adds symbols to the answer set and describes the quality of the solution. Specif-
ically, we add symbols of the form pref(n,t,v), where n is the name, t is the type, and v is
the objective value.

Listing 11. Encoding preferences cost, energy consumption, and latency.

1 preference(cost,sum ).
2 preference(cost, (1,1),1,for(atom(allocated(R))),(C))
3 :- cost(R,C).
4 holds(atom(allocated(R)),0) :- allocated(R).

6 preference(energy,sum ).
7 preference(energy, (2,1),1,for(atom(allocated(R))),(S))
8 :- static_energy(R,S).
9 holds(atom(allocated(R)),0)

10 :- allocated(R).
11 preference(energy, (2,2),1,for(atom(route ((T,T ’),R,R ’))),(E))
12 :- link(R,R ’), send(T,T ’), routing_energy(E).
13 holds(atom(route ((T,T ’),R,R ’)),0)
14 :- route((T,T ’),R,R ’).
15 preference(energy, (2,3),1,for(atom(bind(T,R))),(D))
16 :- mapping(R,T), dynamic_energy(R,T,D).
17 holds(atom(bind(T,R)),0)
18 :- bind(T,R).

20 preference(latency,max ).
21 preference(latency, (3,1),1,for(atom(bind(T,R))),(T,E))
22 :- mapping(R,T), execution(R,T,E ).
23 holds(atom(bind(T,R)),0)
24 :- bind(T,R).

For instance, our parent implementation in Figure 2 has quality pref(cost,sum,10),
pref(energy,sum,43), and pref(latency,max,15).

5. Encoding Evolutionary Design Space Exploration

In this section, we describe how we implement an evolutionary design space explo-
ration with our ASP-based framework. We start by outlining how we encode the similarity
measure between a parent and child implementation. For that, we only focus on the binding
and routing distance as the scheduling similarity performed badly in our empirical analysis
(cf. Section 6). Then, we present three techniques for facilitating similar child implementa-
tions: strategies, preferences, and domain-specific heuristics. In essence, strategies restrict
the search space via integrity constraints to only contain similar implementations, and
preferences use the distance measures as another entry in the quality and therefore make
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it subject to Pareto optimization; domain-specific heuristics adapt the solver’s heuristics in
such a way that similar implementations are emphasized. Note that only strategies remove
solutions while preferences and heuristics consider the whole search space. For all of these
techniques, we consider both encouraging similarity and discouraging dissimilarity.

5.1. Encoding the Similarity Measure

To establish the similarity measure between parent and child, we first reify all atoms
of the parent specification and parent implementation in atoms over predicated parent/1.
For instance, the atom link(r1,r5) is a member of the parent specification in Figure 1, and
route((t1,t2),r1,r5) is contained in the parent implementation in Figure 2; so, we add
facts parent(link(r1,r5)) and parent(route((t1,t2),r1,r5)), respectively. Listing 12
shows the facts that are relevant to establish similarity between parent and child in our
running example. Listing 13 shows the encoding of the similarity measure; it derives two
kinds of atoms: equal/1 atoms that indicate that an aspect of the parent and child imple-
mentation are equal and unequal/1 atoms capturing a difference between the parent and
child implementation. The encodings closely follow the cases of the definition of functions
db and dr. Lines 1 to 5 establish equal bindings of the parent and child, i.e., the “otherwise”
case of db. Parent and child implementation are equal for the binding of task t on resource
r if they either both bound t to r or the mapping exists in either the child or parent speci-
fication but both did not use this mapping. For instance, we derive equal(bind(t4,r1))
and equal(bind(t1,r4)) for our running example; the first is derived because both the
parent and child implementation have the same binding, and the second is derived because
the binding exists in the parent specification but both implementations do not use it. The
encoding of unequal bindings in Lines 6 to 13 follows the remaining cases of function
db. Parent and child implementation are unequal for a binding of task t on resource r if
a mapping is only possible in either the child or parent specification and the respective
binding is part of the respective implementation or the mapping is possible in both, but is
unequal in the parent and child implementations. Returning to the examples, we would
have unequal(bind(t1,r1)) because t1 no longer exists in the child specification. Other
than that, the binding of the parent and child implementation in Figure 2 and 4 are identical.
Establishing similarity with respect to the routing follows a very similar pattern. Lines 15
to 22 encode the equality of the routing, again corresponding to the “otherwise” case of
function dr. Parent and child implementation are equal for a link (r, r′) and communication
d if either both implementations use link (r, r′) for routing communication d or neither uses
it but the possibility exists in either the parent or child specification; in our example, we
have equal(route((t3,t5),r3,r7)) because both parent and child implementation use
this route and equal(route((t1,t2),r5,r6)) because neither implementation contains it,
but it is possible in the parent specification. The similarity encoding for the unequal parts
of the parent and child implementation follows the cases of function dr. Parent and child
implementation are unequal for a link (u, u′) and communication d if d is part of only either
child or parent implementation and (u, u′) belongs to the routing of d in the respective
implementation or if d is part of both specifications, but (u, u′) is part of the routing of d in
either the child or parent implementation only. Note that we do not need to specifically
refer to all possible links in the rules because route/3 atoms are grounded over all possible
links, and only the existence of a route in either parent or child implementation can lead to
a dissimilarity. Let us return to our example. All routes that involve communications with
task t1 are unequal from parent to child implementation. Specifically, we derive:

unequal(route(( t1,t2),r1,r5 )) unequal(route ((t1,t2),r5,r7 ))
unequal(route(( t1,t2),r7,r3 )) unequal(route ((t1,t3),r1,r5 ))
unequal(route(( t1,t3),r5,r7 )) unequal(route ((t1,t3),r7,r3 ))

All other aspects of routing are identical. Note that we obtain the value for functions
Db and Dr if we count the unequal/1 atoms for binding and routing, respectively. For
our example, we have one unequal atom for binding and six for routing, which are the
values calculated by the distance functions. Note that we could derive equal/1 atoms
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from unequal/1 atoms and vice-versa but decided to give an independent definition to
make all cases explicit. Furthermore, we can see that equal/1 atoms are derived for all
possibilities in both specifications, not only for bindings and routings that are used in either
the child or parent implementation. On the other hand, unequal/1 atoms are possible for
bindings and routings that are part of at least one implementation. We therefore suspect
different behaviors when using one or the other. In the following strategies, preferences,
and heuristics, we separate the use of both kinds of atoms, and in Section 6, we empirically
analyze the different impact.

5.2. Strategies

Listings 14 and 15 show how we use strategies that forbid unequal and enforce
equal implementations with respect to binding and routing, respectively. The integrity
constraints in Listing 14 simply forbid that any binding or routing is unequal. On the
other hand, Listing 15 forbids that any possible mapping or routing is not equal. Note that
we have to use negation in Listing 15; therefore, we need to provide the domain of the
equal/1 atoms, which are the possible mappings and routings in both the parent and child
specifications. These strategies are our most invasive way to foster similar implementations.
On the one hand, we expect that this leads to unsatisfiability or an exclusion of some
high-quality implementations; on the other hand, in the case of satisfiability, we can ensure
similarity and achieve a good runtime performance. For instance, our running example
is unsatisfiable with these strategies as the removal of a task implies some inequality in
binding and routing.

Listing 12. Relevant parts of parent specification and implementation to establish similarity.

1 parent(send(t1,t2 )). parent(send(t1,t3 )).
2 parent(send(t2,t4 )). parent(send(t3,t4 )).

4 parent(link(r1,r5 )). parent(link(r5,r1 )).
5 parent(link(r2,r6 )). parent(link(r6,r2 )).
6 parent(link(r3,r7 )). parent(link(r7,r3 )).
7 parent(link(r4,r8 )). parent(link(r8,r4 )).
8 parent(link(r5,r6 )). parent(link(r6,r5 )).
9 parent(link(r5,r7 )). parent(link(r7,r5 )).

