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Abstract: The efficiency and the effectiveness of a machine learning (ML) model are greatly influenced
by feature selection (FS), a crucial preprocessing step in machine learning that seeks out the ideal
set of characteristics with the maximum accuracy possible. Due to their dominance over traditional
optimization techniques, researchers are concentrating on a variety of metaheuristic (or evolutionary)
algorithms and trying to suggest cutting-edge hybrid techniques to handle FS issues. The use of
hybrid metaheuristic approaches for FS has thus been the subject of numerous research works. The
purpose of this paper is to critically assess the existing hybrid FS approaches and to give a thorough
literature review on the hybridization of different metaheuristic/evolutionary strategies that have
been employed for supporting FS. This article reviews pertinent documents on hybrid frameworks
that were published in the period from 2009 to 2022 and offers a thorough analysis of the used
techniques, classifiers, datasets, applications, assessment metrics, and schemes of hybridization.
Additionally, new open research issues and challenges are identified to pinpoint the areas that have
to be further explored for additional study.

Keywords: metaheuristics; feature selection; hybridization; evolutionary methods; classification

1. Introduction

Feature selection (FS) is a method that aims to choose the minimum required features
that can represent a dataset by selecting those features that add the most to the estimation
variable that falls within the user’s field of interest [1]. The volume of data available has
risen significantly in recent years due to advancements in data gathering techniques in
different fields, resulting in increased processing time and space complexity needed for
the implementation of architectures in the realms of machine learning (ML). The collected
data in many domains typically is of high dimensionality, making it impossible to select
an optimum range of features and exclude unnecessary ones. The employed ML models
are forced to learn insignificantly as a result of inappropriate features in the dataset, which
leads to a poor recognition rate and a large drop in outcomes. By removing unnecessary
and outdated features, FS reduces the dimensionality and improves the quality of the
resulting attribute vector [2–4]. FS has been used for various purposes, including cancer
classification (e.g., to improve the diagnosis of breast cancer and diabetes [5]), speech
recognition [6], gene prediction [7], gait analysis [8], and text mining [9], etc.

FS has a pair of essential opposing goals, namely, reducing the number of needed
characteristics and maximizing the performance of classification to overcome the curse of
dimensionality. The three principal kinds of any FS strategy are filter, wrapper, and em-
bedded methods, which integrate both filters and wrappers [10,11]. A filter technique is
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independent of any ML algorithm. It is appropriate for datasets containing fewer features,
and it often requires low-performance computing capabilities. In filtering approaches,
the association among classifiers and attributes is not considered, and thus filters often fail
to detect the samples correctly during the learning process.

Many studies have used wrappers to address these problems. A wrapper technique
frequently alters the training process and uses classifiers as assessment mechanisms. Thus,
wrapper techniques for FS often affect the training algorithm and produce more precise
results than filters. Wrappers put effort into training the employed ML algorithm by using
only a subset of the features that are also needed for determining the training model
performance. Depending on the selection accuracy determined in each preceding phase,
a wrapper algorithm considers either adding or removing a feature from the selected
number of features. As a result, wrapper methods are often more computationally complex
and more expensive than most filtering techniques.

Conventional wrapper approaches [12] take a set of attributes and require the user to
include arguments as parameters, after which the most informative attributes are chosen
from a set of features proportional to the arguments provided by the user. The limitations
of such techniques are that the selected feature vector is recursively evaluated, in which
case certain characteristics are not included at the first level for assessment. In addition,
arguments are specified by the user, and thus certain feature mixtures cannot be taken into
account even with more precision. These issues may cause searching overhead along with
overfitting. Evolutionary wrapper approaches, which are more common when the search
area is very broad, have been created to address the drawbacks of classic wrapper methods.
These approaches have many benefits over conventional wrapper methods, including
the fact that they need fewer domain details. Evolutionary optimization techniques are
population-based metaheuristic strategies that can solve a problem with multiple candidate
solutions described by a group of individuals. Each entity in the FS tasks represents a
part of the feature vector. An objective (target) function is employed to evaluate and
assess the consistency of every candidate solution. The chosen individuals are exposed to
the intervention of genetic operators in order to produce new entities that comprise the
next generation [13].

A plethora of variations of metaheuristic methods has already been developed to
support the FS tasks. When defining a metaheuristic approach, exploration and exploitation
are two opposing aspects to take into account. In order to increase the effectiveness of
these algorithms, it is essential to establish a good balance between these two aspects. This
is because the algorithms perform well in some situations but poorly in others. Every
nature-inspired approach has advantages and disadvantages of its own; hence it is not
always practical to predict which algorithm is best for a given situation [14].

Researchers [15] now face a hurdle in the implementation and high-precision sugges-
tion of modern metaheuristics for real-world applications. As a result, several researchers
are working to solve FS challenges by using hybrid metaheuristics. By merging and coordi-
nating the exploration and exploitation processes, hybridization aims to identify compatible
alternatives to ensure the best possible output of the applied optimization methods [16].
A typical strategy for addressing such issues is to combine the advantages of various
independent architectures through the hybridization of metaheuristic methods [15,17].

This review paper extends our previous work presented in [18]. The reasons for
broadening and extending the research on hybrid FS are highlighted as follows.

• The initial work [18] only focused and reviewed a limited number of papers (only 10
in number) published from 2020–2021. In order to provide a more comprehensive
overview of the field, the additional relevant research on hybrid FS from 2009–2022 is
extremely important to include in the review study.

• The current review paper deepens the scope of our research on multiple domains
covering a wide range of metaheuristic approaches and wrapper classifiers.

• The literature review presented in the current paper aims to fulfill the highly evolving
nature of research in the field of FS, and it is very important to stay up to date with the
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latest developments in order to provide the most accurate and relevant information
to the readers.

• Therefore, we believed it was important to design the current updated and extended
review paper, which will be of interest to researchers in the FS domain.

We intend to address research issues and challenges that are open and interesting
in terms of further research, and to provide a thorough overview of hybrid evolutionary
techniques used to solve FS problems. This review draws the attention of scholars working
with various metaheuristic frameworks, enabling them to further investigate enlightened
approaches for tackling the complex FS problems often encountered in big data applications
across many application domains.

The remaining parts of this review article include Section 2, which gives an outline
of feature-collection processes and important contextual information. The details of the
applied literature review on hybrid evolutionary methods for FS are presented in Section 3.
Section 4 provides analysis and guidance for future research based on the literature studies.
The last section contains the conclusions of this study. Table 1 summarizes the acronyms of
all terms used in this paper (i.e., Table 1 presents the names of all presented FS selection
methods, ML models, parameters, and corresponding evaluation metrics).

Table 1. Acronyms of the reviewed FS methods and respective evaluation metrics.

Searching Techniques

ABC Artificial Bee Colony Algorithm

ACO Ant Colony Optimization

AFSA Artificial Fish-Swarm Algorithm

AJA Adaptive Jaya Algorithm

ALO Ant Lion Optimization

Ant–Cuckoo Ant Colony Optimization-Cuckoo Search

ASO Atom Search Optimization

BALO Binary Ant Lion Optimization

BBBC Big Bang Big Crunch

BGWO Binary Grey Wolf Optimization

BGWOPSO Binary Grey Wolf Optimization-Particle Swarm Optimization

BHHO Binary Harris Hawks Optimization

BPSO Binary Particle Swarm Optimization

BSA Backtracking Optimization Search Algorithm

BSO Brain Storm Optimization

BTLBO Binary Teaching Learning-Based Optimization

CFO Central Force Optimization

ChOA Chimp Optimization Algorithm

CRO Chemical Reaction Optimization

CS Cuckoo Search

CSA Crow Search Algorithm

CSO Curved Space Optimization

CSS Charged System Search

DA Dragon Algorithm
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Table 1. Cont.

DE Differential Evolution

DPO Dolphin Partner Optimization

DSA Differential Search Algorithm

FA Firefly Algorithm

FLA Frog Leaping Algorithm

FSJaya FS-Based on Jaya optimization

GA Genetic Algorithm

GOA Grasshopper Optimization Algorithm

GSA Gravitational Search Algorithm

GSO Group Search Optimizer

GWO Grey Wolf Optimization

HBBEPSO Hybrid Binary Bat Enhanced Particle Swarm Optimization Algorithm

IBHHO Improved Binary Harris Hawks Optimization

HBO Heap-Based Optimizer

HBPSOSCA Hybrid Binary Particle Swarm Optimization and Sine Cosine Algorithm

HHO Harris Hawk Optimization

HS Harmony Search

ISA Interior Search Algorithm

JA Jaya Algorithm

KHA Krill Herd Algorithm

LCA League Championship Algorithm

MA Monkey Algorithm

MAKHA Monkey–Krill Herd Algorithm

MBA Mine Blast Algorithm

MFO Moth–Flame Optimization

MOChOA Multiobjective Chimp Optimization

MPA Marine Predators Algorithm

MVA Multiverse Algorithm

PSO Particle Swarm Optimization

QE Queen Bee Evolution

RTEA Ring Theory-Based Evolutionary Algorithm

RTHS Ring Theory-Based Harmony Search

SA Simulated Annealing

SBS Sequential Backward Selection

SCA Sine Cosine Algorithm

SDO Supply–Demand-Based Optimization

SFLA Shuffled Frog Leaping Algorithm

SFS Sequential Forward Selection

SHO Spotted Hyena Optimization

SHO-SA Spotted Hyena Optimization-Simulated Annealing

SOA Seagull Optimization Algorithm
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SPO Stochastic Paint Optimizer

