

Algorithms 2023, 16, 171. https://doi.org/10.3390/a16030171 www.mdpi.com/journal/algorithms

Article

MixFormer: A Self-Attentive Convolutional Network for 3D
Mesh Object Recognition
Lingfeng Huang, Jieyu Zhao * and Yu Chen

Mobile Network Application Technology Laboratory, School of Information Science and Engineering,
Ningbo University, 818 Fenghua Road, Ningbo 315211, China
* Correspondence: zhao_jieyu@nbu.edu.cn

Abstract: 3D mesh as a complex data structure can provide effective shape representation for 3D
objects, but due to the irregularity and disorder of the mesh data, it is difficult for convolutional
neural networks to be directly applied to 3D mesh data processing. At the same time, the extensive
use of convolutional kernels and pooling layers focusing on local features can cause the loss of spa-
tial information and dependencies of low-level features. In this paper, we propose a self-attentive
convolutional network MixFormer applied to 3D mesh models. By defining 3D convolutional ker-
nels and vector self-attention mechanisms applicable to 3D mesh models, our neural network is able
to learn 3D mesh model features. Combining the features of convolutional networks and trans-
former networks, the network can focus on both local detail features and long-range dependencies
between features, thus achieving good learning results without stacking multiple layers and saving
arithmetic overhead compared to pure transformer architectures. We conduct classification and se-
mantic segmentation experiments on SHREC15, SCAPE, FAUST, MIT, and Adobe Fuse datasets.
Experimental results show that the network can achieve 96.7% classification and better segmenta-
tion results by using fewer parameters and network layers.

Keywords: transformer; 3D convolutional network; 3D object recognition; vector self-attention;
3D model segmentation

1. Introduction
Compared with 2D data, 3D data contains rich spatial information and target details,

providing the possibility to achieve more detailed computer vision tasks. At the same
time, with the development of 3D vision technology, the cost of acquiring and processing
3D data is getting lower and lower, thus giving rise to emerging application areas such as
autonomous driving [1–3], augmented reality [4,5], and robotics. In recent years, how to
process 3D data with the help of deep learning methods[6–8], which are more mature in
the field of 2D image research [9–14], has received a great deal of attention from scholars.
However, unlike a 2D image where pixels are uniformly distributed on a 2D grid, a 3D
grid is a collection of connected relationships between a series of points and edges in 3D
space. This means that the 3D grid model does not have a regular 3D spatial representa-
tion, while the input of data is disordered. The structural differences between 2D images
and 3D grid models make it impossible to directly apply the more mature neural network
design in the field of 2D image research to 3D mesh models.

To overcome the problem of irregularity and disorder in 3D grid models, some stud-
ies have pioneered attempts by designing the input format of 3D grid model data and 3D
convolution and 3D pooling methods[15–18]. Feng et al. and Hanocka et al. [16,17] used
grid or grid edge as the basic unit to define the standard input format of 3D grid models
and, based on the input features, for 3D grid models design convolutional classification
networks based on the input features. However, although the convolution and pooling

Citation: Huang, L.; Zhao, J.;

Chen, Y. MixFormer: A

Self-Attentive Convolutional

Network for 3D Mesh Object

Recognition. Algorithms 2023, 16,

171. https://doi.org/10.3390/

a16030171

Academic Editor: Frank Werner

Received: 22 January 2023

Revised: 26 February 2023

Accepted: 16 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://cre-
ativecommons.org/licenses/by/4.0/).

Algorithms 2023, 16, 171 2 of 17

process can weigh the combination of lower-level features to form higher-level features,
the spatial information and dependencies of the lower-level features in the higher-level
features are lost [19]. Especially in 3D space, the 3D model is richer in location structure
information and the local–local interrelationships are closer.

To preserve inter-feature dependencies, inspired by the self-attentive mechanisms
that have been successful in the natural language domain and in the 2D image domain,
work such as point cloud transformer (PCT) [20], point transformer (PT) [21], and trans-
former (METRO) [22] in a 3D point cloud model analysis using transformer architecture.
However, these methods applied to the 3D domain encode the input in a way that does
not design a self-attentive mechanism based on the local features of the 3D model and are
not as interpretable as tokens in NLP. At the same time, such transformer networks, which
are stripped from the original convolutional architecture, tend to retain the multi-layered
characteristics of convolutional networks, which often implies a huge computational over-
head when combined with the self-attentive mechanism with O(n2) time complexity in a
transformer [23].

Based on the characteristics of convolutional networks and transformer networks,
this paper proposes a self-attentive convolutional network MixFormer for 3D mesh mod-
els. The shape features of 3D mesh models are extracted as the semantic information input
to the transformer module through the front 3D mesh convolutional module. To ensure
that the 3D mesh convolution module can effectively extract the feature information of the
3D mesh model, a 3D convolution kernel is defined in this paper. The introduction of the
3D mesh transformer module enables the network to learn the global association among
the 3D mesh shape features, which makes up for the deficiency of the convolution opera-
tion in learning long-distance features. And by introducing a vector-type self-noticing
mechanism in the transformer network, the spatial information of the 3D grid model is
introduced, which makes the transformer module better applicable to the 3D grid model.

In this paper, we conducted classification experiments on SHREC15 and Manifold40
datasets, and segmentation experiments on SCAPE, FAUST, and MIT datasets, and
demonstrated the effectiveness of each module on 3D feature learning by ablation exper-
iments. The experiments show that MixFormer can achieve good learning results without
stacking multiple layers and with less computational overhead by learning local feature
information through the front 3D grid convolution module and establishing dependencies
between features by the 3D grid transformer.

In summary, the main contributions of this paper are as follows.
(1) A 3D convolutional kernel applicable to 3D mesh models is designed to enable the

network to extract feature information on 3D grid models with irregularities and dis-
order.

(2) The vector-based transformer module is designed to better learn the dependencies
between features through a vector-based self-attentive mechanism and a learnable
position encoding.

(3) The shape features extracted by the convolutional network are processed by using
the self-attentive mechanism with a pyramidal structure, so that the network can
fully establish global feature dependencies while extracting feature information more
accurately.

