
Citation: Nielsen, K.G.; Sung, I.; El

Yafrani, M.; Kılıç, D.K.; Nielsen, P. A

Scheduling Solution for Robotic

Arm-Based Batching Systems with

Multiple Conveyor Belts. Algorithms

2023, 16, 172. https://doi.org/

10.3390/a16030172

Academic Editor: Frank Werner

Received: 16 February 2023

Revised: 16 March 2023

Accepted: 16 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Scheduling Solution for Robotic Arm-Based Batching
Systems with Multiple Conveyor Belts †

Kasper Gaj Nielsen 1 , Inkyung Sung 2,* , Mohamed El Yafrani 3 , Deniz Kenan Kılıç 2 and Peter Nielsen 2

1 ORTEC Nordic A/S, Stationsparken 25, 2600 Glostrup, Denmark
2 Operations Research Group, Department of Materials and Production, Aalborg University,

9220 Aalborg, Denmark
3 Norlys Energy Trading A/S, Over Bækken 6, 9000 Aalborg, Denmark
* Correspondence: inkyung_sung@mp.aau.dk
† This article is written based on the first author’s master thesis for the Mathematics-Economics program of

Aalborg University.

Abstract: In this study, we tackle a key scheduling problem in a robotic arm-based food processing
system, where multiple conveyors—an infeed conveyor that feeds food items to robotic arms and
two tray lane conveyors, on which trays to batch food items are placed—are implemented. The
target scheduling problem is to determine what item on an infeed conveyor belt is picked up by
which robotic arm at what position, and on which tray the picked up item will be placed. This
problem involves critical constraints, such as sequence-dependent processing time and dynamic
item and tray positions. Moreover, due to the speed of the infeed conveyor and latency in the
information about entering items into the system, this scheduling problem must be solved in near
real time. To address these challenges, we propose a scheduling solution that first decomposes the
original scheduling problem into sub-problems, where a sub-problem formulated as a goal program
schedules robotic arms only for a single tray. The performance of the proposed solution approach
is then tested under a simulation environment, and from the experiments, the proposed approach
produces acceptable performance.

Keywords: robotic arm-based batching systems; scheduling robotic arms; robotic task-sequencing
problem; real-time decision making; give-away minimization

1. Introduction

A robotic arm or a machine with a similar feature is an integral part of various
autonomous manufacturing and production systems. A robotic arm (or a set of robotic
arms) is often placed on or next to a conveyor belt. A conveyor belt brings items to the
robotic arm, and the items moving on the conveyor belt are sorted and/or picked by the
robotic arm [1]. Figure 1 shows a simplified representation of a robotic arm batching system,
where items on a conveyor belt are picked up and put into a tray by a robotic arm.

Figure 1. An illustration of a robotic arm batching system.
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With a conveyor belt, a robotic arm can significantly improve the throughput of a
manufacturing and production system. A robotic arm can also provide flexibility in a
system’s item flows by transferring an item from one conveyor belt to another. Compared
to batching machines that simply push the items out of a conveyor belt, robotic arms also
provide more flexibility in the way the items are handled. If the items to carry are heavy
or hazardous, the risk of injury to human operators is further minimized by the robotic
arm implementation. Moreover, a robotic arm with a conveyor belt has demonstrated
its capability to perform tasks that are simple and repetitive. The tasks that should be
performed quickly with quality can also be performed successfully by a robotic arm.
Picking, placing and sorting tasks are examples of these tasks [2].

The food processing and packaging business are some of the industrial sectors where
such advantages of robotic arms with conveyor belts can improve the profits of the busi-
ness [3]. Imagine a food batching and packaging process where food items of different
sizes are grouped into trays of a predetermined standard size or weight. Here, a robotic
arm-based system with a sophisticated control mechanism can identify food items moving
fast over a conveyor belt and choose the right pieces of food items from a conveyor belt.
In this way, the productivity and efficiency of the process can be dramatically improved,
and the need for human labor in the process can be minimized [4]. Moreover, a robotic
arm-based system is easy to maintain and provides a high level of hygiene and food quality.

It should be noted that the benefits of a robotic arm-based system will not be achieved
by simply equipping and implementing the system. An operating system that controls the
robotic arm’s motion and action is essential for fully exploiting the capability of the robotic
arm-based system.