SSA Salp Swarm Algorithm

TEO Thermal Exchange Optimizer

TLBO Teaching Learning-Based Optimization

TS Tabu Search

VSA Vortex Search Algorithm

WOA Whale Optimization Algorithm

Machine Learning Algorithms

ANN Artificial Neural Network

CART Classification And Regression Tree

DT Decision Tree

KNN k-Nearest Neighbor

LDA Linear Discriminant Analysis

LR Logistic Regression

NB Naive Bayes

RF Random Forest

SVM Support Vector Machine

Performance Metrics

ACC Accuracy

AUROC Area Under the Receiver Operating Characteristic

BF Best Fitness

CA Classification Accuracy

CE Classification Error

FDR False Discovery Rate

FNR False Negative Rate

FPR False Positive Rate

FSc F-Score

IGD Inverted Generational Distance

MCC Matthews Correlation Coefficient

MF Mean Fitness

MSE Mean Square Error

NFE Number of Function Evaluations

NPV Negative Predictive Value

NSF Number of Selected Features

PA Predictive Accuracy

PPV Positive Predictive Value

PR Precision

RE Recall

RT Running Time

SN Sensitivity
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Table 1. Cont.

Parameters

DBI Davies–Bouldin Index

DI Dunn Index

SI Silhouette Index

Others

EC Evolutionary Computation

FS Feature Selection

ML Machine Learning

MO Multiobjective

MRMR Minimum Redundancy Maximum Relevance

OBL Opposition-Based Learning

SO Single Objective

WRS Wilcoxon’s Rank Sum

2. Related Work

It is unusual for all properties in a considered dataset to be useful when designing
an ML platform in real life. The inclusion of unwanted and redundant attributes lessens
the model’s classification capability and accuracy. As more factors are added to an ML
framework, its complexity increases [19,20]. By finding and assembling the ideal set
of features, FS in ML aims to produce useful models of a problem under study and
consideration [21]. Some important advantages of FS are [10,12]:

• reducing overfitting and eliminating redundant data,
• improving accuracy and reducing misleading results, and
• reducing the ML algorithm training time, dropping the algorithm complexity, and speed-

ing up the training process.

The prime components of an FS process are presented in Figure 1 and they are [18] as
follows.

1. Searching Techniques: To obtain the best features with the highest accuracy, searching
approaches are required to be applied in an FS process. Exhaustive search, heuristic
search, and evolutionary computation are a few popular searching methods. An
exhaustive search is explored in a few works [19,20]. Numerous heuristic strategies
and greedy techniques, such as sequential forward selection (SFS) [22], and sequential
backward selection (SBS), have therefore been used for FS [23]. However, in later
parts of the FS process, it could be impossible to select or delete eliminated or selected
features because both SFS and SBS suffer from the “nesting effect” problem. After
being selected, features in the SFS method cannot be discarded later, while the features
discarded in the SBS cannot be selected again. These two approaches can be compro-
mised by using SFS l times and then applying SBS r times [24]. The nesting effect can
be reduced by such a method, but the correct values of l and r must be determined
carefully. Sequential backward and forward floating methods were presented to avoid
this problem [22]. A two-layer cutting plane approach was recently suggested in [23]
to evaluate the best subsets of characteristics. In [24], an exhaustive FS search with
backtracking and a heuristic search was proposed.
Various EC approaches have been proposed in recent years to tackle the challenges of
the FS problems successfully. Some of them are differential evolution (DE) [25], genetic
algorithms (GAs) [26], grey wolf optimization (GWO) [27,28], ant colony optimization
(ACO) [29–31], binary Harris hawks optimization (BHHO) [32,33] and improved
BHHO (IBHHO) [34], binary ant lion optimization (BALO) [35,36], salp swarm algo-
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rithm (SSA) [37], dragon algorithm (DA) [38], multiverse algorithm (MVA) [39], Jaya
optimization algorithms such as the FS based on the Jaya optimization algorithm
(FSJaya) [40] and the FS based on the adaptive Jaya algorithm (AJA) [41], grasshopper
swarm intelligence optimization algorithm (GOA) and its binary versions [42], binary
teaching learning-based optimization (BTLBO) [43], harmony search (HS) [44], and the
vortex search algorithm (VSA) [45], etc. All these techniques have been applied for
performing FS on various types of datasets, and they have been demonstrated to
achieve high optimization rates and to increase the CA. EC techniques require no
domain knowledge and do not presume whether the training dataset is linearly sepa-
rable or not. Another valuable aspect of EC methods is that their population-based
process can deliver several solutions in one cycle. However, EC approaches often
entail considerable computational costs because they typically include a wide range of
assessments. The stability of an EC approach is also a critical concern, as the respective
algorithms often pick different features from various rounds. Further research study
is required as the growing number of characteristics in large-scale datasets also raises
computational costs and decreases the consistency of EC algorithm application [13]
in certain real-world FS activities. A high-level description of the most used EC
algorithms is given below.

• Genetic Algorithm (GA): A GA [46] is a metaheuristic influenced by natural
selection that belongs to the larger class of evolutionary algorithms in computer
science and operations research. GA relies on biologically inspired operators,
such as mutation, crossover, and selection to develop high-quality solutions to
optimization and search challenges. The GA is a mechanism that governs biolog-
ical evolution and for tackling both constrained and unconstrained optimization
issues. The GA adjusts a population of candidate solutions on a regular basis.

• Particle Swarm Optimization (PSO): PSO is a bioinspired algorithm that is
straightforward to use while looking for the best alternative in the solution
space. It differs from other optimization techniques in that it simply requires
the objective function and is unaffected by the gradient or any differential form
of the objective. It also has a small number of hyperparameters. Kennedy and
Eberhart proposed PSO in 1995 [47]. Sociobiologists think that a school of fish or
a flock of birds moving in a group “may profit from the experience of all other
members”, as stated in the original publication. In other words, while a bird is
flying around looking for food at random, all of the birds in the flock can share
what they find and assist the entire flock to get the best hunt possible. While
we may imitate the movement of a flock of birds, we can also assume that each
bird is assisting us in locating the best solution in a high-dimensional solution
space, with the flock’s best solution being the best solution in the space. This is a
heuristic approach because we can never be certain that the true global optimal
solution exists, and it rarely does. However, we frequently discover that the PSO
solution is very close to the global optimum.

• Grey Wolf Optimizer (GWO): Mirjalili et al. [48] presented GWO as a new meta-
heuristic in 2014. The grey wolf’s social order and hunting mechanisms inspired
the algorithm. First, there are four wolves, or degrees of the social hierarchy,
to consider when creating GWO.

– The α wolf: the solution having best fitness value;
– the β wolf: the solution having second-best fitness value;
– the δ wolf: the solution having third-best fitness value; and
– the ω wolf: all other solutions.

As a result, the algorithm’s hunting mechanism is guided by the first three
appropriate wolves, α, β, and δ. The remaining wolves are regarded as ω and
follow them. Grey wolves follow a set of well-defined steps during hunting:
encircling, hunting, and attacking.
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• Harris Hawk Optimization (HHO): Heidari and his team introduced HHO as
a new metaheuristic algorithm in 2019 [49]. HHO uses Harris hawk principles
to investigate the prey, surprise pounce, and diverse assault techniques used by
Harris hawks in the environment. Hawks reflect alternatives in HHO, whereas
prey represents the best solution. The Harris hawks use their keen vision to
follow the target and then conduct a surprise pounce to seize the prey they have
spotted. In general, HHO is divided into two phases: exploitation and explo-
ration. The HHO algorithm can be switched from exploration to exploitation,
and the exploration behaviour can then be adjusted depending on the fleeing
prey’s energy.

2. Criteria for Evaluation: The common evaluation criteria for wrapper FS techniques are
the classification efficiency and effectiveness by using the selected attributes. Decision
trees (DTs), support vector machines (SVMs), naive Bayes (NB), k-nearest neighbor
(KNN), artificial neural networks (ANNs), and linear discriminant analysis (LDA)
are just a few examples of common classifiers that have been used as wrappers in
FS applications [50–52]. In the domain of filter approaches, measurements from a
variety of disciplines have been incorporated, particularly information theory, cor-
relation estimates, distance metrics, and consistency criteria [53]. Individual feature
evaluation, relying on a particular aspect, is a basic filter approach in which only
the best tier features are selected [50]. Relief [54] is a distinctive case in which a
distance metric is applied to assess the significance of features. Filter methods are
often computationally inexpensive, but they do not consider attribute relationships,
which often leads to complicated problems in case of repetitive feature sets, such as in
the case of microarray gene data, where the genes are intrinsically correlated [21,53].
To overcome these issues, it is necessary to perform proper filter measurements to
choose a suitable subset of relevant features in order to evaluate the whole feature
set. Wang et al. [55] recently published a distance measure to assess the difference
between the chosen feature space and the space spanned by all features in order to
locate a subset of features that approximates all features. Peng et al. [56] introduced
the minimum redundancy maximum relevance (MRMR) approach based on shared
information, and recommended measures were added to the EC because of their
powerful exploration capability [57,58]. A unified selection approach was proposed
by Mao and Tsang [23], which optimizes multivariate performance measures but
also results in an enormous search area for high-dimensional data, a problem that
requires strong heuristic search methods for finding the best output. There are several
relatively straightforward statistical methods, such as t-testing, logistic regression
(LR), hierarchical clustering, and classification and regression tree (CART), which can
be applied jointly to produce better classification results [59]. Recently, authors of [60]
have applied sparse LR for FS problems including millions of features. Min et al. [24]
developed a rough principle procedure to solve FS tasks under budgetary and sched-
ule constraints. Many experiments show that most filter mechanisms are inefficient
for cases with vast numbers of features [61].

