
Citation: Wang, S.; Beheshti, A.;

Wang, Y.; Lu, J.; Sheng, Q.Z.; Elbourn,

S.; Alinejad-Rokny, H. Learning

Distributed Representations and

Deep Embedded Clustering of Texts.

Algorithms 2023, 16, 158. https://

doi.org/10.3390/a16030158

Academic Editors: Szymon Łukasik

and Piotr A. Kowalski

Received: 27 January 2023

Revised: 23 February 2023

Accepted: 8 March 2023

Published: 13 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Learning Distributed Representations and Deep Embedded
Clustering of Texts
Shuang Wang 1,2,* , Amin Beheshti 1,* , Yufei Wang 1, Jianchao Lu 1, Quan Z. Sheng 1, Stephen Elbourn 1,3

and Hamid Alinejad-Rokny 1,4

1 School of Computing, Macquarie University, Sydney, NSW 2109, Australia
2 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
3 ITIC Pty Ltd., Sydney, NSW 2000, Australia
4 The Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
* Correspondence: shuangwang@seu.edu.cn (S.W.); amin.beheshti@mq.edu.au (A.B.)

Abstract: Instructors face significant time and effort constraints when grading students’ assessments
on a large scale. Clustering similar assessments is a unique and effective technique that has the poten-
tial to significantly reduce the workload of instructors in online and large-scale learning environments.
By grouping together similar assessments, marking one assessment in a cluster can be scaled to other
similar assessments, allowing for a more efficient and streamlined grading process. To address this
issue, this paper focuses on text assessments and proposes a method for reducing the workload of
instructors by clustering similar assessments. The proposed method involves the use of distributed
representation to transform texts into vectors, and contrastive learning to improve the representation
that distinguishes the differences among similar texts. The paper presents a general framework
for clustering similar texts that includes label representation, K-means, and self-organization map
algorithms, with the objective of improving clustering performance using Accuracy (ACC) and Nor-
malized Mutual Information (NMI) metrics. The proposed framework is evaluated experimentally
using two real datasets. The results show that self-organization maps and K-means algorithms with
Pre-trained language models outperform label representation algorithms for different datasets.

Keywords: distributed representation; deep clustering; data augmentation; contrastive learning;
artificial intelligence

1. Introduction

Over the past years, different solutions have been proposed to reduce instructors’
workload and facilitate the interaction between teachers and students [1]. An early example
of such a technique is one-to-one interaction models, which are well suited for courses with
a small number of students. However, assessment clustering becomes challenging when
large classes with hundreds of students, or massive online open online courses, are involved.
Accordingly, reducing instructors’ workloads in the above situations becomes important in
educational systems. To address this challenge, Artificial Intelligence (AI) has been used in
intelligent tutoring systems to cluster similar texts. Examples of such systems can be seen
in computer science courses, programming courses, or detecting plagiarism [2,3].

Unsupervised clustering is an important research topic in data science, machine
learning and artificial intelligence. It has been used in a wide range of applications, ranging
from document analysis [4] to image retrieval [5], for various systems. During the past few
decades, a lot of clustering algorithms have been proposed, such as Kmeans [6], Gaussian
mixture model [5], and Self Organising Map (SOM) [7]. Although unsupervised clustering
algorithms have been studied widely, the performance of these traditional clustering
methods generally deteriorate when the data dimensionality is high, due to unreliable
similarity metrics. The assumptions underlying the dimensionality reduction techniques
are generally independent of the assumptions of the clustering techniques, which is known

Algorithms 2023, 16, 158. https://doi.org/10.3390/a16030158 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16030158
https://doi.org/10.3390/a16030158
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-3405-5942
https://orcid.org/0000-0002-5988-5494
https://doi.org/10.3390/a16030158
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16030158?type=check_update&version=2

Algorithms 2023, 16, 158 2 of 17

as the curse of dimensionality. To solve this problem, a common way is to transform
data from high dimensionality to lower dimensionality by applying dimension reduction
techniques, like principle component analysis (PCA) [8] or feature selection methods [9].
Then, clustering is performed in the lower dimensional feature space. However, this
scheme ignores the interconnection between feature learning and clustering. To address
this issue, with the development of deep learning, such feature transformation can be
achieved by using Deep Neural Networks (DNNs), referred to as deep clustering. There
are two different stages for deep clustering, representation and clustering, which can be
combined by two strategies. On the one hand, the clustering stage can be adopted after the
representation stage [10]. On the other hand, the representation and clustering stages can
be jointly combined [11].

Deep Embedded Clustering (DEC) [12] has been proposed to improve the deep fea-
ture representation results by simultaneously learning feature representations and cluster
assignments. However, DEC does not make use of prior knowledge to guide the learning
process. Semi-supervised Deep Embedded Clustering (SDEC) is proposed to overcome
this limitation [13,14]. Some pioneering work proposes to simultaneously learn embedded
features and perform clustering by explicitly defining a clustering-oriented loss. Though
promising performance has been demonstrated in various applications, a vital ingredient
has been overlooked, which is that the defined clustering loss may corrupt feature space.
This, then, leads to non-representative meaningless features, and this, in turn, hurts cluster-
ing performance. To address this issue, an Improved Deep Embedded Clustering (IDEC)
algorithm is proposed to take care of data structure preservation [15].

To cluster similar features, the Kmeans clustering algorithm was used in [12,13,15].
Although Kmeans is a simple and effective clustering algorithm, it is especially sensitive to
the choice of K and the initial starting conditions [16]. With its natural property of the neural
network, SOM can solve these problems. When combining the Kmeans algorithm with
representation, the centres are determined which cannot adjust when training [12,13,15].
This kind of alternation learning method would suffer from the error accumulated during
the alternation between the stages of representation learning and clustering, which results
in sub-optimal clustering performance. Moreover, the aforementioned methods can only
deal with offline tasks, i.e., the clustering is based on the whole dataset, which limits their
application on large-scale online learning scenarios [17]. To conquer the aforementioned
offline limitation, a one-stage online deep clustering method called Contrastive Clustering
is proposed [17,18].

In this paper, we present a novel model by considering the contrastive learning loss
and clustering loss to enable learning distributed representations of assessments with
deeply embedded clustering to cluster similar assessments. Compared to [19,20], we pro-
pose using Pre-trained language models (PLMs) to represent assessment content as vectors
because PLMs have been shown to be effective in improving natural language processing
(NLP) tasks [21,22]. Specifically, we use BERT (Bidirectional Encoder Representation from
Transformers) [23] for this purpose. In this context, Instance-wise Contrastive Learning
(Instance-CL) has recently achieved remarkable success in self-supervised learning. Su-
pervised Contrastive Learning (SCL) [24] term fine-tuned to the objective can significantly
improve the performance on natural language understanding tasks from the GLUE bench-
mark [25]. Compared to [12,13,15], the effectiveness of SCL is studied in this paper. How
to use SCL, however, can be challenging to cluster assessments. To address these challenges,
we propose a general clustering framework that transforms assessments into vectors in
terms of SCL loss and clustering assessments. The major contributions of the paper are
summarized as follows:

• A deep embedding strategy is used jointly to cluster similar texts, which can improve
the representation of texts.

• A loss, based on supervised contrastive learning and Kullback Leibler (KL) diver-
gence [15], is used on clustering texts, which can not only cluster similar texts, but
also distinguish the difference in a cluster.