2. Related Work
2.1. 3D Convolutional Network

The mesh of a 3D mesh model consists of a connection relation between vertices and
edges with irregular distributions, so it is not possible to use the 2D convolution method
directly on the 3D mesh model, which means that a suitable 3D convolution operation
needs to be defined for the structure of the 3D mesh model. Feng et al. proposed MeshNet
[16], which firstly, defines an input format for the mesh: for each mesh, extract its centroid,
the centroid-to-vertex vector, the normal vector of the mesh, and the neighboring mesh

Algorithms 2023, 16, 171 3 of 17

coordinates as its input features, and then design the CNN classification network.
Hanocka et al. proposed MeshCNN [17], which defines the convolutional neighborhood
in terms of edges and defines a formula to transform the four edges of the neighborhood
to ensure the invariance of the convolutional operation. Moreover, the dihedral angle, the
interior angle of two faces, and the edge length ratio of two faces above the base are used
as five-dimensional input features, and the pooling is defined by edge folding in the pool-
ing operation.

The above method follows the 2D convolutional approach in processing 3D mesh
models by aggregating local features captured by the convolutional kernel through pool-
ing operations, thus facilitating the extraction of high-level features by the posterior net-
work [12]. Although convolutional operations can effectively capture local information,
vision tasks such as object detection[24–29], instance segmentation[30–32], and key-point
detection often require the establishment of long-range dependencies [33], and convolu-
tion-based architectures often require stacking multiple layers in order to aggregate local
features and improve the performance of convolutional backbone networks [10,34]. How-
ever, although the convolutional, pooling process can form higher-level features by
weighting the combination of lower-level features, it loses the spatial information and de-
pendencies of the lower-level features in the higher-level features [19]. Three-dimensional
grid models form spatial surface features through the connection relationship of points
and edges, and the loss of spatial location information often has a significant impact on
the extraction of three-dimensional target recognition [12]. For example, in a human
model, two meshes that are similar in spatial location may be distributed on different fin-
gers, and if we only focus on the local area, we lose its self-contained semantic infor-
mation. Therefore, a mechanism for modeling based on global (non-local) dependencies
may be a more robust and scalable solution.

2.2. Transformer
Establishing long-range dependencies is not only important for 3D target feature learn-

ing, but also for Natural Language Processing (NLP). In recent years, the transformer has
become increasingly popular in NLP based on the matching mechanism and parallelizabil-
ity of the encoding. This has now become a standard tool in NLP in the form of a transformer
[35], with prominent examples being the GPT [36,37] and BERT [38,39] models.

Noting the excellent ability of the self-attention to establish long-range dependencies,
several research workers have tried to apply the self-attention to the 2D image domain
and the three-dimensional vision domain. In the 2D image domain, a simple way to use
the self-attention is to replace the convolutional layer with the multi-head self-attention
(MHSA) layer proposed in the transformer [35]. SASA [40], AACN [41], SANet [42], Axial-
SASA [43], etc., introduce various forms of a transformer (local, global, axial, vector) by
replacing the original convolutional layers in the ResNet [10] backbone network. On the
other hand, methods such as vision transformer (VIT) [44] and Swin transformer [45] seg-
ment images into non-overlapping and overlapping blocks, and then by linearly stacking
transformer blocks, while ensuring the interpretability of the input tokens, the feature
learning of the image is achieved. In the field of 3D vision, a point cloud transformer (PCT)
[20] proposes a point-based transformer, which learns features through a vector represen-
tation of the transformer. Point transformer (PT) [21] enhances the potential feature rep-
resentation of the input to better capture the local features in the point cloud. local fea-
tures. A mesh transformer (METRO) [22], on the other hand, performs human shape re-
construction on 3D mesh models. However, none of these methods applied to the 3D do-
main encodes the input in a way that is as interpretable as token in NLP. At the same time,
such transformer networks derived from the original convolutional architecture tend to
retain the multi-layered nature of convolutional networks, which often implies a huge
computational overhead when combined with the self-attention of 𝑂(𝑛ଶ) time complex-
ity in a transformer [23].

Algorithms 2023, 16, 171 4 of 17

Inspired by the above work, in order to better establish the global dependency of
feature information in the network and at the same time reduce the number of network
parameters so that the network can be better applied to 3D mesh models, three innova-
tions are proposed in this paper: (1) a 3D convolutional kernel is designed for 3D mesh
models, which enables the network to extract feature information on 3D mesh models
with complexity and disorder; (2) a vector-type transformer block is designed to better
learn the dependencies among the features through the vector-based self-attention and
the learnable position coding; (3) the shape features extracted by the convolutional net-
work are processed by the self-attention with the pyramidal structure so that the network
can fully establish the global feature dependencies while extracting the feature infor-
mation more accurately.

3. MixFormer
In this paper, we propose a vector self-attention convolutional network, MixFormer,

applied to 3D mesh models from the perspective of local feature learning to establish
global feature dependencies. The specific network model design is shown in Figure 1,
which can be divided into the following two major blocks.

Figure 1. MixFormer network structure and 3D target processing flow. MixFormer can be viewed
as two blocks: a mesh CNN block and mesh transformer block. A mesh CNN block can acquire local
surface features of the 3D mesh model and use them as Token input to the mesh transformer block.
The block learns global features by building dependencies between local surface features. The
learned features can be used for downstream tasks such as classification and segmentation.

1. 3D mesh convolution block: For the input 3D mesh data, the 3D mesh convolution
block defines the local surface by polynomial expression, and acquires the 3D convo-
lution kernel by aggregating the local surface features through clustering operation.
Then the data is reduced by 3D sampling to get the shape feature representation of
3D mesh model data.

2. 3D mesh transformer block: for the shape feature representation of the 3D mesh
model data obtained after processing by the convolution block, the spatial feature
information of the 3D mesh model is introduced through the learnable position en-
coding, and the global dependency of its high-level semantic features is established
using the vector self-attention, so as to realize the downstream tasks such as classifi-
cation and semantic segmentation of the 3D mesh models.
Compared with previous methods, this method has the following advantages: (1) A

learnable 3D convolutional kernel template is introduced to cope with the problem that
traditional convolutional operations are difficult to apply to 3D mesh models. (2) The
transformer block, which is suitable for establishing long-distance dependencies, is intro-
duced to learn the association between global features and make up for the deficiency of
the convolution block in learning long-distance features. (3) The combination of the con-
volution block and the transformer block, which learns the shape features in the 3D mesh

Algorithms 2023, 16, 171 5 of 17

model through the pre-convolution operation and then establishes the association be-
tween the features through the transformer block, makes MixFormer achieve good classi-
fication and segmentation results without building a multi-level network architecture.
Compared with other network models applied to 3D mesh models, the number of param-
eters and computational effort is significantly reduced.

3.1. 3D Mesh Convolution Block
To perform convolutional operations on surface features of complex 3D mesh mod-

els, a polynomial convolutional kernel is designed in this paper. The method is described
as follows.

