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Abstract: Artificial intelligence systems are increasingly being used in industrial applications, security
and military contexts, disaster response complexes, policing and justice practices, finance, and
healthcare systems. However, disruptions to these systems can have negative impacts on health,
mortality, human rights, and asset values. The protection of such systems from various types of
destructive influences is thus a relevant area of research. The vast majority of previously published
works are aimed at reducing vulnerability to certain types of disturbances or implementing certain
resilience properties. At the same time, the authors either do not consider the concept of resilience as
such, or their understanding varies greatly. The aim of this study is to present a systematic approach
to analyzing the resilience of artificial intelligence systems, along with an analysis of relevant scientific
publications. Our methodology involves the formation of a set of resilience factors, organizing and
defining taxonomic and ontological relationships for resilience factors of artificial intelligence systems,
and analyzing relevant resilience solutions and challenges. This study analyzes the sources of threats
and methods to ensure each resilience properties for artificial intelligence systems. As a result, the
potential to create a resilient artificial intelligence system by configuring the architecture and learning
scenarios is confirmed. The results can serve as a roadmap for establishing technical requirements
for forthcoming artificial intelligence systems, as well as a framework for assessing the resilience of
already developed artificial intelligence systems.

Keywords: artificial intelligence system; resilience; robustness; fault tolerance; graceful degradation;
domain-adaptation; meta-learning; adversarial attack; fault injection; concept drift; resilience assessment

1. Introduction
1.1. Motivation

The use of artificial intelligence systems (AIS) is becoming widespread in all areas
of human activity, including safety-critical applications. Artificial intelligence (AI) tech-
nologies are continuously improving in terms of functionality and tools for managing the
lifecycle of intelligent systems. At the same time, the work to identify and investigate
vulnerabilities and sources of threats to the AIS continues in parallel. Incidents caused
by extraneous disturbances to the AIS, which led to material losses and human casualties,
have occurred. Various types of threats inherent in the AIS provide a powerful toolkit
which can be used by criminals to perform malicious acts.

Rapid progress in AI-technologies increases uncertainty about the level of AI resilience
and its safety with respect to various kinds of disturbances and intrusions. The possi-
bilities of attacks on AIS are expanding due to the growing complexity of these systems,
widespread use of open-source components in AIS and the availability of a large number
of open publications on the study of vulnerabilities of artificial intelligence technology and
attack design. The AIS protection mechanisms deployed in production may not be ready
for the impact of all types of disturbances, in particular, for the emergence of new threat
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implementations. Some vulnerabilities of the AIS are fundamental and irremediable, which
necessitates the mechanisms of early detection and handling of destructive influences.

All of the above spurs the development of new approaches to detecting, preventing
and mitigating the impact of various kinds of destructive disturbances on the AIS. In
addition, it is very important to ensure the stable functioning of the AIS in the face of
attacks. For AIS, as well as for other long-lifespan systems and/or relatively new systems
which do not have an extensive body of empirical knowledge accumulated through the
prolonged usage, it is also important to take into account changes in requirements and adapt
to unforeseen changes in the parameters of the physical and information environments—to
evolve automatically.

One of the ways to solve these problems is to equip AI with resilience properties. The
resilience property of a system is related to its ability to absorb a certain level of distur-
bances, to optimally handle complex destructive influences, to quickly restore performance
and continue to function in the face of attacks, as well as changes in requirements and the
environment that directly affects the system. Creating a systematic approach to this is a
relevant task, as it facilitates both the development of the theoretical methodology for build-
ing the AIS resilience to the complex impact of various types of destructive disturbances
and the increase of practical competitiveness of AIS in the long-term perspective.

1.2. Research Gap

Over the past decade, many micro and macro architectures of artificial intelligence
models have been proposed to improve the functionality and performance of intelligent
systems [1–3]. Many techniques of neural network regularization and stochastic optimiza-
tion algorithms have been investigated to improve accuracy on test data and accelerate
learning [4–6]. A number of Machine Learning Operations services and techniques have
been developed to automate the processes of model development, deployment, training
and performance monitoring [7]. Vulnerabilities of the AIS are also actively investigated and
various approaches are proposed to protect and mitigate the impact from destructive factors.

Several recent studies do mention the concept of resilience of AIS, but in the vast
majority of cases, the term is used with reference to the specific properties of resilience in
the context of specific destructive factors [8–10]. For example, in [8] resilience is understood
as robustness to adversarial attacks, and in [9] resilience is understood as robustness to
fault injection. However, the concept of resilience is much deeper. In general, in addition to
robustness, the resilient system should be characterized by the ability to detect disturbances,
capacity for graceful degradation, the ability to quickly recover its performance and ability
to improve under the influence of disturbances [11]. The analysis of recent scientific works
shows that there are very large differences in the authors’ understanding of the concept of
resilience in the context of the AIS.

Refs. [12,13] propose approaches to estimation of the resilience of the AIS to certain
types of, however the ability to absorb perturbations is subject to measurement and the
performance recovery rate is completely ignored. At the same time, when ref. [14] cover the
adaptation to concept drift, to choose the best machine learning algorithm, they compare
only the performance recovery rates and ignore other resilience indicators. There are many
studies where various properties of AI algorithms are measured, but very rarely more than
one resilience property is considered simultaneously.

Thus, there is still a lack of studies providing a systematic approach to the sources
of threats and methods of ensuring the resilience of the AIS to these threats in the full
sense of the term. The known studies lack a comprehensive and systematic view of the
resilience of AIS. At the same time, despite the existing differences in the formal definition
of the resilience of AIS in the studies of different researchers, there are still no studies that
would unify the concepts and definitions and extend them to different artificial intelligence
technologies and different types of threat sources.
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1.3. Objectives and Contributions

The aim of this study is to present a systematic approach to analyzing AIS resilience,
along with an analysis of relevant scientific publications based on the proposed taxonomy
and ontology of resilient AISs, as well as the recognition of the main trends in the theory
and practice of resilient AIS development.

The key objectives are as follows:

- analysis of existing threats and vulnerabilities of the AIS;
- construction of a taxonomic scheme of AIS resilience;
- building the AIS resilience ontology;
- analysis of the existing models and methods of ensuring and assessing the resilience

of the AIS;
- determination of future research directions for the development of the theory and

practice of resilient AIS.

Structurally, the work consists of the following sections:
A description of the research methodology is given in Section 2. The analysis of

vulnerabilities and threats, taxonomic and ontological schemes of resilience of AIS are
presented in Section 3. Section 4 present applications of AIS that require resiliency and
relevant threat examples. Section 5 presents the analysis of models and methods which
ensure the resilience of AIS. The research results are discussed in the Section 6. Section 7
contains the concluding summary and research limitation, and highlights promising areas
for future research.

The main contribution of this review includes taxonomic and ontological schemes of
resilience of artificial intelligence systems, as well as proposals for defining the concept
of resilience and resilient AI. In addition, the existing and proposed new methods of
measuring and certifying the resilience of the artificial intelligence system to the complex
impact of destructive factors are considered.

2. Research Methodology

The research hypothesis is that AISs are potentially (naturally) resilient to disturbances
under certain configurations of AIS architecture and learning scenarios, unlike traditional
resilient systems that require additional (non-functional) means embedded into the system
to counteract external and internal disturbances.

We determined the following three main research questions for the current systematic
literature review:

- Research Question (RQ1): What are the known and prospective threats to AIS?
- Research Question (RQ2): Can all components of AIS resilience for each type of threat

be achieved by configuring the AIS architecture and training scenario?
- Research Question (RQ3): Is it possible to evaluate and optimize the resilience of AIS?

The research methodology is based on a systematic analysis of resilience factors,
which include:

- forming a set of resilience factors;
- organizing and defining taxonomic and ontological relationships of AIS resilience factors;
- analyzing AIS resilience solutions and challages.

The following resilience factors are considered:

- threats (their types, sources, and consequences);
- tolerance and adaptation mechanisms (general and specific to AIS);
- resilience indicators (types and optimization issues).

To fully understand the concept of system resilience, the literature has been analyzed
since its inception, which was around 2005. The analysis of individual factors of AIS
resilience has been mainly carried out based on publications from the last five years to
incorporate the latest advancements and best practices in AIS design.
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3. Background, Taxonomy and Ontology
3.1. The Concept of System Resilience

The concept of resilience has become widespread in systems engineering and the
respective property is actively studied in technical systems. Resilience in this context
expands the concept of dependability of technical systems, emphasizing the need to create
systems that are flexible and adaptive [15]. Cybersecurity experts define resilience as the
ability to anticipate, withstand, recover from, and adapt to adverse conditions, external
influences, attacks, or system disruptions [16].

Since 2005, many definitions of system resilience have been proposed. In [17], the
resilience of a system was formulated as its ability to maintain its functions and structure
in the face of internal and external changes and to degrade in a controlled manner when
necessary. In [18], resilience is defined as the ability of a system to withstand significant
disturbances within acceptable degradation parameters and to recover within an acceptable
time with balanced costs and risks. In [19], the authors consider the property of system
resilience to the disturbing event(s) as the ability of the system to effectively reduce the
magnitude and duration of deviations from the target levels of system performance under
the influence of this event(s). Other researchers [20] formulate resilience as the ability of a
system to maintain functionality and recover from losses caused by extreme events.

In [21], the resilience of a system is understood as the internal ability of the system to
adjust its functioning before, during and after changes or disturbances, or during changes
or disturbances to maintain the necessary operations in both expected and unexpected
conditions. In a more recent work [22], resilience is understood as the ability of a constructed
system to autonomously perceive and respond to adverse changes in the functional state,
withstand failure events and recover from the consequences of these unpredictable events.
Some researchers [23] define resilience in a shorter way: the ability of the system to
withstand stressors. In [24], resilience was defined as the ability of a system to adapt to
changing conditions, withstand disturbances and recover from them.

Therefore, there is a need to ensure the resilience of AI-algorithms, given their ability
to continue to function under varying system requirements, thus changing the parameters
of the physical and information environment, as well as the emergence of unspecified
failures and malfunctions. The stages of disturbance processing by the resilient system are
best described in the report of the US National Academy of Sciences in 2012 on the example
of resilience to natural disasters. Four main stages were highlighted (Figure 1) [25]:

- planning and preparation of the system;
- absorption of disturbance;
- system recovery;
- system adaptation.
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At the stage of planning and preparation for destructive disturbances, a resilient
system can perform the following actions:

- risk assessment through system analysis and simulation of destructive disturbances;
- implementation of methods for detecting destructive disturbances;
- elimination of known vulnerabilities and implementation of a set of defense methods

against destructive disturbances;
- ensuring appropriate backup and recovery strategies.

The absorption stage is designed to implement unpredictable changes in the basic
architecture or behavior of the system, depending on what exactly is subject to destructive
influence. Absorption mechanisms can have a multi-layered structure, implementing
protection in depth, when the system determines which mechanism should be used if
the threat cannot be absorbed at this level. If it is impossible to avoid degradation, then
the mechanism of controlled degradation (graceful degradation) is implemented, when
the core operations of the system take priority over non-essential services for as long as
possible. The system can be pre-configured with an ordered set of less functional states that
represent acceptable trade-offs between functionality, performance and cost effectiveness.

The recovery stage includes measures aimed at restoring the lost functionality and
performance as quickly and cost efficiently as possible. The adaptation phase focuses on
the ability of the system to change to better cope with future threats.

The principles of Affordable Resilience are often used in the design and operation
of resilient systems, taking into account resource constraints [26]. Affordable resilience
involves achieving an effective balance between the life cycle cost and the technical charac-
teristics of the system’s resilience. When considering the life cycle for Affordable Resilience,
it is necessary to take into account not only the risks and challenges associated with known
and unknown perturbations in time, but also the opportunities to find gains in known and
unknown future environments.

In [26,27] it is proposed to balance cost and the benefits of obtained resilience to
achieve Affordable resilience (Figure 2).
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After determining the affordable levels of resilience for each key performance indicator,
the priorities of these indicators can be determined on the basis of the Multi-attribute Utility
Theory [28] or Analytical Hierarchy Process [29]. As a rule, the priorities of performance
indicators of the resilient system depend on the applied domain area.