The core of the operating system is to address the scheduling problem involved in a
robotic arm-based system operation, which addresses a number of nested decision-making
problems. For example, given a target weight of a food package, a robotic arm should
determine which item would be picked up and put into which package tray in what order
so that the productivity of the system (e.g., the number of food items packed per time
unit) is maximized and give-away (additional weights given over a target weight) in a
tray is minimized. However, such decision making is complex by its nature and should
be made in a very short time to keep the throughput of the system as fast as the speed of
a conveyor belt. The relevant decision-making problem contexts and challenges can be
found in a container crane scheduling problem, where the interference between cranes and
the sequence-dependent container (un)loading time are critical to consider [5], as well as a
flow shop scheduling problem with real-time order acceptance [6].

Motivated by the decision-making challenges in a robotic arm-based system and the
expected impact of a well-designed scheduling algorithm on the performance of the system,
this study addresses a scheduling problem involved in a specific but common robotic
arm-based system, where multiple robotic arms operate over a conveyor belt system, in
which two types of conveyor belts—an infeed conveyor for food items delivery and a
tray lane conveyor for food item trays—are operated. We first identify the key decisions
and constraints of the target scheduling problem. A decomposition-based scheduling
approach is then proposed to solve the resulting scheduling problem within an available
computation time. The performance of the proposed solution approach is finally evaluated
in a simulation environment, where items with random weights enter into the robotic
arm-based system as a stochastic process.

2. Related Work
2.1. Scheduling Problems for Robotic Arms in Automated Systems

As highlighted in the introduction, robotic arms have been applied to various indus-
trial sectors, including manufacturing and production systems due to their contribution
to the overall productivity, reliability, and quality of a target system. A key element for a
successful implementation of robotic arms into such systems is to schedule movements of a
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robotic arm to perform atomic tasks, such as welding, drilling, and spray painting. This
scheduling problem is known as the robotic task sequencing problem (RTSP) [7].

Given that a robotic arm has a single configuration to perform a task, the RTSP can be
formulated as the traveling salesman problem (TSP) [8]. However, a robotic arm could have
multiple configurations especially to avoid collisions during operations and to reduce the
duration of the movement, which is known as inverse kinematics solutions. With inverse
kinematics, the RTSP can be formulated by the generalized TSP (GTSP), where a location
for a task is represented as a bin with multiple nodes, and a travel time between two tasks
depends on what nodes in the corresponding bins are visited. Given this setting, a robotic
arm should visit all the bins for the target tasks, visiting only a single node within the
bins [9]. Please refer to [10,11] for a detailed review on the RTSP.

The extended RTSP can be found in a flexible manufacturing system (FMS), where
a robotic arm is often installed to transport items from an input station to multiple work-
stations and from the workstations to an output station. In this case, not only the robotic
arm but also the workstations should be scheduled so that the overall system performance
(e.g., workstation utilization and throughput of the system) can be optimized. To address
this scheduling complexity, Petri nets are often applied to represent a target system as a
discrete-event system [12,13].

The RTSP can also be extended for multiple robotic arms. Here, a goal is to operate
robotic arms to move objects to available slots with a minimum total travel distance. The re-
sulting multiple robotic arm scheduling problem can be formulated as a parallel machine
scheduling problem for a single-stage production [14]. Note that the multiple robotic arm
scheduling problem is in general solved for static task positions; therefore, a solution to the
problem is often adjusted by a model predictive control (MPC) planning algorithm that
addresses dynamic collision avoidance constraints of the robotic arms [15,16].

2.2. Scheduling Problems for Robotic Arms with Conveyor Belts

Here, we review scheduling problems for robotic arms with conveyor belts especially
in food processing systems. Tables 1 and 2 summarize the scheduling problems, batching
problems in particular, addressed for a robotic arm-based food processing system in the
literature. As comparison criteria, Table 1 considers (1) on what basis the decision was
made and (2) the number of conveyor belts, and Table 2 considers (3) the type of conveyor
belts, (4) whether there is a buffer between batches, and (5) the characteristics of the
robots addressed.

From the literature review shown in the summary tables, it can be highlighted that the
existing scheduling mechanisms generally tackle a single decision variable with a single
conveyor belt track. On the other hand, our study addresses a robotic arm-based system
with multiple conveyor tracks—one track for moving food items and two additional tracks
on each side of the food track for trays—which introduces additional decision-making
dimensions and constraints to the corresponding robotic arm scheduling problem.