Algorithms 2023, 16, 158 3 of 17

• A general framework for clustering is proposed, which compares different clustering
algorithms. SOM is first combined with deep representation. The results show the
effectiveness of our proposed models in clustering texts which can significantly reduce
instructor workload in marking assessments.

The rest of the paper is organized as follows. In Section 2, we discuss the related
work, and in Section 3 we detail the problem descriptions and proposed models. The
general framework is proposed in Section 4. Finally, the experimental results are reported
in Section 5, followed by conclusions and future research directions in Section 6.

2. Related Work

To reduce instructors’ workload, a series of text techniques such as text mining [26–29],
text clustering [12,13,15], and text representation [23,30] were studied. Natural language
processing (NLP) has been used widely in different applications. Neural models have be-
come a dominant approach in NLP. For encoding texts, bi-directional LSTMs (BiLSTMs) [30]
have been a dominant method among various neural networks, in terms of state-of-the-art
studies in language modeling [31], machine translation [32], syntactic parsing [33] and
question answering [34]. Sequential information flow for LSTM leads to relatively weaker
power in capturing long-range dependencies, which results in lower performance during
encoding longer sentences. To solve the problem, the sentence similar function was studied,
based on word2vector similar elements [35], while word2vector only represented static
word information. Sentence2vector considers information in a sentence while it ignores
the information in assessments. Pre-trained BERT is easily fine-tuned with an additional
output layer to create a state-of-the-art model for a wide range of tasks which suggests
that BERT representations are potential universal text embedding. BERT [23] was applied
to short answer grading. A python-based RESTful service, that utilizes the BERT model
for text embedding, and Kmeans clustering, to identify sentences closest to the centroid
for summary selection [36–38], provides students with a utility that could summarize
lecture content, based on the desired number of sentences. A Sentence-BERT (SBERT),
a modification of the pre-trained BERT network, that uses siamese and triplet network
structures, was proposed to derive semantically meaningful sentence embedding that can
be compared using cosine-similarity [39].

Deep Embedded Clustering. To improve the representation performance for clustering,
there are two categories of deep clustering algorithms in existing studies: (i) clustering
applied after having learned a representation, and (ii) approaches jointly optimized by
feature learning and clustering. The first category of algorithms takes advantage of existing
unsupervised deep learning frameworks and techniques. For example, autoencoder is
used to learn low dimensional features of an original graph [40], and then runs the Kmeans
algorithm to get clustering results [41]. A clustering loss is defined in the second category
of algorithms, which simulates classification error in supervised deep learning. DEC [12]
learns a mapping from the observed space to a low-dimensional latent space with deep
neural networks, which can obtain feature representations and cluster assignments simul-
taneously and starts with pre-training an autoencoder and then removing the decoder.
Existing deep embedded clustering algorithms only consider Kmeans algorithms and only
work for offline tasks [17]. To solve this problem, the SOM algorithm was used in this
paper, which has never before been considered for text representation in existing studies.

SOM Algorithms. SOM has the special property of effectively creating spatially orga-
nized internal representations of various features of input signals and their abstractions [42].
SOM is an automatic data analysis method that is widely applied to clustering problems
and data exploration in industry, finance, natural sciences, and linguistics [43,44]. A
SOM-similar network is designed to simultaneously implement encoding and clustering
purposes on data samples, which are jointly trained with a Generative Adversarial Network
(GAN) to optimize a newly defined clustering loss [45]. Principal Component Analysis
(PCA) was combined with a SOM to determine the pull-off adhesion between concrete
layers [46]. SOM algorithms have been used widely to cluster similar tasks [19,20,47].

Algorithms 2023, 16, 158 4 of 17

However, there are no existing studies that combine SOM with BERT in text representation
and clustering.

Contrastive Learning. Contrastive learning has recently become a dominant com-
ponent in self-supervised learning for natural language processing. It aims to embed
augmented versions of the same sample close to each other, while trying to distinguish
embedding from different samples [48,49]. Therefore, different instances are isolated in
the learned embedding space with local invariance, which is preserved for each instance.
Contrastive learning at a particular instance, considers the level [48,49] while performing,
whereas the method simultaneously conducts contrastive learning at both the instance-
and cluster-level following the observation of label as representation [17]. Existing works
aimed to learn a general representation, which is off-the-shelf for the downstream tasks.
On the contrary, the method is specifically designed for clustering, which could be the first
successful attempt at task-specified contrastive learning. In this paper, contrastive learning
loss was first used on clustering texts with SOM, which has never before been considered
in existing studies [23,50–54].

In this paper, we first combine text representation and contrastive learning with
SOM algorithms in deep-embedded clustering, which has never been considered in the
existing studies.

3. Problem Description and the Models

In this section, we first describe problem definitions and model building blocks. After
that, contrastive learning is used to improve the performance of deep clustering.

3.1. Problem Description

The task in this paper is to cluster texts automatically. Formally, there are different texts,
and our model should output the clustering result for it. To cluster similar assessments,
BERT was studied to transform texts into vectors. To improve deep feature representations,
a deeply embedded clustering technique was adopted. To improve the performance
on clustering, Kullback Leibler (KL) divergence [15] and contrastive learning loss were
calculated simultaneously.

3.2. The Framework

To cluster similar texts, the overall framework of our proposed model is shown in
Figure 1. Firstly, the texts are represented as vectors PLMs. After that, the clustering
technique is used to cluster vectors without the pre-defined number of clusters. To improve
the representation performance, contrastive instances for texts are generated by vector
representation models. For example, assume that there is assessment evaluation for the
topic “Environmental protection” in a middle school. There are hundreds of assessments
to mark which is a huge workload for instructors. To solve the problem, these assessments
are first processed by the data augmentation technique, which can increase the diversity of
an assessment. The contrastive learning loss is calculated either after vector representation
or clustering, which improves the representation in future.

In this paper, we used pre-trained BERT [55] to represent words and sentences in the
given answers. We also explored the usage of the BiLSTM model [30] for learning word-
level and sentence-level information when we had few resources to fine-tune the whole
BERT model. The procedure of text clustering, including representation and clustering, is
shown in Figure 2.

Algorithms 2023, 16, 158 5 of 17

Text1

Text2

TextS

Data

Augmentation

Data

Augmentation

Data

Augmentation

Data

Augmentation

Vector

Representation

Vector

Representation

Vector

Representation

Vector

Representation

Deep

Embedded

Clustering

Loss

Contrastive

Learning

Loss

Clustering

Loss

Figure 1. The proposed overall framework.

Input
[CLS]

Artificial

Intelligence

isusefulin

education

[SEP]

Token

EmbeddingE[CLS]

EArtificial

EIntelligence

Eis

Euseful

Ein

Eeducation

E[SEP]

E0E1E2E3E4E5E6E7

A
d
d

&
N

o
rm

A
d
d

&
N

o
rm

Position

Embedding
A

d
d

&
N

o
rm

A
d
d

&
N

o
rm

Input

Position

Embedding

Token

Embedding

Figure 2. The procedure of text clustering.