In the papers [30,31], to optimize the parameters and hyperparameters g of the system,
taking into account resource constraints, it is proposed to find a trade-off between the
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performance criterion J under normal conditions and the integral indicator of system
resilience R under the influence of disturbances, that is

g∗ = argmax
G
{η
−
J (g) + (1− η)R(g)}, (1)

where η is coefficient that regulates the trade-off between the performance criterion and
the integral resilience index of the system within the control period.

Researchers and engineers involved in the development of resilient systems have
formulated a number of heuristics that should be relied on when designing resilient
systems [11,15,18]:

• functional redundancy or diversity, which consists in the existence of alternative ways
to perform a certain function;

• hardware redundancy, which is the reservation of the hardware to protect against
hardware failures;

• the possibility of self-restructuring in response to external changes;
• predictability of the automated system behavior to guarantee trust and avoid frequent

human intervention;
• avoiding excessive complexity caused by poor design practices;
• the ability of the system to function in the most probable and worst-case scenarios of

natural and man-made nature;
• controlled (graceful) degradation, which is the ability of the system to continue to

operate under the influence of an unpredictable destructive factor by transitioning to
a state of lower functionality or performance;

• implementation of a mechanism to control and correct the drift of the system to a non-
functional state by making appropriate compromises and timely preventive actions;

• ensuring the transition to a “neutral” state to prevent further damage under the influence
of an unknown destructive disturbance until the problem is thoroughly diagnosed;

• learning and adaptation, i.e., reconfiguration, optimization and development of the
system on the basis of new knowledge constantly obtained from the environment;

• inspectability of the system, which provides for the possibility of necessary human
intervention without requiring unreasonable assumptions from it;

• a human being should be aware of the situation when there is a need for “quick
comprehension” of the situation and the formation of creative solutions;

• implementation of the possibility of replacing or backing up automation by people
when there is a change in the context for which automation is not prepared, but there
is enough time for human intervention;

• implementation of the principle of awareness of intentions, when the system and humans
should maintain a common model of intentions to support each other when necessary.

Thus, resilience is a system property and is based on certain principles and stages of
processing disturbing influences.

3.2. Vulnerabilities and Threats of AISs

In general, AIS operate in imperfect conditions and can be exposed to various distur-
bances. AI-technology has numerous AI-specific vulnerabilities. In addition to AI-specific
vulnerabilities, there are physical environment vulnerabilities that can lead to hardware
failures in the deployment environment, as well as vulnerabilities related to safety and
cybersecurity of information systems.

One of the AI-specific vulnerabilities is the dependence of the efficiency and security
of AI on the quantity and quality of training data. An AIS can be highly effective only if the
training data is unbiased. However, data collection or model building may be outsourced to
an uncontrolled environment for economic reasons or to comply with local data protection
laws. Therefore, the obtained result cannot always be trusted. The data collected in
another environment (including synthetic data) may not be relevant to the application
environment. In addition, AIS can only analyze correlations in data, but cannot distinguish
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false correlations from true causal relationships. It creates an additional possibility of data
poisoning and data quality reduction.

The low interpretability of modern deep neural networks can also be seen as a vul-
nerability, since attacks on the AIS cannot be detected by analyzing model parameters
and program code, but only by incorrect model behavior [32]. Without interpreting the
AIS-decisions, it is difficult for even an expert to understand the reason of AIS perfor-
mance degradation.

Huge Input and State Spaces and Approximate Decision Boundaries can also be
considered to be vulnerabilities. It has been shown that due to the high dimensionality of the
feature space, it is possible to search in many directions to select imperceptible modifications
to the original data samples that mislead the AIS. Also, the high dimensionality of the input
feature space facilitates the presence of so-called non-robust features in the data, which
improves the transferability of adversarial examples to other AIS [32,33]. In addition, the
high dimensionality of State Spaces complicates the process of adapting to rapid changes in
the dependencies between inputs and outputs of AIS. It is difficult to simultaneously avoid
catastrophic forgetting and ensure high speed of adaptation of a large AIS to changes.

AIS vulnerabilities can be exploited by hackers, terrorists and all kinds of criminals. In
addition, employees who face dismissal as a result of their replacement by AIS may try to
discredit the effectiveness of AIS. As AIS is increasingly used in military vehicles, these
machines can become a target for the opposing side of an armed conflict. In addition, as
the AI-technologies evolves, some AISs can be directed to attack other AISs.

AIS have various resource constraints, which can be a source of threats, as sufficient
or excessive resources are needed to implement reliable redundancy, self-diagnosis and
recovery, as well as optimization (improvement).

The physical environment is also a source of threats. Such influences as EM Interfer-
ence, Laser Injection, and Heavy-ion radiation can cause damage to the neural network
weighs and cause AIS failures [34]. Also, variations in the supply voltage or direct influence
on the clock circuit can lead to a glitch in the clock signal. It leads to incorrect results of
intermediate and final calculations in the neural network. In addition, the components of
the deployment system may be damaged. If software and artificial intelligence algorithms
do not take into account the following system faults when designing, this can lead to
AIS failures.

The natural environment can also be a source of threats, as it can contain influences
that were not taken into account during training and can be perceived as noise or novelty
in the data. The high variability of the observed environment and limited resources for
training data collection leads to insufficient generalization. In addition, the environment, in
general, is not stationary, and the patterns of the observed process can change unpredictably.
As a result, at certain times, the model of mapping inputs to outputs may become irrelevant.
A compromised network, infected AIS software and remote access to AIS can be a source
of threat to AIS in terms of the ability to acquire its data, structure and parameters, which
facilitates the formation of attacks.

Among AIS threats, there are three main types of disturbances: drift, adversarial
attacks, and faults. Each of these types has subtypes depending on their way of formation
and specifics of impact.

The drift problem occurs when at a certain time point the test data begins to differ
significantly from the training data in certain characteristics, which indicates the need to
update the model to avoid performance degradation. Drift in machine learning is divided
into real concept drift, covariance shift, and a priori probability shift.

Real concept drift means a change in the distribution of a posteriori probability
Pt+w(y|X) at time t + w compared to the a posteriori probability distribution Pt(y|X)
at time t, which is connected with principal change in the underlying target concept,
that is Pt(y|X) 6= Pt+w(y|X) , where X is a set of input variables, and y is target variable
(Figure 3b) [35]. In the case of reinforcement learning, the real drift of concepts occurs as
a result of environment context changes (environment shift). In other words, the agent
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functions under conditions of non-stationary rewards and/or non-stationary transition
probabilities between system states. Fickle concept drift, which is a subcategory of real
drift and occurs when some data samples belong to two different concepts or contexts at
two different times, is considered separately. Subconcept drift or Intersect concept drift is
also a subcategory of real drift and occurs when only a subset of the dataset changes its
target variable or rewards feedback after drift has occurred. Full concept drift or Severe
concept drift is a subcategory of real concept drift, which occurs when target variables of all
data points change after the drift occurs. In the case of reinforcement learning, Full concept
drift can be associated with changes in action-reward feedback and transition probabilities
for all historical state-action pairs.
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Covariate shift, or virtual concept drift as it is commonly called in the literature, occurs
when input data distribution changes without affecting the target concept (Figure 3c).
In mathematical terms, Pt(y|x) = Pt+w(y|x) and Pt(x) 6= Pt+w(x). Although in practice,
changes in the data and the posterior probability distributions often happen simultaneously.
So, covariate shift can be a component of overall drift or the initial stage of real concept
drift. Out-of-distribution data can be considered one of the subcategories of Covariate
shift. Out-of-distribution data may have an element of novelty and it do not ensure the
reliability of the analysis. This may be related to the lack of training data in appropriate
region of space, which increases epistemic uncertainty. Or it may be caused by the fact that
the data is completely outside the training distribution and the model could not extrapolate
effectively. It is a case of aleatoric uncertainty. Another subcategory Covariate shift is
related to dynamically arising new attributes in the input space. This subcategory is also
called Feature-evolution. Mathematically, this can be described as Xt 6= Xt+w and as a result
Pt(x) 6= Pt+w(x). This can occur if the AIS is evolving and new data sources are added.
When AIS in inference mode encounters data that falls outside the distribution on which
it was trained, AIS reaction can be unpredictable and have catastrophic consequences.
Prior-probability shift is another type of drift and is associated with the appearance of data
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imbalance or a change in the set of concepts or contexts. In the case of data classification,
prior-probability shift means that there is a change in probabilities P(y) due to unbalanced
class samples (Figure 3d), emergence of novel classes (Figure 3e), removal of existing
classes (Concept deletion), concept fusion (Figure 3f) or splitting certain classes into several
subclasses (Concept splitting).

In terms of the time characteristics of concept drift, they can be classified into abrupt
(sudden), gradual, incremental, re-occurring and blip [36]. Abrupt concept drift is the
rapid change of an old concept to a new one. In this case, the performance of the model
suddenly decreases, and there is a need to quickly train a new concept to restore per-
formance. Gradual drift has an overlapping concept, and after some period of time, the
new concept becomes stable. In incremental concept drift, certain concept vanished from
the observations at certain time and never occurred again. In a recurring type of drift, a
concept reappears after a long period of time. A recurring change of concept occurs in
the flow. Such drift can have cyclic and acyclic behavior. Cyclical drift occurs when there
are seasonal fluctuations. For example, sales of cold clothes increase during the summer
season. An acyclic phenomenon is observed when the price of electricity increases due to
an increase in the price of gasoline and normally it returns to the previous price. A blip
drift is a very rapid change in a concept or a rare event, so it is considered as an outlier in a
stationary distribution. In other words, in general, blip drift is usually not even considered
to be concept drift.

Significant destructive effects on AIS can be caused by various faults. Faults in a
computer system can cause errors. An error is such manifestations of faults that leads to
a deviation of the actual state of a system element from the expected one [34]. If a fault
does not cause an error, then such a fault is called a sleeping fault. As a result of errors,
failures can occur, meaning that the system is unable to perform its intended functionality
or behavior. In general, faults can be divided into four groups:

• physical faults that lead to persistent failures or short-term failures of AIS hardware;
• design faults, which are the result of erroneous actions made during the creation of

AIS and lead to the appearance of defects in both hardware and software;
• interaction faults that result from the impact of external factors on AIS hardware

and software;
• software faults caused by the effect of software aging, which lead to persistent failures

or short-term failure of AIS software.

Failures of the system and its components can be caused by a single fault, a group of
faults, or a sequential manifestation of faults in the form of a “pathological” chain.

Figure 4 illustrates the causal relationship between a hardware fault, error, and fail-
ure [37]. A failure causes a violation of the predictable behavior of a neural network that is
deployed to perform its task in a computing environment.
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Hardware faults can be classified according to their time characteristics (Figure 5) [37]:

• permanent fault which is continuous and stable over time as result of physical damage;
• transient fault which can only persist for a short period of time as result of external disturbances.
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Permanent fault types can simulate many defects in transistors and interconnect
structures at the logic level with a fairly high accuracy The most common model of per-
manent defects is the so-called “stuck-at”, which consists in maintaining an exclusively
high (stuck-at-1) or low (stuck-at-0) state on data or control lines. Also, to assess fault
tolerance in computing systems, researchers necessarily consider faults such as “stuck-
open” or “stuck-short” state [34]. Faults of this type allow us to describe cases when a
“floating” line has a high capacity and retains its charge for a considerable time in modern
semiconductor technologies.

Transient faults cover the vast majority of faults that occur in digital computing
systems built on modern semiconductor technology. Future technologies are expected to
be even more susceptible to transient faults due to greater sensitivity to environmental
influences and high material stresses in highly miniaturized media. Transient faults that
recur at a certain frequency are usually caused by extreme or unstable device operation
and are more difficult to detect than permanent faults. Transient faults are associated
with the impact on the parameters of circuits that determine the time characteristics,
rather than on the structure of circuits. Transient faults include an unpredictable delay in
signal propagation, random bit switching in memory registers, impulsive changes in logic
circuits [37].