Table 1. Related work for a robotic arm-based batching system.

Study Target System/Problem Decision Tray/Bin
Lane Number

[17] A meat processing system Batch or trim pieces?
(with respect to weights) 1

[18] A fillet batching operation
in a poultry processing plant

Which tray?
(with respect to weights) 1

[19] Batching food items
for a specific weight target

Which bin?
(with respect to weights) 2
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Table 1. Cont.

Study Target System/Problem Decision Tray/Bin
Lane Number

[20] Poultry processing plants
with batchers

Which tray?
(with respect to weights) 1

[21]
Bin covering with
a target weight for
a poultry processing plant

Which tray?
(with respect to weights) 1

[22] Packing in a conveyor-based
automatic sorting system

Which action?
- Do {stay, put, pick}
- For {current box, buffer}

1

[23] A robotic arm system
with multiple conveyor belts

Which tray?
(with respect to weights and
conveyor belt track)

2

Table 2. Related work for a robotic arm-based batching system (cont’).

Study Conveyor Belt Type Buffer Machine Type

[17] Two conveyor belts Yes Grader
(diverter)

[18] 4 track line conveyor belt Yes Grader

[19] 1 track line conveyor belt Yes Grader

[20] 1 track line conveyor belt Yes Batcher
(drop)

[21] 1 track line conveyor belt Yes Batcher
(drop)

[22] Unidirectional 1 track conveyor belt
A circular conveyor for boxes

Yes
(for unused product) Robotic arm

[23] 2 track line conveyor belt Yes Robotic arm

2.3. Solution Algorithms for Scheduling Robotic Arm-Based Batching Systems

Multiple solution approaches have been proposed to solve and analyze various robotic
batching systems. Peeters et al. [18] took a wider view of the system and analyzed the layout
of the batching process, determining the size and number of batching machines, the flex-
ibility of different setups, as well as introducing solution approaches. Ásgeirsson [24]
proposed an algorithm to be used in an online bin covering problem representing a system
that pushes the items into trays instead of picking-and-placing. Furthermore, the authors
investigated and proposed algorithms for the semi-online problem. Van Sprang [25] in-
vestigated the application of condition-based maintenance strategies. A selection method
was proposed to choose the most relevant parts of a machine. Among others, it is based
on failure rate and downtime costs and consequences. Raaijmakers [26] analyzed different
types of batching machines, modeled the machines mathematically (including an online
bin covering variant), and proposed solution strategies for each. Finally, the performance
of the batching machines is compared with different types of problem features.

Soft computing methods have been also proposed to tackle robotic batching problems.
Hundscheid et al. [21] proposed a hybrid genetic algorithm for a more simple batching
machine. The problem is formulated as a k-bounded semi-online bin covering problem,
which is a frequent model for these types of problems. Hildebrand et al. [23] investigated a
deep reinforcement learning approach in the decision process of a robotic batching system
and showed promising results.
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It should be noted that the robotic arm-based system addressed in Hildebrand et al. [23]
has the same system setting as our target system. However, our study tackles the scheduling
problem involved in the system by applying a deterministic approach as will be explained
in the following sections. The proposed approach has an advantage over the work of
Hildebrand et al. [23] in terms of the effort needed to develop and implement a solution
approach and the degree of understanding to the solutions derived by the approach.

Based on the reviews presented, we conclude that our target robotic arm scheduling
problem with multiple conveyor belts has been rarely addressed in the literature, and
the proposed solution approach for the problem is unique from the methodological and
implementation perspectives.

3. A Robotic Arm-Based Food Processing System
3.1. Problem Descriptions

The target system of this study is inspired by a completely autonomous robotic arm-
based food batching system, which consists of three main components: an infeed conveyor
belt, tray lanes next to the infeed conveyor belt and robotic arms. The conveyor belt moves
continuously at a fixed speed. It transports food items with different weights arriving from
a preceding food production cell. On each side of the conveyor belt, there is a single moving
lane and trays, in which food items picked from the conveyor belt are batched in a tray on
the lane. The tray lane can both move and stop. When it advances, it moves incrementally
and the tray at the end of the lane will be disposed of from the system, being handled by a
following package cell. Usually, the advancement will automatically be triggered when the
weight of the last tray exceeds a threshold. The third component is the robotic arms. Each
one can reach a specific area of the conveyor belts and the tray lanes. Figure 2 illustrates
the target robotic arm-based food batching system.