10 parent(link(r6,r8 )). parent(link(r8,r6 )).
11 parent(link(r7,r8 )). parent(link(r8,r7 )).

13 parent(mapping(r1,t1 )). parent(mapping(r1,t4 )).
14 parent(mapping(r2,t2 )).
15 parent(mapping(r3,t2 )). parent(mapping(r3,t3 )).
16 parent(mapping(r4,t1 )). parent(mapping(r4,t4 )).

18 parent(bind(t1,r1 )).
19 parent(bind(t2,r3 )).
20 parent(bind(t3,r3 )).
21 parent(bind(t4,r1 )).
22 parent(route(( t1,t2),r1,r5 )).
23 parent(route(( t1,t2),r5,r7 )).
24 parent(route(( t1,t2),r7,r3 )).
25 parent(route(( t1,t3),r1,r5 )).
26 parent(route(( t1,t3),r5,r7 )).
27 parent(route(( t1,t3),r7,r3 )).
28 parent(route(( t2,t4),r3,r7 )).
29 parent(route(( t2,t4),r5,r1 )).
30 parent(route(( t2,t4),r7,r5 )).
31 parent(route(( t3,t4),r3,r7 )).
32 parent(route(( t3,t4),r5,r1 )).
33 parent(route(( t3,t4),r7,r5 )).
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Listing 13. Deriving equal/1 and unequal/1 atoms to capture similarity between implementations.

1 equal(bind(T,R)) :- bind(T,R), parent(bind(T,R )).
2 equal(bind(T,R)) :- not bind(T,R), not parent(bind(T,R)),
3 mapping(R,T).
4 equal(bind(T,R)) :- not bind(T,R), not parent(bind(T,R)),
5 parent(mapping(R,T )).
6 unequal(bind(T,R)) :- bind(T,R), mapping(R,T),
7 not parent(mapping(R,T )).
8 unequal(bind(T,R)) :- parent(bind(T,R)), not mapping(R,T),
9 parent(mapping(R,T )).

10 unequal(bind(T,R)) :- bind(T,R), not parent(bind(T,R)),
11 mapping(R,T ’), parent(mapping(R,T ’)).
12 unequal(bind(T,R)) :- not bind(T,R), parent(bind(T,R)),
13 mapping(R,T ’), parent(mapping(R,T ’)).

15 equal(route ((T,T ’),R,R ’)) :- route ((T,T ’),R,R ’),
16 parent(route((T,T ’),R,R ’)).
17 equal(route ((T,T ’),R,R ’)) :- not route((T,T ’),R,R ’),
18 not parent(route((T,T ’),R,R ’)),
19 send(T,T ’), link(R,R ’).
20 equal(route ((T,T ’),R,R ’)) :- not route((T,T ’),R,R ’),
21 not parent(route((T,T ’),R,R ’)),
22 parent(send(T,T ’)), parent(link(R,R ’)).
23 unequal(route((T,T ’),R,R ’)) :- route((T,T ’),R,R ’),
24 not parent(send(T,T ’)), send(T,T ’).
25 unequal(route((T,T ’),R,R ’)) :- parent(route ((T,T ’),R,R ’)),
26 parent(send(T,T ’)), not send(T,T ’).
27 unequal(route((T,T ’),R,R ’)) :- route((T,T ’),R,R ’),
28 not parent(route((T,T ’),R,R ’)),
29 send(T,T ’), parent(send(T,T ’)).
30 unequal(route((T,T ’),R,R ’)) :- not route ((T,T ’),R,R ’),
31 parent(route((T,T ’),R,R ’)),
32 send(T,T ’), parent(send(T,T ’)).

Listing 14. Strategy not allowing unequal/1 atoms.

1 :- unequal(bind(T,R)).
2 :- unequal(route ((T,T ’),R,R ’)).

Listing 15. Strategy enforcing equal/1 atoms.

1 :- not equal(bind(T,R)), mapping(R,T).
2 :- not equal(bind(T,R)), parent(mapping(R,T )).

4 :- not equal(route((T,T ’),R,R ’)), send(T,T ’), link(R,R ’).
5 :- not equal(route((T,T ’),R,R ’)), parent(send(T,T ’)), parent(link(R,R ’)).

5.3. Preferences

Listings 16 and 17 use the same fact format as described in Section 4.2.2 to add a fourth
objective value: the distance of the child implementation to the parent implementation.
While the former punishes unequal parts of the implementations, the latter encourages
equality. In detail, we define a preference dist, which is subject to type sum. In Listing 16
Lines 3 to 8, we add preference elements that add one to the objective value whenever a
possible binding is not equal between the child and parent implementations. Lines 10 to 15
define the same for all possible routings accordingly. Listing 17, on the other hand, adds
minus one for every equal binding in Lines 3 to 8 and possible routing in Lines 10 to 15.
Because the objectives are subject to minimization, adding negative values expresses that
equality is preferred. Here, we include similarity information into the construction of
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the Pareto front. Eventually, the Pareto front would include the closest possible solution
with the best possible objective value, i.e., the solution with the highest quality that is as
close as possible, and the non-dominated trade-offs in between. The child implementa-
tion in Figure 4 in comparison to the parent implementation in Figure 2 with preference
encoding in Listing 16 results in objective value pref(dist,sum,7) and with Listing 17 in
pref(dist,sum,-101).

Listing 16. Preference discouraging unequal/1 atoms.

1 preference(dist,sum ).

3 preference(dist, (4,1),1,for(atom(unequal(bind(T,R )))), (1))
4 :- mapping(R,T).
5 preference(dist, (4,2),1,for(atom(unequal(bind(T,R )))), (1))
6 :- parent(mapping(R,T)).
7 holds(atom(unequal(bind(T,R ))),0)
8 :- unequal(bind(T,R)).

10 preference(dist, (4,3),1,for(atom(unequal(route((T,T ’),R,R ’)))), (1))
11 :- send(T,T ’), link(R,R ’).
12 preference(dist, (4,4),1,for(atom(unequal(route((T,T ’),R,R ’)))), (1))
13 :- parent(send(T,T ’)), parent(link(R,R ’)).
14 holds(atom(unequal(route((T,T ’),R,R ’))),0)
15 :- unequal(route ((T,T ’),R,R ’)).

Listing 17. Preference encouraging equal/1 atoms.

1 preference(dist,sum ).

3 preference(dist, (4,1),1,for(atom(equal(bind(T,R )))), (-1))
4 :- mapping(R,T).
5 preference(dist, (4,2),1,for(atom(equal(bind(T,R )))), (-1))
6 :- parent(mapping(R,T)).
7 holds(atom(equal(bind(T,R))),0)
8 :- equal(bind(T,R)).

10 preference(dist, (4,3),1,for(atom(equal(route((T,T ’),R,R ’)))), (-1))
11 :- send(T,T ’), link(R,R ’).
12 preference(dist, (4,4),1,for(atom(equal(route((T,T ’),R,R ’)))), (-1))
13 :- parent(send(T,T ’)), parent(link(R,R ’)).
14 holds(atom(equal(route((T,T ’),R,R ’))),0)
15 :- equal(route ((T,T ’),R,R ’)).

5.4. Domain-Specific Heuristics

Listings 18 and 19 show how we modify the heuristics of equal/1 and unequal/1
atoms, respectively. Note that we use constants value and modifier instead of a heuristic
mode or value for the first two lines. This allows us to modify the importance of the atoms
in terms of the branching heuristics via the command line, i.e., we modify to which degree
the solver emphasizes choices over atoms that express similarity; although, we always
provide the sign heuristic for equal/1 and unequal/1 atoms. We modify equal/1 atoms
with a positive sign to encourage similarity and unequal/1 atoms with a negative sign to
avoid dissimilarity. The advantage of such heuristics is that the search space remains intact,
they do not introduce additional complexity in the form of a new objective value, and they
usually lead to good solutions fast. The drawback is that we cannot make any guarantees
about similarity, and domain-specific heuristics usually hinder the optimization process.
This is due to the fact that the optimization terminates with an unsatisfiability proof for
which the domain-specific heuristics is at minimum useless or even actively derails the
solving.
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Listing 18. Heuristics discouraging unequal/1 atoms.