There are several physical methods of injecting faults with malicious intent. In practice,
fault injection is realized due to a system clock failure, that is, circuit synchronization, power
sag to a certain level, electromagnetic effects on semiconductors, irradiation with heavy
ions, laser beam effects on memory, and software rowhammer attacks on memory bits [2].

Laser beam can inject an error into static random-access memory (SRAM). When a
laser beam is applied to silicon, a temporary conductive channel is formed in the dielectric,
which causes the transistor to switch states in a precise and controlled manner [38]. By
carefully adjusting the parameters of the laser beam, such as its diameter, emitted energy,
and impact coordinate, an attacker can accurately change any bit in the SRAM memory.
The laser beam has been widely and successfully used in conjunction with differential fault
analysis to extract the private key of encryption chips.

Rowhammer-attacks can cause errors in DRAM memory. This type of attack takes
advantage of the electrical interaction between neighboring memory cells [39]. By quickly
and repeatedly accessing a certain region of physical memory, the bit in the neighboring
region can be inverted. By profiling bit inverting patterns in the DRAM module and
abusing memory management functions, a row hammer can reliably invert a single bit at
any address in the software stack. There are known examples of using the Rowhammer
attack to break memory isolation in virtualized systems and to obtain root rights in the
Android system.

Laser beam and Rowhammer attacks can inject errors into memory with extremely
high accuracy. However, to inject multiple errors, the laser beam must be reconfigured, and
a Rowhammer attack requires moving target data into memory. Reconfiguring the laser
beam, as well as moving data, requires certain overhead. Therefore, the design of neural
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network algorithms should provide resistance to a certain level of inverted bits to make
these attacks unusable from a practical point of view.

The injection of faults and errors into the digital system for deploying AI can be carried
out in an adaptive manner, taking into account feedback (Figure 6). In this case, attack
success is monitored at the output of the neural network. At the same time, Single Bias
Attack (SBA) or Gradient Descent Attack (GDA) can be used to adaptively influence on the
system [2].
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The output of neural networks is highly dependent on the biases in the output layer, so
SBA is implemented by increasing only one value of the bias of the neuron associated with
the target category. SBA is designed for cases where hiddenness of the attack is not required.
For cases where hiddenness is important, GDA is used, where gradient descent searches
for a set of parameters that need to be changed for the attack success. The authors of [2,38]
proposed to apply Alternating Direction Method of Multipliers (ADMM) to optimize the
attack while ensuring that the data analysis other than the ones specified is unaffected and
the modification in the parameters is minimum.

The importance of protecting against adaptive fault and error injection algorithms
is related to the trend of moving real-time intelligent computing to edge devices. These
devices are more likely to be physically accessible to an attacker, which increases the
possibility of misleading devices. Modern cyber-physical systems and the Internet of
Things are typical platforms for deployment of intelligent algorithms that require protection
against fault injection.

An equally harmful destructive factor for machine learning systems is data corruption,
missing values, and errors in training and test data. Missing values in features lead to loss
of information, and errors in target data labels lead to misinformation and reduced learning
efficiency. Missing values in data are often caused by software or hardware faults related to
data collection, transmission, and storage.

Researchers have found that neural network algorithms are sensitive to so-called
adversarial attacks, which involve manipulating data or a model to reduce the effectiveness
of AIS [2]. It was noted that adversarial attacks have the following properties:

• imperceptibility, which consists in the existence of ways of such minimal (not visible
to humans) modification of data that leads to inadequate functioning of AI;

• the possibility of Targeted Manipulation on the output of the neural network to
manipulate the system for your own benefit and gain;

• transferability of adversarial examples obtained for one model in order to apply them
to another model if the models perform a common task, which allows attackers to use
a surrogate model (oracle) to generate attacks for the target model;

• the lack of generally accepted theoretical models to explain the effectiveness of adver-
sarial attacks, making any of the developed defense mechanisms not universal.

Machine learning model, deployment environment, and data generation source can be
the target of attacks. Attacks can be divided into three main types according to the purpose:
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• availability attacks, which leads to the inability of the end user to use the AIS;
• integrity attacks, which leads to incorrect AIS decisions;
• confidentiality attacks, where the attacker’s goal is to intercept communication be-

tween two parties and obtain private information.

According to strategy, adversarial attacks can be classified into: evasion attacks,
poisoning attacks, and oracle attacks [40].

Evasion is an attack on AI under inference by looking for modification of input sample
to confuse the machine learning model. The main component of a adversarial attack
is a adversarial data sample x′ with a small perturbation (adding a noise component)
x′ = x + ε, which leads to a significant change in the output of the network, described
by the function f(x), thus f(x′) 6= f(x). The neural network weights θ are treated as
fixed and only the input test sample x is subject to optimization in order to generate the
adversarial sample x′ = x + ε. This attack involves an optimization process of finding a
small perturbation ε that will cause a wrong AIS decision. Evasion attacks are divided into
gradient-based evasion and gradient-free evasion. Gradient-based evasion uses one-step
or iterative gradient optimization algorithms with imperceptibility constraints to improve
the effectiveness of these attacks. The most well-known gradient-based attacks are Fast
Gradient Sign Method (FGSM), iterative-FGSM (iFGSM), Jacobian Saliency Map Attack
(JSMA), Carlini and Wagner (C&W) attack and training dataset unaware attack (TrISec) [41].

Gradient-free evasion attacks are divided into Score-based Evasion Attacks and Decision-
based Evasion Attacks. Score-based Evasion Attacks uses output scores/probabilities to
predict the direction and strength of the next manipulation of the input data. Decision-
based Evasion Attacks start by generating stronger input noise that causes incorrect model
decisions, and then the noise is iteratively reduced until it becomes undetectable. The goal
of Decision-based Evasion Attacks is to explore different parts of the decision boundary
and find the minimum amount of noise that misleads the model. However, the cost of
these attacks in terms of the number of requests is very high. Therefore, FaDec attacks use
adaptive step sizes to reduce the computational cost of Decision-based Evasion Attacks to
achieve the smallest perturbation with the minimal number of iterations [42].

The development of generative models has led to the emergence of a new type of
evasion attack that is related to prompt engineering. Prompting interfaces allow users to
quickly adjust the output of generative models in both vision and language. However, even
small changes or design choices in the prompt can result in significant differences in the
output [33]. For example, prompting is sensitive to the order of sentences, variations in the
template, and the specific examples provided in the input.

Poisoning attacks involve corrupting the data or logic of a model to degrade the
learning outcome [43]. In this case, poisoning data before it is pre-processed is considered
as indirect poisoning. Direct poisoning refers to the data injection or data manipulation,
or model modification by means of logical corruption. The injection of adversarial data
leads to a change in the distribution and a shift in the decision boundary based on linear
programming or gradient ascent methods. Data manipulation can consist of modifying or
replacing labels, feedback or input data. Logic Corruption is the intrusion into a machine
learning algorithm to change the learning process or model in an adverse way.

Poisoning attacks are particularly dangerous for AIS in continual learning settings.
Attacker may craft malicious injection of false data that simulates a concept drift. This
adversarial setting assumes a poisoning attack that may be conducted in order to damage
the underlying AI-model by forcing an adaptation to false data. Existing drift detectors
are not capable of differentiating between real and adversarial concept drift, which un-
derscores the significance of the data trustworthiness issue. The problem is similar in the
context of reinforcement learning, as an attacker has the potential to manipulate either the
environment or the agent’s sensors.

An oracle attack involves an attacker using access to the software interface to create
a surrogate model that retains a significant portion of the original model’s functionality.
Surrogate model provides efficient way to find an evasion attack which is transferred to the
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original model. Oracle attacks are divided into: extraction attacks, inversion attacks, and
membership inference [44]. The goal of the extraction attack is to extract the architectural
details of the model from the observations of the original predictions and class probabil-
ities. Inversion attacks are an attempt to recover training data. Membership inference
attack allows the adversary to identify specific data points from the distribution of the
training dataset.

The attacks can be categorized according to our knowledge of the data analysis
model on:

• white-box attacks, which are formed on the basis of full knowledge of the data,
model and training algorithm, used by AIS developers to augment data or evaluate
model robustness;

• gray-box attacks based on the use of partial information (Model Architecture, Parame-
ter Values, Loss Function or Training Data), but sufficient to attack on the AIS;

• black-box attacks that are formed by accessing the interface of a real AI-model or
oracle to send data and receive a response.

Various methods of creating a surrogate model, gradient estimation methods, and
various heuristic algorithms are used to form adversarial black box attacks. This type of
attack poses the greatest threat in practice.

One of the sources of knowledge that can open the black box of an AIS is insider
information about the model, access to training data, the environment, or sensors. Insider
information significantly enhances the effectiveness of crafting adversarial attacks.

Figure 7 shows the ontological diagram of AIS threats as summarization the above review.
Thus, all of the following can be considered AIS disturbances: fault injection, adversar-

ial attacks and concept drift, including novelty (out-of-distribution), missing values, and
data errors. There are many types and subtypes of AIS disturbance. The research of each
disturbance type is still a relevant area of research, especially where the research of the
complex impact of different types of disturbances is concerned.

3.3. Taxonomy and Ontology of AIS Resilience

The main elements of the taxonomic diagram of AIS resilience are: threats (drift,
faults and adversarial attacks); phases (plan, absorb, recover, adapt) of AIS operational
cycle; principles on which the AIS resilience is based; properties that characterize resilient
AIS; indicators that can be used to assess AIS resilience; tools for ensuring AIS resilience
(Figure 8).

Certain resilience phases (stages) can be split and detailed. Based on the analysis
of [11,12], the following phases of the operating cycle of resilient AIS should be imple-
mented: disturbance forecast, degradation prevention, disturbance detection, response,
recovery, adaptation and evolution. Disturbance Forecast is a proactive mechanism that
provides knowledge about early symptoms of disturbance and readiness to a certain type
of known disturbance.

Degradation prevention is the application of available solutions and knowledge about
the disturbing factor to absorb the disturbance (ensure robustness) in order to minimize the
impact of the disturbance on the AIS performance. Not every disturbance can be completely
absorbed, but in order to produce an optimal AIS response, the disturbance should be
detected and identified by its type. The purpose of disturbance detection is to optimally
reallocate resources or prioritize certain decisions in the face of inevitable performance
degradation. Moreover, an important stage of resilient AIS is the restoration of the initial
performance and adaptation to the impact of disturbances. The last phase of the operational
cycle involves searching for and implementing opportunities for evolutionary changes that
ensure the best fit of the system architecture and parameters to new conditions and tasks.
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The implementation of resilient AIS is based on the general principles of designing
resilient systems with taking into account the specifics of modern neural network technolo-
gies. The systematization of papers [11,16] allows formulating the following principles
of ensuring the AIS resilience: proactivity, diversity, redundancy, fault-tolerance, adver-
sarial robustness, defense in depth, graceful degradation, adaptability, plasticity-stability
trade-off and evaluability.

The principle of diversity implies the inclusion of randomization and multi-versioning
into implementation of system components [15]. Different versions of the components can
implement different architectures, subsamples and subspaces of features or data modalities,
use different data augmentations, and different initializations of neural network weights.
In this case, the use of the voting method for the diverse components of the AIS helps
to reduce the variance of the complex AI-model in the inference mode. Diversity causes
the redundancy of AIS and additional development overhead, but on the other hand it
complicates the attack and mitigates any disturbing influence.

The principles of Fault-tolerance and Adversarial robustness provide for absorption of
faults and adversarial attacks on AIS by using special architectural solutions and training
methods. The Defense in Depth principle suggests combining several mechanisms of AIS
defense, which consistently counteract the destructive impact. If one mechanism fails to
provide defense, another is activated to prevent destructive effects.