3. Number of Objectives: Single-objective (SO) optimization frameworks are techniques
which combine the classifier’s accuracy and the features quantity into a single opti-
mization function. On the contrary, multiobjective (MO) optimization approaches
entail techniques designed to find and balance the tradeoffs among alternatives. In an
SO situation, a solution’s superiority over other solutions is determined by comparing
the resulting fitness values, while in an MO optimization, the dominance notion is
employed to get the best results [62]. In particular, to determine the significance of
the derived feature sets, in an MO situation, multiple criteria need to be optimized
by considering different parameters. MO strategies thus may be used to solve some
challenging problems involving multiple conflicting goals [63], and MO optimization
comprises fitness functions that minimize or maximize multiple conflicting goals.
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For example, a typical MO problem with minimization functions can be expressed
mathematically as follows,

min O(x) = [o1(x), o2(x), . . . , on(x)]
Sub to : gi(x) ≤ 0, i = 1, 2, . . . . . . , m

hi(x) = 0, i = 1, 2, . . . , l
, (1)

where x is the decision variables vector, n is the number of objectives, on(x) is the nth

objective function and gn(x) and hn(y) are the problem constraints.
Finding the balance among the competing objectives is the process that identifies the
dominance of an MO optimization approach. For example, a solution s1 dominates
another solution s2 in a minimization problem if and only if

∀ : Ok(s1) ≤ Ok(s2) and ∃l : Ol(s1) < Ol(s2) , (2)

where k, l ∈ {1, 2, . . . , n}.

Figure 1. Key factors of feature selection.
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3. A Brief Survey
Search Procedure

We adhere to the PRISMA principles for systematic reviews in our work (www.prisma-
statement.org (accessed on 19 March 2023)). The relevant research questions are developed in
accordance with these standards:

1. What are the search approaches that were utilised to find the best features?
2. What are the search algorithms utilised to choose the best features for classification?
3. What hybrid search approaches have been utilised to choose the best characteristics

for classification?

The review began by searching for relevant research on Internet sites and in the
University Teknologi PETRONAS online library. The Internet search was guided by the use
of search engines to explore the electronic libraries and databases depicted in Figure 2. The
terms “hybrid + feature selection”, “hybrid + search technique + feature selection”, and
“hybrid + search technique + feature selection + classification” were the search parameters
employed. There have been several studies on hybrid evolutionary FS. To ensure that the
search was concentrated and controllable, the following inclusion and exclusion criteria
were defined to select the publications for further study:

• Inclusion Criteria:

– Research articles on hybrid evolutionary FS must have been published between
2009 and 2022.

– Only research that has been published in peer-reviewed publications is included.
– If the study had been published in more than one journal, we select the most

complete version for inclusion.
– Only related works utilised for classification are included.

• Exclusion Criteria:

– Research articles prior to 2009 are not included.
– Papers that are unrelated to the search topic are rejected.
– Only items written in English are considered. Other languages are removed.

The papers chosen by the abovementioned search procedure were reviewed by title and
abstract in accordance with the inclusion and exclusion criteria. Then, all of the studies
identified as relevant to our topic were downloaded for information extraction and ad-
ditional investigation. Figure 2 provides information on the number of research studies
discovered during the search of the most popular computerised libraries and databases.

Figure 2. Number of papers identified.

www.prisma-statement.org
www.prisma-statement.org
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The next step was to prescreen the abstracts of the returning results. The primary goal
of prescreening was to eliminate redundant data (some papers were returned in multiple
databases) as well as incorrect findings. Improper findings were found in some studies
where authors claimed to have employed the hybrid idea, but our research demonstrated
that they hybridize filter and wrapper criteria rather than multiple search techniques.

Finally, studies of 35 publications on hybrid metaheuristic approaches that were
presented between 2009 and 2022 are covered in this review report. Figure 3 presents the
number of papers collected for each year.

Figure 3. Number of papers collected per year.

All identified articles were scrutinized by their title and abstract. The current review
paper provides a thorough picture on the metaheuristics used for hybridization and also
presents a range of various classifiers and datasets, the application fields of the corre-
sponding techniques, their objective/fitness functions and assessment metrics, and the
application fields of various hybridised approaches, in contrast to individual methods.

In Table 2, a brief introduction is given about each one of the collected papers in the
relevant literature.

Table 2. Introduction to the collected papers.

Paper Year Aim Experimental Evaluation Assessment
Metrics

P1 [64] 2022 The intention of this ar-
ticle is to design a sim-
plified and functional
hybrid algorithm for
FS by considering the
simplicity of the WOA
and the stochastic na-
ture of HHO.

Experimental findings on 18
benchmark datasets reveal that
the proposed hybrid method is
capable of enhancing the achieve-
ment of the conventional WOA
concerning ACC, selected feature
count, and execution time.

CA, MF, BF, WF,
NSF, and RT.
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Table 2. Cont.

Paper Year Aim Experimental Evaluation Assessment
Metrics

P2 [65] 2020 This study attempts
to combine DE and
Chaotic Dynamic
Weight Particle
Swarm Optimization
(CHPSO) in an effort
to enhance CHPSO.

According to the simulation out-
puts, CHPSO-DE performs bet-
ter than other solutions at solving
practically the FS challenge.

Average NFE.

P3 [66] 2020 This study presented a
novel hybrid FS model
called RTHS, which is
based on the HS meta-
heuristic and RTEA.

The RTHS approach was applied
on 18 standard datasets from
UCI Machine Learning Reposi-
tory and it was contrasted to 10
popular evolutionary FS meth-
ods. The findings indicated
that the RTHS approach appears
to be more effective than the
considered approaches.

CA, PR, RE, FSc,
and AUROC.

P4 [67] 2022 The aim of this re-
search is to use a
unique hybridised
wrapper-based brain
storm optimization-
firefly algorithm
(BSO-FA) strategy
in order to enhance
the FS technique and
produce improved
classification out-
comes on standard
UCI datasets, in-
cluding a publicly
available dataset with
COVID-19 patient
health data.

On 21 UCI datasets, the suggested
approach is assessed and con-
trasted with 11 optimization tech-
niques. The proposed approach is
also used for a dataset related to
coronavirus disease. The observed
experimental findings support the
robustness of the suggested hy-
brid model. In comparison to
other methods in the literature, it
effectively decreases and chooses
the features and also produces bet-
ter CA.

CA and MF.

P5 [68] 2022 The objective of this
study is to apply
a hybridised grey
wolf optimization-
heap-based optimizer
(GWO-HBO) method-
ology as a wrapper
for the FS phase of
a fault-diagnosis
system.

The suggested approach is vali-
dated on four separate datasets
to ensure its efficiency. The pro-
posed approach is compared to
three methods, namely BGWO,
BPSO, and GA, and the test results
may attest to its predictability.

CA.

P6 [69] 2022 This work aims at de-
signing a hybrid op-
timization technique
based on the CSA and
the HHO for selecting
features and mass cat-
egorization in digital
mammograms.

This strategy was tested by using
651 mammograms. When com-
pared with respect to conventional
CSA and HHO methods employ-
ing experimental data, the new
CSAHHO method was found to
perform better.

CA, SN, SP,
FPR, FNR, FSc,
and Kappa coef-
ficient.
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Table 2. Cont.

Paper Year Aim Experimental Evaluation Assessment
Metrics

P7 [70] 2020 The purpose of this ar-
ticle is to acquire the
balance between ex-
ploitation and explo-
ration by mixing the
advantages of GWO
and PSO.

Seventeen UCI datasets are used
to measure the suggested opti-
mizer’s consistency, dependability,
and stability.

Average error,
average NSF,
MF, BF, WF,
STD of fitness,
and RT.

P8 [71] 2019 In order to determine
the appropriate trait
subgroup and resolve
FS issues, this article
suggests a hybrid PSO
and GWO.

The study’s results highlight that
the BGWOPSO framework is su-
perior in computation time, PR,
and FS. The findings of the BG-
WOPSO procedure have shown
that it is easier than other ap-
proaches to monitor the compro-
mise between exploratory and ex-
ploitative behaviours.

Average CA,
NSF, MF, BF,
WF, and RT.

P9 [72] 2019 This study pro-
vides three hybrid
structures for the
FS task based on
TEO and SOA.

The simulation outcomes have
demonstrated that the suggested
hybrid model enhances classifi-
cation efficiency, guarantees the
choice of hybrid SOA-algorithms,
decreases CPU time, and selects
the salient factor.

RT, average
NSF, and CA.