Figure 2. An illustration of a robotic arm batching system.

Given the description of the target robotic arm-based system, the following decision
variables can be identified:

• Which robotic arm will pick up an item;
• When and where an item on a conveyor belt will be picked up;
• On which tray on which side of the conveyor belt an item will be placed.

The identified decisions will be made to minimize the give-away of the food items.
Give-away is the positive deviation from the target tray weight. Suppose that an order
requires trays with target weigh 500 g and the contract will contain a fixed price per tray
delivered. If a tray comes to weigh 510 g, then 10 g (or 2%) as a free product is given away.

3.2. The Complexity of the Target Scheduling Problem

Figure 3 shows a simplified flow chart of the basic logic in the robotic batching system
with a single robotic arm, a single conveyor lane and a single tray lane. It shows that all the
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operating parts are mutually interrelated in a highly nested way. Making one decision will
affect all the other parts, and they have to be considered in order to ensure feasibility.

Figure 3. Simplified flow chart of the robotic batching system. t_plan is the time between planning
newly arrived groups of items (deterministic), t_computing is the time to compute the plan (fixed
threshold), t_a is the arrival times of items (stochastic), t_timestep is a single time step, conveyor
moves all the time (deterministic), t_movements is the time that the robotic arm needs to conduct a
task (deterministic), and t_adv is the time for the tray lane to advance (deterministic).

Among the interrelationships between the components of the robotic arm-based
system and relevant decision variables, the following are highlighted as the key factors that
make the target scheduling problem hard to solve:

• The initial position and weight of items are unknown until they enter the conveyor belt;
• The position of an item on a conveyor belt is continuously moving;
• Processing time of a robotic arm depends on (1) the position of an item to pick up and

(2) the position of the tray where the robotic arm placed the previous item picked up
before the current one;

• A tray track is advanced only when the tray at the end of the track exceeds the target
weight, affecting the positions of the entire trays in the system;

• Each robotic arm can handle items in a designated operational area.

4. The Proposed Solution Approach

To the best of our knowledge, no standard optimization model seems to cover the
target robotic batching problem of this paper in its entirety. While knapsack variations,
such as the bin covering or subset sum problem, can be considered to address the target
problem [27,28], the subset sum model does not allow filling past the target, and the bin
covering only seeks to fill as many trays as possible without considering the level of overfill,
likely resulting in trays with high give-away.

To address the complexity of the target scheduling problem, we propose a decom-
position approach that sequentially solves a simplified scheduling problem for a single
tray. Specifically, the original problem is decomposed into a series of sub-problems. Each
sub-problem is to assign items to multiple robotic arms only for a specific tray, while
making the tray reach a target weight. This sub-problem is formulated using a goal pro-
gramming approach based on the nature of the objective of the scheduling, i.e., to minimize
the deviation of a food tray from the target weight of the tray. A series of sub-problems is
solved to find schedules for all trays in the system.

In our decomposition approach for the original scheduling problem, a sub-problem
for a tray (let us say, A) on a tray track will be solved after solving the sub-problems for the
trays placed in the tray track ahead of tray A, based on the dynamics of a conveyor belt.
Recall that a tray track will be advanced only when the tray at the end of the track exceeds
or meets a target weight, and therefore, it is natural to sequentially solve the sub-problems
according to the positions of the corresponding trays so that the dependency between the
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sub-problems becomes uni-directional and tractable. Under this decomposition scheme,
the outcome of a sub-problem solving—what items are scheduled to be picked up and
when a tray track will be advanced—will be used to form the following sub-problems.

Finally, once all the sub-problems are solved following the sequence (meaning that
all trays are considered for placing the items entered into the robotic arm-based batching
system), the same process will begin as a new set of food items enters the system, while
keeping the solutions from the previous sub-problem solving. The proposed decomposition-
based solution approach is illustrated in Figure 4.

Figure 4. A flow chart of the proposed solution approach.

