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Abstract: Accurate sizing systems of a population permit the minimization of the production costs
of the textile apparel industry and allow firms to satisfy their customers. Hence, information about
human body shapes needs to be extracted in order to examine, compare and classify human mor-
phologies. In this paper, we use topological data analysis to study human body shapes. Persistence
theory applied to anthropometric point clouds together with clustering algorithms show that relevant
information about shapes is extracted by persistent homology. In particular, the homologies of human
body points have interesting interpretations in terms of human anatomy. In the first place, anoma-
lies of scans are detected using complete-linkage hierarchical clusterings. Then, a discrimination
index shows which type of clustering separates gender accurately and if it is worth restricting to
body trunks or not. Finally, Ward-linkage hierarchical clusterings with Davies–Bouldin, Dunn and
Silhouette indices are used to define eight male morphotypes and seven female morphotypes, which
are different in terms of weight classes and ratios between bust, waist and hip circumferences. The
techniques used in this work permit us to classify human bodies and detect scan anomalies directly
on the full human body point clouds rather than the usual methods involving the extraction of body
measurements from individuals or their scans.

Keywords: topological data analysis; machine learning; persistent homology; clustering; anomaly
detection; morphotype

1. Introduction

The separation of human bodies into groups of morphologies is a common issue for
garment industries. Rather than targeting a single standard body shape, the discrimination
of morphologies helps to improve sizing systems and can reduce production costs for
apparel manufacturing. Among the classifications already established, there is one from [1]
particularly used by industries, where the authors obtained nine types of female body
shapes such as triangle, inverted triangle, hourglass, oval, etc. This is the first work
where mathematical criteria, together with the help of experts, have been used to define
these groups.

In terms of data science, we can approach this problem by clustering algorithms.
To this end, different types of data can be extracted from a body such as measurements
or anthropometric point clouds. Body measurements can be directly represented in a
Euclidean space to use methods from data analysis. In [2], principal component and K-
means cluster analyses are performed on measurements and key body locations, and three
female lower body shape groups are obtained. This representation in a vector space to
perform the clustering is straightforward but has disadvantages. For example, it is not
clear that it is appropriate to compare with Euclidean metric measurements of different
types such as body lengths, circumferences or individual weight. On the other hand,
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this requires the choice of the set of measurements extracted from the body, and key
morphological characteristics may be omitted. The use of 3D representations of the bodies
is suitable for these issues but becomes difficult to implement since we need a way to extract
information from anthropometric point clouds and compare them. For example, in [3], the
authors use control points and correlation strength principal component analysis of trunks.
Reinterpreting these components by averaged shape figures and combining factor loading
maps, five female trunk shape groups are defined by a Ward-linkage hierarchical clustering.
Different methods from data science have been used to classify human body shapes; see
for example [4–7].

Topological data analysis [8,9] is a powerful tool to study and understand the shape of
data, and thus it naturally applies in this context. In particular, persistent homology [10,11]
can be used to extract relevant topological information from data and point clouds. These
extracted features are encoded by diagrams and have stability properties relative to specific
distances [12,13]. Several applications of this theory have been established in different
contexts such as time-series data analysis [14], object recognition [15], complex network
analysis [16], molecular biology data exploration [17], biomedicine [18], geographical infor-
mation science [19] and environmental science [20]. Feature extraction for classification is
an active research topic in pattern recognition and machine learning; see for example [21,22]
or [23].

In this work, we use persistent theory applied on human point clouds in order to
perform the following:

• Extract information from human bodies with interpretation in terms of human anatomy;
• Detect scans anomalies;
• Identify and separate human point clouds by gender;
• Classify male and female morphotypes.