Vector Representation

BERT. In the input, BERT adds a special leading token [cls] at the beginning of the input
text (e.g., [cls] Artificial Intelligence is useful in education). The [cls] is used for sentence-
level classification tasks during its pre-training stage, and its corresponding hidden vector
is used as the sentence-level representation. All input tokens are represented as the additive
combination of word embedding and positional embedding. Its core module is multi-
head self-attention [56], where input tokens are represented as queries (Qi = XWQ

i), keys
(Ki = XWK

i) and values (Vi = XWV
i) in the ith head. We have:

SelfAttention(Qi, Ki, Vi) = so f tmax(
QiKT

i√
dk

i

)Vi (1)

MultiHead(Q, K, V) = cat(Sel f Attention(Qi, Ki, Vi))WC (2)

where WQ
i ∈ <

d×dk
i , WK

i ∈ <
d×dk

i , WV
i ∈ <

d×dv
i WC ∈ <∑

Nh
i=1 dv

i ×d are the trainable parame-
ters. Finally, BERT has residual connection followed by layer-normalization [57]. A fully
connected feed-forward network is applied to the matrix Z1 as follows

FF(Z1) = max(0, Z1WF
1 + bF

1)W
F
2 + bF

2 (3)

where WF
1 , bF

1 , WF
2 , bF

2 are parameter matrices. After feed-forward, Add&Norm is reused in
the layer.

BERT performs well in transforming texts to vectors, although it consumes lots of server
resources. To solve the problem, DistilBERT was adopted in this paper, which has the same
general architecture as BERT [39]. The token-type embedding and the pooler are removed,
while the number of layers is reduced by a factor of 2. Most of the operations used in the
Transformer architecture (linear layer and layer normalization) are highly optimized in modern
linear algebra frameworks and our investigations showed that variations on the last dimension
of the tensor (hidden size dimension) had a smaller impact on computation efficiency (for a
fixed parameter budget) than variations on other factors, like the number of layers.

Algorithms 2023, 16, 158 6 of 17

3.3. Contrastive Learning

Contrastive learning aims to maximize the similarities of positive pair instances, and
it can maximize the difference of negative pair ones. The characteristics of pair instances
are defined by various rules. For example, when the pairs are within the same class, it is
a positive pair. Otherwise, it is a negative pair. In this paper, the positive and negative
pairs were constructed at the instance-level by data augmentations and embedding. In
addition, the positive pairs consisted of samples either augmented or embedded from the
same instance, while the negative pairs were from different instances.

Considering a mini-batch S, the instance contrastive learning loss is defined in terms
of the augmented pairs Sa, while for a mini-batch Sv, the instance contrastive learning loss
is defined in terms of the representation vectors. i ∈ {1, · · · , M} is denoted as the index
of an arbitrary instance in set S. j ∈ {1, · · · , M} is the index of the other instance in Sa

augmented from the same instance in the original set S. For pairs (xi, xa
j), there are 2M

pairs in total. For a specific sample xi ∈ S, there are 2M-1 pairs in total where (xi, xa
i) is a

positive pair and others are negative pairs. Similarly, xv
j ∈ {1, · · · , 2M} is the embedding

sample of the other instance in Sv embedded from the same instance in the original set S.
To alleviate the information loss induced by contrastive loss, we did not directly conduct
contrastive learning on the feature matrix. Let zi and zj be the corresponding outputs of
the head g, i.e., zi = g(ϕ(xi)), j = i1, i2. Then, for xi1 , we tried to separate xi2 apart from all
negative instances in Sa by minimizing the following applied. The pair-wise similarity was
measured by cosine distance:

s(zi, zj) =
zT

i zj

||zi||2||zj||2
(4)

To optimize pair-wise similarities, without loss of generality, the loss for a given
sample xa

i is described as follows [17]:

lossco
i = −log

exp(s(zi, zi1) · τ
−1)

∑N
j=1 1j 6=i · exp(s(zi, zj) · τ−1)

(5)

where τ is the temperature parameter which controls the scale of the difference. According
to Equation (5) and the mini-batch S, the contrastive loss is calculated using:

lossco =
S

∑
i=1

lossco
i

S
(6)

3.4. Clustering

To cluster similar instances together, there are different methods, such as Label as
representation and Kmeans algorithm in existing studies for deeply embedded clustering.
Label as representation is defined when projecting a data sample into a space where
the dimensionality equals the number of clusters with the ith element interpreted as the
probability of belonging to the ith cluster, and the feature vector denotes its soft label
accordingly. Kmeans algorithms have been used in [12,17,36], while the SOM algorithm
with BERT has never been used in existing studies.

A Self Organizing Map [42] is a classic unsupervised learning algorithm that follows
the principle of topological mapping. The main aim of SOM is to convert input signals
of arbitrary dimension into one-dimensional or two-dimensional discrete mapping and
the spatial position of the output layer neurons in the topological mapping corresponds
to a specific feature of input space. The original idea of SOM is to simulate the way
that vision systems work in the human brain, which is used for the organization and
visualization of complex data. In general, SOM can capture the topology map structure
which distinguishes the distances among different clusters and distribution of the input data

Algorithms 2023, 16, 158 7 of 17

to provide a clustering analysis. In this paper, a M× N self-organizing map is constructed.
The architecture of SOM includes two layers: the input layer and the Kohonen output layer.

To describe SOM clearly, x is denoted as the input vector, while Wij(i ∈ {1, · · · , M}, j ∈
{1, · · · , N}) is one of the neurons in the self-organisation map which is a unit vector. In
addition, the shape of weights neurons is the same as the input vector zk. To calculate
the distance from zk to the weights neurons, zk is reduced to as a unit vector where zkj is
described as follows:

zkj =
zkj

∑d
j=1 zkj

(7)

For each sample zk, the distance dij from a neurons Wij is calculated by:

dij = ||zk −Wij||2 (8)

The corresponding neuron which has the minimum distance is called the winner.
The rates of the modifications at different nodes depend on the mathematical form of the
function hci(t), which is described as follows [43]:

hci(t) = a(t)exp(
−sqdist(c, i)

2δ(t)
) (9)

where α(t) is the learning rate at time t, −sqdist(c, i) is the square of the geometric distance
between the nodes c and i in the grid, and δ(t) is a monotonically decreasing function of t
which controls the number of neighborhood nodes.

3.5. Clustering Loss

Suppose our data consists of M×N semantic categories and each category is character-
ized by its centroid in the M×N representation space, denoted as µij (i ∈ {1, 2, · · · , M}, j ∈
{1, 2, · · · , N}). ej = g(xj) is denoted as the representation of the instance xj in the original
set Sv. According to [58], the student’s t-distribution is used to compute the probability qij
of assigning xj to one of the neurons Wij:

qji =
(1 +

||ej−µi ||22
α)−

α+1
2

∑M×N
k=1 (1 +

||ej−µk ||22
α)−

α+1
2

(10)

where α denotes the degree of freedom of the Student’s t-distribution and α = 1 by
default [58]. According to SOM, the neurons are obtained. The neurons are refined by
leveraging an auxiliary distribution proposed by [12]. pji is denoted as the auxiliary
distribution which is described as follows:

pji =

qji
fi

∑i′
q

ji′

fi′

(11)

where fi = ∑M
i=1 qjk, k ∈ {1, · · · , K} is the interpreted as the soft cluster frequencies approx-

imated within a mini-batch. The target distribution first sharpens. The soft-assignment
probability qji is sharpened by raising it to the second power, and it is normalized by the
associated cluster frequency. Learning is encouraged between high confidence cluster
assignments and the bias which is simultaneously combated by imbalanced clusters.