P10 [73] 2019 This study provides
two separate hybrid
versions of the spotted
hyena optimization
(SHO) for FS prob-
lems. In the first
version (SHOSA-1),
the SA is embedded
in the SHO algorithm.
In the second version
(SHOSA-2), the SA
is used to enhance
the ultimate solution
obtained by the SHO
algorithm.

The findings of the tests revealed
that the SHOSA-1 strategy im-
proves recognition rate and re-
duces the number of chosen fea-
tures in relation to other wrap-
per methods. Experiments also
demonstrated that SHOSA-1 has
excellent success (compared to
SHOSA-2) in the spatial search
and choice of feature characteris-
tics.

Average CA,
NSF, MF, STD,
RT, SN, and SP.

P11 [74] 2019 In this paper, the OBL
concept is integrated
with a DE technique
and an MFO approach
in order to boost the
capacity of the MFO al-
gorithm for generating
an optimal attribute ar-
ray.

The findings clearly reveal that
the presented algorithm is bet-
ter in terms of efficiency and the
methodology suggested with a
limited range of selected features
and a minimal CPU time in com-
parison to other benchmark evolu-
tionary approaches.

MF, STD, aver-
age RT, selec-
tion ratio (SR),
CA, FSc, PR, RE,
and WRS.
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P12 [75] 2019 This article presents
a hybrid GWOCSA
that efficiently blends
the strengths of both
GWO and the crow
search optimizer
(CSO) to provide
optimal solutions
for the most efficient
global operation.

The experimental findings sug-
gest that the GWOCSA has im-
proved fitness optimization and
performed at a higher conver-
gence speed compared to the other
FS methodologies to solve the FS
problem and achieved more sat-
isfactory optimization results in
fewer iterations. This demon-
strates the potential of the model
to solve difficult issues in real-
world large datasets.

CA, average
NSF, MF, STD,
and WRS.

P13 [76] 2018 This paper proposes
a unique hybrid
method for the FS
problems known as
the HBBEPSO.

The outcomes from testing the
HBBEPSO demonstrate the possi-
bility of using the recommended
hybrid strategy to determine the
ideal variable combination.

MF, BF, WF,
STD, aver-
age SR, and
average FSc.

P14 [77] 2018 This article utilizes a
hybrid method of dis-
crete PSO and the
SFLA to reduce the
feature dimension and
choose optimal param-
eter subsets.

The simulation outputs indicate
that the suggested hybrid ap-
proach is good enough to provide
an optimized attribute subset and
obtain a high CA values.

CA, PR, and RE.

P15 [78] 2017 The DE operators are
used as local search
techniques in this
work to address the
difficulties in SCA.

The outcomes of the execution con-
clude that the new technique will
function better than the alterna-
tives on the basis of success met-
rics and predictive analysis.

CE, FSc, MF, BF,
WF, STD, SR,
and RT.

P16 [79] 2017 In this paper, hy-
bridized frameworks
are introduced to
construct FS models
based on the WOA.

The proposed hybrid models
combine SA with WOA. The de-
rived experimentation results
have shown that the performance
and the capacity of the hybrid
WOA approach for choosing the
most informational features and
for searching the feature space
are improved compared with
individual wrapper approaches.

CA, NSF, MF,
BF, and WF.

P17 [6] 2016 This article presents
a hybrid evolution-
ary optimization
technique called
the artificial bee
colony-particle swarm
optimization (ABC-
PSO) for optimum
selection and retrieval
of features.

The findings show that the over-
all efficiency of the method is very
good and the suggested hybrid
method is better suited for voice
recognition upon implementing
it in the MATLAB working plat-
form.

CA, SN, SP,
PPV, NPV, FPR,
FDR, and MCC.
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P18 [80] 2016 This article suggests
nature-based hy-
brid techniques for
FS. The techniques
are based on two
strategies for swarm
intelligence: ACO and
PSO.

The experimental findings
conclude that the proposed
approaches have better efficiency
for reducing the NSF and also in
terms of CA.

CA and NSF.

P19 [81] 2015 This paper proposes
the use of a hybrid MA
for FS combined with
the KHA.

The test results reveal that the pro-
posed MAKHA technique can eas-
ily find an optimal or almost an
optimal set of combination of at-
tributes by minimizing the objec-
tive function and achieving suffi-
cient efficiency to increase the ac-
curacy of feature classification.

BF, MF, WF,
and CE.

P20 [9] 2010 This research suggests
a hybrid approach for
FS based on GA and
SA.

The FS results were improved by
correcting the SA in the creation of
the next generation (by consider-
ing two maximum and minimum
thresholds).

CA and NSF.

P21 [82] 2009 This article suggests
a new FS framework
which combines GA
with ACO to increase
and improve search
capabilities in protein
structure forecasting.

The testing results show the su-
periority of the proposed hybrid
method (compared to ACO ans
GA) and also present the low com-
putational complexity of the sug-
gested hybrid approach.

Predictive accu-
racy (PA).

P22 [83] 2009 In this paper, TS
is combined with
binary PSO to se-
lect an optimal
feature vector in FS.

Testing results from applying the
method on 11 classification prob-
lems taken from the literature
show that this approach simplifies
features effectively. This method
has the ability to obtain higher
CA and to use fewer features com-
pared to other FS methods.

CA.

P23 [84] 2019 This study suggests
the combination
of BPSO and SCA.
The aim of the ap-
proach is to perform
FS and cluster anal-
ysis by employing a
cross-breed approach
of SCA to BPSO.

The experimental findings (on
10 benchmark test functions and
seven datasets taken from the UCI
repository) show that the sug-
gested HBPSOSCA approach gen-
erally performs better than other
FS approaches.

MF, BF, WF, Av-
erage NSF, SI,
DI, and DBI.
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P24 [85] 2019 This research presents
a hybrid filter-
wrapper approach
for the collection
of attribute subsets,
focused on the hy-
bridization of GA
and PSO. The method
utilizes an ANN in
the fitness/objective
function.

The experimental findings on five
datasets showed that the sug-
gested hybrid approach achieves a
higher PR of classification in com-
parison to other competitor tech-
niques.

Average NSF,
average CA,
best ACC, and
average RT.

P25 [86] 2018 This paper presents a
hybrid of two meth-
ods, ALO and GWO,
that provides the
strength of having a
good understanding
from fewer instances
and the decent collec-
tion of characteristics
from a very wide
range, thus maintain-
ing a high PR in the
classification results.

Datasets with around 50,000 char-
acteristics and fewer than 200
examples were utilized to mea-
sure the accuracy of the system.
The test findings are positive with
respect to GA and PSO.

MF, BF, WF,
STD, CMSE,
average NSF,
average Fisher
score, and WRS.

P26 [87] 2019 This paper proposes a
new hybrid ALO with
elitism-based DE to
tackle task-scheduling
problems in cloud en-
vironments.

The experimental results showed
that for larger search spaces,
the modified-ALO (MALO) ap-
proach converged faster, proving
it ideal for massive task schedul-
ing jobs. The statistical t-tests were
used to analyse the data, indicat-
ing that MALO significantly im-
proved the results.

Degree of
imbalance,
size of tasks,
makespan,
and RT.

P27 [88] 2021 The purpose of this re-
search is to perform
FS by fusing an im-
proved CSA method
with PSO.

With the use of 15 datasets
from the UCI, the presented tech-
nique is compared to four well-
known optimization techniques,
namely PSO, binary PSO, CSA,
and chaotic CSA. Distinct perfor-
mance indicators were applied
in the tests by using KNN as
classifier. This hybrid approach
was found to perform better than
cutting-edge techniques.

MF, BF, WF, and
STD of fitness.
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P28 [89] 2021 The main goal of this
approach is to shorten
the size of the selected
feature vector by com-
bining TLBO and SSA
techniques, which can
also increase the classi-
fier’s predictability.

A total of 651 breast cancer screen-
ings were produced by the hybrid
approach, and the outputs demon-
strate that TLBO-SSA performs
better than the TLBO. Once more,
the strength of this metaheuristic
approach was evaluated by taking
a UCI dataset. The TLBO-SSA re-
sult demonstrated its superiority
when compared to GA.

SE, SP, CA, FSc,
Kappa coeff,
FPR, and FNR.

P29 [90] 2020 In order to increase
the initial HHO’s effec-
tiveness for collecting
chemical descriptors
and chemical com-
posites, this work
combined HHO, CS,
and chaotic maps.

Some UCI datasets and two chem-
ical datasets are considered to
validate the presented solution.
Comprehensive experimental and
computational analysis showed
that the proposed approach has
achieved many desired solutions
over other competing solutions.

CA, SE, SP, RE,
PR, and FSc.

P30 [91] 2021 This article proposes
a hybrid optimal
strategy that includes
SCA in HHO. By ad-
justing the candidate
solutions in a complex
manner, SCA attempts
to tackle ineffective
HHO identification
and to prevent stag-
nation situations in
HHO.

With 16 datasets including more
than 15,000 in attributes and the
CEC’17 computational optimis-
ing trials, this recommended ap-
proach was evaluated and con-
trasted with SCA, HHO, and other
existing methods. The detailed
evaluations of experiments and
statistics showed that the sug-
gested HHO hybrid variant pro-
duced effective results without ex-
tra computational cost.

Average CA,
MF, aver-
age NSF, SR,
average RT,
and STD.