The principle of graceful degradation is the pre-configuration of the AIS with a set
of progressively less functional states that represent acceptable trade-offs between func-
tionality and safety. The transition to a less functional state can be smooth, providing a
gradual decrease in performance without complete breakdown of the AIS. Concepts such
as granularity of predictions and model hierarchy, zero-shot learning, and decision rejection
are common ways to allow AIS to handle unexpected events while continuing to provide
at least a minimum acceptable level of service.

The principles of Adaptability, Evaluability, and Plasticity-stability trade-off are inter-
related and specify the ability of AIS to learn and, more specifically, engage in continual
learning with regularization to avoid the effect of overfitting and catastrophic forget-
ting [4,6,14]. The principle of AIS Evaluability implies the possibility of making necessary
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structural, architectural or other changes to the AIS, which will reduce vulnerability and
increase resilience to potential future destructive impacts. These principles also include
improving the speed of adaptation to new disturbances through meta-learning techniques.

A resilient AIS can be characterized by a set of properties: ability to recover, rapidity,
resourcefulness, reliability, robustness, security, high confidence, maintainability, surviv-
ability, performance. These properties should be self-explanatory from their names or from
description in the previous subsections. A set of indicators (metrics) can be proposed to AIS
resilience assess: rapidity indicator, robustness indicator, redundancy indicator, resource-
fulness indicator, integral resilience indicator. Integral resilience indicator deserves special
attention, as it simultaneously takes into account the degree of robustness and recovery
rate. Resourcefulness can be conceptualized as consisting of the ability to apply resources
to meet established priorities and achieve goals [11]. An organizational resourcefulness can
be measured by ratio of the increase in resilience to the increase in the amount of involved
resources [11,45].

A certain set of tools should be used to ensure AIS resilience. The most important
tools are resilience assessment methods, which allow to assess, compare and optimize
the AIS resilience. To ensure robustness and performance recovery, it is necessary to use
various disturbance countermeasures. Meta-learning tools, methods of reconfiguring the
AI model with regard to performance or resources provide certain level of evolvability.
The implementation of AIS adaptation and evolution mechanisms requires the inclusion of
constraints imposed by the principle of plasticity-stability trade-off [6,14].

Figure 9 shows an ontological diagram of the AIS resilience. Moreover, the diagram
specifies the conditions for the emergence of the AIS evolution. AIS should be improved
to quickly eliminate drift caused by these changes through domain adaptation and meta-
learning. In addition, there is a need to initiate evolutionary improvement of the AIS as a
response to influence of non-specified faults/failures, the effective processing of which was
not provided in the current configuration.

In addition, Figure 9 shows a list of the main disturbance countermeasures required for
absorbing disturbances, graceful degradation and performance recovery. This list includes
the following countermeasures: data sanitization, data encryption, homomorphic encryp-
tion; gradient masking methods; robustness optimization methods, adversary detection
methods, fault masking methods, methods of error detection caused by faults, method of
active recovery after faults, drift detection methods, continual learning techniques, few-shot
learning techniques, active learning techniques [46–48].

Conventional cybersecurity techniques reduce the risks of insider attacks, which
denies attackers access to sensitive information about AIS. In addition, data sanitization
and data encryption methods prevent data poisoning. Data Sanitization methods are based
on the Reject on Negative Impact approach; they remove samples from the dataset which
negatively affect the performance of the AIS [33,47]. Homomorphic Encryption methods
provide defense against cyber-attacks on privacy. Homomorphic Encryption encrypts data
in a form that a neural network can process without decrypting the data. An encryption
scheme is homomorphic for operation ∗; without the access to the secret key, the following
holds [33]:

Enc(x1) ∗ Enc(x2) = Enc(x1 ∗ x2), (2)

where Enc(·) denotes the encryption function.
Gradient masking methods, Robustness optimization methods, and Adversary detec-

tion methods are used to defend the AIS against adversarial attacks in the inference mode.
Fault masking methods, Methods of error detection caused by faults and Method of active
recovery after faults are used to mitigate the effect of faults on AIS performance [34,49].
Drift detection methods, Continuous learning techniques, Few-shot learning techniques,
and Active learning techniques are used for the effective functioning of AI under drift
conditions [4–6].
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4. Applications of AIS That Require Resiliency

AIS are widely used in various fields of human activity. Certain application areas
require special attention in terms of security, reliability, and trustworthiness. Table 1 shows
examples of threats and negative consequences of insufficient AIS resilience for the most
relevant application areas. Some threats are obvious, while others are less apparent and
may require further explanation for the general reader. Nevertheless, all of these threats
are real and must be taken into account when designing AIS.
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Table 1. Examples of threats for AIS application areas.

AIS Application Area AIS Threat Examples Consequences of the Lack of
AIS Resilience

Industry

Cyber attacks on edge devices of cyber-physical systems
that deploy AI for quality inspection in manufacturing
may pose a threat. The resources available to edge
devices may not be enough to implement reliable
built-in cybersecurity [39,50].

Abnormal system behavior.
Emergency situations.
Production defects.

Fault injection attacks may affect FPGA chips, on which
a neural network is deployed for implementing motion
controllers, quality control systems in manufacturing
processes, emission monitoring systems, or energy
management systems [39,51].

Adversarial poisoning attacks can be used to target to
the training data of digital twins in complex industrial
environments by gaining unauthorised access to the
sensors or to the data repository [46].

Adversarial evasion attacks on intelligent transportation
systems, including self-driving vehicles, can take the
form of visual patterns painted by attackers on road
signs or other objects [47]. These attacks, along with
legitimate, naturally occurring out-of-distribution
observations, can lead to incorrect decision-making by
the intelligent transportation system.

Security and
Cybersecurity

The performance of an AI-based malware detector can
degrade due to concept drift [52]. Concept drift can be
caused by evolving malware, changes in user behavior,
or changes in system configurations.

Security breaches.

The performance of an AI-based Biometric
Authentication System can degrade due to concept drift
[53]. Concept drift can be caused by various factors such
as aging, injury or illness of a person, as well as
environmental or technological changes.

Adversarial evasion attacks can be performed against
AI-based malware detection or Biometric Authentication
systems. For instance, attackers can design unique
sunglasses that trick a facial recognition network into
granting access to a secure system [2,54].

Fault injection attacks can be performed against
AI-based Biometric Authentication Systems [2,55].
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Table 1. Cont.

AIS Application Area AIS Threat Examples Consequences of the Lack of AIS
Resilience

Military and Disaster
Response

The disaster response drone is subject to aleatoric and
epistemic uncertainties when processing images beyond
its competence [48]. If the drone cannot notify the
operator about out-of-distribution data in real time, the
operator should review all collected data post-hoc.

Unexpected behavior of the
automated system.
Destruction of property and loss of life.
Inefficient resource allocation.

An adversarial attack on a reinforcement learning model
controlling an autonomous military drone can result in
the drone attacking a series of unintended
targets [56,57].

Anti-UAV system can significantly increase the number
of false positives or false negatives in case of domain
drift [58]. Drift can be caused by a significant change in
the surveillance environment or a change in the
appearance of enemy drones. For example, enemy
drones may more closely resemble birds, or may be
harder to recognize in smoke or lighting effects.

Policing and Justice

Prior-probability shift lead to discriminatory outcomes
in AI-based Recidivism prediction [59]. In this case, if an
AI model gives a biased or incorrect prediction, holding
the model or its creators accountable can be challenging.

Civil and human rights violations.
Violations of the rule of law.

AI-based predictive policing lacks transparency, making
it challenging to identify and correct biases in the AI
model. AIS without interpretability or a behavioral
certificate cannot be considered trustworthy [60].
However, the vast majority of researchers do not
aggregate behavioral evidence from diverse sources,
including empirical out-of-distribution and out-of-task
evaluations and theoretical proofs linking model
architecture to behavior, to produce
behavioral certificates.

Finance

Adversarial attacks on AI models for financial trading
can introduce special small changes to the stock prices
that can affect the profitability of other AI trading
models [61]. With insider information about the
architecture and parameters of the model, an efficient
white-box evasion attack can be implemented.
Moreover, with insider access to the data, poisoning a
small amount of the training data can drastically affect
the AI model’s performance. Malicious actors can
perform adversarial data perturbation by automatically
buying and selling fnancial assets or spoofing (posting
and cancelling he bid and offer prices). Additionally,
adversarial tweets can also be used to manipulate stock
prices because many AI trading models analyze news.

Loss of business profitability.
Money laundering.

Adversarial attacks can be launched on fraud detection
algorithms [62], which can lead to an improvement in
the formation of synthetic identities, fraudulent
transactions, fraudulent claims to insurance companies,
and more.

Adversarial attacks on Deep fakes detector can cause it
to malfunction [63]. Deep fakes are used to impersonate
another person for money laundering.
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Table 1. Cont.

AIS Application Area AIS Threat Examples Consequences of the Lack of AIS
Resilience

Healthcare

Adversarial modification of medical data can be used to
manipulate patient billing [64].

Deterioration of health. Increased
healthcare costs.

An automatic e-health system for prescriptions can be
deceived by adversarial inputs that are forged to subvert
the model’s prediction [64].

Changes in treatment protocols, new diagnostic
methods, and changes in demand for services may cause
the trained diagnostic model to become outdated [64].
In addition, adversarial attacks on AI-based diagnostic
system can also lead to concept drift. The concept drift,
in turn, can lead to inaccuracies in prediction and
incorrect diagnoses.

The analysis of Table 1 allows concluding that the insufficient level of resilience of
the AIS used in industrial applications, security and military objects, disaster response
complexes, policing and justice practice, finance and healthcare systems can have a direct or
indirect negative impact on health, mortality, human rights, and asset values. The more the
disturbances reduce AIS performance in mentioned sensitive areas, and the longer it takes
to recover, the greater the losses for businesses and people. Thus, the issue of ensuring the
AIS resilience to various kinds of disturbances is extremely relevant, especially in the safety,
security, human rights and trust critical domains.

5. Models and Methods to Ensure and Assess AIS Resilience
5.1. Proactivity and Robustness

The proactivity of the AIS implies preparation for absorbing disturbances of a known
type and predicting the beginning of the impact of known and unknown disturbances on the
AIS performance. The ability of the AIS to absorb disturbances is related to the robustness
of AIS models. The choice of the method for absorbing and recognizing (detecting) a
disturbance depends on the type of disturbance.

Table 2 presents the approaches and their corresponding methods and algorithms
aimed at resistance to adversarial attacks. The first approach is Gradient masking, the
simplest implementations of which are methods of special data preprocessing, such as jpeg
compression, random padding and resizing [65,66] defensive distillation [67], randomly
choosing a model from a set of models or using dropout [68], the use of generative mod-
els [69,70], and discrete atomic compression [71]. The second approach is to optimize the
robustness at the preparatory stage of the resilient system’s operating cycle. The most
general and simplest method of optimizing robustness involves training on generated
perturbed training samples combined with certain regularization methods [72–74]. These
methods minimize the impact of small perturbations on the input data based on Jacobian
regularization or L2-distance between feature representations for original and perturbed
samples. Sparse coding-based methods of feature representation are also considered to
be a method of optimizing robustness due to the low-pass filtering effect [75]. The latest
approach is to detect adversarial evasion attacks in the test data and poisoning attacks in
the training data [76–78]. However, Carlini and Wagner rigorously demonstrate that the
properties of adversarial samples are difficult and resource-intensive to detect [79].
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Table 2. Approaches and algorithms to ensure the recognition and absorption of adversarial attacks.