To optimize the KL divergence between the cluster assignment probability and the
target distribution, the cluster loss for each instance is described as follows:

lossc
i = KL[pj||qj] =

K

∑
i=1

pjilog
pji

qji
(12)

Algorithms 2023, 16, 158 8 of 17

Since mini-batch instances were studied in this paper, the cluster loss for each mini-
batch was obtained as follows, in terms of Equation (12):

lossc =
M

∑
i=1

lossc
i

M
(13)

The overall loss function was obtained by Equations (6) and (13) which is described
as follows:

l = lossco + lossc (14)

4. Algorithms

To cluster similar assessments, Distill BERT was first used to transform texts into
vectors with a text augmentation technique. After augmentation, contrastive learning and
clustering techniques were adopted to cluster similar texts. Since for different clustering
algorithms the efficiency is different. We propose three different clustering algorithms with
the proposed model. The proposed algorithm framework is described in Algorithm 1. To
calculate the efficiency of Algorithm 1, the adopt Accuracy (ACC) and Normalized Mutual
Information (NMI) are measured. NMI is calculated by NMI(Y, C) = 2×I(Y;C)

H(Y)+H(C) where Y
is the real label, C is the clustering label, H(.) is the cross entropy, and I(.;.) is the mutual
information.

To describe the algorithm framework clearly in Algorithm 1, the input data contains
dataset S, training epochs E, temperature τ in contrastive learning and the structure of
augmentation, while the output results are ACC and NMI. A mini-batch {xi} of texts
is selected from dataset S. For each input sample xi, two random augmentations are
generated where xa

i = AS
j (xi)(j = 1, 2), which represents a different view of the text and

contains some subset of the information in the original sample. x1
i , x2

i (i ∈ {1, 2, · · · , |S|})
are denoted as the augmented text of an assessment xi. After text augmentation, the
contrastive loss is calculated according to the temperature τ. Texts are transformed into
vectors by DistilBERT. The predicted labels are obtained after the clustering algorithms.
By comparing predicted labels to ground truth labels, the clustering loss is calculated.
According to the instance loss and clustering loss, the overall loss is obtained. The ACC
and NMI metrics are calculated.

The deeply embedded clustering framework is described in Algorithm 1. For vector
clustering techniques, there are three different strategies: label as representation, Kmeans
algorithm, and SOM algorithm. For label as representation, the dimension of vectors
is projected to the number of clusters by multiple neuron networks. The index of the
maximum values of the vector is represented as the label of clusters. After all of the vectors
are projected to the fixed dimensions, Kmeans and SOM algorithms are used to cluster
similar vectors together, respectively. To calculate the clustering centers for the label as
representation algorithms, Kmeans and SOM algorithms are adopted, respectively.

The label as a representation algorithm is shown in Algorithm 2. The input of the
algorithm is the matrices Z, Z1, and Z2 which are made up of zi, z1

i , z2
i (i ∈ {1, · · · , |S|})

where zi, z1
i , z2

i are represented by DistilBERT. The labels L, L1, L2 are initialized first. Ac-
cording to the idea of the label as representation, all the represented vectors are projected to
K dimensions. The index of the maximum value selects the label for the projected vectors.
The time complexity of the Algorithm 2 is O(K|S|).

The Kmeans clustering algorithm is described in Algorithm 3. To describe Algorithm 3
clearly, c1, · · · , ck are denoted as the initial centroids. All the vectors in Z are compared with
K centroids. The vector with the minimum distance to the centroid ci is assigned to Ci. After
all the vectors are assigned, new centroids are calculated in terms of new Ci (i ∈ {1, · · · , K).
The procedure is repeated until the conditions are not satisfied. The label L for Z is obtained
with the final centroids. The labels L1, L2 for Z1 and Z2 are obtained, similarly. The time
complexity for Algorithm 3 is O(|S|Kt).

Algorithms 2023, 16, 158 9 of 17

Algorithm 1: Deep Embedded Clustering Framework

Input: Data set S, Training epochs E, Temperature τ, Structure of augmentation AS

Output: ACC, NMI.
1 for e = 1 to E do
2 Sample a mini-batch {xi}(i ∈ {1, 2, · · · , M}) from dataset S;
3 Sample two augmentations AS

1 , AS
2 ;

4 for i = 1 to |S| do
5 xi, x1

i , x2
i is represented by DistilBERT;

6 Compute the instance loss by Equation (5);
7 Calculate the clustering centers;
8 Cluster these vectors by different clustering methods;
9 Calculate the predicted labels for all vectors;

10 Compute the clustering loss by Equation (12);
11 Compute the overall loss by Equation (13);
12 Calculate the ACC, NMI by comparing predicted labels to ground truth labels;
13 Update gradients to minimize the overall loss;

14 return ACC, NMI.

Algorithm 2: Label as Representation Algorithm

Input: Matrices Z, Z1, Z2

1 Initialize labels L, L1, L2;
2 for i = 1 to |S| do
3 zi is projected to K dimensions;
4 z1

i is projected to K dimensions;
5 z2

i is projected to K dimensions;
6 indmax ← 1, ind1

max ← 1, ind2
max ← 1;

7 zmax ← zi[1], z1
max ← z1

i [1], z2
max ← z2

i [1];
8 for j = 2 to K do
9 if zmax < zi[j] then

10 zmax ← zi[j];
11 indmax ← j;

12 Li ← indmax;
13 for j = 2 to K do
14 if z1

max < z1
i [j] then

15 z1
max ← z1

i [j];
16 ind1

max ← j;

17 L1
i ← ind1

max;
18 for j = 2 to K do
19 if z2

max < z2
i [j] then

20 z2
max ← z2

i [j];
21 ind2

max ← j;

22 L2
i ← ind2

max;

23 return L, L1, L2.

The SOM clustering algorithm is described in Algorithm 4. The input data includes
parameters M, N for the map, the input matrix Z, the iteration times T, and the parameter
α. The weight matrix W is initialized where each raw is a unit vector. To compare the input
matrix W to Z, each raw of Z is normalized to a unit vector. By comparing Z to W, the
distance from zi to all the neurons is calculated. The neuron with the minimum distance is
selected as the winner. The label of zi is determined. The learning rate is updated. After that,
hci(t) is calculated by Equation (9) with new δ(t). The weights are updated by the new hci(t).
The procedure is repeated until t = T. The time complexity of Algorithm 4 is O(MN|S|T).

Algorithms 2023, 16, 158 10 of 17

Algorithm 3: Kmeans Clustering Algorithm
Input: Matrices Z, K

1 Initialize K centroids c1, · · · , cK randomly;
2 t← 0;
3 while Conditions are satisfied do
4 c′1 ← c1, · · · , c′K ← cK ;
5 Initialize empty sets C1, · · · , CK ;
6 for i = 1 to |S| do
7 d1 ← ||zi − c1||2, ind← 1;
8 for j = 2 to K do
9 if d1 < ||zi − cj||2 then

10 d1 ← ||zi − cj||2;
11 ind← j;

12 Cj ← Cj ∪ zind;

13 c1 ← avg(C1), · · · , cK ← avg(CK);
14 t← t + 1

15 return L.

Algorithm 4: SOM Clustering Algorithm
Input: M, N, Z, iteration times T,α

1 Initialize the weights W(0);
2 Normalize Z by equation (7);
3 for t = 1 to T do
4 for i = 1 to |S| do
5 d← 100, L← 01×|S|;
6 for j = 1 to M do
7 for k = 1 to N do
8 if ||zi −Wjk||2 < d then
9 d← ||zi −Wjk||2;

10 Li ← (j− 1) ∗ N + k;

11 Calculate hci(t) by Equation (9);
12 Update learning rate lr(t) = α ∗ (1− t

T);
13 Update weights by Equation (10);

14 return L.