1 #heuristic equal(bind(T,R)). [value, modifier]
2 #heuristic equal(route((T,T ’),R,R ’)). [value, modifier]
3 #heuristic equal(bind(T,R)). [sign, 1]
4 #heuristic equal(route((T,T ’),R,R ’)). [sign, 1]

Listing 19. Heuristics encouraging equal/1 atoms.

1 #heuristic unequal(bind(T,R )). [value, modifier]
2 #heuristic unequal(route((T,T ’),R,R ’)). [value, modifier]
3 #heuristic unequal(bind(T,R )). [sign, -1]
4 #heuristic unequal(route((T,T ’),R,R ’)). [sign, -1]

6. Experiments

In this section, we empirically analyze our evolutionary design space exploration
techniques. Two main questions are guiding the experiments:

1. Are the solutions found in a short amount of time similar to the parent implementation
when using similarity techniques?

2. Is the quality of the solutions found in a short amount of time better when using
similarity information?

The first question relies on the Hamming distance discussed in Section 3; note that
we only consider the binding and routing distance. The second question is measured by
the so-called ε-dominance [15]. Essentially, a reference best-known Pareto front is built
among the results of all experiments, and then an individual approximate Pareto front for a
single technique is measured on a scale of zero to one. The higher the value, the closer the
approximate Pareto front is to the reference Pareto front.

6.1. Experimental Setup

We tested our techniques on 35 instances generated by an ASP-based system [16]. The
hardware platform of each instance has a network-on-chip architecture (NoC), as in our
running example. The grid size ranges from 3× 3× 1, so from 9 routers and 9 computa-
tional or memory resources to 3× 3× 3, resulting in 27 routers and, accordingly, many
computational and memory resources. The applications range from 6 to 160 tasks and are
designed to follow a serial-parallel graph pattern. The dependency graphs are not random
but are composed of a certain amount of serial patterns, i.e., tasks that are sequentially
executed, and parallel patterns, i.e., tasks that can be executed in parallel. Note that the
complexity and size of most of these instances is large enough that an exhaustive exact
design space exploration is impossible.

Our experimental setup requires two distinct steps:

1. Perform an extensive Pareto optimization on the instance set and select a non-
dominated solution as the parent implementation;

2. Obtain child specifications by slightly changing the instances and perform a low-
timeout Pareto optimization with and without our various similarity techniques.

For all experiments, a reimplementation of the ASP-based system in [2] in Python
was used. Essentially, ASP is combined with two background theories, one allowing for
difference constraints, and one handling the Pareto optimization. While enumerating
solutions, we check compliance with the difference logic and continuously update an
archive of best known solutions, i.e., dominated solutions are removed and better or
incomparable ones are added until no more solutions can be found, making the final
archive the exact Pareto front. Note that we can exclude partial non-dominated solutions
due to the assignment-monotone nature of our objective values, i.e., when more is assigned,
the value can only get worse. The system is based on clingo 5.5, its extension clingo[DL] 1.3,
and Python 3.9. To supervise and control the execution, the tool runlim version 2.0.0rc3 was
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used (runlim is available at https://github.com/arminbiere/runlim (accessed on 29 April
2022)).

The first step of the experiments was executed on a machine with a Core Xeon E3-
1260Lv5 CPU and 32 GiB of RAM with Linux Debian 10; the runtime and memory were
limited to 12 h and 20 GiB, respectively. All three routing techniques are used on the 35
instances, and the long runtime aims to obtain the best possible solutions. As mentioned
above, only 6 instances could be completely explored. For all 35 instances, one non-
dominated solution, i.e., a solution among the best that any routing technique could find,
was selected at random as the parent implementation, and these solutions were reified
as described in Section 5.1. Then, 35 child specifications were obtained by randomly
changing 20% of applications and 20% of the hardware platform; the changes included
the removal, addition, or exchange of the respective specification. Note that we retain
the NoC-architecture.

The parent implementation, child specification, and our various encoding techniques
were then combined and executed on a machine with an Intel Core Xeon E5-2650v4 CPU
and 64 GiB of RAM with Linux Debian 10, where each individual run was limited to 900 s
runtime and 20 GiB memory.

In the following evaluation, we refer to the various techniques as follows:

• Routing variants:

ARB arbitrary routing (Listing 3)
BOU bound routing (Listings 3 and 8)
XYZ dimension-ordered routing (Listing 9)

• Similarity techniques:

– Strategies

S1 forbid unequal implementations (Listing 14)
S2 enforce equal implementations (Listing 15)

– Preferences

P1 discourage unequal implementations (Listing 16)
P2 encourage equal implementations (Listing 17)

– Heuristics

H1 heuristics discouraging unequal implementations (Listing 18)
H2 heuristics encouraging equal implementations (Listing 19)
* additional modifiers for importance are F (factor) with value 2,4, and 8, and

L (level) with value 1

• Part of implementation:

B binding only
BR binding plus routing

In total, we tested 87 configurations, including the three baseline configurations
without any similarity information. The system, all encodings, and the instances set,
including the parent and child specifications and the parent implementation, can be found
here https://github.com/krr-up/asp-dse/releases/tag/v1.0.1 (accessed on 7 February
2023).

6.2. Experimental Evaluation

We begin by highlighting which routing and similarity techniques produce solutions
to the instances.

Table 1 shows how many instances were completely solved (SAT), i.e., the Pareto front
was found, how many solutions were found but the timeout was reached (SAT+TO), i.e., an
approximate Pareto front was found, and how many were unsatisfiable (UNSAT). The
remaining instances either could not be grounded or solving yielded no solution. We
select the specific configuration for each class of similarity techniques, viz. strategies (S),

https://github.com/arminbiere/runlim
https://github.com/krr-up/asp-dse/releases/tag/v1.0.1
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preferences (P), heuristics (H), that were able to produce the most solutions and compare
them with the baseline configurations. The baseline configurations are highlighted in red.

Table 1. Best results regarding instances solved for routing and similarity techniques.

SAT SAT+TO UNSAT

ARB 1 14 0
ARB-S 1 11 9
ARB-P 1 6 0
ARB-H 1 22 0

BOU 4 23 0
BOU-S 5 12 18
BOU-P 4 13 0
BOU-H 4 27 0

XYZ 6 27 0
XYZ-S 9 8 18
XYZ-P 6 19 0
XYZ-H 6 28 0

Overall, we clearly see that the approximate routing techniques drastically increase the
performance compared with ARB. The XYZ routing performs the best, but it is only slightly
better than BOU. This is encouraging, as XYZ is the least flexible routing and therefore
might discard high-quality solutions. Among the similarity techniques, we observe the
expected phenomena that strategies lead to unsatisfiability and are merely able to produce
results for the least instances. For the full routing, the proof of unsatisfiability finished
for 9 instances, while with the advanced routing techniques, 18 instances proved to be
unsatisfiable, which is a bit more than half of the instance set. For the advanced routing
techniques, strategies actually fully explored more instances than any other configuration.
Because strategies exclude solutions, the Pareto front of the fully explored instances might
be of worse quality. On the other hand, strategies could be a fast technique with guaranteed
similarity to satisfiable instances; we return to this below. Preferences performed worse
than the baseline. This might be due to the fact that a more complex Pareto optimization is
used that includes similarity. For all routing techniques, heuristics supply the best results
in terms of instances with solutions, and they are on par with the baseline regarding fully
explored instances.

In the following, we use the average rank to compare the different techniques. In
essence, each instance induces an ordering among the 87 configurations regarding the
measurements of ε-dominance and (maximum and average) Hamming distance, along
with the product of the two. In the case of a tie, the next entry that is worse receives the rank
that it would have been at if no tie occurred; for instance, if two configurations are tied for
first, the next configuration gets rank three. These ranks are averaged to provide insights
into which configurations performed well overall. Configurations that did not yield any
solution to an instance are punished with the worst possible rank. Furthermore, due to
the vast amount of configurations, we only present the top 50 results plus the baseline
configurations (Less than 53 results are shown whenever the baseline configurations are
among the top 50).