A Goal Program for a Sub-Problem: Scheduling Robotic Arms Only for a Single Tray

Let us suppose that there are candidate items to be batched by multiple robotic arms
into a specific tray on a specific tray lane. These items are included in set V. The weight
of item i ∈ V is denoted by wi. We also introduce the concept of a field, a specific area
of an infeed conveyor belt. For the sake of simplicity, we divide the conveyor belt into a
set of the same-sized multiple fields and assume that only a single item can be place on
a field at a time. Given this, the arrival time of item i at field f , ATi, f is then calculated
based on the speed of the conveyor belt and the spawn time of item i in the system. We
also assume that the operational areas (i.e., a set of consecutive fields) of multiple robotic
arms are independent and do not overlap. By this assumption, field index f ∈ F identifies
a responsible robotic arm for the field. The set of fields where the robotic arm responsible
for field f operates is denoted by OA f .

It should be noted that the schedules from the previous sub-problems solving are
the input to the current sub-problem solving, and these schedules identify the following
constraints: when the tray for the current sub-problem should advance, and when the
robotic arms are unavailable. Given the constraints and the fact that the processing time of
a robotic arm depends on the destination tray where an item will be placed by the robot,
the timing for the tray advancement serves as a reference point to compute a robotic arm’s
processing time. Specifically, we denote the travel time of a robotic arm from field f to the
target tray’s position after its nth advancement by τf→n. Likewise, τn→ f denotes the travel
time for the opposite movement. Similarly, whether a robotic arm can reach the target
tray or not also depends on the tray’s advancement and corresponding position. Based on
this, we define set Adv f that includes all the advancement steps, after which a robotic arm
working at field f can reach the target tray.

We also compute whether item i will arrive at field f after the nth advancement of the
tray, and based on the computation, we create Vf ,n, a set of items that can be handled at field
f between the (n− 1)th and nth tray advancements. Lastly, from the previous sub-problem
solutions, we create set V−i, f and V+

i, f , which include the items that are scheduled by the
previous sub-problems and should be placed at a predetermined tray before and after item
i arrives at field f (i.e., ATi, f ), respectively.

With the notation, we define the principle decision variable xi, f ,n that indicates if item
i ∈ V will be picked up at field f ∈ F after the nth advancements of the target tray of the
sub-problem. Two deviation variables, d+ and d−, are also defined to measure the gap
between the tray’s weight and a target weight.
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With the decision variables, the objective function of a sub-problem for the robotic
arm scheduling problem that is to minimize the give-away on a tray can be written by

min d+ (1)

This objective function is then minimized subject to the following constraints. First,
we link the primary decision variable to the deviation variables by

Wtarget − ∑
i∈V

∑
f∈F

N

∑
n=0

wi · xi, f ,n = d+ − d− (2)

where Wtarget is the target weight of the tray. Next, an item can be picked up at most once
by a robotic arm, which can be written by

∑
f∈F

N

∑
n=0

xi, f ,n ≤ 1 ∀i ∈ V. (3)

Additionally, in order to pick up item i at field f , a robotic arm for the field should
be available. In other words, there should be enough of a time gap for the robotic arm to
move from its last position (i.e., the tray where the last previous item is placed on) to field
f . This constraint can be written by

M + ∑
n∈Adv f

(
ATi, f −M

)
· xi, f ,n − ∑

m∈Advg

∑
g∈OA f

(
ATj,g + τg→m + τm→ f

)
· xj,g,m ≥ 0, (4)

for all i, j ∈ {V|i 6= j} and f ∈ F. τg→m + τm→ f is the total time needed for a robotic arm to
move item j from field g to the tray’s position after the mth advancement and to return to
field f to grasp an item.

Next, to schedule item i to be picked up at field f and placed to the tray after the nth
advancement (i.e., xi, f ,n = 1) in the current sub-problem, the following conditions should
be met:

• There is enough time for a robotic arm to move to field f after completing all the tasks
scheduled to be done before the time when item i arrives at field f ;

• Placing item i on the tray after the nth advancement does not delay any following
tasks scheduled by upstream sub-problems.

The constraints for these conditions are formulated by

M + ∑
n∈Adv f

(
ATi, f −M

)
· xi, f ,n − τj→a ≥ 0 ∀i ∈ V, f ∈ F, j ∈ V−i, f (5)

ATj, f ∗j
− ∑

n∈Adv f

(
ATi, f + τf→n + τn→ f ∗j

)
· xi, f ,n ≥ 0 ∀i ∈ V, f ∈ F, j ∈ V+

i, f (6)

where f ∗j is the field where item j is scheduled to be picked up by a previous sub-problem
solution.