5. Experiments

In this section, the experimental setup is described and different clustering strategies
are compared.

5.1. Experimental Setup

In the proposed deep-embedded clustering algorithm, there are different parameters
and clustering components and we present our experiments to calibrate the parameters
and components using different datasets, which include the AgNews dataset [59], and
StackOverflow dataset [60]. The AgNews dataset is a subset of news titles that contains
4 topics. AgNews is a collection of more than 1 million news articles gathered from
more than 2000 news sources. The dataset is used in data mining, including clustering,
classification, information retrieval and so on. StackOverflow is a subset of the challenge
data published by Kaggle, which contains 20,000 question titles associated with 20 different
categories [60]. For each question, it includes: Question ID, Creation date, Closed date,
Number of answers and so on. We then present experimental results to compare the
proposed deep-embedded clustering algorithm against three existing algorithms using

Algorithms 2023, 16, 158 11 of 17

real-life instances. Different algorithms are implemented in the Python programming
language with the Pytorch library on a single NVIDIA P100 GPU with 16G memory.

The Adam optimizer, with a batch size of 400, the distilbert-base-nli-stsb-mean-tokens,
and the maximum input length are used the same as in [61,62]. The distilbert-base-nli-
stsb-mean-tokens in the Sentence Transformers library was used as the backbone [39],
and we set the maximum input length to 32. Different learning rates were conducted to
optimize the Clustering head and we set α = 1 for the dataset. As mentioned in Section 3,
different τ were used to optimize the contrastive loss. We tried different τ values in the
range of (0, 1]. For fair comparison between the deeply embedded clustering framework
and its components or variants, the clustering performance was analyzed for each of
them by applying Kmeans, labeled as a representation with clustering centers by Kmeans
(KmeansR), and SOM (SOMR), labeled as representations with clustering centers by SOM,
and SOM, respectively.

5.2. Algorithm Comparison

To analyze the experimental results on the Agnews and StackOverflow datasets, different
parameters, such as learning rates, learning rate scale (lr scale), and the temperature τ, were
calibrated and compared with different values on these different algorithm components.

5.2.1. Experimental Results on Learning Rates

To calibrate the learning rates, the values were set from 10−7 to 10−3 for the Avgnews
dataset. The experimental results are shown in Table 1. According to Table 1, With NMI
metrics, when the learning rate was 10−5, the NMI was the highest, with 0.824, while for
SOMR, the highest NMI was 0.743 with learning rate 10−3. For Kmeans algorithm, the
highest NMI was 0.822 with a learning rate 10−5 while for KmeansR, the highest NMI
was 0.731 with a learning rate 10−6. Comparing SOM, SOMR, Kmeans, and KmeansR, the
highest NMI was 0.824, obtained by SOM, followed by 0.822 obtained by Kmeans. For
ACC, the highest value of SOM was 0.947 with the learning rate 10−5 while it was 0.915
of SOMR with the learning rate 10−3. For Kmeans, the highest value of ACC was 0.944
with the same learning rate 10−5 as SOM, while for SOMR, the highest ACC was 0.904 with
the learning rate 10−6. Comparing all algorithm components, the highest value was 0.947,
obtained by SOM.

Table 1. Learning rate Calibration and Algorithm Component Comparison (10−7–10−3).

Dataset Metrics Algorithm 10−7 10−6 10−5 10−4 10−3

NMI SOM 0.763 0.739 0.824 0.565 0.625
NMI SOMR 0.724 0.729 0.696 0.491 0.743
NMI Kmeans 0.767 0.744 0.822 0.731 0.454
NMI KmeansR 0.727 0.731 0.685 0.718 0.296

Avgnews ACC SOM 0.922 0.909 0.947 0.804 0.836
ACC SOMR 0.899 0.903 0.887 0.767 0.914
ACC Kmeans 0.923 0.926 0.944 0.899 0.694
ACC KmeansR 0.901 0.904 0.881 0.865 0.494

Bold implies the best values for the NMI and ACC metrics.

In regard to calibrating the learning rates for the StackOverflow dataset, the experimen-
tal results are shown in Figure 3. According to Figure 3, the SOM and SOMR algorithms
were affected by the learning rates, while the Kmeans and KmeansR algorithms had little
effect on the learning rates. With NMI metrics, when the learning rate was 10−6, the NMI
was the highest, with 0.662, while for SOMR, the highest NMI was 0.564 with learning rate
10−5. For the Kmeans algorithm, the highest NMI was 0.667 with learning rates 10−6, 10−4,
and 10−3, while for KmeansR, the highest NMI was 0.564 with the same corresponding
learning rates. Comparing SOM, SOMR, Kmeans, and KmeansR, the highest NMI was
0.667, obtained by Kmeans, followed by 0.662, obtained by SOM. For ACC, the highest
value of SOM was 0.710 with the learning rate 10−6, while it was 0.611 of SOMR, with

Algorithms 2023, 16, 158 12 of 17

the learning rate 10−6. For Kmeans, the highest value of ACC was 0.711 with the same
learning rate 10−6 as SOM, while for SOMR, the highest ACC was 0.619, with the learning
rate 10−6, 10−5, and 10−3. Comparing all algorithm components, the highest value was
0.711, obtained by the Kmeans algorithm.

NMI
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

呻－SOM 哼－SOMR -Kmeans -KmeansR

10-7

T÷→？＼ι － :- ··I

10-6 10-5 10-4 10-3

Learning rate

ACC
0.8
0.7

-SOM 吨，SOI\仅一Kmeans

0.6 1 ” .－...＝＝；..石.－.，..... ；－.； 忑 ＂－－♂一百

0.5
0.4
0.3
0.2
0.1

0
10-7 10-6 10-5 10-4

Learning rate

KmeansR

10-3

Figure 3. Algorithm Component Comparison with StackOverflow for NMI and ACC.

5.2.2. Experimental Results on Learning Rate Scales

To calibrate the learning rate scale on different clustering algorithms for the Avgnews
dataset, the values were set from 50 to 500. The experimental results are shown in Table 2.
According to Table 2, with NMI metrics, when the learning rate scale was 500, the NMI for
the Avgnews dataset was the highest with 0.883 for SOM, and for SOMR, the highest NMI
was 0.712. For the Kmeans algorithm, the highest NMI was 0.904, with a learning rate scale
of 500, and for KmeansR, the highest NMI was 0.744, with the same learning rate scale.
Comparing SOM, SOMR, Kmeans, and KmeansR, the highest NMI was 0.904, obtained
by Kmeans, followed by 0.883, obtained by SOM. According to Table 2, with ACC metrics,
when the learning rate scale was 500, the NMI was the highest, with 0.968, for SOM and
for SOMR, the highest NMI was 0.891. For the Kmeans algorithm, the highest ACC was
0.974, with a learning rate scale of 500, and for KmeansR, the highest ACC was 0.905 with
the same learning rate scale. Comparing SOM, SOMR, Kmeans, and KmeansR, the highest
NMI was 0.974, obtained by Kmeans, followed by 0.968, obtained by SOM.

Table 2. Learning Rate Scale Calibration and Algorithm Component Comparison (50–500).