Approach Capability Weakness Methods and Algorithms

Gradient masking Perturbation absorption

Vulnerability to attacks based
on gradient approximation or
black-box optimization with
evolution strategies

Non-differentiable input
transformation [65,66]

Defensive distillation [67]

Models selection from a family of
models [68]

Generative model PixelDefend or
Defense-GAN [69,70]

Robustness optimization Perturbation absorption
and performance recovery

Significant computational
resource consumption to
obtain a good result

Adversarial retraining [80]

Stability training [72]

Jacobian regularization [73]

Sparse coding-based
representation [75]

Intra-concentration and
inter-separability regularization
[30,31,74]

Provable defenses with the Reluplex
algorithm [81]

Detecting adversarial
examples

Rejection Option in the
presence of adversarial
inputs with the
subsequent AI-decision
explanation and passing
the control to a human

Not reliable enough

Light-weight Bayesian
refinement [76]

Adversarial example detection using
latent neighborhood graph [77]

Feature distance space analysis [82]

Training Data Sanitization algorithms
based on Reject on Negative Impact
approach [78]

The analysis of Table 2 shows that, with enough computing resources, the most
promising approach is based on robustness optimization. In addition, this approach is
compatible with the use of other approaches, allowing to implement the principle of defense
in depth.

Table 3 shows the approaches which are used to ensure robustness to the injection
of faults in the computing environment where neural networks are deployed: fault mask-
ing [83–85], the introduction of explicit redundancy [86–88] and error detection [89–91].
Faults are understood as accidental or intentional bit flips in memory, which store the
weights or the output value of the neuron.

Fault masking can be implemented in the form of architectural solutions that au-
tomatically correct or eliminate the impact of a small portion of neural weights’ faults.
Optimizing the architecture to increase robustness means minimizing the maximum error at
the output of the neural network for a given number of bit-flips in neural weights or results
of neural intermediate calculations. However, architecture optimization is traditionally
a very resource-intensive process. A similar effect can be achieved by redistributing the
knowledge among multiple neurons and weights, reducing the importance of individual
neurons. This redistribution can be performed by including a regularization (penalty) term
in the loss function to indirectly incorporate faults in conventional algorithms. Redun-
dancy methods have traditionally been used in reliability theory to ensure fault tolerance.
Similarly, duplication of critical neurons and synapses and model ensembles are used in
neural networks. Error detection is another approach to fault handling which provides
Rejection Option in the presence of neural weight errors caused by faults. In [90,92], sum
checking and low-collision hash function are proposed in order to detect changes in the
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neural network weight under the influence of memory faults. In the paper [91], the current
value of the contrastive loss function for the diagnostic data is compared with a reference
value for fault detection. The reference value is calculated as contrastive loss value on the
test diagnostic data samples under normal conditions.

Table 3. Approaches and algorithms of faults detection and absorption.

Approach Capability Weakness Methods and Algorithms

Fault masking Perturbation absorption Computational intensive
model synthesis

Weights representation with
error-correcting codes [83]

Neural architecture search [84]

Fault-tolerant training based on fault
injection to weight or adding noise to
gradients during training [85]

Explicit redundancy Perturbation detection
and absorption

Computationally intensive
model synthesis and inference
redundancy overhead

Duplication of critical neurons and
synapses [86]

Multi-versioning framework for
constructing ensembles [87]

Error correcting output coding
framework for constructing
ensembles [88]

Error detection

Rejection Option in the
presence of neural weight
errors with the subsequent
recovery by downloading a
clean copy of weights

The model does not improve
itself and information from
vulnerable weights is not
spread among other neurons

Encoding the most vulnerable model
weights using a low-collision
hash-function [89]

Checksum-based algorithm that
computes low-dimensional binary
signature for each weight group [90]

Comparision contrastive loss function
value for diagnostic data with the
reference value [91]

Table 4 shows the approaches used to detect and mitigate concept drift. Out-of-domain
generalization and Ensemble selection are two main approaches for absorbing small concept
drifts. Out-of-domain generalization can be achieved by using domain randomization [93]
and adversarial domain augmentation [94], building Domain-invariant representation [95]
or Heterogeneous-domain knowledge propagation [96]. In [93,94], domain randomization
and adversarial domain augmentation, which increase the robustness of the model under
bounded data distribution shifts, are proposed. Domain randomization is the generation of
synthetic data with large enough variations so that that real-world data are simply viewed
as another domain variation [93]. Adversarial domain augmentation creates multiple
augmented domains from the source domain by leveraging adversarial training with
relaxed domain discrepancy constraint based on the Wasserstein auto-encoder [94]. Transfer
learning and multi-task or multiple-source domain learning also reinforce resistance to
out-of-distribution perturbations [95,96]. Ensemble algorithms can also be quite useful for
mitigating the effects of drift. For example, Dynamically weighted Ensemble [97] adjusts
the weight of individual elements of the ensemble depending on their relevance to the
input data. The feature dropping algorithm [98] uses each element of the ensemble to
correspond to a separate feature and can be excluded from the voting procedure if drift is
observed on this particular element of the ensemble.
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Table 4. Approaches and algorithms of drift detection and mitigating.

Approach Capability Weakness Methods and Algorithms

Out-of-domain generalization Absorption
of disturbance

Less useful for real
concept drift

Domain randomization [93]

Adversarial data
augmentation [94]

Domain-invariant
representation [95]

Heterogeneous-domain
knowledge propagation [96]

Ensemble selection Absorption
of disturbance

Not suitable for large deep
neural networks and
high-dimensional data

Dynamically weighted
Ensemble [97]

Feature dropping [98]

Concept Drift detection
Rejection Option in the
presence of Concept drift with
the subsequent adaptation

Not reliable when exposed to
noise, adversarial attacks
or faults

Data distribution-based
detection [99]

Performance-based detection
[100]

Multiple hypothesis-based
detection [101]

Contextual-based detection
[102,103]

Out-of-distribution detection

Rejection Option in the
presence of out-of-distribution
data with the subsequent
passing the control to a
human and
active learning

Expensive calibration process
to obtain a good result

Data and training based
epistemic uncertainties
estimation [104]

Model-based epistemic
uncertainties estimation [105]

Post-hoc epistemic
uncertainties estimation [106]

In order to handle concept drift in a timely manner, tools to detect it are necessary.
Data distribution-based detectors estimate the similarity between the data distributions
in two different time-windows [99]. These algorithms consider the distribution of data
points, but changes in the data distributions do not always affect the predictor performance.
Performance-based approaches trace deviations in the online learner’s output error to detect
changes [100]. The main advantage of performance-based approaches is that they only
handle the change when the performance is affected. However, the main challenge is that
these methods require a quick arrival of feedback on the predictions, which is not always
available. Multiple hypothesis-based drift detectors are hybrid approaches that apply
several detection methods and aggregate their results in parallel or hierarchically [101]. The
first layer is the warning layer to alert the system about a potential occurrence of concept
drift. The second layer is the validation layer that confirms or rejects the warning signaled
from the first layer. Context-based detectors use context information available from the
AIS and data to detect the drift. For example, [102] used model explanation methodologies
to interpret, visualize and detect concept drift. In [103], authors designed a concept drift
detector using historical drift trends to calculate the probability of expecting a drift using
online and predictive approaches.

In practice, AIS is often uncertain due to a lack of knowledge. In order to correctly
handle such situations, Out-of-distribution data detection algorithms should be used.
Methods for implementing Out-of-distribution data detection can be divided into three
groups: methods based on data and training; methods based on AI model; methods based
on post-hoc processing.
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Methods based on data and training are aimed at obtaining representations which can
produce accurate uncertainty evaluation where necessary [104]. In this category of methods
the uncertainties are calibrated using additional data. Additional data can be generated by
a generative model, or obtained by perturbing the original data with adversarial attacks, or
taken from a separate additional dataset.

In model-based methods, the uncertainty evaluator is built into the architecture of
the model. Such approaches can take distributions over the model parameters [105].
The uncertainty between the training and test distribution are considered to arise from
uncertainties in the model itself. Model-based methods rely on probabilistic forward
pass, allowing the weight uncertainties to propagate through the network and giving a
probability distribution for the output. These methods can be used with Bayesian neural
networks and a hypernetwork which generate the weights for a target neural network.
The key advantage of hypernetwork is its flexibility and scalability. Some model-based
methods might leverage gradients, ensembles, artefacts of dynamic and stochastic training
processes, earlier snapshots of the network and other information to evaluate uncertainty.

Post-hoc methods focus on the output of the model and use it to calibrate the predictive
uncertainty [106]. Post-hoc methods provide a more accurate reflection of the prediction
confidence based on transformation of AIS-output. It can be implemented by a simple
temperature scaling or by more complicated means. For example, [107] introduces an
auxiliary class which identifies miss-classified samples and explicitly calibrates AI-model on
out-of-distribution datasets. Post-hoc methods can be incorporated with any AI architecture
and, arguably, any AI model.

The analysis of Table 3 shows that it is possible to increase robustness to covariate
shift by Out-of-domain generalization and reduce the impact of a certain level of concept
drift in the case of a moderately sized models without high dimensionality of the feature
space. Concept drift detection is not reliable enough when exposed to noise, adversarial
attacks or faults. Whilst there are methods to ensure Out-of-distribution data detection,
they are usually computationally expensive.

5.2. Graceful Degradation

Adversarial attacks, fault injections, concept drifts, and out-of-distribution exam-
ples cannot always be absorbed, so the development of graceful degradation remains
relevant [2,6]. Table 5 summarizes the three most well-known approaches to ensuring
graceful degradation of AIS: implementing prediction granularity, Zero-Shot Learning and
Switching between models or branches.

Table 5. Approaches and algorithms to ensure the graceful degradation.

Approach Capability Weakness Methods and Algorithms

Prediction granularity
(hierarchical prediction)

Using confident
coarse-grained prediction
instead of low-confident
fine-grained prediction

Approach efficiency depends
on architectural solution, data
balanciness for each hierarchical
level and response design for
coarse-grained prediction.

Nested Learning for
Multi-Level
Classification [108].

Coarse-to-Fine Grained
Classification [109].

Generalized
Zero-Shot Learning

Ability to recognize samples
whose categories may not
have been seen at training

Not reliable enough due to
hubness in semantic space
and projection domain
shift problem.

Embedding-based
methods [110].

Generative-based
methods [111].
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Table 5. Cont.

Approach Capability Weakness Methods and Algorithms

Switching between models
or branches

Cost or performance aware
adaptive inference

Complicated training and
inference protocols.

Switching between simpler
and complex model [112].

Adaptive inference with
Self-Knowledge
Distillation [113].

Adaptive inference with
Early-Exit Networks [114].

Prediction granularity consists in the implementation of hierarchical decision-
making [108,109]. If the prediction at the lowest hierarchical level is not sufficiently con-
fident, then the AIS should favor a highly confident prediction at a higher hierarchical
level. In this case, the response design should be provided for processing high-level coarse-
grained prediction. In [108], a hierarchical classification is proposed, where superclasses
are predicted on lower layers of the neural network, and fine-grained predictions are
on high-level layers of the neural network. In [109], a hierarchical image classification
combined with multi-resolution recognition is proposed to simplify the task of recognizing
more abstract classes that are recognized on images with lower resolution.

Zero-shot learning aims to build AI-models which can classify objects of unseen classes
(target domain) via transferring knowledge obtained from other seen classes (source do-
main) with the help of semantic information. Semantic information bridges the gap between
the seen and unseen classes by embedding the names of both seen and unseen classes in
high-dimensional vectors from a shared embedding space. Pragmatic version of Zero-Shot
learning recognizes samples from both seen and unseen classes [110]. This version of Zero-
Shot learning is called Generalized Zero-Shot learning. Generalized Zero-Shot learning
methods can be broadly categorized into Embedding-based methods and Generative-based
methods. Embedding-based methods involve learning an embedding space to associate
the low-level features of seen classes with their corresponding semantic vectors [110]. The
learned projection function is used to recognize novel classes by measuring the similarity
score between the prototype representations and predicted representations of the data
samples in the embedding space. Out-of-distribution detector is needed to separate the
seen class instances from those of the unseen classes. Generative-based methods involve
training a model to generate examples or features for the unseen classes based on the
samples of seen classes and semantic representations of both classes. Generated samples for
unseen classes can be used by conventional supervised learning to update the AI-model.