P31 [92] 2021 This article suggests
a hybrid GWO-HHO-
based FS technique.

In comparison to GWO, PSO,
HHO, and GA, the accuracy of the
suggested hybrid approach was
tested and evaluated on 18 UCI
datasets. The approach performed
better than the GWO.

Average CA,
MF, BF, WF,
average NSF,
and average RT.

P32 [93] 2017 This research sug-
gests a new AC-ABC
hybrid technique
that incorporates the
FS characteristics of
ACO and ABC. By
employing hybridiza-
tion, the stagnation
behavior of the ants is
removed, and lengthy
global searches for the
original solutions by
the employed bees.

The suggested method was eval-
uated by 13 UCI datasets. Ex-
perimental findings revealed the
positive characteristics of the pro-
posed technique which was found
to achieve a high accuracy rate
and optimum selection of features.

NSF, CA,
and RT.
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P33 [94] 2016 In this paper, a hy-
brid approach that
merges the ABC
optimizer with DE
is recommended for
FS in classification
problems.

The approach was tested by us-
ing 15 UCI datasets and was com-
pared with ABC and DE based FS,
and also with gain, chi-square and
correlation based FS. The empiri-
cal outputs of this study indicate
that the new technique selects in-
formative features for classifica-
tion that increase the classifier’s
efficiency and accuracy.

FSc, NSF,
and RT.

P34 [95] 2014 In this paper, a novel
hybrid evolutionary
technique called ant–
cuckoo-produced by
the fusion of ACO
and CS methods-is
introduced for per-
forming FS in digital
mammogram.

The tests are carried out on the
miniMIAS database of mammo-
grams. Compared with ACO and
PSO algorithms, the efficiency of
the ant–cuckoo method was ana-
lyzed. The findings indicated that
FS optimization for the hybrid ant–
cuckoo method was more accurate
than the one achieved by the indi-
vidual FS approaches.

SN, SP, CA,
and AUROC.

P35 [17] 2022 By using a MOChOA-
based FS technique,
this method seeks to
identify pertinent pa-
rameters for forecast-
ing the health status of
COVID-19 patients.

By contrasting this strategy with
five other existing FS procedures
on nine distinct datasets, its effi-
cacy is demonstrated.

Average NSF,
average CA,
average RT,
and IGD.

The search methods that have been fused together in each metaheuristic approach,
the details of the corresponding fitness/objective function along with the respective means
of hybridization which have been used in each approach are given in Table 3.

Table 3. Search methods, their fitness function details, and means of hybridization.

Paper Search
Method

Fitness Function Means of Hybridization

P1 [64] WOA, HHO Fitness = α(ER) +

(1 − α)
|S f |
|Tf | , where

α ∈ [0, 1], ER: error, S f :
#picked factors and Tf :
#actual factors.

The exploration technique of HHO is im-
mersed in the WOA to rise the random-
ness of the optimum solution search,
based on the humpback whale’s ex-
ploitative manner.

P2 [65] Chaotic PSO
(CPSO), DE.

NFE. In order to prevent the decay that
is normally discovered by the CPSO,
the DE approach is combined with
CPSO. As the swarm begins to deteri-
orate, the DE is used to provide the
required momentum for the particles
to travel through the search area and
thereby flee from the local optima.
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P3 [66] HS, RTEA Fitness = ωζ
(

F′
)
+ (1−

ω)× |F
′ |
|F| , where F′: ar-

ray of chosen attributes,
ζ
(
F′
)
: error rate with re-

duced feature string, F:
original feature array and
ω ∈ [0, 1]

HS and RTEA have been hybridised by
following the pipeline model.

P4 [67] BSO and FA Fitness = αER(D) +

β
|R|
|C| , where ER(D): clas-

sifier’s error rate, |R|: size
of the chosen attribute
string, |C|: count of total
features and α lies in be-
tween 0 and 1 and β =
(1− α).

To reduce the drawbacks of the conven-
tional BSO, this new architecture com-
bines the best elements of BSO’s great ex-
ploration and FA’s exceptional exploita-
tion where if the cycle counter is odd,
the FA search mechanism is used for a
location change; otherwise, the original
BSO is used for solution improvement.

P5 [68] GWO and
HBO

Fitness = |NT |
|NT+N f | ×

100%, where NT: #truly
predicted instances, NF:
#instances that are falsely
predicted.

The best solution obtained from GWO
is stored as a record. If the new solu-
tion generated by the HBO is more than
90% similar to the above record, then
crossover is used. After crossover, if the
new solution is the same as the record
then mutation is performed.

P6 [69] CSA and
HHO

cost(xi(t)) = (Exi(t) ×
(1 + 0.5 × FS

N ))2, where
cost(xi(t)): fitness value
of xi(t), Exi(t): perfor-
mance of classifier. FS/N:
#features selected/#total
features.

The probability Pi =
costi

∑
pop_size
j=1 costi

opts for

either solutions to be updated by CSA
or HHO.

P7 [70] GWO and
PSO

Fitness = h1E(D) +

h2
|s|
| f | , where E(D): CE, s:

#selected features, f: #fea-
tures and h ∈ [0, 1], h2 =
1− h1 are constants.

Starting with an arbitrary selection of
solutions, the optimization process be-
gins. After determining the fitness func-
tion for each individual for each iter-
ation, the first three leaders are given
the names alpha, beta, and delta. Af-
ter that, the population is equally split
into two classes, with the first class fol-
lowing GWO operations and the second
class following PSO processes. In this
manner, the search space is thoroughly
examined for potential points, and these
points are then utilised by the potent
PSO and GWO.

P8 [71] GWO-PSO Fitness = αρR(D) + β
|S|
|T| ,

where α = [0, 1] and β =
(1− α), ρR(D): KNN’s er-
ror rate, |S|: length of cho-
sen feature vector and |T|:
length of actual feature
vector.

The basic principle of PSOGWO is to en-
hance the potential of the system to ex-
ploit PSO to explore GWO in order to ac-
complish both optimizer powers, where
the location of the first three agents is
modified, rather than with the normal
calculation, exploitation, and discovery
of the grey wolf.



Algorithms 2023, 16, 167 20 of 35

Table 3. Cont.

Paper Search
Method

Fitness Function Means of Hybridization

P9 [72] SOA, TEO Fitness = αγR(D) + β×(
|R|
|N|

)
, where γR(D): CE,

|R|: length of the chosen
substring, |N|: length of
whole feature set, α ∈
[0, 1] and β = (1− α).

Three hybrid ways to manage FS tasks
based on SOA and TEO are proposed in
this paper. Either of the two algorithms
is selected for updating the position in
the first method based on the roulette
wheel. The second approach is followed
by SOA optimization by TEO. The final
technique uses the TEO formulation for
heat exchange to boost the SOA style
of attack.

P10 [73] SA, SHO algo-
rithm

Fitness = αγR(D) + β×(
|R|
|N|

)
, where γR(D): CE,

|R|: length of the chosen
substring, |N|: length of
whole feature set, α ∈
[0, 1] and β = (1− α).

Two hybrid systems to enhance the use
of the SHO model are presented in this
article. SA is used as part of SHO in
the first hybrid model and SHO and SA
techniques are executed once for every
iteration. In the case of second architec-
ture, the first SHO model is applied to
seek out the optimum solution, followed
by the SA to find the new best solution.

P11 [74] MFO, DE f (xi) = ξ × Errxi +(1 −
ξ)×

(
|xi |
Dim

)
, where Errxi :

error of the classifier,
|xi|: count of chosen at-
tributes, Dim: whole fea-
tures count and ξ: any
random between 0 and 1.

The suggested model utilizes the OBL
principle to generate initial solutions,
and the DE operators to boost the op-
erational capabilities of MFO.

P12 [75] CSA, GWO Fitness = αγR(D) + β×(
|R|
|N|

)
, where γR(D): CE,

|R|: length of the chosen
substring, |N|: length of
whole feature set, α ∈
[0, 1] and β = (1− α).

In particular, in its location change equa-
tion, the CSA integrates a control param-
eter. This parameter plays a key part
in achieving the global optimum as the
big value of this factor results in global
discovery and a small figure results in a
local search. In the suggested GWOCSA,
a greater value of the parameter is used
to make use of the CSA’s outstanding
discovery quality.

P13 [76] PSO, bat algo-
rithm

Fitness = αER(D) +

β
|R|
|C| , where ER(D): clas-

sifier’s error rate, |R|: size
of the chosen attribute
string, |C|: count of total
features and α lies in be-
tween 0 and 1 and β =
(1− α).

The separation of the speed vectors of
the bats and the particles calls for a new
design of the suggested method. This
is because the personal and global so-
lutions are not modified after the BBA,
but only after the full round of the PSO.

P14 [77] Binary PSO
(BPSO), frog
leaping algo-
rithm (FLA)

Fitness(x) =
accuracy(x), where
Accuracy(x): NB’s ac-
curacy and x: feature
subset.

The population, which includes an opti-
mized BPSO extracted feature, is given
as an input for the FLA under the pre-
sented hybrid system.
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P15 [78] SCA-DE f (xi) = ξ × Errxi + (1−
ξ)×

(
1− |S|D

)
, where

Errxi : LR’s error rate, |S|:
count of picked features,
D: total feature count
and ξ ∈ [0, 1].