Taking the vertices of the 3D mesh model as the center of the window, we first per-
form a breadth-first search on each vertex to obtain its K-neighborhood, and call the 3D
mesh surface formed by the vertices and interconnected edges contained in its K-neigh-
borhood a local surface window. For the local surface window, we define the polynomial
representation equation of the local surface and fit the surface by weight learning to obtain
the polynomial expression of the local surface. The obtained polynomials for local surfaces
are then clustered to extract the 25 surface shapes commonly found in the model as the
base convolution kernels. The similarity of each local surface to the basic surface convo-
lution kernel is obtained by convolving each local surface using the basic surface convo-
lution kernel. This is used as the local surface feature of the vertex neighborhood.

3.1.1. Mesh Local Surface Representation
First of all, since the same model in the 3D model undergoes translation or rotation,

its polynomial expression parameters are changed accordingly. In order to eliminate the
effect of translation and rotation on the features, the grid window needs to be orthogo-
nalized so that its window center is the origin of the new coordinate system (translation)
and its normal vector is the z-axis of the new coordinate system (rotation).

Second, for each vertex’s K-neighborhood, we have the following definition. 𝑉win-i = ൛𝑣௝ ∈ 𝑉௜ି௡௘௜ , 𝑗 = 1,2,⋯ ,𝐾 − 1ൟ (1) 𝐸win-i = ሼ(𝑣௔,𝑣௕) ∣ 𝑣௔, 𝑣௕ ∈ 𝑉win-i ሽ (2)

Here 𝑉௜ି௡௘௜ denotes the set of vertices contained in the K-neighborhood of vertex 𝑣௜, 𝑉win-i is the set of vertices contained in the window with vertex 𝑣௜ as the window center,
and 𝐸win-i is the set of edges contained in the window with vertex 𝑣௜ as the window center.

Since the local window contains only a small amount of 3D surface mesh when the
local window is designed small, the ability to aggregate its neighborhood information is
limited. Moreover, when the window is designed larger, the window shape becomes com-
plex, and the original 3D coordinates of the vertices alone are not sufficient to describe the
mesh features. Therefore, geodesic distances are introduced in related works. However,
the calculation of geodesic distance often requires a lot of computational resources, so
block distance d is chosen as the approximation of geodesic distance.

Therefore, the fitting function of the local window is shown in Equation (3). 𝐹(𝑣ୡ ∣ 𝜃) = 𝑧 − (𝜃଴ + 𝜃ଵ𝑥 + 𝜃ଶ𝑦 + 𝜃ଷ𝑑 + 𝜃ସ𝑥ଶ + 𝜃ହ𝑦ଶ + 𝜃଺𝑑ଶ + 𝜃଻𝑥𝑦 + 𝜃଼𝑥𝑑 + 𝜃ଽ𝑦𝑑) (3)

Let the fitting function 𝐹(𝑣ୡ ∣ 𝜃) of the local window surface equal to 0, train the
learnable parameters 𝜃୧ therein, and fit the local surface polynomial. The function 𝐹(𝑣ୡ ∣ 𝜃) obtained after fitting is the approximate representation of the local window.

In the training process, the loss function is the mean loss:

𝐿௙ = 1𝐾෍  ௏
௩ 𝐹(𝑣ୡ ∣ 𝜃) (4)

Algorithms 2023, 16, 171 6 of 17

In order to obtain the basis surfaces in the model as the base convolution kernel, the
obtained local window expression features need to be clustered. In this paper, it is divided
into 25 types of basis surfaces. The feature representation of the base surface obtained by
clustering is the base convolution kernel. Finally, we use the base convolution kernel to
convolve each positive-definite local surface to obtain the similarity between the local sur-
face and the base surface as its shape features.

3.1.2. Similarity Measure
In order to perform the clustering operation on the local window, the similarity def-

inition of the local surface polynomials is needed to evaluate the clustering effect. To de-
fine the similarity between local surfaces, in this paper, the average distance between sur-
faces is used as a measure of the similarity between surfaces. For this purpose, combined
with Equation (3), we have the following equation: Dist (𝑆௜ , 𝑆௧) = ෍  ௩ೕ∈ௌ೔ |𝐹൫𝑣௝ ∣ 𝜃௧൯| (5)

where the surface polynomials 𝐹(𝑣௜ ∣ 𝜃) and 𝐹(𝑣௧ ∣ 𝜃) corresponding to the local surface 𝑆௜ and the target surface 𝑆௧ (the center of clustering), respectively. |𝐹൫𝑣௝ ∣ 𝜃௧൯| denotes
the distance between the points of the local surface 𝑆௜ and the target surface 𝑆௧. Since
Equation (5) only represents the one-way distance, to reduce loss, we define a two-way
difference metric based on Equation (5). DIF (𝑆௜ ,𝑆௧) = 12 ൫Dist (𝑆௜, 𝑆௧) + Dist (𝑆௧,𝑆௜)൯ (6)

For each local spatial surface of the 3D mesh model, the polynomial representation
function is 𝐹(𝑣ୡ ∣ 𝜃). We assume that the local space surfaces in the 3D mesh model obey
a Gaussian distribution on the data with variance σ and mean µ. Then, for any local space
surface 𝑆௜, the probability that the surface belongs to the target surface is Equation (7). 𝑃(𝑆௜ ∣ 𝜃,𝜎) = 1√2𝜋𝜎ଶ expቆ−∑  ௩೔∈ௌ೔ (𝐹௜(𝑣௜|𝜃) − 𝜇)ଶ2𝜎ଶ ቇ (7)

3.1.3. Definition of 3D Convolution Operations
In the convolution operation of 2D images, the 2D convolution kernel convolves the

local image, the essence of which can be understood as computing the similarity between
the 2D convolution kernel and the local image. In Section 3.1.2, we define the similarity
function 𝑃(𝑆௜ ∣ 𝜃,𝜎), which is used to perform the clustering operation on the local sur-
face windows to obtain the standard surface windows (clustering centers). The standard
surface window obtained by the clustering operation can be used as a 3D convolution
kernel for the 3D convolution operation. The 3D convolution operation is the process of
calculating the 3D convolution kernel and the local surface window, so the similarity
measure can still be used in Equation (7).