In addition, Zero-shot learning has spread beyond classification tasks to regression
and reinforcement learning tasks. Unlike current reinforcement learning agents, a zero-shot
reinforcement learning agent should solve any reinforcement learning task in a given envi-
ronment, instantly with no additional planning or learning [115]. This means a shift from
the reward-centric reinforcement learning paradigm towards “controllable” agents. Agent
can follow arbitrary instructions in an environment. In [116], a Zero-Shot learning method
was proposed for the regression problem that learns models from features and aggregates
them using side information. Moreover, the aggregation procedure was improved by
learning the correspondence between side information and feature-induced models.

Zero-shot learning techniques often lack reliable confidence estimates and as such will
not be applicable to AIS where high error rates are not permitted. However, one way to
improve the reliability of AIS under epistemic uncertainty is to combine Zero-shot learning
with Prediction granularity [117].

Another approach to graceful degradation is adaptive inference, which switches
between models or branches with different complexity depending on the confidence of the
decisions or the impact of disturbances. For example, in [112] it was proposed switching to
the simpler model if sudden concept drifts occurs and switching back to the complex model
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for typical situations. A simpler model better absorbs sudden conceptual shifts and adapts
to them faster, although in general it is less accurate. In [99], Early-Exit Networks were
proposed to tailor the computational depth of each input sample at runtime. Proposed
approach allows resources (time) to be saved when processing simple samples under
normal conditions and increases computational resource allocation to improve the reliability
of decisions when exposed to perturbations or hard data examples. In [113], improvements
to this approach were proposed by introducing the Self-Knowledge Distillation mechanism
and multi-granularity of the prediction.

5.3. Adaptation and Evolution

The process of recovery and improvement of AI performance in a changing environ-
ment or tasks is associated with the implementation of reactive mechanisms of adaptation
and evolution. Three main approaches are used to ensure the recovery and improvement
of AIS throughout the life cycle: Active/continual/lifelong learning; Domain Adaptation;
Meta-learning (Table 6).

Table 6. Approaches and algorithms to ensure the adaptation and evolution.

Approach Capability Weakness Methods and Algorithms

Active learning,
continual learning
and lifelong learning

Might update the AIS knowledge
about data distribution (active
learning case), or begin to give the
AIS knowledge about new task
(continual/lifelong learning case).

Low-confidence samples
should be continuously
labelled by the oracle
(operator) manual
intervention typically
is expensive.
It is necessary to adjust
settings to combat
catastrophic forgetting
problems.

Active learning with
Stream-based sampling [118]

Active learning with
Pool-based sampling [119]

Regularization-based
continual learning [120]

Memory-based continual
learning [121]

Model-based continual
learning [122]

Domain Adaptation

Effective in overcoming the difficulty
of passing between domains when
the target domain lacks labelled data.
Can be used in heterogenous setting,
where the task is changing as
opposed to the domain.

Such methods can be intensive
during the training phase and
will require large amounts of
computational resources.
Quick adaptation might not be
achievable in this paradigm.

Discrepancy-based Domain
Adaptation [123]

Adversarial Domain
Adaptation [124]

Reconstruction-based Domain
Adaptation [125]

Self-supervised Domain
Adaptation [126]

Meta-learning

These methods are effective in creating
effective and adaptive models.
Stand out applications
include fast, continual, active, and
few-shot learning, domain generalisation,
and adversarial defence.

Meta-learning models can be
very resource-intensive to
instantiate, due to the
necessity to train on large
amounts of data.

Memory-based methods [127]

Gradient-based methods [128]

Unified (combined)
methods [129]

In active learning, the goal of the algorithm is to select the data point that causes
uncertainty and will be most appropriate for improving the performance of the AI model.
A special aspect of active learning is a limited data annotation budget. The data can
come in a stream from which data points need to be selected for labeling [118]. Unlabeled
data can be stored in a pool from which samples are iteratively selected for labeling and
training until the algorithm’s performance stops increasing [119]. If annotation of data is
not expensive and obtaining the annotation is not a problem, then a continual learning
strategy is more appropriate. The main problem of continual learning is the need to combat
catastrophic forgetting based on regularizations which impose constraints on the weight
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updates [120], memorable examples in the data space [121] and change the architecture of
the model to handle new information [122].

In domain adaptation the goal is to create a system trained on one distribution, but op-
erating in the context of another distribution. Domain adaptation methods can be split into
Discrepancy-based Domain Adaptation, Adversarial Domain Adaptation, Reconstruction-
based Domain Adaptation and Self-supervised Domain Adaptation. In discrepancy-based
methods, the domain shift is addressed by fine-tuning the AI-model to minimize the dis-
crepancy [123]. Discrepancy can be evaluated based on class labels, statistical distributions,
model architecture, and geometric signatures. Domain discriminators used in adversarial-
based approaches encourage domain confusion through an adversarial objective [124].
Reconstruction-based methods use reconstruction as an auxiliary task providing feature
invariance [125]. Self-supervised Domain Adaptation methods perform self-supervised
learning on both the source and target domain as an auxiliary task [126]. Domain adapta-
tion methods can be intensive during the training phase and will require large amounts of
computational resources.

Meta-learning aims to improve the learning algorithm itself, given the experience of
multiple learning episodes (tasks and datasets). Current meta-learning landscape includes
three research fields: meta-representations, meta-optimizers, and meta-objectives. In the
context of ensuring resiliency, meta-representations in a few-shot learning environment
are of the greatest interest. This research field can be split into three approaches: Gradient-
based, memory-based and combined. Gradient-based meta-learning methods use gradient
descent to find an initialization of the AI parameters adapted to a number of tasks [127].
Memory based methods of meta-learning utilize the memory of a recurrent neural network
to directly parameterize an update rule of AIS [128]. Since Memory based methods forgo
a useful inductive bias and can easily lead to non-converging behavior and Gradient
based methods cannot scale beyond few-shot task adaptation, there have been attempts to
combine both approaches [129]. The main disadvantage of meta-learning methods is the
need for large amounts of resources and data to get a good result.

5.4. Methods to Assess AIS Resilience

There are various approaches to the formation of system resilience indicators [9,12].
Of those, However, most studies are devoted to the analysis of resilience curves constructed
in time coordinates and a system performance indicator, which describe the response of
a resilient system to a destructive disturbing influence (Figure 10). The following basic
indicators of system resilience were proposed in [9,14,15]:

- Response Time, Tres;
- Recovery Time, Trec;
- Performance Attenuation, A;
- Performance Loss, L;
- Robustness, R;
- Rapidity, θ;
- Redundancy;
- Resourcefulness;
- Integrated measure of resilience, Re.
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Response Time (Tres) characterizes the timeliness of the response to a destructive
disturbance. Systems with short response times are better at mitigating impacts, reducing
performance degradation caused by disturbances.

Recovery Time (Trec) is the period required to recover the system functionality to the
desired level, at which the system can function in the same way, close to or better than
before the disturbance.

Performance Attenuation (A) describes the maximum reduction in system perfor-
mance as a result of a disturbance, while Loss of Performance (L) characterizes the total
loss of performance during the response and recovery phases. The loss of productivity is
represented by the area highlighted in darker (green) in Figure 10.

Robustness (Rb) characterizes the ability of a system to withstand a certain level of
stress while maintaining functionality without significant deterioration or loss of perfor-
mance. Robustness allows the system to absorb and resist destructive influences. A system
with a high degree of robustness will retain most of its functional characteristics under
the influence of destructive factors. Robustness can be defined as the residual functional-
ity after exposure to an extreme destructive disturbance and can be calculated using the
following formula

Rb = 1− Ã(mA,σA), (3)

where Ã is a random variable expressed as a function of the mean value of mA and the
standard deviation σA for Performance Attenuation indicator.

In [12,13,130], the resilience of AI is defined as robustness, not resilience in the full
sense of the word.

Rapidity (θ) is the ability to recover functionality in a timely manner, limiting losses
and avoiding future failures. Mathematically, the recovery rate is the slope of the perfor-
mance curve during the recovery period (Figure 10), calculated by the formula

θ =
dC(t)

dt
, (4)

where d/dt is the differentiation operator;
C(t) is a function that defines the dependence of performance on time.
The average estimate of the Rapidity can be determined by the following formula

θ =
A

Trec
. (5)
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Redundancy characterizes the availability of alternative resources at the recovery
stage when primary resources are insufficient. Redundancy is also defined as a measure
of the availability of alternative paths in the system structure through which supportive
forces can be transferred to ensure stability after the failure of any element [26]. Structural
redundancy implies the availability of multiple supporting components that can withstand
additional loads in the event of a failure of individual main components. That is, if one or
more components fail, the remaining structure is able to redistribute the load and prevent
the entire system from failing.

Resourcefulness of the system is the ability to diagnose problems, prioritize and
initiate problem solving by identifying and mobilizing material, financial, information,
technological and human resources [11]. Resourcefulness and redundancy are closely
interrelated, for example, resourcefulness can create redundancies that did not exist before.
In addition, resourcefulness and redundancy can affect the speed and time of recovery.
Adding resources can reduce the recovery time compared to what would be expected under
standard conditions.

Theoretically, if infinite resources were available, the recovery time would asymptoti-
cally tend to zero. In practice, even with enormous financial and labor resources, there is a
certain minimum recovery time. However, recovery time can be quite long even with a
large amount of resources due to inadequate planning, organizational failures, or ineffec-
tive policies [16]. Resourcefulness and robustness are also interrelated. It can be argued
that investing in limiting initial losses (increasing robustness) may in some cases be the
best approach to increasing resilience, as this automatically leads to further reductions in
recovery time.

In order to simultaneously take into account time and performance variables when as-
sessing system resilience, various variants of integral indicators have been developed [17,18].
These indicators typically characterize the difference or ratio of nominal performance and
performance loss over time due to disturbances. For convenience, the integral resilience
indicator can be expressed in a normalized form as:

R ≡
1
|E| ∑E

∫ Tc
t=0 C(t)dt∫ Tc

t=0 Cnominal(t)dt
. (6)

C(t) is a function of the dependence of the current value of system performance or
functionality on time;

Cnominal(t) is the value of the system performance in the normal (nominal) functional
state, which is entered into the formula to map the values of the integral resilience indicator
to the interval [0, 1];

Tc is a control period, which is selected based on the results of a preliminary assessment
of the average interval between events of disturbance;

E is a set of disturbance events during the control period.
In the case of machine learning, the time axis denotes the amount of training or

test data passed through the AIS or the number of iterations, meaning mini-batches of
optimal size.

Resilience indicators are evaluated in relation to a certain type of perturbation. In the
case of neural networks, typical disturbances are adversarial attacks, faults, and concept
drift. At the same time, different weights of neural networks have different importance and
impact on AIS performance. In addition, an error in the higher bits of the tensor value leads
to a greater distortion of the results than an error in the lower bits. Similarly, the effective-
ness of adversarial attacks with the same perturbation level can vary greatly depending on
the spatial distribution of the perturbed pixels. Therefore, statistical characteristics should
be used to evaluate and compare the resilience of the AIS to corrupted tensors or perturbed
data. Such statistical characteristics can beobtained from a large number of experiments.
For simplicity, we can consider the median value (MED) and interquartile range (IRQ) of
the performance and resilience indicators.
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The TensorFI2 library, which is capable of emulating software and hardware failures,
has become popular for testing AI for fault tolerance [131]. It has been noted [70] that one
of the most difficult types of faults to absorb is the random bit-flip injection into each layer
of the model, with a randomly selected fixed fraction of the tensors (failure rate) and one or
few randomly selected bit for inversion.

In [30,132], it is proposed not to rely on specific aspects of the model architecture
and learning algorithm, such as gradients, to test the model for resistance to noise and
adversarial attacks. Instead, testing is based on black box attacks, which expands the
family of AIS that can be tested. In this case, there are two types of attacks that give the
most diverse results—“strong” attacks on one/few pixels and “weak” attacks on all pixels.
The formation of both attacks is realized on the basis of the Covariance matrix adaptation
evolution strategy (CMA-ES) [132,133]. For the first type of attacks, the constraint on the
perturbation amplitude (th) is given by the L0-norm, and for the second type of attacks, by
the L∞-norm.