The DE operators are applied as a local
search strategy to help the SCA to avoid
the local spot.

P16 [79] SA, WOA Fitness = αγR(D) + β×(
|R|
|N|

)
, where γR(D): CE,

|R|: length of the chosen
substring, |N|: length of
whole feature set, α ∈
[0, 1] and β = (1− α).

Two methods to address the FS prob-
lem are employed in this article. The SA
algorithm in WOASA-1 operates as a
WOA algorithm operator. WOASA-2 en-
hances the optimal solution discovered
by WOA.

P17 [6] ABC, PSO Fitness = α · ψs +

β
|N|−|S|
|N| , where ψs: clas-

sifier performance with
the subset S, N: total
attribute count, β: size
of the attribute subset
and α: standard of the
classification.

Each employed bee produces a new
food source and exploits a good source.
Each onlooker bee selects a supply
based on the amount of its solution, cre-
ates a new food source and exploits the
better one. PSO is used instead of scout-
ing bees for the hunt for new sources
after deciding the source to be left and
assigning the employed bee as scout.

P18 [80] ACO, PSO Fitnesst
p = 1

BERt
p
, where

BERt
p: CE with the at-

tribute vector chosen by
particle p at the tth itera-
tion.

Here, both ACO and PSO are executed
simultaneously by each individual. Es-
timate the value of the chosen subset
of each ant and particles by the clas-
sifier and pick the best one for the
next generation.

P19 [81] MA with
KHA

fθ = ω× E + (1−ω)Σθi
N ,

where fθ−: fitness func-
tion with θ number of
features, N: total feature
count, E: CE, ω: constant.

The suggested MAKHA hybrid tech-
nique employs foraging operation
and physical random diffusion with
crossover and mutation and uses
somersault process and watch–jump
process from the MA.

P20 [9] GA, SA Percentage of recognition
of the Bayesian classifier.

SA is used to select the chromosomes for
the next generation.

P21 [82] GA-ACO CA In the proposed hybrid method, ACO
utilizes the GA’s crossover and muta-
tion strategy. This results in the explo-
ration of ants near the optimum solution.
The mechanism is again iterated after
pheromone upgrading.

P22 [83] TS-BPSO The KNN with LOOCV
and SVM with OVR
serves as estimators
of the TS and BPSO
objective functions.

In the suggested hybrid architecture,
BPSO acts as a local optimization tech-
nique for the Tabu search method.
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P23 [84] SCA, Binary
PSO (BPSO)

SI: Sil(xi) =
f (xi)−p(xi)

max{ f (xi),p(xi)} .
The methodology is used in this article
to increase the search capabilities and
find a close-to-optimum global solution
by combining the BPSO with the SCA.
In this context, SCA improves the move-
ment of a particle in the BPSO.

P24 [85] GA, PSO ANN The procedure is applied three times at a
time and continued until the given num-
ber of generations is reached after pro-
ducing the initial population and deter-
mining the cost of each solution. The GA
and PSO follow these three moves. Two
steps are taken concurrently in the GA,
while the PSO takes only a single move.

P25 [86] ALO, GWO fθ = α · E + (1 − α)∑θ
N ,

where fθ : fitness function
considering θ number of
features, N: total feature
count, E: CE, α: constant.

The suggested hybrid approach updates
the ants applying the essence of ALO,
and the ant lions, with the help of the
GWO concept, that deserve to be con-
verged more quickly.

P26 [87] ALO, DE F =
(max{ECTik}& min{Ruk})
∀ ∈ [1, Ntsk] mapped
to kth VM, where
k = 1, 2, 3, . . . , Nvm
i = 1, 2, 3, . . . . . . , Ntsk
ECTik: required RT, Nvm:
#virtual machines, Ntsk:
#tasks.

In each iteration, the ant lions are up-
dated by using DE operators.

P27 [88] PSO and CSA Fitness = α∆R(D) +

β
|Y|
|T| , where α∆R(D):

classifier’s error rate, |Y|:
size of the subset, and |T|:
#total features.

This strategy merely targets a few cho-
sen crows with the greatest feeds during
the hybridization process to improve the
effectiveness of randomly following ev-
ery crow in the original CSA. The next
step is to apply the OBL approach to
create the crows’ opposite location and
update their locations in the PSO. This
is done so that the result generated
by each method can explore the search
space, in turn, without interfering with
one another.

P28 [89] SSA, TLBO f (Xi) = (Exi × (1+ 0.5×
S
N ))2, where f (Xi): fit-
ness value of xi. Exi :
performance of the classi-
fier, S/N: #features select-
ed/#total features.

During the teaching and learning phase,
the population change is accomplished
by using the TLBO methodology or
the SSA.
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P29 [90] HHO-CS Fitness = α + β
|R|
|C| − G,

where R: CE, C: total at-
tribute count, β: size of
subset, α: performance of
the classification.

The merits of the CS approach for con-
trolling HHO vectors in place is taken in
the CHHO–CS algorithm. CS attempts
to determine the optimal solution after
each iteration T. As a result, if the fit-
ness of the current solution is greater
than that of the new solution derived
from HHO, the new solutions will be de-
termined; otherwise, the older one will
stay intact.

P30 [91] SCA-HHO fi = w1 × εi + w2 ×
di
D , w1 = 0.99, w2 = 1 −
w1, where εi: error by
KNN, di: count of at-
tributes picked, D: actual
#feature.

SCA and HHO are paired to execute
their discovery task by SCA and ex-
ploitation by HHO.

P31 [92] GWO-HHO Fitness = α(ER) +

(1− α)
|S f |
|Tf | , where α lies

between 0 and 1, ER:
error, S f : #picked factors
and Tf : # actual factors.

Exploration is carried out by HHO,
while exploitation is done by GWO.

P32 [93] ACO-ABC f itj = 1
1+ f j

, where f j:
value of the objective
for the corresponding at-
tribute set.

The ants use the bees’ exploitation to
decide the best ant and optimal attribute
substring; bees incorporate the attribute
substring that the ants create as a supply
of food.

P33 [94] DE-ABC Weighted average F-
measure from J48.

If the fitness probability is > rnd, DE
mutation is performed; otherwise, ABC
neighbourhood solution creation proce-
dure is followed.

P34 [95] ACO-CS Mean square error (MSE)
of SVM.

ACO is an excellent evolutionary strat-
egy. The disadvantage of this strategy
is that the ant moves in the direction
where the pheromone density is high,
slowing down the operation. CS is there-
fore used to perform the local ACO scan.

P35 [17] ChOA and
HHO

Fitness1 = α ×
classi f ication_error +
(1− α) × LS

L
and Fitness2 =

1
LS ∑ MI

(
fi, class

)
×

1
LS ∑ PCC

(
fi, class

)
, MI:

mutual information and
PCC: Pearson correlation
coefficient.

Hybrid solutions are created based on
ChOA and HHO solutions. Then, the
best solutions among the ChOA, HHO,
and hybrid solutions are treated as the
current solution. Then ChOA is used to
update the position.
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Table 4 gives the details of the classifiers used in the fitness-assessment process,
datasets taken for the experiment, and the applications of the mentioned research.

Table 4. Classifiers, datasets used, and application.

Paper Classifier Dataset Application Domain

P1 [64] KNN Breast Cancer, Breast EW, Congress EW,
Exactly, Exactly 2, Heart EW, Ionosphere
EW, Krvskp EW, Lymphography, M of N,
Penglung EW, Sonar EW, Spect EW, Tic-tac-
toe, Vote, Waveform EW, Wine EW, Zoo.

For FS (Miscella-
neous).

P2 [65] Eight benchmark functions. For FS (Miscella-
neous).

P3 [66] KNN, NB, RF UCI (Zoo, Breast Cancer, Breast EW,
Congress EW, Exactly, Exactly 2, Heart
EW, Ionosphere, KrvskpEW, Lymphogra-
phy EW, M of N, Penglung EW, Sonar EW,
Spect EW, Tic-tac-toe, Vote, Waveform EW,
Wine EW).

It focuses on FS (Biol-
ogy, Politics, Game,
Physics, Chemistry,
Electromagnetic).

P4 [67] KNN Breast Cancer, Tic-tac-toe, Zoo, Wine EW,
Spect EW, Sonar EW, Ionosphere EW, Heart
EW, Congress EW, Krvskp EW, Waveform
EW, Exactly, Exactly 2, M of N, Vote, Breast
EW, Semeion, Clean 1, Clean 2, Lymphogra-
phy, Penghung EW.

FS for COVID-19 clas-
sification (Medical).

P5 [68] KNN BreastEW, Ionosphere, PenglungEW, Seg-
mentation, Sonar, Vehicle, Bearing dataset,
CWRU, and MFPT benchmark dataset.

FS for Fault Diagnosis
(Engineering).

P6 [69] ANN 651 mammograms obtained from the Digi-
tal Database for Screening Mammography
(DDSM).

FS and classification
in mammography
(Medical).

P7 [70] KNN Hepatitis, Ionosphere, Vertebral, Seeds,
Parkinson, Australian, Blood, Breast Cancer,
Diabetes, Lymphography, Parkinson, Ring,
Titanic, Towonorm, WaveformEW, Tic-Tac-
Toe, M of N.