More precisely, we compute the persistence diagrams, Wasserstein distance and as-
sociated silhouettes on the human point clouds of the CAESAR database [24]. Using
graph theory, among other things, approaches by homological degree allow us to interpret
persistent homologies and identify them to body areas and limbs. To define morphotypes in-
dependently of individuals’ height, we normalize the point clouds using three-dimensional
homotheties. Then, we show that anomalies of scans are naturally isolated clusters when
performing complete-linkage hierarchical clustering on the persistence diagrams of the
point clouds using the Wasserstein distance. Then, a gender discrimination index is defined
to study which hierarchical clustering linkage is interesting to separate males and females
accurately. We compare the performance of these clustering algorithms on persistence
diagrams, on silhouettes, and whether point clouds are restricted to trunks or not. Finally,
Ward-linkage hierarchical clusterings on the silhouettes of the persistence diagrams of the
point clouds, together with a mix of different clustering criteria such as Davies–Bouldin,
Dunn and Silhouette indices are used to obtain eight male morphotypes and seven female
morphotypes. Then, we study the properties of these clusters, and their medoids are
computed and considered as representatives of the groups.

The paper is organized as follows. In Section 2, we introduce the tools of persistence
theory that we use. In Section 3, we detect scan anomalies. In Section 4, we study which
type of clustering accurately separates males and females. Finally, we classify morphotypes
in Section 5.

2. Methodology
2.1. Dataset

The CAESAR (Civilian American and European Surface Anthropometry Resource)
3D Anthropometric Database is composed of 3D body scans of thousands of men and
women aged from 18 to 65 and originated from various NATO countries: the United States
of America, Canada, the Netherlands and Italy.

In this paper, we are using the dataset of [24], which is derived from the CAESAR
dataset and is composed of 1517 male and 1531 female meshes, registered as OBJ files.
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Each mesh has 12,500 vertices (Figure 1a) and 25,000 faces (Figure 1b), and we extract
and consider only the underlying point clouds of all the meshes. In the figures, the
meshes and point clouds are presented headless for confidentiality. The individuals are
numbered discontinuously from Spring0001 to Spring4800, and for convenience we refer
to SpringXXXX by SXXXX.

(a) The vertices (b) The faces

Figure 1. The mesh of the individual S0013.

2.2. Persistence Diagrams, Landscapes, Silhouettes and Distances

Persistent homology is a tool used to efficiently compute and encode the multidimen-
sional homological features of topological spaces associated to a dataset. To compute these
homological invariants, we have to build topological structures on the data such as filtered
simplicial complexes.

A simplex is a notion generalizing points, line segments, triangles and tetrahedrons
to any dimension and composed of faces that are also simplices of lower dimension. A
simplicial complex K is a collection of simplices satisfying two properties: each face of
a simplex of K is in K and the non-empty intersection of two simplices of K is a face of
both of them. Given a body point cloud X in R3, several types of simplicial complexes
can be constructed on X, such as the Vietoris–Rips and the Čech complexes. We center
three-dimensional balls of radius ε on each data point, and we vary ε from 0 to +∞. The
data points are considered as 0-simplices, and when n + 1 balls intersect, we add an n-
dimensional face between them. The result is called a Čech complex. For each fixed ε, we
count the homological features of the associated topological space. Since the underlying
vector space is of dimension 3, we have three types of homological classes to consider:

• H0: The connected components;
• H1: The non-homotopic loops;
• H2: The two-dimensional voids.

Thus, we represent each homological feature by a point in R2, where its abscissa is the
birth time of the feature and its ordinate is the death time. The set of points obtained in this
way is the persistence diagram of X. The persistence barcode represents each homology
class with a bar defined by its birth time, when the topological feature appears, and a death
time, when the topological feature disappears. In order not to have too many points due to
the creation and death of small homological features, a minimal persistence is fixed.

For example, in Figure 2, the persistence barcode and diagram of the individual S0013
(Figure 1) are given.
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(a) Persistence diagram (b) Persistence barcode

Figure 2. The persistence diagram and barcode of S0013.