In addition, an item can be placed in the tray only when the tray lane is not moving.
With the set Vf ,n, this constraint can be formulated by

xi, f ,n ≤ 1 ∀i ∈ Vf ,n, f ∈ F, 0 ≤ n ≤ N (7)

xi, f ,n = 0 ∀i ∈ V \Vf ,n, f ∈ F, 0 ≤ n ≤ N. (8)

Lastly, we have binary and positive value constraints for the primary and deviation
variables, respectively, which are shown below:

xi, f ,n ∈ {0, 1} ∀i ∈ V, f ∈ F, 0 ≤ n ≤ N (9)
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d+, d− ≥ 0 (10)

5. Computational Burden of the Proposed Solution Approach

Recall that a conveyor belt moves fast, feeding items to robotic arms at the same speed.
Therefore, considering the fact that it is almost infeasible to know when and how food
items enter into a robotic arm-based batching system, solving the robotic arm scheduling
problem should be done in (near) real time.

To understand the practical scale of a food processing system and the corresponding
computational requirements for the proposed solution approach, we took a field trip to a
food processing company in Denmark and conducted interviews with employees of the
company. From the activity, we conclude that a schedule for an item should be derived
before the item passes the buffer zone that spans from the entry point of the conveyor
belt to the entry point of the robotic arms’ operational area. The travel time for an item
to pass the buffer zone is set as 3.6 s based on the interview. Because items keep entering
into a conveyor belt, making it difficult for a scheduling algorithm to fully use the 3.6 s to
solve the problem, we assume that only half of the buffer passing time, 1.8 s, is allowed
for the scheduling algorithm to solve the scheduling problem. In other words, a series of
sub-problems, each of which schedules multiple robotic arms for a specific tray, should be
solved within 1.8 s.

To examine the feasibility of the proposed solution approach in the above mentioned
context, we develop a simulation model for a food batching system with two robotic arms.
The layout of the target food batching system is illustrated in Figure 5a, which is also used
to visualize the simulation as shown in Figure 5b. In the figure, the operational area for
the robotic arms is colored in green. The buffer zone, consisting of 18 fields, starts from
the left side of the conveyor belt, and an item just registered takes 3.6 s to pass the buffer
zone. Considering a practical arrival rate of food items at the system, the mean inter-arrival
time of items is set as 1.2 s, sampled from exponential distribution. The simulation runs for
30 min in a single replication, and a sub-problem is solved using CPLEX. The experiments
are run on a Windows 10 machine with an Intel Core i5-8265U 4-core CPU @ 1.6 GHz with
8 GB RAM.

Figure 6 shows a histogram of the computation time spent to solve a series of the
sub-problems for a food item batch (i.e., the items in the first half of the buffer zone). In the
chart, 1116 batches are considered. The figure shows that 92% of schedules are derived in
less than 1.8 s (the dotted line). The median computational time is 0.66 s with a standard
deviation of 0.69.

(a) A snapshot of the initial status of the simulation model

(b) A snapshot of a visualized simulation run

Figure 5. A snapshot of the implemented simulation model.
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Figure 6. An histogram of the computational budget (second) of the proposed solution.

It should be pointed out that the success rate of 92% is satisfactory, but it tells us that
one out of ten scheduling attempts will require more time than allowed, degrading the
performance of the robotic arm-based system. A potential approach to tackle this issue is
to consider local search heuristics, which are simple but effective for many combinatorial
decision-making problems [29].

6. Discussion
6.1. The Objective Function of the Sub-Problem

Note that a tray does not necessarily need to be filled by currently available items.
In other words, if there is no item suitable to fill the tray with a target weight, leaving the
tray not fully filled would be a good strategy such that items which will arrive later can be
considered to fill the tray with the target weight. However, the proposed objective function
in the previous section, which is to minimize solely the positive deviation variable, cannot
reflect this idea.

As a solution to this issue, one may tune a profit function as a function of a tray’s
weight in a way that a tray with a room for additional items has a profit if it is likely to find
items from the next arrivals that make the tray full with the target weight. For example,
if a mean weight of entering items is known as 300 g and it is difficult to find items to fill a
tray with a target weight (say 700 g), leaving the tray with 400 g would be beneficial, rather
than filling the tray up to 600 g. Figure 7 shows an example of such a profit function.