For enhancing FS
(Miscellaneous).

P8 [71] KNN UCI (Zoo, Breast Cancer, Breast EW,
Congress EW, Exactly, Exactly 2, Heart
EW, Ionosphere, KrvskpEW, Lymphogra-
phy EW, M of N, Penglung EW, Sonar EW,
Spect EW, Tic-tac-toe, Vote, Waveform EW,
Wine EW).

For handling FS tasks
(Miscellaneous).

P9 [72] KNN UCI (Iris, Wine, Glass, Diabetes, Heartstat-
log, Ionosphere, Sonar, Vehicle, Balance
Scale, CMC, Cancer, Seed, Blood, Aggre-
gation, Vowel, WBC, Bupa, Jain, Thyroid,
WDBC).

For FS (miscella-
neous).

P10 [73] KNN UCI (BreastCW, Congressional, Connect-
Bench, Dermatology, Drug_consumption,
Glass, Heart, Hepatitis, Horse-colic, ILPD,
Ionosphere, Primary-tumor, Seeds, Soybean,
Spambase, SPECT Heart, SteelPF, Thoracic
Surgery, Tic-tac-toe, Zoo).

To solve FS issues
(Miscellaneous).
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Table 4. Cont.

Paper Classifier Dataset Application Domain

P11 [74] KNN UCI (WBDC, Hepatitis, Heart, Sonar, Lym-
phography, Clean 1, Breastcancer, Clean 2,
Waveform, Ionosphere).

To enhance the FS
(Galaxies Classifica-
tion).

P12 [75] KNN UCI (Zoo, Breast Cancer, Congress EW, Ex-
actly, Ionosphere, M of N, Penglung EW,
Sonar EW, Vote, Wine EW, Exactly 2, Heart
EW, Tic-tac-toe, Waveform EW, Krvskp EW,
Lymphography EW, Spect EW, Clean 1,
Clean 2, Semeion)

For producing op-
timistic nominee
solutions to obtain
global optima effi-
ciently which can
be used in solving
real-world complex
problems and FS
(miscellaneous).

P13 [76] KNN UCI (Zoo, Breast Cancer, Breast EW,
Congress, Exactly, Ionosphere, M of N,
Sonar EW, Wine EW, Exactly 2, Heart EW,
Tic-tac-toe, Waveform EW, Lymphography
EW, Spect EW, Dermatology, Krvskp EW,
Echocardiogram, Hepatitis, Lung Cancer).

To solve FS problems
(Miscellaneous).

P14 [77] NB The dataset consists of 1600 reviews of the
20 well known Chicago hotels that are orga-
nized as: 800 positive reviews (400-truthful,
400-deceptive), and 800 negative reviews
(400-truthful, 400-deceptive).

It helps with the iden-
tification of fake re-
views and also to
discard irrelevant re-
views. It is able
to classify efficiently
the reviews into spam
and ham reviews.

P15 [78] LR UCI (Breast, SPECT, Ionosphere, Wine,
Congress, Sensor, Clean 1, Clean 2)

To solve FS problems
(Miscellaneous).

P16 [79] KNN UCI (Zoo, Breast Cancer, Breast EW,
Congress EW, Exactly, Exactly 2, Heart
EW, Ionosphere, KrvskpEW, Lymphogra-
phy EW, M of N, Penglung EW, Sonar EW,
Spect EW, Tic-tac-toe, Vote, Waveform EW,
Wine EW).

To design different FS
techniques (Miscella-
neous).

P17 [6] SVM Three types of datasets are used: 1. 100
recorded speech signals of fruits type, 2. 80
recorded speech signals of animals, and 3.
120 recorded combined speech signals.

Feature selection
for automatic
speech recognition.

P18 [80] NB UCI Machine Learning Repository (Spam-
Base, BreastCancer, German, Hepatitis,
Liver, Musk).

To improve the CA
and enhance the FS
(Miscellaneous).

P19 [81] KNN UCI (Zoo, Breast Cancer, Breast EW,
Congress EW, Exactly, Exactly 2, Heart
EW, Ionosphere, KrvskpEW, Lymphogra-
phy EW, M of N, Penglung EW, Sonar EW,
Spect EW, Tic-tac-toe, Vote, Waveform EW,
Wine EW).

To enhance the FS and
to increase the classi-
fication performance
(Miscellaneous).

P20 [9] Bayesian Handwritten Farsi characters having 100
samples for each 33 characters.

For the identifica-
tion of handprinted
Farsi characters.
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Table 4. Cont.

Paper Classifier Dataset Application Domain

P21 [82] KNN GPCR-PROSITE dataset, ENZYME-
PROSITE dataset.

For FS in protein func-
tion prediction.

P22 [83] KNN, SVM Tumors 9, Tumors 11, Brain Tumor 1,
Tumors 14, Brain Tumor 2, Leukemia 1,
Leukemia 2, Lung Cancer, SRBCT, Prostate
Tumor and diffuse large B-cell lymphoma
datasets.

To improve gene se-
lection in medical di-
agnosis.

P23 [84] Ionosphere, Breast Cancer Wisconsin, Con-
nectionist Bench, Statlog, Parkinson, 9_Tu-
mors, Leukemia2.

To solve FS problems
(Miscellaneous).

P24 [85] Five nearest
neighbors
(5-NN)

Hill-Valley, Gas 6, Musk 1, Madelon, Isolet
5, Lung.

To solve the FS
problem in high-
dimensional datasets
(Miscellaneous).

P25 [86] KNN UCI (Zoo, Breast Cancer, Breast EW,
Congress EW, Exactly, Exactly 2, Heart
EW, Ionosphere, KrvskpEW, Lymphogra-
phy EW, M of N, Penglung EW, Sonar EW,
Spect EW, Tic-tac-toe, Vote, Waveform EW,
Wine EW).

To select significant
features from datasets
(Bioinformatics).

P26 [87] Synthetic and real trace datasets. To solve task schedul-
ing problems in cloud
computing environ-
ments.

P27 [88] KNN Wine, Dermatology, Heart, Ionosphere,
Lung cancer, Thoracic surgery, Hepatitis,
Parkinson, Phishing website, Qsar biodegra-
dation, Absenteeism at work, Divorce,
Wpdc, Risk factor cervical cancer, Wdpc.

For the FS task (Mis-
cellaneous).

P28 [89] ANN Digital Database for Screening Mammog-
raphy (DDSM), Breast Cancer Wisconsin
(WBC) dataset.

To solve the FS (Medi-
cal).

P29 [90] SVM BreastCancer, KCL, WineEW, WDBC, Lung-
Cancer, Diabetic, Stock, Scene, Lymphogra-
phy, and Parkinson.

For chemical descrip-
tor selection and
chemical compound
activities (Chemical
Engineering).

P30 [91] KNN Exactly, Exactly 2, Lymphography, Spect
EW, Congress EW, Ionosphere EW, Vote,
Wine EW, Breast EW, Brain Tumors 1, Tu-
mors 11, Leukemia 2, SRBCT, DLBCL,
Prostate Tumors and Tumors 14.

To boost the FS pro-
cess (Miscellaneous).

P31 [92] KNN Breast Cancer, Breast EW, Congress EW,
Exactly, Exactly 2, Heart EW, Ionosphere
EW, Krvskp EW, Lymphography, M of N,
Penglung EW, Sonar EW, Spect EW, Tic-tac-
toe, Vote, Waveform EW, Wine EW and Zoo.

the FS task (Miscella-
neous).

P32 [93] DT (J48) Heart-Cleveland, Dermatology, Hepatitis,
Lung Cancer, Lymphography, Pima Indian
Diabetes, Iris, Breast Cancer W, Diabetes,
Heart-Stalog, Thyroid, Sonar, Gene.

For FS in classifica-
tion (Miscellaneous).
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Table 4. Cont.

Paper Classifier Dataset Application Domain

P33 [94] J48 Autos, Breast-w, Car, Glass, Heart-C,
Dermatology, Hepatitis, Thoraric-Surgery,
Lymph, Credit-g, Sonar, Ionosphere, Liver-
Disorders, Vote, Zoo.

For the FS tasks in
classification (Miscel-
laneous).

P34 [95] SVM with RBF
kernel

miniMIAS data with 100 mammograms (50-
normal, 50-abnormal).

For FS in digital mam-
mogram (Medical).

P35 [17] KNN Lymphography, Diabetic, Cardiotocogra-
phy, Cervical Cancer, Lung Cancer, Arrhyth-
mia, Parkinson, Colon Tumor, Leukemia
and three COVID-19 datasets.

To enhance FS for
COVID-19 prediction
(Medical).

Finally, the descriptions of the classifiers used by the aforementioned articles as
wrappers are given in Table 5.

Table 5. Summary of classifiers used.

Paper Classifier Description

P3 [66] RF (Random Forest) RF is a selection algorithm made up of several decision
trees. It builds each particular tree by using bagging and
features variability and attempts to generate a nonover-
lapping forest of trees whose forecast is more reliable than
that of any individual.