It is possible to compare persistence diagrams using the Wasserstein distance. Let
D and D′ be persistence diagrams. A perfect matching between D and D′ is a subset
φ ⊆ D× D′ such that every point of D and D′ is exactly one time in φ, completing with
the diagonal if necessary in order to ignore cardinality mismatches. The (p, q)-Wasserstein
distance between D and D′ is defined by

Wp,q(D, D′) = in f
φ∈Φ

( ∑
x∈D
||x− φ(x)||pq )1/p, (1)

where ||x||q is the q-norm of x defined by

||x||q =
(
∑ |xi|q

)1/q. (2)

We exclusively use the (2, 2)-Wasserstein distance. For precise definitions and de-
tails, see [8,9].

Persistence landscapes are an encoding of persistence diagrams by series of piecewise
continuous linear functions [25,26]; see Figure 3. This allows us to perform statistics on
them, the absence of which was a disadvantage of persistence diagrams. In particular, it is
possible to calculate unique averages of landscapes. While a persistence landscape has a
corresponding persistence diagram, an average of persistence landscapes does not.

Figure 3. Visual explanation of persistence landscapes. The persistence diagram (left) is tilted so that
the diagonal becomes the new horizontal axis (top right). The λi are the piecewise linear functions
(bottom right).

A persistence silhouette is computed by taking a weighted average of the collection
of 1D-piecewise-linear functions given by the persistence landscapes and then by evenly
sampling this average on a given range. Finally, the corresponding vector of samples
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is returned; see Figure 4. For the implementation of clustering, we choose to make a
vector consisting of 25 points of the silhouette of H0 homologies, 250 points equidistant
from the silhouette of H1 homologies and 250 points equidistant from the silhouette of
H2 homologies for each persistence diagram. The points are the values of the silhouette
equally spaced. Hence, each individual is represented by a vector in a real vector space of
dimension 525 together with the Euclidean distance.

Figure 4. Representation of a vector obtained by persistence silhouette.

2.3. Interpretation of Persistent Homology

The persistence diagram of a body point cloud is composed of three types of homolo-
gies (see Figure 2). Since the points are distant from each other at an equivalent distance,
all the balls are rapidly connected, thus giving a single connected component. Several H1
and H2 homologies representing the internal body cavities appear and disappear when the
radius ε of the balls varies to +∞. We now explain our approach to interpret and identify
these homological features in terms of human anatomy. Since displaying the homologies in
their entirety is too costly, we thought of other approaches for each degree.

For each homology, we know the radii of the balls at their birth and death. A simplex
tree represents abstract simplicial complexes of any dimension. All faces of the simplicial
complex are explicitly stored in a tree whose nodes are in bijection with the faces of the
complex. This data structure allows us to efficiently implement a large range of basic
operations on simplicial complexes. Using the simplex tree of a set of points, we know the
values of the radii when pairs of points, triangles and tetrahedra are covered. The approach
is slightly different depending on the dimension:

• Dimension 0: All H0 homologies are born when the radius of the balls is zero. For
each homology H0, we choose to display the second point of the pair covered at the
birth of the homology as its representative.

• Dimension 1: First, we make an undirected graph containing all the points of a set,
where each time a pair of points is covered, as the radius of the balls increases, we
connect these points by an edge with a weight equal to the radius of the balls. At the
birth of a homology H1, before adding the edge to our graph, we compute the shortest
path connecting these two points, which we display by closing it with the segment
connecting these points. The lace displayed is a likely representative of this homology.
At the death of this homology, we recover the information of the triangle covered
by the balls, and we add it to the display to give a general idea of the evolution of
our homology.

• Dimension 2: For each homology H2, we simply display the triangle covered at its
birth and the tetrahedron covered at its death.