Testing the model’s resilience to drift usually involves the most complex cases of drift,
such as the emergence of a new class or real concept drift. The ability to adapt to concept
drift can be tested by passing a sample of classes with swapped labels to the model for
continual training. Successful adaptation means that performance post-recovery reaches at
least 95% of the pre-disturbance performance. The condition for stopping the adaptation
process is lack of improving performance within a given number of iterations or reaching
the maximum number of steps (mini-batches).

In [30,31,133], the resilience of the image classification system to faults, adversarial
attacks, and real concept drift was tested. Figure 11 shows a diagram of the resilience
testing method.
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In the testing diagram presented in Figure 11 shows, the AIS is considered as a black
box. Only information about the AIS inputs and outputs is used, information about
gradients AIS is ignored. Testing is performed by generating a disturbance and observing
the AIS performance changing during disturbance absorption and adaptation. Empirical
testing is more suitable for comparative analysis, as an analytical tool in assessing AIS
resilience—however, empirical testing does not provide exact guarantees. To increase
the effectiveness of empirical testing, it is necessary to improve test coverage. Another
disadvantage of empirical testing is the lack of clear quantification of confidence in the
truth of the desired property after testing [133,134].

Formal verification methods are used to provide rigorous guarantees of test results.
The works related to the formal verification of deep neural networks consider various
options for encoding the model in a form convenient for the solver and implemented
in accordance with the chosen theory [135–137]. The most well-known approaches to
formal verification are as follows: constraint solver-based approaches, where the neural
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network is encoded as a set of constraints [138]; approaches based on the calculation of
approximate bounds, where approximation operations are applied to the space of inputs,
outputs, or functions of neural layers to simplify the search for guaranteed bounds [139,140];
approaches based on the calculation of converging bounds, where the search and iterative
refinement of guaranteed bounds are performed [141,142]. These approaches are designed
to provide qualitative verification and rely on deterministic results, but characterized
by high computational complexity. However, factors such as the stochastic nature of
learning, the appearance of data from an unknown distribution in the inference mode,
the development of probabilistic neural networks and randomized model architectures
narrow the possibilities and effectiveness of qualitative verification. In response to that,
probabilistic (statistical) methods of verification (certification) are being developed; such
methods are the most generalized and computationally efficient. An example of such
method is the Lipschitz stability estimation method based on the theory of extreme values
-but such methods have a reliability problem [143]. In addition, the vast majority of
publications only consider verification of AIS robustness to disturbances [144,145]. Not
nearly enough attention is paid to the behavior of the AIS in the performance recovery
mode. Recovery speed after a disturbance is still not verified.

The paper [144,145] proposes an approach to black-box probabilistic verification of
robustness. An extended version of this approach for the case of the AIS resilience verifica-
tion problem with reduced requirements for the number of tests is shown in Figure 12. In
this case, the resilience to each sample of disturbance is assessed on the basis of a resilience
curve, which is plotted over a predetermined interval T, and calculated by the formula (6).
Also, before starting the test, the size of the mini-batch needs to be set.
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Verification is carried out for four selected parameters th, θ, η and δ, where th is
specified threshold value for the minimum permissible value of the resilience indicator, θ
is a specified threshold value for the probability of insufficient resilience, η is the specified
tolerance value on probability estimation, δ is a statistical significance, which is usually
selected from a set {0.1; 0.05; 0.01; 0.001}.

The agreement of the verification algorithm consists of checking the validity of the
following two inequalities:

Pr[p(R ≤ th) ≤ θ] ≥ 1− δ; (7)

Pr[p(R ≤ th) > θ+ η] ≥ 1− δ, (8)

where Pr is the confidence level of assessing the probability of success and non-success in
testing the algorithm for insufficient resilience to destructive disturbance;
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R is integral indicator of the AIS resilience;
p(R ≤ th) is an assessed probability of insufficient resilience.
The resilience verification algorithm is based on the Chernoff bounds lemma [145,146].

According to this lemma, to verify the validity of inequalities (7) and (8), it is necessary to
perform N tests, where

N =
12
η2 ln

1
δ

. (9)

In [145], in order to reduce the number of tests of the Chernoff boundary in the case of
a significant difference between the real probability p(R ≤ th) and the threshold value θ, a
series of alternative hypotheses are considered. Instead of checking inequalities (7) and (8),
it is proposed to check a series of alternative inequalities, the verification of which requires
fewer tests for early decision-making

Pr[p(R ≤ th) ≤ θ1] ≥ 1− δmin; (10)

Pr[p(R ≤ th) > θ2] ≥ 1− δmin, (11)

where θ1 and θ2 are boundaries of an alternative interval instead of an interval [θ, θ+ η];
δmin is the statistical significance for one of the n alternative intervals, which can be

calculated using the following formula

δmin =
δ

n
. (12)

The total number of alternative intervals includes the maximum number of intervals
to the left nl from θ, and the maximum number of intervals to the right nr from θ+ η. If
no decision is made on the alternative intervals, testing is additionally performed for the
interval [θ, θ+ η]:

nl ≤ 1 + log
θ

η
, (13)

nr ≤ 1 + log
1− θ− η

η
, (14)

n = 3 + max
(

0, log2

(
θ

η

))
+ max

(
0, log2

(
1− θ− η

η

))
. (15)

The intervals chosen to the left from θ, can be called confirmatory, since the con-
firmation of inequalities (10) and (12) at any of these intervals terminates the algorithm
with a positive result. The intervals to the right from θ+ η can be called refuting, since a
negative result of checking inequalities (10) and (11) at any of these intervals terminates
the algorithm with a negative result. In order to speed up the algorithm, it is proposed to
form the intervals in a reverse size order, from their maximum size to the minimum, where
each subsequent interval is formed by dividing the width of the previous interval in half
(Figure 13).
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Each alternative interval requires N tests to be tested

N =

(√
3θ1 +

√
2θ2
)2

(θ2 − θ2)
2 ln

1
δmin

(16)

where η1, η2 are the permissible tolerances of probability estimation p(R ≤ th) on a sample
of tests of limited size N on the left and right, calculated by the formulas

η1 = (θ2 − θ1)

(
1 +

√
2
3
θ2

θ1

)−1

, (17)

η2 = θ2 − θ1 − η1. (18)

The test on an alternative interval is considered successful if the estimation p̂ of
probability p(R ≤ th) is less than or equal to θ1 + η1. A test on an alternative interval is
considered unsuccessful if the estimation p̂ of probability p(R ≤ th) is greater than θ2 − η2.
If none of these conditions is met, this indicates the need to continue generating new
intervals and continue the testing process. However, the process can also stop if the time or
the resource allocated for testing are expired.

Partial or integral AIS resilience indicators depend on the AIS performance indica-
tors. These indicators may be considered as an evaluation metrics of AIS. The evaluation
metrics can be optimized in the space of AIS hyperparameters quite simply, but compu-
tationally costly [147]. However, the optimization of evaluation metrics in the space of
AIS parameter performs indirectly by minimizing the loss function using gradient-based
algorithms. Optimization with loss-only supervision may travel through several “bumps”
in the metric space, and tends to converge to a suboptimal solution in terms of evaluation
metric. However, many evaluation metrics are non-continuous, non-differentiable, or non-
decomposable, which poses challenges for direct metric optimization due to the difficulty
of obtaining an informative gradients. State-of-the-art approaches addressed to loss-metric
mismatch issue are represented in Table 7.

There are many methods of solving the loss-metric mismatch issue from better metric-
aligned surrogate losses to Black-box evaluation metrics optimization. The most universal
method to optimize black-box evaluation metrics is based on the meta-learned value
function. However, this approach has a more complicated protocol for AIS-training. At
first, conditional (adapter) parameters are added to the main model to modulate the feature
sets of the main model. The main model should be pre-trained using a user-specified
surrogate loss and then fine-tuned. At the stage of AIS fine-tuning, calculated values of
surrogate loss function and black-box metric are collected. Sparse metric observations
are interpolated to match the values of the conditional parameters. Fine-tuning can be
performed on a set of optimization problems. Based on the collected data, the function of
mapping the conditional parameters to the value of the black-box metric is constructed.
After meta-training of value function, the main model can be fine-tuned using the estimates
of the black box metric. Hence, the value function is differentiable and provide useful
supervision or gradients for black-box metric.
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Table 7. Approaches and algorithms addressed to loss-metric mismatch issue.

Approach Capability Weakness Examples of Method or
Algorithm

Surrogate losses
Obtained loss function is
better aligned to metric

These hand-designed losses
not only require tedious
manual effort and white-box
metric formulation, but also
tend to be specific to a
given metric.

Batching Soft IoU for
Semantic Segmentation [148]

Hinge-rank-loss as
approximation of Area under
the ROC Curve [149]

Convex Lovasz extension of
sub-modular losses [150]

Strongly proper composite
losses [151]

Trainable surrogate losses
Removed the manual effort
to design
metric-approximating losses.

Loss learning based on metric
relaxation schemes instead of
a direct metric optimization.

Stochastic Loss Function [152]

Loss combination
techniques [153]

Direct metric optimization
with true metric embedding

Providing of correction term
for metric optimization.

Their common limitation is
that they require the
evaluation metric to be
available in closed-form.

Plug-in classifiers for
non-decomposable
performance measures [154]

Consistent binary
classification with generalized
performance metrics [155]

Optimizing black-box metrics
with adaptive surrogates [156]

A unified framework of
surrogate loss by refactoring
and interpolation [157]

Black-box evaluation metrics
optimization using a
differentiable value function

Directly modeling of
black-box metrics which can
in turn adapt the
optimization process.

There is a need to change the
AI-model by introducing
conditional parameters.
The learning algorithm is
complicated by metric
meta-learning and
meta-testing

Learning to Optimize
Black-Box Evaluation
Metrics [158]

6. Discussion

The vast majority of scientific research is aimed at analyzing a specific type of distur-
bance and the defense mechanism against it. There are virtually no studies considering
the combination of two or more types or subtypes of AIS disturbances. However, not all
methods of ensuring fault tolerance are compatible with methods of ensuring resilience to
adversarial attacks.

For example, ref. [159] shows that adversarial training increases robustness to noisy
data, but simultaneously reduces the fault tolerance obtained by fault-tolerant training.
Also, not all methods of ensuring resilience to concept drift are compatible with methods
of ensuring resilience to adversarial attacks. For example, ref. [160] shows that the use of
unsupervised domain adaptation reduces the resilience of AIS to evasive adversarial attacks,
which necessitates special solutions to simultaneously ensure adversarial robustness.

Moreover, methods that implement different stages of resilience to the same type of
disturbance may interfere with each other, i.e., may not be completely compatible. For
example, disturbance absorption methods based on the diversity property of an ensemble
or a family of models are logically incompatible with methods of graceful degradation
and adaptation based on increasing the representation power of a neural network. In
addition to the problem of compatibility, there may be a problem of resource inefficiency
from combining separate methods. For example, if regularization-based continual learning



Algorithms 2023, 16, 165 35 of 44

based on center-loss or contrastive center loss is used to adapt AIS to changing environ-
ments [74,161], then the implementation of the disturbance absorption stage should also be
carried out using similar regularizations, rather than using defensive distillation [67,74],
since distillation will add computational costs without additional benefits. All these aspects
need to be studied in more detail to implement all stages of affordable resilience to the
complex impact of disturbances of various types and subtypes.

A number of criteria for measuring the qualitative characteristics of AIS, including
the components of resilience had been developed [162]. However, many of these criteria
depend on either the type of AIS task or the type of AI model. The more high-level
the criterion is, the fewer methods there are for its direct optimization during machine
learning. The majority of methods for addressing the loss-metric mismatch require the
development of surrogate loss functions, meta-learning, and changes or add-ons to the
main AI model [157,158]. It is known that ensuring robustness, adaptation rate, and
performance is somewhat contradictory [163]. There is a need for a tradeoff approach
when optimizing AIS. The problem of optimizing the integral resilience criterion of AIS,
which takes into account not only the robustness of the system but also the ability to
quickly recover and adapt, is still not fully resolved and remains relevant [31,133]. In
practice, it is necessary to be able not only to measure the resilience of AIS to a specific
disturbance event, but also to provide certain guarantees to ensure resilience not lower than
a certain level to a whole class of disturbances of a certain intensity. Existing approaches
are characterized by high computational costs, and the issue of reducing the cost of such
guarantee is relevant [144,145].