To make the similarity function 𝑃(𝑆௜ ∣ 𝜃,𝜎) closer to the common convolution oper-
ation, taking the logarithm of the full probability equation yields. ln𝑃(𝑆௜ ∣ 𝜃,𝜎) = − 12𝜎ଶ × ෍  ௩೔∈ௌ 1 × (𝐹(𝑣௜|𝜃)− 𝜇)ଶ − 12 ln ඥ2𝜋𝜎ଶ (8)

This formula can be converted into a convolution formula: 𝐘 = 𝐖𝐗 + b (9) 𝐗 represents the feature vector (𝑥ଵ, 𝑥ଶ, … , 𝑥௞) and 𝑥௜ represents the feature at vertex 𝑣௜. For example 0, 1 can represent the presence or absence of vertex 𝑣௜ on a local surface,

Algorithms 2023, 16, 171 7 of 17

where 𝐖 represents the weight vector (𝑤ଵ,𝑤ଶ, … ,𝑤௞), and b represents the bias corre-
sponding to the feature vector. 𝑤௜ = − 12𝜎ଶ × ෍  ௩೔∈ௌ 1 × (𝐹(𝑣௜|𝜃) − 𝜇)ଶ (10)

𝑏 = −12 ln ඥ2𝜋𝜎ଶ (11)

3.1.4. Three-Dimensional Sampling
After the convolution operation by the polynomial convolution kernel, each vertex

aggregates the local surface features of its neighborhood. However, this introduces a new
problem, as each vertex contains the local surface features of its neighborhood, so there is
a large amount of data redundancy. To reduce the amount of data in the network, 3D
sampling can be performed based on the vertices.

Unlike the 3D point cloud models, the 3D mesh models represent the contour fea-
tures of the model by the combination of vertices and triangulated facets, and the vertices
and triangulated facets are also not uniformly distributed on the model, showing a partly
dense and partly sparse feature. Therefore, if the vertices are to be sampled, the farthest
sampling method, which is commonly used in point cloud models to cover all points in
space as uniformly as possible, is not very suitable for 3D mesh models. To solve this
problem, we found that Poisson disk sampling can achieve uniform sampling according
to the model contour.

The algorithm for Poisson disk sampling is shown in Algorithm 1.

Algorithm 1: Poisson disk sampling
Input: Input vector 𝑥௜, desired number of samples 𝑁
Output: Output vector 𝑦௝
1. Build a kd tree for samples
2. Allocate a heap 𝑆௜ for each sample to store the weights 𝑤௜
3. Assign initialized weights to each sample. 𝑤௜ = ∑ 𝑤௜௝௝

𝑤௜௝ =
⎝⎜
⎜⎛1 − 𝑑መ௜௝2ඨ 𝐴ଷ4√2𝑁య ⎠⎟

⎟⎞
଼

4. While number of samples > desired:
 𝑆௝ ← pull the top sample from heap
 For each sample 𝑆௜ around 𝑆௝
 Remove 𝑤௜௝ from 𝑤௜
 Update the heap position of 𝑤௜

3.2. 3D Mesh Transformer Block
Through the 3D convolution operation, we extract the local shape features of the 3D

mesh model. In order to establish the dependencies between the features, the local shape
features of the 3D mesh model need to be input into the 3D mesh transformer block. The
core structure of the 3D mesh transformer block is shown in Figure 2.

Algorithms 2023, 16, 171 8 of 17

Figure 2. 3D mesh transformer block.

Considering the disorder of data in the 3D mesh model, i.e., the model features of the
vertices in the 3D mesh are independent of the input order, an MLP network with shared
weights is introduced in the first layer of the network to eliminate the effect of input order
and extract the 3D mesh model features, feature mapping is performed for local shape
features, and then the 3D mesh is mapped through multiple transformer layer and down
layers to The global features of the model are then learned through multiple transformer
layers and down layers. Finally, the features of the model are aggregated by a global max-
imum pooling operation and the model type is predicted by an MLP layer. For semantic
segmentation operation, the transformer up layer is introduced to restore features to pre-
dict the semantic labels of mesh. The internal implementation of the transformer layer,
down layer, and up layer is shown in Figure 3.

Figure 3. Internal implementation of transformer layer, transformer down layer, and transformer
up layer.

3.2.1. Vector Self-Attention
The core of the model is the transformer layer containing residual blocks. vector self-

attentiveness enables the exchange between local features and the acquisition of associa-
tions between global features. By linear mapping, the dimensionality of the data com-
puted by the vector-based self-attention can be reduced.

The input of the traditional transformer’s self-attention contains three matrices, 𝑸 ∈ℝ௡×஽ೖ , 𝑲 ∈ ℝ௠×஽ೖ , and 𝑽 ∈ ℝ௠×஽ೡ . 𝑸,𝑲 ,𝑽′ represent query, key, and value. 𝐾 , 𝑉′ is
like a key–value relationship, which is a one-to-one correspondence. Attention (𝑸,𝑲,𝑽) = softmax (𝑸𝑲ୃ + 𝑝𝑜𝑠)𝑽′ (12)

Self-attentions can be divided into two categories: scalar self-attentions and vector
self-attentions.

The scalar self-attention can be expressed as Equation (13).

Algorithms 2023, 16, 171 9 of 17

o௜ = ෍  𝐱೔∈𝓧 𝜓൫(𝒒௜)ୃ𝒌௝ + 𝑝𝑜𝑠൯𝒗′௝ (13)

Corresponding to each input feature 𝒙௜, o௜ is the output feature. ψ is a normalization
function, such as softmax. pos is a position encoding function. q, k, and v represent the query,
key, and value generated by the corresponding 𝒙௜. It can be expressed as Equation (14). 𝒒௜ = 𝑄(𝒙௜) 𝒌௜ = 𝐾(𝒙௜) 𝒗′௜ = 𝑉′(𝒙௜) (14) 𝑄, 𝐾, and 𝑉′ are affine transformations, such as linear mappings or multilayer per-
ceptrons.

In vector self-attentions, the representation of the self-attentive functions differs, like
in Equation (15). 𝐨௜ = ෍  𝐱ೕ∈𝓧(𝐢) 𝜓൫𝛼(𝜑൫𝒒௜ ,𝒌௝൯) + 𝒑𝒐𝒔൯⊙ (𝒗′௝ + 𝒑𝒐𝒔) (15) 𝓧(𝐢) is the set of vertices representing the vertices adjacent to 𝐱𝐢, and φ is a correla-
tion function, e.g., +, −, ×, or ⊙. α is a mapping function that maps a self-attentive vector
to a self-attentive feature, e.g., MLP.