Dataset Algorithms Metrics 50 100 150 200 250 500
SOM NMI 0.711 0.824 0.827 0.829 0.862 0.883
SOMR NMI 0.609 0.694 0.670 0.662 0.662 0.712

AvgNews Kmeans NMI 0.823 0.822 0.836 0.844 0.856 0.904
KmeansR NMI 0.699 0.685 0.664 0.663 0.669 0.744
SOM ACC 0.901 0.947 0.947 0.947 0.961 0.968
SOMR ACC 0.882 0.837 0.873 0.871 0.871 0.891
Kmeans ACC 0.944 0.944 0.950 0.953 0.958 0.974
KmeansR ACC 0.888 0.881 0.870 0.870 0.868 0.905

Bold implies the best values for the NMI and ACC metrics.

According to Figure 4, the SOM algorithm was a little better than Kmeans algorithm
in NMI and ACC metrics. Similarly, SOMR was slightly better than KmeansR. For the
StackOverflow dataset, with NMI metrics, when the learning rate scale was 250, the NMI
for the StackOverflow dataset was the highest, with 0.670 for SOM, and for SOMR, the
highest NMI was 0.570.

For the Kmeans algorithm, the highest NMI was 0.680 with a learning rate scale of 250,
and for KmeansR, the highest NMI was 0.568, with the same learning rate scale. Comparing
SOM, SOMR, Kmeans, and KmeansR, the highest NMI was 0.680, obtained by Kmeans,
followed by 0.670, obtained by SOM. According to Figure 4, with ACC metrics, when the
learning rate scale was 250, the NMI was the highest, with 0.716, for SOM and for SOMR,
the highest NMI was 0.620, with a learning rate scale of 500. For the Kmeans algorithm,
the highest ACC was 0.724 with a learning rate scale of 500 and for KmeansR, the highest
ACC was 0.624 with the same learning rate scale. Comparing SOM, SOMR, Kmeans, and

Algorithms 2023, 16, 158 13 of 17

KmeansR, the highest NMI was 0.724, obtained by Kmeans, followed by 0.716, obtained
by SOM.

Figure 4. Learning Rate Scale Calibration and Algorithm Component Comparison with StackOver-
flow for NMI and ACC .

5.2.3. Experimental Results on Temperature

To calibrate the temperature τ, the values were set from 0.4 to 0.9. The experimental
results are shown in Table 3. According to Table 3, with NMI metrics, when the temperature
was 0.9, the NMI was the highest, with 0.966, for SOM and for SOMR, the highest NMI was
0.821. For the Kmeans algorithm, the highest NMI was 0.909, with a temperature of 0.9, and
for KmeansR, the highest NMI was 0.907, with the same temperature. Comparing SOM,
SOMR, Kmeans, and KmeansR, the highest NMI was 0.966, obtained by Kmeans, followed by
0.953, obtained by Kmeans. According to Table 3, with ACC metrics, when the temperature
was 0.9, the ACC was the highest, with 0.992, for SOM and for SOMR, the highest NMI was
0.949. For the Kmeans algorithm, the highest ACC was 0.989, with a temperature of 0.9, and
for KmeansR, the highest ACC was 0.939, with the same temperature. Comparing SOM,
SOMR, Kmeans, and KmeansR, the highest ACC was 0.992, obtained by SOM, followed by
0.989, obtained by Kmeans.

Table 3. Temperature Calibration and Algorithm Component Comparison. (0.4–0.9)

Dataset Temperature Metrics 0.4 0.5 0.6 0.7 0.8 0.9
SOM NMI 0882 0.883 0.881 0.948 0.958 0.966
SOMR NMI 0.679 0.712 0.735 0.784 0.821 0.844
Kmeans NMI 0.881 0.904 0.905 0.905 0.909 0.953

Avgnews KmeansR NMI 0.765 0.744 0.764 0.784 0.807 0.819
SOM ACC 0.967 0.968 0.967 0.987 0.990 0.992
SOMR ACC 0.874 0.891 0.902 0.920 0.938 0.949
Kmeans ACC 0.966 0.974 0.975 0.975 0.976 0.989
Kmeans ACCR 0.885 0.905 0.914 0.922 0.931 0.939

Bold implies the best values for the NMI and ACC metrics.

The experimental results are shown in Figure 5 for the StackOverflow dataset. Ac-
cording to Figure 5, parameter temperature had little effect on SOM, SOMR, Kmeans, and
KmeansR algorihtms. With NMI metrics, when the temperature was 0.9, the NMI was the
highest, with 0.699. for SOM and for SOMR, the highest NMI was 0.598. For the Kmeans
algorithm, the highest NMI was 0.716, with a temperature of 0.7, and for KmeansR, the
highest NMI was 0.577 with the same temperature. Comparing SOM, SOMR, Kmeans,
and KmeansR, the highest NMI was 0.716, obtained by Kmeans, followed by 0.699, ob-
tained by SOM. According to Figure 5, with ACC metrics, when the temperature was
0.9, the ACC was the highest, with 0.737, for SOM and for SOMR, the highest NMI was
0.639. For Kmeans algorithm, the highest ACC was 0.757, with a temperature of 0.7, and
for KmeansR, the highest ACC was 0.632, with the same temperature. Comparing SOM,
SOMR, Kmeans, and KmeansR, the highest ACC was 0.757, obtained by Kmeans, followed
by 0.737, obtained by SOM.

Algorithms 2023, 16, 158 14 of 17

According to the above experiments, Kmeans and SOM algorithms were always better
than SOMR and KmeansR. For the Avgnews dataset, SOM performed the best, while for
the StackOverflow dataset, Kmeans performed the best.

Figure 5. Learning Rate Scale Calibration and Algorithm Component Comparison with StackOver-
flow for NMI and ACC .

6. Conclusions

There are various kinds of texts in education and news systems. To increase efficiency,
how to cluster these texts is important. In this paper, a text clustering problem is considered
which combines BERT with different clustering techniques and contrastive learning. To
solve the problem, we proposed a general framework that uses constructive learning on
deep embedding to cluster similar texts. The NLP technique is used to represent texts to
vectors. Different clustering algorithm components, which include label as representation,
Kmeans, and SOM (Self Organizing Map) algorithms, are used. By combining contrastive
learning with representation and clustering algorithms, similar texts in the same group can
be distinguished. Different experiments were conducted to compare the NMI (Normalized
Mutual Information) and ACC (Accuracy) for different datasets. The results showed the
effectiveness of our proposed model in clustering texts, which implies that the performance
of SOM is better than SOM and the performance of Kmeans is better than KmeansR. In
future, we will further study the relationship among different texts in a cluster. In addition,
we also plan to construct and study different relationship graphs for texts.

Author Contributions: Conceptualization, S.W. and A.B.; methodology, A.B. and S.E.; validation, Y.W.
and J.L.; formal analysis, Q.Z.S. and H.A.-R.; investigation, H.A.-R.; resources, S.E.; writing—original
draft preparation, S.W.; writing—review and editing, A.B. and Q.Z.S.; supervision, A.B.; project
administration, A.B.; funding acquisition, S.E. and A.B. All authors have read and agreed to the
published version of the manuscript.

Funding: We acknowledge the Centre for Applied Artificial Intelligence at Macquarie University and
ITIC Pty Ltd for funding this research. The paper is supported by the Natural Science Foundation of
Jiangsu Province of China (Grants No. BK20220803).