For example, in the persistence diagram of the individual S0013 given in Figure 2,
there are 13 different homologies numbered in the persistence barcode from 0 to 12. With
this approach, we display each homology in Figure 5 and we can interpret them as follows:
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• n°0: H2 corresponding to the left part of the torso,
• n°1: H2 corresponding to the right part of the torso,
• n°2: H1 corresponding to a loop between legs at foot level,
• n°3: H1 corresponding to a loop between legs from ankles to calves,
• n°4: H1 corresponding to a loop between legs from knees to calves,
• n°5: H2 corresponding to the head,
• n°6: H2 corresponding to the right calf,
• n°7: H2 corresponding to the left calf,
• n°8: H2 corresponding to the right foot,
• n°9: H2 corresponding to the whole body,
• n°10: H1 corresponding to a loop around the right foot,
• n°11: H1 corresponding to a loop around the left foot,
• n°12: H0 of all the connected balls.

We remark that the arms and the left foot do not appear on the diagram. This is caused
by the minimal persistence and the facts that the arms are too thin and that the scan of the
left foot is more flat and deformed compared to the right one. Homology n°9 is particularly
distinguished, and we call it the principal H2-homology. It corresponds to the aggregation
of the parts and limbs of the body, thus forming the inner cavity of the body point cloud.

(a) n°0 (b) n°1 (c) n°2 (d) n°3

(e) n°4 (f) n°5 (g) n°6 (h) n°7

(i) n°8 (j) n°9 (k) n°10 (l) n°11

Figure 5. All non H0 homologies of the persistence diagram of S0013.

2.4. Normalization of Point Clouds by Homothety

We want morphotypes to be independent of the size of the individuals in order to
propose a sizing system associated to each morphotype. For this purpose, we apply a
homothety on each point cloud so that each individual is the same height: 1 m 70 cm. This
affects the distances between them and individuals with similar morphology, but different
heights become closer (Figure 6).



Algorithms 2023, 16, 161 7 of 18

(a) S0105 (b) S0071 (c) S0207

Figure 6. Individuals (a–c) are 1.89 m, 1.93 m and 1.65 m tall, respectively. Among them, the couple
(a,b) is the closest before normalization, and the couple (b,c) is the closest after normalization.

3. Anomaly Detection

Among the data, there are anomalies of scans. We have found five anomalies for men
and four for women. It turns out that they are encoded and detected by the persistence
diagrams, Wasserstein distance and clustering algorithms. More precisely, we perform
complete-linkage hierarchical clusterings on the persistence diagrams of the point clouds
together with the Wasserstein distance (with p = q = 2), separately for men and women.
Analyzing corresponding truncated dendrograms, we remark that anomalies are very often
isolated individuals agglomerating late. To find the best truncation of the dendrogram, we
use as criteria the mean between the percentage of isolated individuals that are anomalies
and the percentage of anomalies isolated in this way.

For men, the best truncation range is [21, 46], where the criteria show that 90%: 100% of
isolated individuals are anomalies and 80% of anomalies are detected. Figure 7 shows the
dendrogram for male point clouds truncated at 21 clusters, where the 4 isolated individuals
are anomalies as shown in Figure 8.

Figure 7. Dendrogram associated to a complete-linkage hierarchical clustering of the persistence
diagrams of male point clouds with the Wasserstein distance. Clusters composed of one individual
are presented without parentheses.
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(a) S2277 (b) S2962 (c) S4624 (d) S2882

Figure 8. Anomalies of men scans detected by complete-linkage hierarchical clustering of persis-
tence diagrams.

To illustrate that anomalies are detected by persistence, we analyze the persistence
diagram of Figure 9, which corresponds to the individual S2962.

Its three H2 homologies n◦3, 5, 6 are particularly distinguished and can be seen at
birth and death in Figure 10. Homologies H2 numbers 3 and 5 correspond to the right
and left leg, respectively, while the number 6 corresponds to the torso and is the principal
H2-homology.

For normal scans, the principal H2-homology also aggregates legs. Because of the
misplaced points and the holes on the point cloud, leg homologies are separated from the
principal H2-homology which starts later than in the usual case.

(a) Persistence diagram (b) Persistence barcode

Figure 9. Persistence diagram and barcode of the anomaly of scan S2962. Three particular homologies
reflecting the anomaly are highlighted.