P1 [64],
P3 [66],

P4 [67],
P5 [68],
P7 [70],
P8 [71],
P9 [72],
P10 [73],
P11 [74],
P12 [75],
P13 [76],
P16 [79],

P19 [81],
P21 [82],
P22 [83],
P24 [85],
P25 [86],
P27 [88],
P30 [91],
P31 [92],
P35 [17]

KNN KNN is a straightforward classifier that records all avail-
able samples and categorizes new samples focusing on a
similarity metric. It is usually used to categorize a piece of
data depending on how its neighbors are graded.

P3 [66],
P14 [77],
P18 [80]

NB An NB model believes that the existence of one at-
tribute in a class has no influence on the existence of any
other attribute.

P17 [6],
P22 [83],
P29 [90],
P34 [95]

SVM SVM is a supervised ML model for two-group classifica-
tion tasks. They will identify a new instance after pro-
viding an SVM with sets of named training examples for
each type.

P15 [78] LR The logistic sigmoid is utilised to convert the outcome of
the LR classification method, which assigns samples to a
discrete set of classes and then returns a probability value.
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Table 5. Cont.

Paper Classifier Description

P20 [9] Bayesian The Bayesian classification model forecasts membership
estimates for every group, such as the likelihood that a cer-
tain record contributes to a certain class. The category with
the greatest likelihood is thought to be the most probable.

P32 [93],
P33 [94]

DT, J48 classifier Ross Quinlan’s DT is generated by using C4.5 (J48). C4.5
is an extension of the previous ID3 algorithm of Quinlan.
For classification, the DTs generated by C4.5 can be used
and, hence, C4.5 is also called a statistical classifier.

P6 [69],
P28 [89]

ANN To provide computer programs with the ability to pro-
cess information and make judgments similarly to those
of humans, ANN models are used in AI to simulate the
networks of neurons that make up the human brain. In or-
der to develop an ANN, an artificial model is designed
and programmed to operate analogously to a network of
interconnected neurons and brain cells.

4. Analysis and Discussion

According to the analysis of the mentioned articles, the majority of studies employed
the wrapper strategy mainly due to its supremacy in terms of higher accuracy compared
to filter techniques, which have consistently been shown through experimentation that
perform inaccurate filtration. In an effort to utilize all the advantages from both ap-
proaches, numerous researchers have tried to integrate and hybridize filter and wrapper
methods. Figure 4 displays the number of papers broken down by the evolutionary meth-
ods that were employed in the corresponding studies.

Figure 4. Number of papers per technique.

These results demonstrate unequivocally that PSO is utilised for fusion in the most
number of research articles (11). This is most likely caused by the PSO’s lack of derivatives
and its simpler concept and coding technology compared to other evolutionary methods.
In particular, in contrast to the other competing evolutionary methods, PSO uses two accel-
eration coefficients (i.e., the cognitive and social parameters, respectively) and an inertia
weight, and thus in PSO there are few parameters required to be adjusted. Furthermore,
on average the convergence rate of PSO is faster than other stochastic algorithms [96].

Feature-selection techniques can be applicable to any area where there is a chance
of facing the “curse of dimensionality problem”. However, after studying the presented
works (Figure 5), we found that most of the hybrid FS techniques (54%) have verified
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their performance by considering some benchmark datasets. Only 22% of the total ar-
ticles have applied their technique to the biomedical area (microarray gene selection,
disease diagnosis etc.).

Figure 5. Distribution of papers according to application area.

Additionally, Figure 6 displays the quantity of papers by using different standard
classifiers as wrappers. Because it is simple to grasp and requires less calculation time, 21
out of 35 research employed KNN as a wrapper in their fitness computation procedure.
KNN’s training procedure is also incredibly fast because it makes decisions without using
any training data.

Figure 6. Number of papers vs. classifier.

Additionally, the bulk of FS researchers using hybrid evolutionary techniques have the
goal of reducing both the number of features and the error rate. This is a challenging task,
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despite the inadequacies of many ECs. The recommended hybrid approaches, however,
surpass the current FS methodology after hybridization, which looks for comparable
alternatives to produce the best results when tackling optimization tasks, according to tests
performed on various datasets. By combining and merging the exploration and exploitation
processes, this is achieved. Overall, the previous studies have led to several enhancements
and alterations, and, in short, each specific research approach requires the employment of
unique approaches in order to provide the required outcomes. The solution model may
change over time because there is no one technique that can be used to solve every problem.

After investigating the abovementioned works on hybrid evolutionary algorithms for
FS in classification, we are able to list out the following advantages of hybridization.

• Efficiency of the base algorithm can be improved (P1 [64], P4 [67], P8 [71], P11 [74],
P14 [77], P20 [9], P22 [83], P25 [86], P26 [87], P28 [89], P35 [17]).

• Premature convergence and the local optimum trap issue can be addressed (P2 [65],
P5 [68], P6 [69], P11 [74], P15 [78], P31 [92], P32 [93], P33 [94], P34 [95], P35 [17]).

• Balance between both exploration and exploitation can be maintained (P3 [66], P7 [70],
P8 [71], P19 [81], P29 [90]).

• The poor exploitation capability of some of the base methods can be improved (P9 [72],
P21 [82], P23 [84], P30 [91], P35).

• The optimal solution identified in each iteration can be enhanced (P10 [73], P12 [75],
P16 [79], P18 [80]).

• The searching procedure can converge to the best global solution (P12 [75], P13 [76],
P17 [6], P24 [85], P27 [88]).

Although the presented articles are able to improve the performance of the FS tech-
niques, they still have some limitations that point in the direction of future research.

• They are not verified with real-world applications like the biomedical domain (P1 [64],
P3 [66], P8 [71], P10 [73], P12 [75], P13 [76], P15 [78], P16 [79], P31 [92], P32 [93]).

• They are not tested with high-dimensional datasets (P1 [64], P3 [66], P4 [67], P6 [69],
P7 [70], P8 [71], P9 [72], P10 [73], P11 [74], P12 [75], P13 [76], P15 [78], P16 [79], P18 [80],
P19 [81], P24 [85], P27 [88], P29 [90], P32 [93], P33 [94]).

• In some cases, the proposed algorithm is unable to find the global optimum (P3 [66],
P14 [77], P27 [88]).

• The fitness value focused only on the error rate and not on the number of features
(P5 [68]).

• They take longer to execute (P35 [17]).
• The performance of the proposed approach is not compared with other existing hybrid

approaches (P6 [69], P7 [70], P10 [73], P11 [74], P12 [75], P15 [78], P16 [79], P17 [6],
P18 [80], P19 [81], P20 [9], P21 [82], P22 [83], P23 [84], P25 [86], P26 [87], P27 [88],
P28 [89], P30 [91], P34 [95]).

• They are verified with a few datasets (P14 [77], P17 [6], P20 [9], P21 [82]).

As hybrid models for FS are becoming more effective and more efficient solutions,
the following concerns have to be analysed by performing further enhancement.

• The capability of newly developed methods has not been thoroughly explored, partic-
ularly in terms of their scalability, and therefore additional research is suggested for
FS in high-dimensional real-world applications.

• Since computation complexity is one of the key issues in most hybrid approaches
for FS, it is recommended that more appropriate measures to reduce computational
complexity should be proposed. Two key considerations must be weighed in order to
do so: (1) more efficient ways to perform searching in the large solution spaces and (2)
faster evaluation tools.

• The FS priorities, such as computational burden and space complexity, can indeed be
viewed in combination with the two main objectives of the hybrid FS problem (i.e.,
exploration and exploitation).
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• Proposing new methodologies that soften the fitness landscape will significantly
reduce the problem’s complexities and motivate the development of more effective
search strategies.

• Most of the existing studies in the literature used only one fitness function. However,
FS can be viewed as an MO problem and thus, the application of hybridization in
multiobjective FS tasks is an open research domain for researchers.

• As hybrid FS techniques are time-consuming as compared to the others, employing
parallel processing during the FS phase is also an area of research to be explored.

• Most of the abovementioned articles are wrapper-based; however, the optimal solu-
tions generated by wrapper approaches are less generic. Therefore, a hybrid–hybrid
approach (i.e., hybridising filter and wrapper criteria while mixing evolutionary
techniques) for FS is a challenging research domain.

• Feature selection plays a vital role in the biomedical area due to the high dimensionality
of the data. However, very few works (22%) explored their techniques in this field.
Therefore, the application of hybrid FS techniques to biomedical data is a very good
research area for the future.

5. Conclusions and Future Work

Over the years, academics conducting knowledge extraction and elicitation research
have emphasized hybrid metaheuristic approaches for optimal feature identification and
selection. The “No Free Lunch” (NFL) theorem states that there has never been and will
never be an optimization method that can adequately handle all problems. Therefore, in this
paper we tried a systematized analysis of the literature, taking into account research works
released from 2009 to 2022, to point out the key difficulties and strategies for hybrid FS and
provide a comprehensive investigation of the metaheuristic approaches employed in the
development of hybridized FS techniques. According to the survey’s findings, substantial
efforts have been made to improve metaheuristic wrapper FS methods’ performance
through hybridization in terms of the precision and the size of the considered feature
subsets, paving the path for potential advancements. Finally, since there is still room for
further development, any hybrid evolutionary FS technique should be extended into a
variety of hybridization strategies and variations based on the needs of the specific problems
under consideration. As a result, researchers studying hybrid evolutionary methods for
addressing FS tasks could use the results of this review study to further investigate more
effective and efficient techniques for solving the latest challenges in FS.
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