For the 3D mesh model, the 3D mesh transformer layer used in this paper is based
on the vector transformer design. The obtained self-attention function is as follows. 𝐨௜ = ෍  𝐱ೕ∈𝒳(𝐢) 𝜓൫𝛼(𝒒௜ ⊙ 𝒌௝) + 𝒑𝒐𝒔൯⊙ (𝒗′௝ + 𝒑𝒐𝒔) (16) 𝓧(𝐢) is the set representing the vertices adjacent to 𝐱𝐢 (in this experiment it is the
nearest neighbor k vertices), and the local self-attention mechanism is applied in the local
neighborhood around each vertex. The correlation function φ is chosen as the Hadamard
product, and the mapping α function is an MLP with two linear layers and a Relu layer.

3.2.2. Learnable Position Encoding
In the self-attention, positional encoding can mark the relative position relationship

between elements and introduce more spatial information. Therefore, positional encoding
is often introduced to enhance the model effect in natural language processing or 2D im-
age processing. In the 3D model, its original 3D coordinate information can reflect the
position relationship between elements, in order to eliminate the influence of the coordi-
nate system and coordinate scale on the results. We introduce a learnable position encod-
ing method. 𝒑𝒐𝒔 = 𝛽(𝒑௜ − 𝒑௝) (17) 𝒑௜ and 𝒑௝ denote the 3D coordinates corresponding to the vertices 𝑣௜ and 𝑣௝ of the
3D mesh model. β is an MLP with two linear layers and a Relu layer.

After processing by the transformer layer, new semantic features are obtained after
performing local feature fusion. To reduce the number of parameters, a down layer is in-
troduced to sample tokens. First, the input is sampled, and for processing convenience,
the sampling function here is the farthest point sampling. Since some feature information
is lost after sampling, the KNN method is introduced. The sampled tokens that aggregate
the feature information of their K-neighborhoods are obtained by an MLP layer consisting
of normalization and Relu and a K-neighborhood local maximum pooling layer.

3.2.3. Transformer Down Layer
To extract the low-level features into high-level features and reduce the feature di-

mension, we design the transformer down layer. The transformer down layer is shown in
Figure 3b. Where X represents the input feature vector and P represents the input vertex

Algorithms 2023, 16, 171 10 of 17

set. Xnew represents the output feature vector and Pnew represents the output feature vector.
First, by sampling, we select a well-distributed subset of vertices Pnew, Pnew ∈ P. To pool
the feature vector X associated with P onto the feature vector Xnew associated with Pnew, we
use KNN for P and then max-pool each point in P from the K neighboring points in P.

3.2.4. Transformer Up Layer
For the semantic segmentation task, we combine the main modules of MixFormer with

the U-net network. To decode the feature information extracted by the network, we de-
signed the transformer up layer to map features from the set of downsampled input points
P to its superset Pnew. The transformer up layer is shown in Figure 3c. For this purpose, each
input point feature is processed by a linear layer, followed by batch normalization and Relu,
and then the features are mapped to a higher resolution point set Pnew by trilinear interpola-
tion. Finally, the interpolated features from the previous decoder level are provided with
the corresponding encoder-level feature summaries by a jump connection.

3.3. Time Complexity Analysis
At the end of this chapter, we will discuss the time complexity of the methods in this

paper.
In the mesh CNN block, we use Equation (7) to perform the similarity measure be-

tween the 3D convolution kernel and the local surfaces, which is calculated only with re-
spect to the number of points in the local surfaces, and the number of points in the local
surfaces is a custom constant K, so the similarity calculation time is a constant 𝑡. To obtain
a specified number k of standard surfaces as 3D convolution kernels by clustering, all n
local surfaces need to be traversed to calculate similarity. The time complexity is O(I ∗ n ∗ k ∗ t). In order to perform 3D convolution operation on a 3D mesh model using
3D convolution kernels, each convolution kernel needs to calculate similarity with all local
surfaces, so the time complexity of convolution operation is O(n ∗ k ∗ t) . In summary,
without considering the operations of the downsampling and local surface division, the
time complexity of the 3D convolution module is O(I ∗ n ∗ k ∗ t + n ∗ k ∗ t), where I, k, and
t can be regarded as constants, so the time complexity can be simplified to O(n).

In the mesh transformer block, the time complexity is mainly focused on the opera-
tions of the self-attention. For the self-attention operation of layer L, the input token num-
ber is N/4L, and the feature dimension d is 64*2L−1. Therefore, the time complexity of self-
attention is O((N/4L)2d), where d and 4L can be regarded as constants, so the time com-
plexity can be simplified to O(N2).

4. Results and Discussion
In this section, we verify the effectiveness of our method in two applications: 3D mesh

model classification and surface semantic segmentation. The network design details of the
experiments are shown in Figure 4. We also have done ablation experiments for the sam-
pling method, for the related function, and for the position encoding. We also tried differ-
ent parameters in the mesh transformer block to explore the effect of the number of trans-
former layers and transformer output layer dimension on the experimental results.

The experimental host configuration is NVIDIA GeForce RTX 2080 Ti graphics card,
Intel(R) Core(TM) i5-9600 CPU processor, and 32G RAM.

Algorithms 2023, 16, 171 11 of 17

Figure 4. MixFormer segmentation network (up) and classification network (down).

4.1. Model Parameters
The network model is built based on the Pytorch framework with Pytorch version

1.8.1. The 3D mesh model data is first convolved by the 3D mesh convolution block, and
the convolved surface window is taken with the vertex as the center, and the neighbor-
hood range is 152 vertices close to the vertex. The vertices with the convolved surface
information aggregated to the neighborhood are sampled by Poisson disk to take 10% of
the points, which are then mapped to the feature space by the MLP layer and input to the
3D mesh transformer block.

4.2. Classification Experiments
4.2.1. Classification Experiments Based on SHREC15 Dataset

The SHREC15 dataset is derived from SHREC11 and SHREC14 and contains both
rigid and non-rigid models. The SHREC15 dataset contains 50 categories with 24 models
in each category, for a total of 1200 3D mesh models. The maximum mesh resolution in
the dataset is 60,210 vertices, and the average mesh resolution is 21,141 vertices. In the
ratio of 3:1, 18 3D mesh models are randomly selected from each category as the training
set and the rest as the test set.

In order to verify the classification effect of MixFormer proposed in this paper, this
paper compares the traditional manual feature-based classification method SPH with the
3D convolution-based classification methods MeshNet and MeshCNN. The accuracy and
parametric number comparison of each method for classification in the SHREC15 dataset
are given in Table 1.

Table 1. Classification accuracy of different methods on SHREC15.