(a) H2 n°3 (b) H2 n°5 (c) H2 n°6

Figure 10. Three abnormal homologies at birth and death of the defective scan S2962.
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For women, the best truncation range is [23, 37], where the criteria show that 87.5%:100%
of isolated individuals are anomalies and 75% of anomalies are detected. Figure 11 shows
the dendrogram for female point clouds truncated at 23 clusters, where the 3 isolated
individuals are anomalies as shown in Figure 12.

Figure 11. Dendrogram associated to a complete-linkage hierarchical clustering of the persistence
diagrams of female point clouds with the Wasserstein distance.

(a) S2825 (b) S1212 (c) S2997

Figure 12. Anomalies of female scans detected by complete-linkage hierarchical clustering of persis-
tence diagrams.

4. Gender Discrimination Index

In this section, we analyze if clustering algorithms on persistence diagrams and
silhouettes give groups separating men from women scans by changing the number of
clusters. To this end, we use persistence diagrams or silhouettes, restricted to trunks of
point clouds or not.

Let Pm(C) and Pf (C) be respectively the proportions of men and women in a cluster
C. We have

Pm(C) =
nm(C)
s(C)

, Pf (C) =
n f (C)
s(C)

(3)

where nm(C) is the number of men in C, n f (C) is the number of women in C and s(C) is
the size of C. To measure the quality of a clustering C of a set of mixed male and female
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diagrams or silhouettes DMF, we introduce a gender discrimination index (GDI) defined by

GDI(C) = 2
s(DMF)

K

∑
k=1

s(Ck)

∣∣∣∣Pm(Ck)−
1
2

∣∣∣∣ (4)

where K is the number of clusters of C, Ck are the clusters of C and s(DMF) is the number
of elements in DMF. Thus, the better the clustering C separates men from women, the
closer GDI(C) is to 1, and the worse it is, the closer GDI(C) is to 0. We can consider that a
clustering is satisfactory to separate men from women if its GDI is greater or equal to 1

2 .

4.1. Evolution of the GDI Score as a Function of the Number of Clusters

In this section, we observe the ability of different clustering methods to separate male
from female persistence diagrams or silhouettes.

We use a matrix of Wasserstein distances between diagrams to perform hierarchical
clustering with complete and Ward’s linkage methods [27] as well as K-Medoids clustering
with the PAM (Partitioning Around Medoids) algorithm [28]. The notion of a barycenter
between persistence diagrams is delicate [29,30], but we can use the Ward-linkage method
with the Lance–Williams algorithm [31].

As shown in Figure 13, hierarchical clustering with the complete-linkage method
does not differentiate correctly between female and male scans. However, the K-Medoids
clustering has a correct GDI score for more than 10 clusters and becomes good on some
occasions for more than 13 clusters. The Ward-linkage hierarchical clustering has a correct
GDI score for more than 12 clusters and becomes good for more than 19 clusters.

Figure 13. GDI score evolution of various clustering algorithms on the persistence diagrams with
Wasserstein distance.

We now use vectors obtained from the silhouettes associated to the persistence dia-
grams of scans on which we perform a Ward-linkage hierarchical clustering as well as a
K-Means clustering and a K-Medoids clustering with the PAM algorithm. This time, these
three clustering algorithms give very good GDI scores; see Figure 14.



Algorithms 2023, 16, 161 11 of 18

Figure 14. GDI score evolution of various clustering algorithms on the persistence silhouettes.

4.2. Restriction to Trunks

When constructing the silhouettes, we used a weighting that tended to favor the
H2 homologies corresponding to the trunks of the subjects, so the question then arises
as to whether we would obtain better results by using only the points corresponding to
the trunk of the body. To this end, we have developed an algorithm to isolate the points
corresponding to the trunk of an individual which we now describe.