Next, we analyze the first solution that was found with respect to similarity and quality.
Our hypothesis is that similarity techniques immediately yield not only similar but better
solutions compared with the baseline, as the parent implementation is of high quality.

Table 2 shows from left to right the top 50 configurations for Hamming distance (HD),
ε-dominance (εD), and their product (HD×εD).
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Table 2. Average rank regarding Hamming distance, ε-dominance, and their product for the first
solution found.

HD
C AVG-R

BOU-BR-H1-L 8.3
BOU-BR-H2-L 8.5
BOU-BR-H1-F-8 10.5
BOU-BR-H2-F-8 10.8
BOU-BR-H1-F-2 12.3
BOU-BR-H2-F-4 13.0
BOU-BR-H1-F-4 13.4
BOU-BR-H2-F-2 13.7
XYZ-BR-H1-L 14.9
XYZ-B-H1-L 15.3
XYZ-B-H2-L 15.3
XYZ-BR-H2-L 17.1
BOU-B-H1-L 18.7
BOU-B-H2-L 18.7
XYZ-BR-H1-F-8 19.6
XYZ-BR-H2-F-8 20.8
XYZ-BR-H1-F-4 21.0
BOU-BR-H1 22.1
BOU-BR-H2 22.1
ARB-BR-H2-L 23.1
BOU-B-H1-F-8 23.4
BOU-B-H2-F-8 23.4
XYZ-B-H1-F-4 23.4
XYZ-B-H2-F-4 23.4
XYZ-BR-H2-F-4 23.4
XYZ-B-H1-F-8 23.5
XYZ-B-H2-F-8 23.5
XYZ-BR-H2-F-2 23.8
ARB-BR-H1-L 24.0
XYZ-BR-H1-F-2 25.5
BOU-B-H1-F-4 25.6
BOU-B-H2-F-4 25.6
XYZ-B-H1-F-2 25.7
XYZ-B-H2-F-2 25.7
BOU-B-H1-F-2 26.3
BOU-B-H2-F-2 26.3
XYZ-BR-H1 28.6
XYZ-BR-H2 29.7
XYZ-B-S2 29.8
BOU-B-S2 31.5
ARB-BR-H2-F-8 31.6
ARB-BR-H1-F-8 31.8
XYZ-B-H1 31.8
XYZ-B-H2 31.8
ARB-BR-H2-F-4 32.6
BOU-B-H1 34.0
BOU-B-H2 34.0
ARB-BR-H1-F-4 34.5
ARB-BR-H2-F-2 35.9
ARB-BR-H1-F-2 37.6
BOU 43.2
XYZ 43.3
ARB 52.2

εD
C AVG-R

XYZ-BR-H2 17.4
XYZ-B-H1-L 18.1
XYZ-B-H2-L 18.1
XYZ-BR-H2-F-4 19.2
XYZ-BR-H2-F-2 19.4
XYZ-BR-H2-L 19.4
XYZ-BR-H1 19.8
XYZ-BR-H1-F-2 19.9
XYZ-BR-H2-F-8 20.0
BOU-BR-H1-F-8 20.2
XYZ-BR-H1-F-8 20.3
BOU-B-H1-F-4 20.4
BOU-B-H2-F-4 20.4
XYZ-BR-H1-F-4 20.4
XYZ-BR-H1-L 20.7
BOU-BR-H2-F-8 21.0
XYZ-B-H1-F-8 21.2
XYZ-B-H2-F-8 21.2
BOU-BR-H1-F-2 21.4
BOU-BR-H1-L 21.7
BOU-B-H1-F-2 21.9
BOU-B-H2-F-2 21.9
BOU-BR-H2-L 22.0
XYZ 22.3
BOU-BR-H1 22.3
BOU-B-H1-F-8 22.5
BOU-B-H2-F-8 22.5
BOU-B-H1-L 23.1
BOU-B-H2-L 23.1
BOU-BR-H2 23.4
XYZ-B-H1-F-2 23.6
XYZ-B-H2-F-2 23.6
XYZ-B-H1-F-4 23.9
XYZ-B-H2-F-4 23.9
BOU-BR-H2-F-2 23.9
BOU-B-H1 24.2
BOU-B-H2 24.2
BOU-BR-H2-F-4 24.3
BOU-BR-H1-F-4 24.5
XYZ-B-H1 25.3
XYZ-B-H2 25.3
BOU 25.3
XYZ-B-P2 26.2
XYZ-B-S2 30.1
XYZ-B-P1 31.6
BOU-B-S2 31.6
XYZ-BR-P1 33.1
XYZ-BR-P2 33.1
BOU-B-P2 33.8
BOU-B-P1 34.5
ARB 42.5

HD×εD
C AVG-R

BOU-BR-H2-L 14.1
BOU-BR-H1-F-8 14.3
BOU-BR-H1-L 14.3
BOU-BR-H1-F-2 14.4
BOU-BR-H2-F-8 14.8
BOU-BR-H2-F-2 16.7
XYZ-B-H1-L 17.1
XYZ-B-H2-L 17.1
BOU-BR-H1-F-4 17.9
BOU-BR-H2-F-4 18.0
XYZ-BR-H1-L 18.8
XYZ-BR-H2-L 18.9
XYZ-BR-H1-F-8 21.3
XYZ-BR-H2-F-8 21.3
BOU-BR-H1 21.6
XYZ-BR-H2-F-2 21.9
XYZ-BR-H1-F-4 22.4
BOU-BR-H2 22.7
BOU-B-H1-F-4 22.7
BOU-B-H2-F-4 22.7
XYZ-BR-H2-F-4 22.9
XYZ-BR-H1-F-2 23.0
BOU-B-H1-L 23.3
BOU-B-H2-L 23.3
XYZ-BR-H2 23.5
XYZ-B-H1-F-8 23.8
XYZ-B-H2-F-8 23.8
XYZ-BR-H1 24.1
BOU-B-H1-F-8 24.3
BOU-B-H2-F-8 24.3
XYZ-B-H1-F-4 25.1
XYZ-B-H2-F-4 25.1
BOU-B-H1-F-2 25.3
BOU-B-H2-F-2 25.3
XYZ-B-H1-F-2 25.9
XYZ-B-H2-F-2 25.9
BOU-B-H1 28.9
BOU-B-H2 28.9
XYZ-B-H1 29.6
XYZ-B-H2 29.6
XYZ-B-S2 30.0
BOU-B-S2 32.2
ARB-BR-H1-L 34.3
XYZ 34.6
ARB-BR-H2-L 35.2
BOU 35.6
ARB-BR-H2-F-4 36.5
ARB-BR-H2-F-8 37.1
ARB-BR-H1-F-8 37.2
XYZ-B-P2 37.3
ARB 51.1

Regarding Hamming distance, most configurations using heuristics or S2 with ad-
vanced routing and binding distance improve over the baselines. Routing BOU with
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enhanced importance of similarity atoms clearly performs best; the more emphasis on
deciding similarity atoms first, the closer the first answer. This may be due to more flexi-
bility of BOU routing compared with XYZ, and the reordering of the search space by the
heuristic does not seem to negatively impact the solving. There is no clear favorite between
heuristics H1 and H2, but taking both binding and routing similarity into account is at the
top. Because S1 and preferences overall do not find as many solutions, they are absent from
the top 50.

With respect to ε-dominance, i.e., the quality of the first solution, advanced routing
techniques and heuristics are again at the top. Now, the XYZ routing is in front, likely due
to the smaller problem size and search space allowing for a faster exploration, even if it is
approximate. Note that the spread of ranks is a lot closer among all configurations; this
indicates that the top configurations found first solutions of similar quality.