Method
Class Accuracy/%

Accuracy/%
Alien Ants Cat Dog1 Dog2 Man Shark Santa Pliers Glasses Camel

SPH 87.4 86.2 90.4 89.3 86.7 89.1 90.2 89.4 87.1 89.9 88.1 88.2
MeshNet 89.5 89.6 89.6 91.4 90.5 90.8 90.1 89.8 88.0 91.4 90.3 90.4

MeshCNN 91.2 91.4 92.1 90.2 93.7 91.6 92.7 90.5 91.8 90.4 90.3 91.7
Ours 100 100 100 87.5 100 100 100 100 100 100 75.0 96.7

Due to the large number of classes included in SHREC15, only the class classification
accuracies and the average accuracy of each method for all real columns for 11 of these
models are shown in Table 1. It can be seen that the classification effect of the MixFormer
proposed in this paper is better than other comparison methods, and the classification
accuracy is 96.7%, which is 5 percentage points better than the optimal method MeshCNN
among the comparison methods. This shows that the MixFormer proposed in this paper
does have a good ability to learn features on 3D grid models and can achieve good classi-
fication results without deep network architecture

Algorithms 2023, 16, 171 12 of 17

Table 2 compares the time and space complexity of the methods in this paper with
those of other classification methods. The column Parmas shows the total number of pa-
rameters of the network, and the column FLOPs shows the number of floating point op-
erations performed on each input sample, representing the spatial and temporal complex-
ity, respectively. By learning local feature information through the front 3D grid convolu-
tion module and establishing dependencies between features through the 3D grid trans-
former, MixFormer has a stronger feature learning capability, so good learning results can
be achieved without stacking multiple layers and with less computational overhead.

Table 2. Comparison of the classification accuracy of different pooling sampling methods.

Method Parmas/M FLOPs/109 Accuracy/%
SPH 2.4 4.4 88.2

MeshNet 4.3 5.1 90.4
MeshCNN 1.3 5.0 91.7

Ours 0.8 1.2 96.7

4.2.2. Classification Results Based on the Manifold40 Dataset
Manifold40 [46] is derived from the ModelNet40 dataset, which is a new dataset con-

tributed by Hu et al. after repairing the models in ModelNet40 to tight manifolds. In the
Manifold40 dataset, 12,300 models with 40 categories are included. Manifold40 is more
challenging due to the reconstruction error and simplification distortion in the Manifolds
dataset.

To further validate the classification effect of the proposed MixFormer proposed in
this paper, experiment was also conducted on the Manifold40 dataset and compared with
the vertex-based methods: PointNet++ and PCT, and the mesh feature-based methods:
MeshNet, MeshWalker, and SubdivNet. The accuracy of the classification of each method
on the Manifold40 dataset is given in Table 3.

Table 3. Classification accuracy of different methods on Manifold40.

Method Accuracy/%
PointNet++ [47] 87.9

PCT [20] 92.4
MeshNet [16] 88.4

MeshWalker [48] 90.5
SubdivNet [46] 91.5

Ours 93.6

From the comparison of the point cloud methods, it can be seen that the transformer-
based PCT method works better than the PointNet++ based on multilayer convolutional
networks, which implies that it may be important to obtain the dependencies of global
features by introducing the transformer structure. From the comparison applied to the 3D
grid model, it can be seen that the method in this paper improves by 2.1 percentage points
over the SubdivNet method, which is the best among the compared methods, further in-
dicating that the self-supervised convolutional architecture proposed by the method in
this paper can learn the 3D mesh model features better.

4.3. Semantic Segmentation Experiments
To validate the feature learning effect of the proposed MixFormer in this paper, we

used 370 models from SCAPE, FAUST, MIT, and Adobe Fuse as training data and 18 mod-
els from the human category in the SHREC07 dataset as test data. All models were seg-
mented by Maron [49]et al. into eight categories of labels: head, torso, thigh, forearm, hand
thigh, calf, and foot.

Algorithms 2023, 16, 171 13 of 17

We combined the main module of MixFormer with the U-Net network to use the
acquired model features for downstream tasks, such as semantic segmentation. Limited
by the memory size of the graphics card, we first downsampled the model to 1024 local
surfaces during the training process, and then predicted the human model. The semantic
segmentation effect is shown in Figure 5.

Figure 5. 3D human model torso structure semantic segmentation effect visualization (each part of
the human body is marked with the following colors. Head: orange, torso: yellow, arms: green,
forearms: light blue, hands: purple, thighs: root color, calves: dark blue, and feet: red).

From the segmentation visualization results, it can be seen that the proposed Mix-
Former has good feature extraction ability and the ability to establish inter-feature de-
pendencies, and can clearly delineate all parts of the human body and achieve good seg-
mentation results. On the sampled model, mIoU is 0.849. However, some errors do exist
at the joint demarcation line, which may be due to the fact that the marker of the model is
not particularly fine and the joint demarcation line is difficult to define from the semantic
point of view.

4.4. Ablation Experiments
To verify the effectiveness of the sampling method in MixFormer and the feature ex-

traction method in transformer block, the following sets of ablation experiments are done
for the sampling method, the correlation function, and the position encoding, respectively.

4.4.1. Sampling Method Validity
For the sampling methods, we selected random point sampling, farthest point sam-

pling, and Poisson disk sampling for comparison. The experimental results are shown in
Table 4. Compared with the other sampling methods, the sampling points selected by the
Poisson disk can better reflect the surface contour characteristics of the original 3D mesh
model. As far as the classification results are concerned, the Poisson disk sampling is used
for data preprocessing to obtain better classification results for the classification network,
96.7%, which is 3.6 percentage points higher than the optimal method of farthest point
sampling among the compared methods.

Table 4. Classification accuracy of different sampling methods.

Method Accuracy/%
Random sampling 92.76

Farthest point sampling 93.17
Poisson disc sampling 96.76

Algorithms 2023, 16, 171 14 of 17

4.4.2. Related Function
In the scalar transformer, the similarity is often calculated by dot product operation.

In this paper, we adopt a vector transformer, which uses addition, subtraction, Hadamard
product, or splicing as the correlation function, and obtains the vector output by the cor-
relation function φ, which is used to measure the similarity between vectors. The experi-
mental results in Table 5 show that compared with the traditional dot product operation
of the scalar transformer, better classification results are often achieved by using the vector
transformer, which indicates that the vector transformer may be more suitable than the
scalar transformer for extracting the spatial features of the 3D mesh model. When the
Hadamard product is used as the correlation function, a good classification result can be
obtained with a relatively low number of parameters and arithmetic power consumption.

Table 5. Classification accuracy of different correlation functions.