Let X be a normalized body point cloud at 1.70 m. We rotate and translate the scan
such that the individual is standing along the height axis z and is at the minimal height of 0.
Then, we isolate points located in the range [66.5, 146.5] cm to exclude points corresponding
to the legs and head. We compute the director and intercept coefficients of two linear
equations delimiting the trunk, taking into account the mean width of the individual. More
precisely, we compute the lines x = a1z + b1 and x = a2z + b2, which intersect at the height
107.5 cm. Projecting the points on the plane (x, z), we obtain a set of points X1 located
between the first line, its symmetric with respect to the axis x = 0 and below 107.5 cm
and a set of points X2 located between the second line, its symmetric with respect to the
axis x = 0 and above 107.5 cm. The union X′ of X1 and X2 is composed of points of the
individual’s trunk. In Figure 15, a body point cloud and the trunk point cloud isolated by
this process are represented.

We now compare the clustering results using a Wasserstein distance matrix applied to
the whole body and applied to the trunk.

From the curves in Figure 16 and the average GDI scores of Table 1, it appears that for
clustering algorithms based on Wasserstein distances between persistence diagrams, it is
not worth restricting these to trunk points.
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(a) Full body (b) Trunk

Figure 15. An individual and its isolated trunk.

Table 1. Average GDI scores on the persistence diagrams of the whole body and the trunk with the
Wasserstein distance.

Complete Ward K-Medoids

Body 0.2 0.54 0.526

Trunk 0.21 0.553 0.582

Figure 16. Comparison of GDI score on the persistence diagrams of the whole body and the trunk
with the Wasserstein distance.

We now compare the results of clustering algorithms using the vectors obtained from
the persistence silhouettes applied to the whole body and applied to the trunk.

From the curves of Figure 17 and the average GDI scores of Table 2, it appears that
for clustering based on silhouette persistence vectors, it is worth restricting these to trunk
points, particularly for K-Medoids clustering.
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Table 2. Average GDI scores on the persistence silhouettes of the whole body and the trunk.

Ward K-Means K-Medoids

Body 0.738 0.73 0.737

Trunk 0.765 0.767 0.827

Figure 17. Comparison of GDI score on the persistence silhouettes of the whole body and the trunk.

5. Human Body Shapes Classification
5.1. Male Morphotypes

To define morphotypes of men’s body shapes, we perform a Ward-linkage hierarchical
clustering on silhouettes of the persistence diagrams of the men’s point clouds together
with the euclidean distance. The associated dendrogram is given in Figure 18.

Figure 18. Dendrogram associated to a Ward-linkage hierarchical clustering of the silhouettes of the
persistence diagrams of male point clouds.

To find a correct truncation of the dendrogram, we use the following clustering
quality indices:

• The Elbow method;
• The Davies–Bouldin index [32];
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• The Silhouette index [33];
• The Dunn index [34].

Since there is a continuity between human body shapes, there is no distinguished
point common to all these indices. However, the Davies–Bouldin and Dunn indices both
suggest to truncate at eight clusters. Information about size, mean distance of all pairs,
diameter, mean distance to the mean and distance between the mean and the medoid of
each cluster is given in Table 3.

Table 3. Clustering of male body shapes.

Cluster C1 C2 C3 C4 C5 C6 C7 C8

Size 2 4 50 311 125 273 415 332

Proportion
(in percent) 0.1 0.3 3 21 8 18 27 22

Mean
distance 79.6 39.4 28.6 17.4 20.3 16.3 18.9 19.4

Diameter 79.6 53.9 62 49.6 59.2 54.6 67.1 69.4

Distance
to the mean 39.8 24.4 19.6 12.1 14.2 11.5 13.1 13.6

Distance
mean–medoid 39.8 20.1 9 3.4 5.9 6.9 5.1 6.1

The first cluster is only composed of two individuals who are extremely overweight,
and their meshes are shown in Figure 19. The four men in the second cluster are also
extremely overweight.

The medoid is the element minimizing the distance with other elements of the cluster.
It can be considered as a representative, and we show in Figure 20 the medoids associated
to every cluster, except for the first cluster.

(a) S0517 (b) S0553

Figure 19. The two individuals of cluster C1.