Finally, BOU routing with heuristics and both binding and routing similarities achieves
the best ranks by combining similarity and quality, and it also outperforms the baselines.
The trend that could be seen for individual Hamming distance and ε-dominance continues.
It seems that the restrictive strategies and more complex preferences do not provide a good
trade-off. On the other hand, heuristics and advanced routing clearly outperforms the
design space exploration from scratch.

Table 3 provides the top 50 ranking for the average (AVG-HD) and maximum Hamming
distance (MAX-HD) among the final solution set. The picture is almost identical to the first
solution. Routing BOU with heuristics that puts heavy emphasis on deciding similarities first
clearly outperforms the other configurations. Similarly, the only non-heuristic technique
that is successful is S2 with binding distance only. The average and maximum also behave
very similarly.

Table 4 shows the ε-dominance (εD) and the product of ε-dominance and Hamming
distance (HD×εD) for the final solution set. Now, XYZ routing again outperforms the
other techniques. Similarly, heuristics with more importance on deciding similarities first
are at the very top. Moreover, the approximate but efficient routing can explore more
solutions over time and therefore ultimately collects solutions of higher quality. The
high performance of the XYZ routing and the similarity achieved by the BOU routing plus
similarity through heuristics leads to these techniques being at the top of the combined
measure for quality and similarity, with routing BOU plus H with L ranking slightly ahead.
Overall, those configurations achieve our initial goal of high-quality solutions that are
similar to the parent implementation within a short amount of time.

In addition to the more complex optimization, the failure of preferences can be ex-
plained by the fact that extreme solutions might be very similar but of low quality or have
good quality and low similarity. If the latter is found first, it is non-dominated but not
desired. This might explain why preferences do not occur in the top 50 for similarity but
occur for ε-dominance. On the other hand, strategies occur in both and might still be a
good candidate for solutions that can be satisfied; we explore this in more detail next. To
analyze the viability of strategies, we restrict the analysis to the 17 instances for which
strategies found solutions.

Table 5 provides the same information as Table 2 for the 17 instances and highlights
successful strategies in bold. Now, we see that S2 for binding only with advances routing
techniques ranks among the top 20 for Hamming distance, first and third in regards to
ε-dominance, and 8th and 12th for the combined measure, respectively. Note that this
strategy guarantees that the same bindings are chosen from the parent implementation,
but it does allow newly added mappings to be used as well. Overall, the same heuristic
techniques still perform better, but for some instances, strategies may be applicable while
offering guarantees.

Table 6 relays the same information as Table 3 for the restricted instance set. Again,
the highlighted strategy is only outperformed by the heuristic that also takes into account
the routing distance. For the average Hamming distance, S2 achieves rank 9 and 11, and
for the maximum Hamming distance, it ranks 13 and 14.
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Table 7 is the analog to Table 4. For the final solution set, strategies are still in the top
50 with respect to quality, but baseline and heuristic techniques achieve higher quality for
their respective advanced routing technique. As before, the more effective XYZ routing is
first followed by BOU routing. Recall that strategies restrict the search space and therefore
might discard high-quality answers for the child specification. The combined measure still
has both advanced routing variants in the top 50 and above all baselines, with XYZ-B-S2 at
rank 10 and BOU-B-S2 at 37.

Table 3. Average rank regarding average and maximum Hamming distance after cutoff time.

AVG-HD
C AVG-R

BOU-BR-H1-L 9.7
BOU-BR-H2-L 9.9
BOU-BR-H1-F-8 10.9
BOU-BR-H2-F-8 11.3
BOU-BR-H2-F-4 12.4
BOU-BR-H1-F-4 13.0
BOU-BR-H1-F-2 14.6
BOU-BR-H2-F-2 15.9
BOU-B-H1-L 18.6
BOU-B-H2-L 18.6
ARB-BR-H2-L 20.1
XYZ-BR-H1-L 20.5
ARB-BR-H1-L 20.7
XYZ-B-H2-L 21.0
XYZ-B-H1-L 21.1
BOU-BR-H1 22.2
BOU-BR-H2 22.3
XYZ-BR-H2-L 22.8
BOU-B-H1-F-8 22.8
BOU-B-H2-F-8 22.8
XYZ-BR-H1-F-8 25.1
BOU-B-H1-F-4 25.9
BOU-B-H2-F-4 25.9
BOU-B-H1-F-2 26.0
BOU-B-H2-F-2 26.0
XYZ-B-S2 27.0
XYZ-B-H1-F-4 27.4
XYZ-B-H2-F-4 27.4
BOU-B-S2 27.6
XYZ-BR-H2-F-8 27.8
XYZ-BR-H1-F-4 28.2
XYZ-BR-H1-F-2 28.3
XYZ-BR-H2-F-4 28.6
ARB-BR-H1-F-8 28.9
XYZ-B-H1-F-8 28.9
ARB-BR-H2-F-8 28.9
XYZ-B-H2-F-8 28.9
XYZ-BR-H2-F-2 29.5
BOU-B-H1 29.7
BOU-B-H2 29.7
XYZ-B-H2-F-2 30.4
XYZ-B-H1-F-2 30.4
ARB-BR-H2-F-4 32.4
XYZ-BR-H2 33.5
XYZ-BR-H1 33.6
ARB-BR-H1-F-4 34.1
XYZ-B-H2 34.2
XYZ-B-H1 34.3
ARB-BR-H2-F-2 35.1
ARB-BR-H1-F-2 36.5
XYZ 41.1
BOU 42.5
ARB 50.5

MAX-HD
C AVG-R

BOU-BR-H1-L 8.4
BOU-BR-H2-L 8.6
BOU-BR-H1-F-8 10.4
BOU-BR-H2-F-8 10.7
BOU-BR-H2-F-4 12.1
BOU-BR-H1-F-4 12.7
BOU-BR-H1-F-2 13.3
BOU-BR-H2-F-2 14.7
XYZ-BR-H1-L 16.0
XYZ-B-H2-L 16.8
XYZ-B-H1-L 16.9
BOU-B-H1-L 17.5
BOU-B-H2-L 17.5
XYZ-BR-H2-L 17.8
XYZ-BR-H1-F-8 20.3
BOU-BR-H2 20.5
BOU-BR-H1 20.6
BOU-B-H1-F-8 20.7
BOU-B-H2-F-8 20.7
ARB-BR-H2-L 21.7
BOU-B-H1-F-4 22.1
BOU-B-H2-F-4 22.1
ARB-BR-H1-L 22.4
XYZ-BR-H2-F-8 22.9
XYZ-B-H1-F-4 23.2
XYZ-B-H2-F-4 23.2
XYZ-BR-H1-F-2 23.4
BOU-B-H1-F-2 23.5
BOU-B-H2-F-2 23.5
XYZ-BR-H2-F-4 23.6
XYZ-BR-H1-F-4 23.7
XYZ-BR-H2-F-2 24.2
XYZ-B-H1-F-8 24.9
XYZ-B-H2-F-8 24.9
XYZ-B-H1-F-2 26.1
XYZ-B-H2-F-2 26.1
BOU-B-H1 26.5
BOU-B-H2 26.5
XYZ-BR-H1 28.2
XYZ-BR-H2 28.7
XYZ-B-H2 29.0
XYZ-B-H1 29.1
XYZ-B-S2 29.5
BOU-B-S2 30.1
ARB-BR-H1-F-8 30.2
ARB-BR-H2-F-8 30.3
ARB-BR-H2-F-4 32.4
ARB-BR-H1-F-4 34.2
XYZ 35.8
ARB-BR-H2-F-2 36.1
BOU 38.5
ARB 50.5
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Table 4. Average rank regarding ε-dominance and the product with average Hamming distance after
cutoff time.