Data Availability Statement: The experimental code is available on the https://www.researchgate.
net/publication/367284597_DEC_som (accessed on 30 January 2023).

Conflicts of Interest: The authors declare that there are no conflict of interests, we do not have any
possible conflicts of interest.

References
1. Wang, S.; Beheshti, A.; Wang, Y.; Lu, J.; Sheng, Q.Z.; Elbourn, S.; Alinejad-Rokny, H.; Galanis, E. Assessment2Vec: Learning

Distributed Representations of Assessments to Reduce Marking Workload. In Proceedings of the International Conference on
Artificial Intelligence in Education, Utrecht, The Netherlands, 14–18 June 2021 ; Springer: Cham, Switzerland, 2021; Volume 12749,
pp. 384–389.

2. Singh, A.; Karayev, S.; Gutowski, K.; Abbeel, P. Gradescope: A fast, flexible, and fair system for scalable assessment of handwritten
work. In Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale, Cambridge, MA, USA, 20–21 April 2017; pp. 81–88.

3. Piech, C.; Gregg, C. BlueBook: A computerized replacement for paper tests in computer science. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, Baltimore, MD, USA, 21–24 February 2018; pp. 562–567.

https://www.researchgate.net/publication/367284597_DEC_som
https://www.researchgate.net/publication/367284597_DEC_som

Algorithms 2023, 16, 158 15 of 17

4. Pessutto, L.R.C.; Vargas, D.S.; Moreira, V.P. Multilingual aspect clustering for sentiment analysis. Knowl.-Based Syst. 2020,
192, 105339. [CrossRef]

5. Dilokthanakul, N.; Mediano, P.A.; Garnelo, M.; Lee, M.C.; Salimbeni, H.; Arulkumaran, K.; Shanahan, M. Deep unsupervised
clustering with gaussian mixture variational autoencoders. arXiv 2016, arXiv:1611.02648.

6. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 21 June–18 July 1965 and 27 December 1965–7 January
1966; Volume 1, pp. 281–297.

7. Vesanto, J.; Alhoniemi, E. Clustering of the self-organizing map. IEEE Trans. Neural Netw. 2000, 11, 586–600. [CrossRef]
8. Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [CrossRef]
9. Ren, Y.; Zhang, G.; Yu, G.; Li, X. Local and global structure preserving based feature selection. Neurocomputing 2012, 89, 147–157.

[CrossRef]
10. Li, Y.; Cai, J.; Wang, J. A Text Document Clustering Method Based on Weighted BERT Model. In Proceedings of the 2020 IEEE 4th

Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 12–14 June
2020; Volume 1, pp. 1426–1430.

11. Fard, M.M.; Thonet, T.; Gaussier, E. Deep k-means: Jointly clustering with k-means and learning representations. Pattern Recognit.
Lett. 2020, 138, 185–192. [CrossRef]

12. Xie, J.; Girshick, R.; Farhadi, A. Unsupervised deep embedding for clustering analysis. In Proceedings of the International
Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; pp. 478–487.

13. Ren, Y.; Hu, K.; Dai, X.; Pan, L.; Hoi, S.C.; Xu, Z. Semi-supervised deep embedded clustering. Neurocomputing 2019, 325, 121–130.
[CrossRef]

14. Beheshti, A. Knowledge base 4.0: Using crowdsourcing services for mimicking the knowledge of domain experts. In Proceedings
of the 2022 IEEE International Conference on Web Services (ICWS), Barcelona, Spain, 10–16 July 2022; pp. 425–427.

15. Guo, X.; Gao, L.; Liu, X.; Yin, J. Improved Deep Embedded Clustering with Local Structure Preservation. In Proceedings of the
IJCAI, Melbourne, Australia, 19–25 August 2017; pp. 1753–1759.

16. Pena, J.M.; Lozano, J.A.; Larranaga, P. An empirical comparison of four initialization methods for the k-means algorithm. Pattern
Recognit. Lett. 1999, 20, 1027–1040. [CrossRef]

17. Li, Y.; Hu, P.; Liu, Z.; Peng, D.; Zhou, J.T.; Peng, X. Contrastive Clustering. In Proceedings of the 35th AAAI Conference on
Artificial Intelligence, Online, 2–9 February 2021; Volume 35, pp. 8547–8555.

18. Debnath, T.; Reza, M.M.; Rahman, A.; Beheshti, A.; Band, S.S.; Alinejad-Rokny, H. Four-layer ConvNet to facial emotion
recognition with minimal epochs and the significance of data diversity. Sci. Rep. 2022, 12, 6991. [CrossRef]

19. Stefanovič, P.; Kurasova, O. Approach for Multi-Label Text Data Class Verification and Adjustment Based on Self-Organizing
Map and Latent Semantic Analysis. Informatica 2022, 33, 109–130. [CrossRef]

20. Stefanovič, P.; Kurasova, O.; Štrimaitis, R. The N-Grams Based Text Similarity Detection Approach Using Self-Organizing Maps
and Similarity Measures. Appl. Sci. 2019, 9, 1870. [CrossRef]

21. Dai, A.M.; Le, Q.V. Semi-supervised sequence learning. Adv. Neural Inf. Process. Syst. 2015, 28, 3079–3087.
22. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized word representations.

In Proceedings of the NAACL-HLT 2018, New Orleans, LA, USA, 1–6 June 2018; pp. 2227–2237.
23. Uto, M.; Xie, Y.; Ueno, M. Neural Automated Essay Scoring Incorporating Handcrafted Features. In Proceedings of the 28th

International Conference on Computational Linguistics; International Committee on Computational Linguistics, Online, 8–13
December 2020; pp. 6077–6088.

24. Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. Supervised Contrastive
Learning. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–12 December 2020; Curran
Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 18661–18673.

25. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP; Association for Computational Linguistics, Brussels, Belgium, 1 November 2018; pp. 353–355.

26. Pejić Bach, M.; Krstić, Ž.; Seljan, S.; Turulja, L. Text Mining for Big Data Analysis in Financial Sector: A Literature Review.
Sustainability 2019, 11, 1277. [CrossRef]

27. Nguyen, B.V.; Nguyen, V.H.; Ho, T.P. Sentiment Analysis of Customer Feedback in Online Food Ordering Services.
Bus. Syst. Res. J. 2021, 12, 46–59. [CrossRef]

28. Isada, F. An Empirical Study on Inter-Organisational Network Structures for Connected Cars. In Proceedings of the ENTRENOVA-
ENTerprise REsearch InNOVAtion Conference, Hybrid Conference, Zagreb, Croatia, 9–10 September 2021; IRENET–Society for
Advancing Innovation and Research in Economy: Zagreb, Croatia, 2021; Volume 7, pp. 324–334.