To test this idea, we tune the profit function as a piecewise linear function based
on an arbitrary item weight distribution and reformulate the sub-problem’s objective
function as a maximization of the profit function. From our experiments, the reformulated
problem makes the computation time needed to solve the problem more stable and feasible
(meaning that the total computational time needed to solve a series of sub-problems was
within 1.8 s in 98% of our test problem instances). Figure 8 shows the histograms of
the computational time of the proposed goal program (denoted by GP model) and the
reformulated problem (denoted by Hybrid model). The overall give-away level was also
lowered by the reformulated problem. However, it is difficult to tune the profit function
properly since a distribution of items’ weight is hard to know in advance and keeps
changing mainly because items are often provided by multiple suppliers. Therefore, we
believe the proposed goal programming formulation would be more preferable than the
reformulated one in practice.
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Figure 7. An example of a profit function.

Figure 8. Computation time comparison.

6.2. A Robotic Arm-Based Batching System Configuration

One way to increase the time budget allowed for the scheduling problem solving is to
have a long buffer zone or slow down the conveyor belt. Importantly, by this managerial
solution, more items can be considered for a single run of a series of sub-problem solving,
and thus efficient tray utilization can be achieved. On the other hand, having more items
to schedule means a larger scale of scheduling problem solving. Note that the number of
decision variables and constraints are exponentially increased as the number of items to
schedule increases. Additionally, slowing down a conveyor belt obviously reduces the
productivity of the system.

Using the simulation model, we can test the impact of such managerial decisions on the
performance level of a robotic arm-based system. As an example, we evaluate the impact
of the buffer zone length on the performance of the robotic arm-based batching system and
the computational feasibility of the proposed solution approach. With 15 different conveyor
belt length settings, keeping the rest of the simulation setting as described in the previous
section, we run simulations for this trade-off analysis, and the results are summarized in
Figure 9.
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(a) Decreases in the average give-away as the conveyor belt becomes longer

(b) Increases in the computational time (seconds) as the conveyor belt becomes longer

Figure 9. A snapshot of the implemented simulation model.

From the figure, where the current conveyor belt setting is represented by a dotted
line, it can be first observed that give-away, the key performance measurement of the
target food batching system, is decreased as the buffer zone becomes longer and more
items are considered at the moment of the scheduling. On the other hand, one can observe
that the computational time for solving the scheduling problem increases as the buffer
zone becomes longer and, importantly, this makes the proposed solution approach with a
commercial optimization solver no longer feasible.

As observed, it is clear that there is a trade-off between the quality and computational
burden of the proposed solution approach. Importantly, this observation implies that the
configuration of a robotic arm-based batching system (e.g., the number of robotic arms on a
conveyor belt and the length of a buffer zone) should be set carefully, considering not only
the physical performance of the system but also the performance of a scheduling solution
to the system that actually determines the system performance.

7. Concluding Remarks

The challenge presented in this paper is to schedule robotic arms to fill trays with items
with minimal give-away. Compared to similar problems in the literature, our problem
has two different conveyor belts, one for food item transition and the other for trays.
Importantly, the tray lane conveyor moves only when the last tray of the tracks exceeds
the target weight, introducing an additional decision to the robotic arm batching problem.
This is a complex but novel problem, especially as it provides a diverse range of research
fields through its system structure, allowing for various comparative analyses in terms of
the investigated problem, solution approach, and main concern.

To address the target scheduling problem, we proposed a decomposition approach that
divides the main robotic arm scheduling problem into smaller sub-problems of each tray. It
has computational advantages as it reduces the number of decision-making dimensions,
and thus decreases the solution space to search. However, by its nature, a global optimum
to the original problem cannot be reached by the proposed solution approach.

We also applied a deterministic solution approach. Instead, a stochastic approach
that considers the distribution of incoming items to a conveyor belt can be applied to the
problem. In this way, the uncertainties and randomness in a food batching system can be
addressed based on knowledge of the system, and thus a more realistic and better solution
could be obtained. For this, deep reinforcement learning [23] and other machine learning
algorithms can be considered for both batching and food quality and safety [30,31].

Lastly, it is worth noting that other types of conveyor belts in the literature, such as U-
shape, loop, and bi-directional [32], together with the corresponding scheduling problems,
can be addressed to improve the performance of robotic arm-based batching systems.
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