εD
C AVG-R

XYZ-B-H1-L 3.9
XYZ-B-H2-L 3.9
XYZ-BR-H1-L 4.7
XYZ-BR-H2-F-8 6.1
XYZ-BR-H1-F-2 6.5
XYZ-BR-H2-L 6.6
XYZ-BR-H2-F-4 6.9
XYZ-BR-H1-F-8 6.9
XYZ-BR-H2-F-2 7.1
XYZ-BR-H1-F-4 7.3
XYZ-B-H2-F-4 8.0
XYZ-B-H1-F-4 8.1
XYZ-BR-H2 8.5
XYZ-B-H1-F-2 9.3
XYZ-B-H2-F-2 9.3
XYZ 9.5
XYZ-B-H1-F-8 10.1
XYZ-B-H2-F-8 10.1
XYZ-B-H1 10.7
XYZ-B-H2 10.7
XYZ-BR-H1 11.3
XYZ-B-P2 13.0
BOU-BR-H1-L 14.8
BOU-BR-H2-L 15.5
BOU-B-H1-F-4 19.1
BOU-B-H2-F-4 19.1
BOU-BR-H1-F-8 19.6
BOU-BR-H2-F-8 20.7
XYZ-B-P1 21.1
BOU-B-H1-F-2 21.6
BOU-B-H2-F-2 21.6
XYZ-BR-P1 22.3
XYZ-BR-P2 22.3
BOU-BR-H1 22.3
BOU 22.4
BOU-BR-H2 22.6
BOU-B-H1-L 22.8
BOU-B-H2-L 22.8
BOU-BR-H1-F-4 22.8
BOU-BR-H1-F-2 23.1
BOU-B-H1-F-8 23.4
BOU-B-H2-F-8 23.4
BOU-B-H1 23.5
BOU-B-H2 23.5
BOU-BR-H2-F-4 24.2
BOU-BR-H2-F-2 25.7
BOU-B-P2 29.2
BOU-B-P1 29.3
BOU-BR-P1 29.3
BOU-BR-P2 30.4
ARB 44.3

HD×εD
C AVG-R

BOU-BR-H1-L 12.1
BOU-BR-H2-L 13.1
XYZ-B-H2-L 13.6
XYZ-B-H1-L 13.7
XYZ-BR-H1-L 14.4
BOU-BR-H1-F-8 15.9
XYZ-BR-H2-L 16.9
XYZ-BR-H1-F-8 17.8
BOU-BR-H2-F-8 18.1
XYZ-BR-H1-F-2 18.8
XYZ-B-H2-F-4 19.1
XYZ-BR-H1-F-4 19.2
XYZ-B-H1-F-4 19.4
XYZ-BR-H2-F-4 19.5
XYZ-BR-H2-F-8 19.8
BOU-BR-H1-F-4 20.3
BOU-BR-H1-F-2 20.6
XYZ-BR-H2-F-2 20.6
XYZ-B-H1-F-8 20.7
XYZ-B-H2-F-8 20.7
BOU-BR-H2-F-4 20.8
XYZ-B-H2-F-2 21.8
XYZ-B-H1-F-2 21.8
XYZ-BR-H2 22.7
BOU-BR-H2-F-2 23.1
XYZ-BR-H1 24.3
BOU-BR-H2 24.4
BOU-BR-H1 24.7
BOU-B-H1-F-4 26.0
BOU-B-H2-F-4 26.0
XYZ-B-H2 26.1
BOU-B-H1-L 26.2
BOU-B-H2-L 26.2
XYZ-B-H1 26.2
BOU-B-H1-F-2 26.9
BOU-B-H2-F-2 26.9
BOU-B-H1-F-8 27.0
BOU-B-H2-F-8 27.0
BOU-B-H1 29.0
BOU-B-H2 29.1
XYZ-B-S2 30.9
XYZ 32.0
ARB-BR-H2-L 33.4
ARB-BR-H1-L 33.5
XYZ-B-P2 35.5
BOU-B-S2 35.7
BOU 37.1
XYZ-B-P1 37.5
XYZ-BR-P1 38.1
ARB-BR-H1-F-8 39.2
ARB 50.1



Algorithms 2023, 16, 179 32 of 38

Table 5. Average rank regarding Hamming distance, ε-dominance, and their product for the first
solution found with instances where strategies were applicable.

HD
C AVG-R

BOU-BR-H1-F-8 6.9
BOU-BR-H2-L 7.4
BOU-BR-H2-F-8 7.7
BOU-BR-H1-L 8.1
BOU-BR-H1-F-2 8.4
BOU-BR-H2-F-4 9.6
ARB-BR-H2-L 10.4
BOU-BR-H1-F-4 10.5
BOU-BR-H2-F-2 11.4
ARB-BR-H1-L 12.1
XYZ-B-S2 16.5
BOU-BR-H1 18.7
BOU-BR-H2 18.8
XYZ-B-H1-L 19.8
XYZ-B-H2-L 19.8
BOU-B-S2 20.0
BOU-B-H1-L 20.9
BOU-B-H2-L 20.9
XYZ-BR-H1-L 21.3
XYZ-BR-H2-L 21.8
XYZ-BR-H1-F-8 26.1
BOU-B-H1-F-8 26.3
BOU-B-H2-F-8 26.3
ARB-BR-H2-F-8 28.0
XYZ-BR-H1-F-4 28.1
XYZ-BR-H2-F-8 28.2
ARB-BR-H1-F-8 28.4
ARB-BR-H2-F-4 29.6
BOU-B-H1-F-4 30.1
BOU-B-H2-F-4 30.1
XYZ-BR-H2-F-4 30.8
XYZ-BR-H1-F-2 32.0
XYZ-B-H1-F-8 32.1
XYZ-B-H2-F-8 32.1
XYZ-B-H1-F-4 32.5
XYZ-B-H2-F-4 32.5
BOU-B-H1-F-2 32.6
BOU-B-H2-F-2 32.6
XYZ-BR-H2-F-2 32.6
XYZ-B-H1-F-2 32.6
XYZ-B-H2-F-2 32.6
ARB-BR-H1-F-4 33.5
ARB-BR-H2-F-2 34.3
XYZ-BR-H1 34.4
XYZ-BR-H2 34.7
ARB-BR-H1-F-2 37.8
XYZ-B-H1 39.2
XYZ-B-H2 39.2
BOU-B-H1 40.2
BOU-B-H2 40.2
BOU 52.8
XYZ 56.5
ARB 63.8

εD
C AVG-R

XYZ-B-S2 17.2
XYZ-BR-H2 17.8
BOU-B-S2 20.2
BOU-BR-H1 20.2
BOU-BR-H1-F-2 21.1
BOU-B-H1-F-4 21.2
BOU-B-H2-F-4 21.2
XYZ-BR-H1 21.8
BOU-B-H1-F-2 21.9
BOU-B-H2-F-2 21.9
XYZ-BR-H1-F-8 22.1
BOU-B-H1-F-8 22.5
BOU-B-H2-F-8 22.5
BOU-BR-H1-F-8 22.8
BOU-BR-H1-L 22.9
BOU-BR-H2 23.1
XYZ-BR-H1-F-2 23.1
XYZ-BR-H1-F-4 23.3
XYZ-B-H1-L 23.6
XYZ-B-H2-L 23.6
BOU-BR-H2-L 23.8
BOU-BR-H2-F-4 23.8
XYZ-BR-H2-F-4 23.9
BOU-BR-H2-F-8 24.1
XYZ-BR-H2-F-2 24.4
XYZ-BR-H2-L 24.5
XYZ-BR-H2-F-8 25.0
XYZ-B-H1 25.2
XYZ-B-H2 25.2
BOU-BR-H1-F-4 25.4
XYZ-BR-H1-L 25.4
BOU 26.5
BOU-BR-H2-F-2 27.5
BOU-B-H1 27.5
BOU-B-H2 27.5
XYZ-B-H1-F-2 27.8
XYZ-B-H2-F-2 27.8
XYZ-B-H1-F-8 28.0
XYZ-B-H2-F-8 28.0
XYZ 28.1
BOU-B-H1-L 29.1
BOU-B-H2-L 29.1
XYZ-B-H1-F-4 30.0
XYZ-B-H2-F-4 30.0
XYZ-B-P2 31.5
ARB-BR-H1-L 34.8
ARB-BR-H1-F-8 35.8
ARB-BR-H2-F-8 36.2
ARB-BR-H2-L 36.7
ARB-BR-H2-F-4 38.1
ARB 46.5