29. Asgari, T.; Daneshvar, A.; Chobar, A.P.; Ebrahimi, M.; Abrahamyan, S. Identifying key success factors for startups with sentiment
analysis using text data mining. Int. J. Eng. Bus. Manag. 2022, 14, 18479790221131612. [CrossRef]

30. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
31. Sundermeyer, M.; Schlüter, R.; Ney, H. LSTM neural networks for language modeling. In Proceedings of the Thirteenth Annual

Conference of the International Speech Communication Association, Portland, OR, USA, 9–13 September 2012; pp. 194–197.
32. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.

http://doi.org/10.1016/j.knosys.2019.105339
http://dx.doi.org/10.1109/72.846731
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1016/j.neucom.2012.02.021
http://dx.doi.org/10.1016/j.patrec.2020.07.028
http://dx.doi.org/10.1016/j.neucom.2018.10.016
http://dx.doi.org/10.1016/S0167-8655(99)00069-0
http://dx.doi.org/10.1038/s41598-022-11173-0
http://dx.doi.org/10.15388/22-INFOR473
http://dx.doi.org/10.3390/app9091870
http://dx.doi.org/10.3390/su11051277
http://dx.doi.org/10.2478/bsrj-2021-0018
http://dx.doi.org/10.1177/18479790221131612
http://dx.doi.org/10.1162/neco.1997.9.8.1735

Algorithms 2023, 16, 158 16 of 17

33. Dozat, T.; Manning, C.D. Deep biaffine attention for neural dependency parsing. In Proceedings of the 5th International
Conference on Learning Representations, ICLR, Toulon, France, 24–26 April 2017; pp. 1–8.

34. Tan, M.; dos Santos, C.; Xiang, B.; Zhou, B. LSTM-based deep learning models for non-factoid answer selection. arXiv 2015,
arXiv:1511.04108.

35. Yuan, X.; Wang, S.; Wan, L.; Zhang, C. SSF: Sentence similar function based on Word2vector similar elements. J. Inf. Process. Syst.
2019, 15, 1503–1516.

36. Miller, D. Leveraging BERT for extractive text summarization on lectures. arXiv 2019, arXiv:1906.04165.
37. Ghodratnama, S.; Beheshti, A.; Zakershahrak, M.; Sobhanmanesh, F. Intelligent narrative summaries: From indicative to

informative summarization. Big Data Res. 2021, 26, 100257. [CrossRef]
38. Ghodratnama, S.; Zakershahrak, M.; Beheshti, A. Summary2vec: Learning semantic representation of summaries for healthcare

analytics. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July
2021; pp. 1–8.

39. Reimers, N.; Gurevych, I. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv 2019, arXiv:1908.10084.
40. Wang, S.; Hu, L.; Wang, Y.; He, X.; Sheng, Q.Z.; Orgun, M.A.; Cao, L.; Ricci, F.; Yu, P.S. Graph learning based recommender

systems: A review. In Proceedings of the 30th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada,
19–27 August 2021; AAAI Press: Palo Alto, CA, USA, 2021; pp. 1–9.

41. Tian, F.; Gao, B.; Cui, Q.; Chen, E.; Liu, T.Y. Learning deep representations for graph clustering. In Proceedings of the AAAI
Conference on Artificial Intelligence, Montreal, QC, Canada, 27–31 July 2014; Volume 28, pp. 1293–1299.

42. Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [CrossRef]
43. Kohonen, T. Essentials of the self-organizing map. Neural Netw. 2013, 37, 52–65. [CrossRef]
44. Yang, J.; Tang, Y.; Beheshti, A. Design methodology for service-based data product sharing and trading. In Next-Gen Digital

Services. A Retrospective and Roadmap for Service Computing of the Future: Essays Dedicated to Michael Papazoglou on the Occasion of His
65th Birthday and His Retirement; Springer: Cham, Switzerland, 2021; pp. 221–235.

45. Ni, M.; Cheng, H.; Lai, J. GAN–SOM: A clustering framework with SOM-similar network based on deep learning. J. Supercomput.
2021, 77, 4871–4886. [CrossRef]

46. Sadowski, Ł.; Nikoo, M.; Nikoo, M. Principal component analysis combined with a self organization feature map to determine
the pull-off adhesion between concrete layers. Constr. Build. Mater. 2015, 78, 386–396. [CrossRef]

47. Stefanovič, P.; Kurasova, O. Creation of Text Document Matrices and Visualization by Self-Organizing Map. Inf. Technol. Control.
2014, 43, 37–46. [CrossRef]

48. Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A survey on contrastive self-supervised learning. Technologies
2021, 9, 2. [CrossRef]

49. Fang, H.; Xie, P. Cert: Contrastive self-supervised learning for language understanding. arXiv 2020, arXiv:2005.12766.
50. Dasgupta, T.; Naskar, A.; Dey, L.; Saha, R. Augmenting textual qualitative features in deep convolution recurrent neural network

for automatic essay scoring. In Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational
Applications, Melbourne, Australia, 19 July 2018; pp. 93–102.

51. Sung, C.; Dhamecha, T.I.; Mukhi, N. Improving short answer grading using transformer-based pre-training. In Proceedings of the
International Conference on Artificial Intelligence in Education, Chicago, IL, USA, 25–29 June 2019; Springer: Cham, Switzerland,
2019; pp. 469–481.

52. Taghipour, K.; Ng, H.T. A neural approach to automated essay scoring. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 1882–1891.

53. Uto, M.; Okano, M. Robust Neural Automated Essay Scoring Using Item Response Theory. In Proceedings of the Artificial
Intelligence in Education, Ifrane, Morocco, 6–10 July 2020; Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E., Eds.;
Springer International Publishing: Cham, Switzerland, 2020; pp. 549–561.

54. Wang, Y.; Wei, Z.; Zhou, Y.; Huang, X.J. Automatic essay scoring incorporating rating schema via reinforcement learning. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4
November 2018; pp. 791–797.

55. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers); Association for Computational Linguistics, Minneapolis, MN, USA,
2–7 June 2019; pp. 4171–4186.

56. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, Long Beach, CA, USA, 4–9
December 2017; pp. 6000–6010.

57. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
58. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
59. Zhang, X.; LeCun, Y. Text understanding from scratch. arXiv 2015, arXiv:1502.01710.
60. Xu, J.; Xu, B.; Wang, P.; Zheng, S.; Tian, G.; Zhao, J.; Xu, B. Self-Taught convolutional neural networks for short text clustering.

Neural Netw. 2017, 88, 22–31. [CrossRef]

http://dx.doi.org/10.1016/j.bdr.2021.100257
http://dx.doi.org/10.1109/5.58325
http://dx.doi.org/10.1016/j.neunet.2012.09.018
http://dx.doi.org/10.1007/s11227-020-03464-y
http://dx.doi.org/10.1016/j.conbuildmat.2015.01.034
http://dx.doi.org/10.5755/j01.itc.43.1.4299
http://dx.doi.org/10.3390/technologies9010002
http://dx.doi.org/10.1016/j.neunet.2016.12.008

Algorithms 2023, 16, 158 17 of 17

61. Zhang, D.; Nan, F.; Wei, X.; Li, S.; Zhu, H.; McKeown, K.; Nallapati, R.; Arnold, A.; Xiang, B. Supporting Clustering with
Contrastive Learning. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies; Association for Computational Linguistics, Online, 10–15 July 2021; pp. 5419–5430.

62. Schiliro, F.; Moustafa, N.; Beheshti, A. Cognitive privacy: AI-enabled privacy using EEG signals in the internet of things.
In Proceedings of the 2020 IEEE 6th International Conference on Dependability in Sensor, Cloud and Big Data Systems and
Application (DependSys), Nadi, Fiji, 14–16 December 2020; pp. 73–79.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Problem Description and the Models
	Problem Description
	The Framework
	Contrastive Learning
	Clustering
	Clustering Loss

	Algorithms
	Experiments
	Experimental Setup
	Algorithm Comparison
	Experimental Results on Learning Rates
	Experimental Results on Learning Rate Scales
	Experimental Results on Temperature

	Conclusions
	References