Related Function 𝝋 Parmas/M FLOPs/109 Accuracy/%
Add 0.75 1.02 93.17

Subtraction 0.75 1.02 96.33
Had. product 0.75 1.02 96.76
Concatenation 0.80 1.24 94.33

Dot product 0.84 2.42 93.28

4.4.3. Position Encoding
For location coding, the following experiments were also conducted in this paper to

compare several different location coding methods. As can be seen in Table 6, the classifica-
tion accuracy of the model is 92.79% when no location encoding is introduced. When the
conventional relative location encoding is introduced, the classification accuracy of the
model improves to 94.08%, indicating that location encoding can indeed model the location
relationship between tokens and introduce spatial information. The classification accuracy
is further hinted at when we introduce the learnable location encoding, indicating that the
learnable location encoding method can indeed better model the relative location and de-
pendency relationships among tokens. To further explore the sensitivity of each part to lo-
cation encoding, we acted location encoding on the attention part and feature part sepa-
rately, and the experimental results showed that the attention part was more sensitive to
location encoding. In this network, the learnable location encoding acting on the attention
part and feature part together can achieve the optimal feature learning effect of 96.76%,
which is nearly 4% higher than that without the introduction of location encoding.

Table 6. Classification accuracy with different Position encoding.

Position Encoding Parmas/M FLOPs/109 Accuracy/%
None 0.64 1.02 92.79

Absolute 0.68 1.02 94.08
Relative for attention 0.75 1.02 95.44
Relative for feature 0.75 1.02 94.17

Relative for both 0.75 1.02 96.76

4.4.4. Number of Mesh Transformer Blocks
For the number of mesh transformer blocks, this paper tries different numbers of

transformer blocks to explore their effects on the experimental results. From Table 7, we
can see that the model performs best when the number of blocks is 2. When there are fewer
transformer blocks, the network may not have enough deep-learning features. When there
are more transformer blocks, the number of tokens input to the deep transformer block
decreases and the token semantic information is blurred, and too many parameters are
also introduced, which may reduce the network performance.

Algorithms 2023, 16, 171 15 of 17

Table 7. Effect of the number of mesh transformer blocks on the classification accuracy.

Number of Transformer Blocks Accuracy/%
1 92.7
2 96.7
3 87.4
4 75.2

4.4.5. Feature Dimensions of the Output Layer
We also tried different output layer feature dimensions to explore their effects on the

model performance, and the experimental results are shown in Table 8. The network per-
formance is optimal when the output layer feature dimension is 256.

Table 8. Classification accuracy with different dimensions of the output layer.

Output Layer Dimension Accuracy/%
128 93.4
256 96.7
512 92.6

1024 87.3

5. Conclusions
Experiments show that the proposed MixFormer in this paper can achieve 96.7% clas-

sification accuracy on the dataset SHREC15, which is better than the rest of the methods
applied to 3D mesh models, demonstrating the classification capability of the network.
Moreover, we made a simple attempt at its semantic segmentation effect on the 3D mesh
model to further demonstrate the feature learning capability of the network through a
downstream task. Finally, ablation experiments were also performed to explore the effect
of various factors on the network performance. In subsequent studies, its application to
the semantic segmentation task of 3D mesh models or the introduction of a transformer
decoder module for tasks such as unsupervised model generation can be further investi-
gated in depth.

Author Contributions: Conceptualization, L.H., J.Z. and Y.C.; methodology, L.H., J.Z. and Y.C. All
authors have read and agreed to the published version of the manuscript.

Funding: Supported by General Program of National Natural Science Foundation of China (No.
62071260 and No.62006131). Supported by General Program of National Natural Science Founda-
tion of Zhejiang Province (No. LZ22F020001).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Hazard, C.; Bhagat, A.; Buddharaju, B.R.; Liu, Z.; Shao, Y.; Lu, L.; Omari, S.; Cui, H. Importance Is in Your Attention: Agent Importance

Prediction for Autonomous Driving. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), New Orleans, LA, USA, 19–20 June 2022; pp. 2531–2534. https://doi.org/10.1109/CVPRW56347.2022.00284.

2. Klingner, M.; Muller, K.; Mirzaie, M.; Breitenstein, J.; Termohlen, J.-A.; Fingscheidt, T. On the Choice of Data for Efficient Training and
Validation of End-to-End Driving Models. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), New Orleans, LA, USA, 19–20 June 2022; pp. 4802–4811.
https://doi.org/10.1109/CVPRW56347.2022.00527.

3. Wang, J.; Li, X.; Sullivan, A.; Abbott, L.; Chen, S. PointMotionNet: Point-Wise Motion Learning for Large-Scale LiDAR Point Clouds
Sequences. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
New Orleans, LA, USA, 19–20 June 2022; pp. 4418–4427. https://doi.org/10.1109/CVPRW56347.2022.00488.

4. Grishchenko, I.; Ablavatski, A.; Kartynnik, Y.; Raveendran, K.; Grundmann, M. Attention Mesh: High-Fidelity Face Mesh Prediction
in Real-Time. arXiv 2020, arXiv:2006.10962. .

Algorithms 2023, 16, 171 16 of 17

5. Cohn, B.A.; Maselli, A.; Ofek, E.; Gonzalez-Franco, M. SnapMove: Movement Projection Mapping in Virtual Reality. In Proceedings
of the 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), Utrecht, The Netherlands, 14–18 De-
cember 2020; pp. 74–81. https://doi.org/10.1109/AIVR50618.2020.00024.

6. Zamanakos, G.; Tsochatzidis, L.; Amanatiadis, A.; Pratikakis, I. A Comprehensive Survey of LIDAR-Based 3D Object Detection Meth-
ods with Deep Learning for Autonomous Driving. Comput. Graph. 2021, 99, 153–181. https://doi.org/10.1016/j.cag.2021.07.003.

7. (Han, X.-F.; Laga, H.; Bennamoun, M. Image-Based 3D Object Reconstruction: State-of-the-Art and Trends in the Deep Learning Era.
IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1578–1604. https://doi.org/10.1109/TPAMI.2019.2954885.

8. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern Anal.
Mach. Intell. 2021, 43, 4338–4364. https://doi.org/10.1109/TPAMI.2020.3005434.

9. Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995.
https://doi.org/10.1109/CVPR.2017.634.

10. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
https://doi.org/10.1109/CVPR.2016.90.

11. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2020, arXiv:1905.11946.
12. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017,

60, 84–90. https://doi.org/10.1145/3065386.
13. Chen, Y.; Yang, J.; Luo, L.; Zhang, H.; Qian, J.; Tai, Y.; Zhang, J. Adaptive Noise Dictionary Construction via IRRPCA for Face Recog-

nition. Pattern Recognit. 2016, 59, 26–41. https://doi.org/10.1016/j.patcog.2016.02.005.
14. Qian, J.; Wong, W.K.; Zhang, H.; Xie, J.; Yang, J. Joint Optimal Transport with Convex Regularization for Robust Image Classification.