HD×εD
C AVG-R

BOU-BR-H1-F-2 12.2
BOU-BR-H2-L 12.8
BOU-BR-H1-F-8 13.2
BOU-BR-H1-L 13.6
BOU-BR-H2-F-8 14.0
BOU-BR-H2-F-4 14.5
BOU-BR-H1-F-4 15.4
XYZ-B-S2 16.9
BOU-BR-H2-F-2 17.4
BOU-BR-H1 18.0
BOU-BR-H2 20.5
BOU-B-S2 21.4
XYZ-BR-H2-L 23.4
XYZ-B-H1-L 23.5
XYZ-B-H2-L 23.5
XYZ-BR-H2 24.6
XYZ-BR-H1-L 24.8
BOU-B-H1-F-8 25.4
BOU-B-H2-F-8 25.4
BOU-B-H1-F-4 25.6
BOU-B-H2-F-4 25.6
XYZ-BR-H1-F-8 25.8
XYZ-BR-H1-F-4 27.0
BOU-B-H1-F-2 28.0
BOU-B-H2-F-2 28.0
XYZ-BR-H1 28.1
XYZ-BR-H1-F-2 28.4
XYZ-BR-H2-F-8 28.5
BOU-B-H1-L 28.5
BOU-B-H2-L 28.5
XYZ-BR-H2-F-4 29.4
XYZ-BR-H2-F-2 29.5
ARB-BR-H1-L 30.6
XYZ-B-H1-F-2 31.8
XYZ-B-H2-F-2 31.8
ARB-BR-H2-L 32.5
XYZ-B-H1-F-8 33.1
XYZ-B-H2-F-8 33.1
XYZ-B-H1-F-4 33.4
XYZ-B-H2-F-4 33.4
BOU-B-H1 33.5
BOU-B-H2 33.5
XYZ-B-H1 33.7
XYZ-B-H2 33.7
ARB-BR-H2-F-8 36.4
ARB-BR-H1-F-8 36.5
ARB-BR-H2-F-4 37.1
ARB-BR-H1-F-4 39.1
BOU 40.5
ARB-BR-H2-F-2 41.1
XYZ 45.9
ARB 61.8
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Table 6. Average rank regarding average and maximum Hamming distance after cutoff time with
instances where strategies were applicable. Successful strategies are highlighted in bold.

AVG-HD
C AVG-R

ARB-BR-H2-L 9.1
BOU-BR-H1-F-8 10.1
ARB-BR-H1-L 10.2
BOU-BR-H2-L 10.3
BOU-BR-H2-F-4 10.6
BOU-BR-H2-F-8 10.8
BOU-BR-H1-F-2 11.0
BOU-BR-H1-L 11.1
XYZ-B-S2 11.4
BOU-BR-H1-F-4 11.9
BOU-B-S2 12.6
BOU-BR-H2-F-2 13.8
BOU-B-H1-L 18.1
BOU-B-H2-L 18.1
BOU-BR-H1 22.8
BOU-BR-H2 22.9
BOU-B-H1-F-8 23.1
BOU-B-H2-F-8 23.1
ARB-BR-H1-F-8 23.8
ARB-BR-H2-F-8 23.9
BOU-B-H1-F-2 27.6
BOU-B-H2-F-2 27.6
XYZ-B-H2-L 28.2
XYZ-B-H1-L 28.4
ARB-BR-H2-F-4 29.3
BOU-B-H2-F-4 29.4
BOU-B-H1-F-4 29.4
XYZ-BR-H1-L 30.4
XYZ-BR-H2-L 30.8
ARB-BR-H1-F-4 32.7
BOU-B-H1 33.5
BOU-B-H2 33.5
ARB-BR-H2-F-2 34.2
XYZ-BR-H1-F-8 36.4
ARB-BR-H1-F-2 37.1
XYZ-BR-H2-F-8 38.2
XYZ-BR-H1-F-4 39.4
XYZ-B-H1-F-4 40.0
XYZ-B-H1-F-8 40.0
XYZ-B-H2-F-4 40.1
XYZ-B-H2-F-8 40.1
XYZ-BR-H2-F-4 40.6
XYZ-B-S1 41.3
BOU-B-S1 41.5
XYZ-BR-H1-F-2 41.8
XYZ-B-H1-F-2 42.1
XYZ-B-H2-F-2 42.1
XYZ-BR-H2-F-2 42.6
XYZ-BR-H2 43.1
XYZ-BR-H1 43.3
BOU 50.6
XYZ 54.1
ARB 60.9

MAX-HD
C AVG-R

BOU-BR-H1-F-8 7.9
BOU-BR-H2-L 8.2
BOU-BR-H2-F-8 8.3
BOU-BR-H2-F-4 8.8
BOU-BR-H1-L 8.8
BOU-BR-H1-F-2 9.5
BOU-BR-H1-F-4 9.9
ARB-BR-H2-L 10.9
ARB-BR-H1-L 12.2
BOU-BR-H2-F-2 12.6
BOU-B-H1-L 15.4
BOU-B-H2-L 15.4
XYZ-B-S2 16.5
BOU-B-S2 17.8
BOU-B-H1-F-8 18.4
BOU-B-H2-F-8 18.4
BOU-BR-H2 18.8
BOU-BR-H1 19.0
XYZ-B-H2-L 21.0
XYZ-B-H1-L 21.1
BOU-B-H1-F-4 22.0
BOU-B-H2-F-4 22.0
XYZ-BR-H1-L 22.1
XYZ-BR-H2-L 22.5
BOU-B-H1-F-2 23.4
BOU-B-H2-F-2 23.4
ARB-BR-H1-F-8 26.4
ARB-BR-H2-F-8 26.6
XYZ-BR-H1-F-8 28.3
BOU-B-H1 28.7
BOU-B-H2 28.7
ARB-BR-H2-F-4 29.2
XYZ-BR-H2-F-8 30.2
XYZ-BR-H1-F-4 31.9
ARB-BR-H1-F-4 32.9
XYZ-B-H1-F-4 32.9
XYZ-B-H2-F-4 32.9
XYZ-BR-H2-F-4 33.1
XYZ-B-H1-F-8 33.3
XYZ-B-H2-F-8 33.3
XYZ-BR-H2-F-2 33.3
ARB-BR-H2-F-2 33.9
XYZ-BR-H1-F-2 34.2
XYZ-B-H1-F-2 34.8
XYZ-B-H2-F-2 34.8
XYZ-BR-H1 35.6
XYZ-BR-H2 35.9
ARB-BR-H1-F-2 37.1
XYZ-B-H2 37.7
XYZ-B-H1 37.9
BOU 44.5
XYZ 45.5
ARB 60.8



Algorithms 2023, 16, 179 34 of 38

Table 7. Average rank regarding ε-dominance and the product with average Hamming distance after
cutoff time with instances where strategies were applicable. Successful strategies are highlighted in
bold.