Since we do not have measurements associated with the individuals of the CAESAR
database, in each group, we have to look at all the individuals in order to identify the
predominant morphological features. It turns out that the clusters C3 and C7 are composed
of overweight individuals of different categories, while the thinnest men are located
in cluster C6. It turns out that individuals of clusters C4, C5 and C8 have a standard
morphotype but that men of C8 have a shorter torso than in C4 and C8 and that men of C4
are more corpulent that in the two others.
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5.2. Female Morphotypes

Similarly, to define morphotypes of women’s body shapes, we perform a Ward-linkage
hierarchical clustering on silhouettes of the persistence diagrams of the women’s point clouds
together with the euclidean distance. The associated dendrogram is given in Figure 21.

(a) (C2) S2864 (b) (C3) S1502 (c) (C4) S2055 (d) (C5) S2640

(e) (C6) S4286 (f) (C7) S2982 (g) (C8) S4505

Figure 20. Medoids of clusters C2 to C8 of the Ward-linkage hierarchical clustering.

Figure 21. Dendrogram associated to a Ward-linkage hierarchical clustering of the silhouettes of the
persistence diagrams of female point clouds.

This time, the Silhouette and Dunn indices suggest truncating at seven clusters. In-
formation about size, mean distance of all pairs, diameter, mean distance to the mean and
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distance between the mean and the medoid of each cluster is given in Table 4. Remark that
clusters of women are more compact than clusters of men since the mean distance of pairs
and diameter are much smaller.

Table 4. Clustering of female body shapes.

Clusters C1 C2 C3 C4 C5 C6 C7

Size 306 263 403 107 122 112 214

Proportion
(in percent) 20 17 27 7 8 7 14

Mean
distance 14.2 12.7 14.1 14.3 14 19 21.3

Diameter 36.6 32 32.1 31.9 38.2 59.3 62.4

Distance
to the mean 10.1 9 10.1 10.1 9.9 13.3 14.8

Distance
mean–medoid 3.4 3.4 4.5 3.3 3.6 5.9 5.2

We show in Figure 22 the medoids associated to the seven clusters.

(a) (C1) S0522 (b) (C2) S2018 (c) (C3) S1604 (d) (C4) S0174

(e) (C5) S1076 (f) (C6) S4507 (g) (C7) S1174

Figure 22. Medoids of the seven clusters of the Ward-linkage hierarchical clustering.
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The first two clusters are composed of thin women, but in the first one, they have a
shorter torso with a waist circumference that is more pronounced. The clusters C6 and
C7 are composed of overweight individuals of different categories. The women of the
clusters C3 have a straight body without much difference between waist, hip and chest
circumferences. Individuals of C4 and C5 have a larger hip circumference compared to the
waist circumference, but women of C4 have a stronger lower body while women of C5 have
a shorter torso.

6. Discussion

The research conducted in this paper demonstrates that the tools of topological data
analysis and persistence theory permit us to extract pertinent information about the shape
of anthropometric point clouds. The homologies of the persistence diagram of human body
points have interesting interpretations in terms of human anatomy. Hence, most of the scan
anomalies are correctly detected by clustering algorithms. The gender discrimination index
shows that it is worth restricting our search to trunk body points to separate men from
women and that the Ward-linkage hierarchical clustering and the K-Medoids clustering
give better results than the complete-linkage hierarchical clustering. Finally, we obtain
eight morphotypes of men and seven morphotypes of women’s body shapes with Ward-
linkage hierarchical clusterings. The clusters are composed of individuals of similar weight
classes, and the groups can be distinguished by their ratios between bust, waist and hip
circumferences or by their torso sizes or their lower body shapes. It is worth noting that
the female clusters have better proportions and smaller diameters than the male clusters.

The proposed approach is promising for anomaly detection and classification and
should be applied to other types of point clouds in different contexts. The method can also
be extended to other problems related to human bodies, such as measurement extraction
with supervised machine learning algorithms.
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