IEEE Trans. Cybern. 2022, 52, 1553–1564. https://doi.org/10.1109/TCYB.2020.2991219.
15. Milano, F.; Loquercio, A.; Rosinol, A.; Scaramuzza, D.; Carlone, L. Primal-Dual Mesh Convolutional Neural Networks. In Advances

in Neural Information Processing Systems, Red Hook, NY, 6-12 December 2020; Volume 33; pp. 952–963.
16. Feng, Y.; Feng, Y.; You, H.; Zhao, X.; Gao, Y. MeshNet: Mesh Neural Network for 3D Shape Representation. Proc. AAAI Conf. Artif.

Intell. 2019, 33, 8279–8286. https://doi.org/10.1609/aaai.v33i01.33018279.
17. Hanocka, R.; Hertz, A.; Fish, N.; Giryes, R.; Fleishman, S.; Cohen-Or, D. MeshCNN: A Network with an Edge. ACM Trans. Graph. 2019,

38, 1–12. https://doi.org/10.1145/3306346.3322959 .
18. Xu, H.; Dong, M.; Zhong, Z. Directionally Convolutional Networks for 3D Shape Segmentation. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2698–2707.
19. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing between Capsules. Adv. Neural Inf. Process. Syst. 2017, 30, 3859–3869.
20. Guo, M.-H.; Cai, J.-X.; Liu, Z.-N.; Mu, T.-J.; Martin, R.R.; Hu, S.-M. Pct: Point Cloud Transformer. Comput. Vis. Media 2021, 7, 187–199.
21. Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.; Koltun, V. Point Transformer. In Proceedings of the IEEE/CVF International Conference on Com-

puter Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 16259–16268.
22. Lin, K.; Wang, L.; Liu, Z. End-to-End Human Pose and Mesh Reconstruction with Transformers. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1954–1963.
23. Hua, W.; Dai, Z.; Liu, H.; Le, Q. Transformer Quality in Linear Time. In Proceedings of the International Conference on Machine

Learning, PMLR, Baltimore, MD, USA, 17–23 July 2022; pp. 9099–9117 .
24. Li, Y.; Mao, H.; Girshick, R.; He, K. Exploring Plain Vision Transformer Backbones for Object Detection. arXiv 2022, arXiv:2203.16527.
25. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans.

Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031.
26. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C. L. Microsoft COCO: Common Objects in

Context. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science;
Springer International Publishing: Cham, Switzerland, 2014; pp 740–755. https://doi.org/10.1007/978-3-319-10602-1_48.

27. Ren, S.; He, K.; Girshick, R.; Zhang, X.; Sun, J. Object Detection Networks on Convolutional Feature Maps. IEEE Trans. Pattern Anal.
Mach. Intell. 2017, 39, 1476–1481. https://doi.org/10.1109/TPAMI.2016.2601099.

28. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp.
580–587. https://doi.org/10.1109/CVPR.2014.81.

29. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Com-
put. Vis. 2010, 88, 303–338. https://doi.org/10.1007/s11263-009-0275-4.

30. Dai, J.; He, K.; Sun, J. Instance-Aware Semantic Segmentation via Multi-Task Network Cascades. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3150–3158.
https://doi.org/10.1109/CVPR.2016.343.

31. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. https://doi.org/10.1109/ICCV.2017.322.

32. Hariharan, B.; Arbeláez, P.; Girshick, R.; Malik, J. Simultaneous Detection and Segmentation. In Computer Vision—ECCV 2014; Fleet,
D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzer-
land, 2014; Volume 8695; pp 297–312.

Algorithms 2023, 16, 171 17 of 17

33. Hu, H.; Gu, J.; Zhang, Z.; Dai, J.; Wei, Y. Relation Networks for Object Detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3588–3597.

34. Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Lin, H.; Zhang, Z.; Sun, Y.; He, T.; Mueller, J.; Manmatha, R.; et al. ResNeSt: Split-Attention
Networks. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New
Orleans, LA, USA, 19–20 June 2022; pp. 2735–2745. https://doi.org/10.1109/CVPRW56347.2022.00309.

35. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In
Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Gar-
nett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.

36. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A. Language
Models Are Few-Shot Learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.

37. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models Are Unsupervised Multitask Learners. OpenAI
Blog 2019, 1, 9.

38. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A Robustly Optimized
Bert Pretraining Approach. arXiv 2019, arXiv:190711692.

39. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North; Association for Computational Linguistics: Minneapolis, MN, USA, 2019; pp.
4171–4186. https://doi.org/10.18653/v1/N19-1423.

40. Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.; Levskaya, A.; Shlens, J. Stand-Alone Self-Attention in Vision Models. Adv. Neural
Inf. Process. Syst. 2019, 32, 1–13.

41. Bello, I.; Zoph, B.; Vaswani, A.; Shlens, J.; Le, Q.V. Attention Augmented Convolutional Networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3286–3295.

42. Zhao, H.; Jia, J.; Koltun, V. Exploring Self-Attention for Image Recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10076–10085.

43. Wang, H.; Zhu, Y.; Green, B.; Adam, H.; Yuille, A.; Chen, L.-C. Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation.
In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland,
2020; pp. 108–126.

44. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly,
S. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:201011929 .

45. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted
Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021;
pp. 10012–10022.

46. Hu, S.-M.; Liu, Z.-N.; Guo, M.-H.; Cai, J.-X.; Huang, J.; Mu, T.-J.; Martin, R.R. Subdivision-Based Mesh Convolution Networks. ACM
Trans. Graph. 2022, 41, 25. https://doi.org/10.1145/3506694.

47. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Advances in
Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.;
Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.

48. Lahav, A.; Tal, A. MeshWalker: Deep Mesh Understanding by Random Walks. ACM Trans. Graph. 2020, 39, 263.
https://doi.org/10.1145/3414685.3417806.

49. Maron, H.; Galun, M.; Aigerman, N.; Trope, M.; Dym, N.; Yumer, E.; Kim, V.G.; Lipman, Y. Convolutional Neural Networks on Sur-
faces via Seamless Toric Covers. ACM Trans. Graph. 2017, 36, 71. https://doi.org/10.1145/3072959.3073616.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s)
and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or prop-
erty resulting from any ideas, methods, instructions or products referred to in the content.