The vast majority of methods for ensuring certain resilience characteristics involve
significant changes to the architecture or training algorithm of AIS. On one hand, this
stimulates the progress of AI-technology and the development of best practices for AIS
design, but on the other hand, it complicates the unification of technologies to ensure
AIS resilience [6,164]. From the business point of view, the idea of creating AIS resiliency
services independent of the task and model is attractive [164,165]. The ability to provide
resilience as a service for AIS could become an integral part of MLOps platforms’ tools,
which would reduce the operational costs of AI-based services.

7. Conclusions
7.1. Summary

This survey provides a review of multiple publications related to AI resilience. Al-
though concepts of AI and resilience are well known by now, they are still actively evolving
in terms of methodology, models, and technologies. Until the last decade, these concepts
developed independently and had very little overlap—an unnatural state of affairs consid-
ering how close the concepts are in their essence. AISs have to be resilient by definition—
similar to the “traditional” (non-AI) systems they need to take into account a variety of
constantly changing factors. Among them are changing parameters of the information and
physical environment, evolving requirements and the occurrence of unspecified failures
caused by hardware and software faults and cyber-attacks.

However, compared to “traditional” systems, where resilience is thought of primarily
in terms of proactive failure and intrusion tolerance, AISs can adapt their properties and
algorithms to unusual conditions more “naturally”. This dictates that they are developed,
trained, and applied accordingly. This article attempts to systematize a variety of specific
mechanisms for ensuring the resilience of AI and AISs.

The ontological and taxonomic diagrams of AIS vulnerabilities and resilience were
constructed to systematize knowledge about this topic. The approaches and methods of
ensuring specific stages of resilience to handling faults, drift and adversarial attacks have
been analyzed. The basic ideas and principles of measuring, certifying and optimizing AIS
resilience are considered. It had been shown that particular resilience properties can be
built into cutting edge AIS, by implementing some of the techniques discussed.
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The issue of AIS resilience to various kinds of perturbations is extremely relevant,
especially in security and military installations, disaster management complexes, police and
judicial practices, finance, and health systems. Analysis of AIS applications has shown that
inadequate AIS resilience can have direct or indirect negative impacts on health, mortality,
human rights, and asset values.

From the perspective of the management dimension, the following two main recom-
mendations can be formulated related to AIS resilience:

- technical specifications of forthcoming AIS for safety, security, human rights and
trust critical domains, should be include resilience capabilities to mitigate all relevant
disturbing influences;

- customers, owners, developers, and maintainers of AIS should be taken into account
that the system may degrade when faced with a disturbance, and the system needs
certain resources and time to recover, adapt and evolve.

At the beginning of the study, we identified three research questions. We will now
summarize the answers to these questions based on the results of the analysis above.

7.1.1. RQ1: What Are the Known and Prospective Threats to AIS?

The main AIS threats include drift, adversarial attacks and faults. There are three main
types of drift, namely real concept drift, covariate shift, and prior-probability shift. Faults
are divided into physical faults, design faults, and interaction faults. Adversarial Attack
according to the strategy is divided into Poisoning, Evasion and Oracle. The corresponding
disturbances may differ in time characteristics of their occurrence, and different variants of
their mixing are possible. Additionally, the cost and success of adversarial attacks including
fault injection attacks depends on the knowledge about target AIS.

7.1.2. RQ2: Can All Components of AIS Resilience for Each Type of Threat Be Achieved by
Configuring the AIS Architecture and Training Scenario?

Methods for ensuring disturbance absorption, graceful degradation, recovery, adap-
tation and evolution for AIS exist and continue to advance, so it is potentially possible
to implement AIS resilience in the full sense for comprehensive defense against all dis-
turbances. However, each method has drawbacks, and their combination is not always
compatible. The issue of the efficiency of combining methods to ensure all components of
resilience to the complex impact of disturbances is still poorly studied.

7.1.3. RQ3: Is It Possible to Evaluate and Optimize the Resilience of AIS?

There are no generally accepted approaches to measuring resilience indicators for AIS
yet. Most attention is paid to various approaches to assessing, optimizing, and verifying
robustness. Implementation of assessment and optimization of recovery rate or integral
resilience indicators is potentially possible. Known gradient-based methods for assessing
and optimizing AIS black box metrics, as well as methods for verifying some AIS properties
for black-box AIS, can be helpful for this purpose.

7.2. Limitations

This study does not disclose the details and specifics of attacks on AIS based on
generative text models, reinforcement learning, or cluster analysis algorithms. Nevertheless,
the main theses of the research results are applicable to these type of AIS, but there may
be some questions about the terminology and depth of the taxonomy. Another limitation
may be related to attempts to generalize the information found, which may affect the
completeness of the literature review.

Moreover, well-known approaches to software (design) faults tolerance, as well as
conventional cyber defense techniques, are excluded from detailed review. The paper
focuses on the analysis of defense methods against threats specific to AIS.
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7.3. Future Research Directions

Future research should focus on the development of criteria, models, and methods
for model-agnostic and task-agnostic measurement, optimization and verification of AIS
resilience. Special attention should also be paid to the question of providing resilience as
service for AIS of various types and complexity. Another important direction of research
should be the investigation and creation of explainable and trustworthy AI components for
more complex self-organizing systems of knowledge representation and development [166].
In such systems, models of the interaction of various AI components and subsystems must
be developed for the general purpose of resilient functioning and self-organization.
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151. Kotłowski, W.; Dembczyński, K. Surrogate Regret Bounds for Generalized Classification Performance Metrics. Mach. Learn. 2016,
106, 549–572. [CrossRef]

152. Liu, Q.; Lai, J. Stochastic Loss Function. Proc. AAAI Conf. Artif. Intell. 2020, 34, 4884–4891. [CrossRef]
153. Li, Z.; Ji, J.; Ge, Y.; Zhang, Y. AutoLossGen: Automatic Loss Function Generation for Recommender Systems. In Proceedings of

the SIGIR ′22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid,
Spain, 11–15 July 2022; ACM: New York, NY, USA, 2022. [CrossRef]

154. Sanyal, A.; Kumar, P.; Kar, P.; Chawla, S.; Sebastiani, F. Optimizing non-decomposable measures with deep networks. Mach.
Learn. 2018, 107, 1597–1620. [CrossRef]

155. Wang, X.; Li, L.; Yan, B.; Koyejo, O.M. Consistent Classification with Generalized Metrics. arXiv 2019, arXiv:1908.09057. [CrossRef]
156. Jiang, Q.; Adigun, O.; Narasimhan, H.; Fard, M.M.; Gupta, M. Optimizing Black-Box Metrics with Adaptive Surrogates. In

Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018. [CrossRef]
157. Liu, L.; Wang, M.; Deng, J. A Unified Framework of Surrogate Loss by Refactoring and Interpolation. In Computer Vision–ECCV

2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 278–293. [CrossRef]
158. Huang, C.; Zhai, S.; Guo, P.; Susskind, J. MetricOpt: Learning to Optimize Black-Box Evaluation Metrics. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021.
159. Duddu, V.; Rajesh Pillai, N.; Rao, D.V.; Balas, V.E. Fault tolerance of neural networks in adversarial settings. J. Intell. Fuzzy Syst.

2020, 38, 5897–5907. [CrossRef]
160. Zhang, L.; Zhou, Y.; Zhang, L. On the Robustness of Domain Adaption to Adversarial Attacks. arXiv 2021, arXiv:2108.01807.

[CrossRef]
161. Olpadkar, K.; Gavas, E. Center Loss Regularization for Continual Learning. arxiv 2021, arXiv:2110.11314. [CrossRef]
162. Kharchenko, V.; Fesenko, H.; Illiashenko, O. Quality Models for Artificial Intelligence Systems: Characteristic-Based Approach,

Development and Application. Sensors 2022, 22, 4865. [CrossRef] [PubMed]
163. Inouye, B.D.; Brosi, B.J.; Le Sage, E.H.; Lerdau, M.T. Trade-offs Among Resilience, Robustness, Stability, and Performance and

How We Might Study Them. Integr. Comp. Biol. 2021, 61, 2180–2189. [CrossRef]
164. Perepelitsyn, A.; Kulanov, V.; Zarizenko, I. Method of QoS evaluation of FPGA as a service. Radioelectron. Comput. Syst. 2022, 4,

153–160. [CrossRef]

http://doi.org/10.1109/TNNLS.2018.2808470
http://www.ncbi.nlm.nih.gov/pubmed/29993822
http://doi.org/10.1109/sp.2018.00058
http://doi.org/10.1016/j.tcs.2019.05.046
http://doi.org/10.1007/978-3-319-89960-2_22
http://doi.org/10.48550/ARXIV.1801.10578
http://doi.org/10.1016/j.cosrev.2020.100270
http://doi.org/10.1109/icse43902.2021.00039
http://doi.org/10.1609/aaai.v36i7.20768
http://doi.org/10.1007/978-3-030-05318-5_1
http://doi.org/10.1109/LSP.2019.2956367
http://doi.org/10.1007/978-3-540-74958-5_33
http://doi.org/10.1109/cvpr.2018.00464
http://doi.org/10.1007/s10994-016-5591-7
http://doi.org/10.1609/aaai.v34i04.5925
http://doi.org/10.1145/3477495.3531941
http://doi.org/10.1007/s10994-018-5736-y
http://doi.org/10.48550/ARXIV.1908.09057
http://doi.org/10.48550/arXiv.2002.08605
http://doi.org/10.1007/978-3-030-58580-8_17
http://doi.org/10.3233/JIFS-179677
http://doi.org/10.48550/ARXIV.2108.01807
http://doi.org/10.48550/ARXIV.2110.11314
http://doi.org/10.3390/s22134865
http://www.ncbi.nlm.nih.gov/pubmed/35808361
http://doi.org/10.1093/icb/icab178
http://doi.org/10.32620/reks.2022.4.12


Algorithms 2023, 16, 165 44 of 44

165. Imanbayev, A.; Tynymbayev, S.; Odarchenko, R.; Gnatyuk, S.; Berdibayev, R.; Baikenov, A.; Kaniyeva, N. Research of Machine
Learning Algorithms for the Development of Intrusion Detection Systems in 5G Mobile Networks and Beyond. Sensors 2022,
22, 9957. [CrossRef]

166. Dotsenko, S.; Kharchenko, V.; Morozova, O.; Rucinski, A.; Dotsenko, S. Heuristic Self-Organization of Knowledge Representation
and Development: Analysis in the Context of Explainable Artificial Intelligence. Radioelectron. Comput. Syst. 2022, 1, 50–66.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/s22249957
http://doi.org/10.32620/reks.2022.1.04

	Introduction 
	Motivation 
	Research Gap 
	Objectives and Contributions 

	Research Methodology 
	Background, Taxonomy and Ontology 
	The Concept of System Resilience 
	Vulnerabilities and Threats of AISs 
	Taxonomy and Ontology of AIS Resilience 

	Applications of AIS That Require Resiliency 
	Models and Methods to Ensure and Assess AIS Resilience 
	Proactivity and Robustness 
	Graceful Degradation 
	Adaptation and Evolution 
	Methods to Assess AIS Resilience 

	Discussion 
	Conclusions 
	Summary 
	RQ1: What Are the Known and Prospective Threats to AIS? 
	RQ2: Can All Components of AIS Resilience for Each Type of Threat Be Achieved by Configuring the AIS Architecture and Training Scenario? 
	RQ3: Is It Possible to Evaluate and Optimize the Resilience of AIS? 

	Limitations 
	Future Research Directions 

	References