εD
C AVG-R

XYZ-BR-H1-L 3.2
XYZ-B-H1-L 3.6
XYZ-B-H2-L 3.6
XYZ-BR-H1-F-8 3.8
XYZ-BR-H1-F-2 4.9
XYZ-BR-H2-L 4.9
XYZ-BR-H2-F-8 5.9
XYZ-BR-H2-F-4 6.6
XYZ-BR-H1-F-4 7.2
XYZ-BR-H2 8.4
XYZ-B-H1 8.8
XYZ-B-H2-F-4 8.8
XYZ-B-H2 8.8
XYZ-B-H1-F-4 8.9
BOU-BR-H1-L 9.0
XYZ 9.3
BOU-BR-H2-L 9.5
XYZ-BR-H2-F-2 10.4
XYZ-B-H1-F-8 12.1
XYZ-B-H2-F-8 12.1
XYZ-BR-H1 12.2
XYZ-B-H1-F-2 12.6
XYZ-B-H2-F-2 12.6
XYZ-B-P2 12.8
BOU-B-H1-F-4 17.6
BOU-B-H2-F-4 17.6
XYZ-B-S2 18.8
BOU-BR-H1-F-8 19.5
BOU 20.0
BOU-BR-H1-F-4 21.0
BOU-B-H1-F-2 21.1
BOU-B-H2-F-2 21.1
BOU-BR-H2-F-8 21.4
BOU-BR-H1-F-2 22.3
BOU-BR-H1 22.5
BOU-BR-H2-F-4 23.7
BOU-B-H1-F-8 24.4
BOU-B-H2-F-8 24.4
BOU-BR-H2 25.3
BOU-B-H1 25.9
BOU-B-H2 25.9
BOU-B-H1-L 26.2
BOU-B-H2-L 26.2
XYZ-B-P1 26.8
BOU-BR-H2-F-2 28.0
ARB-BR-H1-L 29.1
XYZ-BR-P2 29.3
XYZ-BR-P1 29.5
BOU-B-S2 30.5
ARB-BR-H2-L 31.4
ARB 49.5

HD×εD
C AVG-R

BOU-BR-H1-L 6.9
BOU-BR-H2-L 8.2
BOU-BR-H1-F-8 14.2
XYZ-B-H2-L 17.6
XYZ-B-H1-L 17.6
BOU-BR-H2-F-8 18.1
BOU-BR-H1-F-2 18.3
BOU-BR-H1-F-4 18.5
BOU-BR-H2-F-4 19.2
XYZ-B-S2 19.5
XYZ-BR-H1-L 19.6
XYZ-BR-H2-L 20.2
XYZ-BR-H1-F-8 21.2
BOU-BR-H2-F-2 23.9
XYZ-BR-H2-F-8 24.8
BOU-BR-H1 25.7
XYZ-BR-H1-F-2 25.9
BOU-B-H1-F-2 26.0
BOU-B-H2-F-2 26.0
XYZ-BR-H1-F-4 26.0
XYZ-BR-H2-F-4 26.3
BOU-B-H2-F-4 26.8
BOU-B-H1-F-4 26.8
XYZ-B-H2-F-4 26.8
BOU-BR-H2 27.1
XYZ-B-H1-F-4 27.4
XYZ-BR-H2 27.7
BOU-B-H1-L 27.9
BOU-B-H2-L 27.9
XYZ-B-H1-F-8 28.2
XYZ-B-H2-F-8 28.2
ARB-BR-H2-L 28.3
ARB-BR-H1-L 28.5
BOU-B-H1-F-8 28.6
BOU-B-H2-F-8 28.6
XYZ-BR-H1 29.2
BOU-B-S2 29.4
XYZ-BR-H2-F-2 29.9
XYZ-B-H1-F-2 30.5
XYZ-B-H2-F-2 30.5
BOU-B-H1 32.6
BOU-B-H2 32.6
XYZ-B-H2 33.8
XYZ-B-H1 33.8
BOU 40.8
XYZ 41.6
ARB-BR-H1-F-8 42.9
XYZ-B-P2 43.5
BOU-B-P2 44.0
ARB-BR-H2-F-8 44.3
ARB 60.2
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In conclusion, we were able to achieve our goal of finding similar solutions of good
quality compared with design space exploration from scratch by using advanced routing
techniques plus heuristics. The most successful configurations not only steer the solving
to similar solutions but emphasize deciding similarity atoms first. The heuristic level
modifier consistently performs well, followed by the factor modifier; meanwhile, different
factor values did not have a significant impact. Strategies are applicable in limited capacity.
For about half of the instance set, strategy S2 for binding could only obtain answers that
performed well above the baselines and in some cases in the top 10. While the limitations
are obvious, recall that strategies give guaranteed similarity in contrast to heuristics. Finally,
preferences failed across the board. The more complex optimization led to less solutions
found, and treating similarity on the same level as the other optimization criteria might
lead to undesired results. One might try hierarchical Pareto optimization, but as of yet, our
system is not capable of that.

7. Summary

We tackled the evolutionary system design (ESD) problem using answer set program-
ming modulo difference constraints. Evolutionary system design consists of two steps:

1. Perform design space exploration for a system synthesis problem and obtain and
implement a high-quality solution;

2. Perform design space exploration for a similar system synthesis problem while maxi-
mizing similarity to the previously obtained high quality solution.

This process allows for the swift finding of new design points that, first, are likely to
have better quality because of the system synthesis problems having similar structure, and
second, enhance the time-to-market for the implementation of a given design point as a
product. We can use ESD for a variety of applications pertaining to embedded systems, such
as successor generations, intra-generation variants, low-cost or high-performance variants,
or functionality updates. We formalize all aspects of ESD, namely, the system synthesis
problem, along with the design space exploration process, which consist of finding the
Pareto front regarding the quality measures of latency, cost, and energy consumption,
and similarity measures between two implementations.

We then presented AMT encodings that capture all these aspects. The system synthesis
problem has been previously tackled with ASP [17–21]. This application is inherently
hybrid as routing and conflict detection and resolution of messages are combinatorial in
nature and require reachability, which can be easily handled with plain ASP. On the other
hand, scheduling requires fine-grained timing involving linear constraints over integer
variables, which we captured via difference constraints. A similar division of labor was also
applied to other applications involving scheduling, e.g., train scheduling [22] and job shop
scheduling [23]. Furthermore, we provided alternative message routing techniques for
improving the solving performance. We introduced three classes of techniques for achieving
similarity between implementations: strategies, preferences, and heuristics. Strategies
restrict the search space and only allow for similar solutions. Preferences include similarity
as an additional objective in Pareto optimization. Heuristics reorder the search space
such that similar implementations are found first. To our knowledge, ESD has not been
tackled to the extent presented in this paper with technologies such as ASP, satisfiability
testing (SAT [24]), or similar combinatorial approaches. The underlying design space
exploration, however, was addressed via different meta-heuristic techniques (e.g., [25,26]),
exact methods such as integer linear programming (ILP) (e.g., [27,28]), and meta-heuristics
combined with SAT (e.g., [29,30]). While meta-heuristics usually generate solutions faster
for large instances, they might output the same or infeasible solutions repeatably; AMT,
as with other exact methods, does not suffer from that drawback. Compared with other
exact methods, though, ASP is uniquely suited to encode reachability, which is used for
routing. As a matter of fact, reachability can be encoded natively and more succinctly in
ASP compared with SAT. Finally, most of the previously mentioned methods only allow
for single-objective optimization, while our ASP-based framework allows for a full Pareto
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optimization. ESD can be compared with the minimal perturbation problem [31]; for
instance, this problem has been solved using ASP for curriculum-based timetabling [32]
and nurse re-rostering [33]. The main difference to our approach is that the quality is single-
objective. We could formulate the ESD in terms of a minimal perturbation problem by
having a hierarchical Pareto optimization, where the top level is bi-objective with stability
defined with the Hamming distance and quality given by a vector of cost, latency, and
energy consumption.

We systematically and empirically evaluated our techniques. Heuristics with ad-
vanced routing techniques proved to be the most successful, vastly outperforming DSE
from scratch in terms of quality and similarity. Strategies were applicable for a subset
of solutions. As strategies restrict the search space, the system synthesis problem might
become unsatisfiable. If this is not the case though, strategies provide guarantees in terms of
similarity that heuristics do not. Finally, preferences were unsuccessful due to the increased
complexity of the Pareto optimization.

The sheer amount of techniques and variants that are involved in ESD leave open
several avenues for future work. For instance, one can enhance the preference approach
via a hierarchical Pareto optimization or have a more fine-grained similarity measure that
also considers scheduling and similar mapping options.
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