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Abstract: The impact of COVID-19 and the pressure it exerts on health systems worldwide motivated
this study, which focuses on the case of Greece. We aim to assist decision makers as well as health
professionals, by estimating the short to medium term needs in Intensive Care Unit (ICU) beds.
We analyse time series of confirmed cases, hospitalised patients, ICU bed occupancy, recovered
patients and deaths. We employ state-of-the-art forecasting algorithms, such as ARTXP, ARIMA,
SARIMAX, and Multivariate Regression models. We combine these into three forecasting models
culminating to a tri-model approach in time series analysis and compare them. The results of this
study show that the combination of ARIMA with SARIMAX is more accurate for the majority of
the investigated regions in short term 1-week ahead predictions, while Multivariate Regression
outperforms the other two models for 2-weeks ahead predictions. Finally, for the medium term
3-weeks ahead predictions the Multivariate Regression and ARIMA with SARIMAX show the best
results. We report on Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE),
R-squared (R2), and Mean Absolute Error (MAE) values, for one-week, two-week and three-week
ahead predictions for ICU bed requirements. Such timely insights offer new capabilities for efficient
management of healthcare resources.

Keywords: data mining; forecasting; healthcare; time series analysis

1. Introduction

COVID-19 is a critical and urgent threat to global health [1]. It originates from Wuhan,
Hubei province of China. It debuted in late 2019 and spread throughout the world causing
a pandemic [2,3]. The causes of its appearance have not yet been determined, although pre-
liminary investigations suggest a zoonotic, possibly bat originated virus [4]. Most countries,
including Greece, suffered from this epidemic and applied several policies, such as quaran-
tine, social distancing, travel controls, lockdowns as well as strict monitoring of suspected
cases and tracing of confirmed ones in order to mitigate the impact of the disease [5].

As the virus is highly contagious [6], the spread of the disease became unstoppable
and met the necessary epidemiological criteria to be declared as a pandemic [7]. Since the
outbreak in early December 2019, the number of confirmed COVID-19 cases have exceeded
136 million in 219 countries, and the number of people infected is probably much higher.
More than 6.6 million people died from COVID-19 worldwide and in Greece more than
34,000 deaths, up to 20 December 2022 [8,9].

Even though the global response to prepare health systems worldwide is ongoing, it
is very difficult to predict the expected number of infected patients and most importantly,
the number of patients who require Intensive Care Unit (ICU) admission. Arguably
such predictions are critical for resource planning and facility allocation/deployment
in hospitals [7,10].

The focus during the pandemic lies within organizational issues, i.e., lack of ventilators,
shortage of personal protection equipment, resource allocation, prioritization of limited
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mechanical ventilation options, and end-of-life care [8]. Efficient diagnosis and prognosis
methods are needed to mitigate the burden of the healthcare system and provide patients
with the best possible care. Mathematical forecasting models support policy making at the
local, state, and national level. They are tools assisting public health decision making and
facilitating optimal use of resources to reduce the morbidity and mortality associated with
the pandemic [11].

A model for the COVID-19 pandemic developed specifically for China, incorporates
several key features including: (1) the importance of the timing and magnitude of the
implementation of major government imposed public restrictions designed to mitigate
the severity of the epidemic; (2) the importance of both, reported and unreported cases,
in interpreting the number of reported cases; and (3) the importance of asymptomatic
infectious cases in disease transmission [12]. Given the same dataset of confirmed cases,
high complexity models may not necessarily be more reliable in making predictions, due
to the larger number of parameters to be estimated, by comparing standard Susceptible-
Infectious-Recovered (SIR) and Susceptible-Exposed-Infectious-Recovered (SEIR) models
in predicting the epidemic using the Akaike Information Criterion (Figure 1). Figure 1
refers to hospitalized, critical and death cases while, susceptible is the fraction of suscep-
tible individuals (those able to contract the disease), exposed is the fraction of exposed
individuals (those who have been infected but are not yet infectious), infected is the fraction
of infective individuals (those capable of transmitting the disease), and recovered is the
fraction of recovered individuals (those who have become immune) [2,13–16].

Figure 1. An illustration of the SEIR epidemiological model [2].

An attempt to estimate the main epidemiological parameters providing an estimation
of the case fatality and case recovery ratios is reported in [17]. Based on the Susceptible-
Infectious-Recovered-Dead (SIRD) model, the authors calculated the basic reproduction
number (R0), the per day infection mortality and the recovery rates. The estimated average
value for R0 was found to be approximately 2.6 based on confirmed cases and close to
2 based on a second scenario, considering that the number of the infected individuals is
much higher than the official numbers [17]. The basic interventions that governments
follow to restrict the spread of COVID-19 include five covariates (1) Lockdown, (2) Public
Events, (3) School Closure, (4) Self Isolation and (5) Social distancing (Figure 2).

COVID-19 presents a worldwide case study generating new opportunities for demon-
strating real-world data mining applications related with epidemics [18–20]. The aim of
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this research is to forecast COVID-19 ICU beds needed in the short to mid-term, with high
accuracy and low statistical error. Nevertheless, this kind of epidemiological prediction is
ridden with high uncertainty and bias [21–23].

Figure 2. Impact on model outputs according to covariates from government interventions [24].

We collected time series data for COVID-19 confirmed cases, hospitalised, and intu-
bated patients, ICU bed occupancy, recovered patients and deaths. Our approach is based
on state-of-the-art forecasting algorithms (ARTXP, ARIMA, and SARIMAX) and regression
models for prediction [24–30]. We introduce a tri-model time series forecasting approach
that yields timely and high precision forecasts, by combining these algorithms into three
distinct models, namely ARTXP and ARIMA, ARIMA and SARIMAX, and Multivariate
Regression, running simultaneously [31].

The results showcase that this approach predicts ICU beds needs with high accuracy
for a one-week ahead, while forecasting accuracy is lower for two weeks and three weeks
ahead. In addition, combining ARIMA with SARIMAX produces more accurate results
for the majority of the investigated regions in short term 1-week ahead predictions, while
Multivariate Regression outperforms the other two models for 2-weeks ahead predictions.
Finally, for the medium term 3-weeks ahead predictions the Multivariate Regression and
ARIMA with SARIMAX show the best results.

This study aims to forecast COVID-19 ICU needs based on a number of algorithmic
models and time series of six variables, including cases, ICU, hospitalized, intubated,
recovered patients, and deaths.

The remainder of the article is structured as follows. Section 2 reviews the literature.
Section 3 describes the methodology. Section 4 presents and evaluates experimental results.
Finally, Section 5 outlines conclusions, along with future work directions.

2. Literature Review

There is a plethora of studies applying prediction models to various COVID-19 related
aspects. As we focus on predicting ICU needs, we review recent research examining factors
related to ICU requirements during the pandemic.
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In [32], the authors developed a prediction model reporting risk scores for ICU ad-
mission and mortality for COVID-19. They applied the TRIPOD guideline for developing
a multivariable regression model on 641 hospitalized COVID-19 positive patients. Their
model yielded 74% accuracy when predicting ICU admission and 83% accuracy when
predicting mortality.

In another study, several classification methods were applied to predict level-of-care
requirements based on clinical and laboratory data. This information was collected for
2,566 COVID-19 patients and the model resulted in 88% accuracy for hospitalization needs,
87% for ICU care needs, and 86% for mechanical ventilation needs. The authors also
produced predictions for Pneumonia severity for ICU care and ventilation with 73% and
74% accuracy, respectively. When predictions were limited to patients with more complex
disease, the accuracy of ICU prediction and ventilation was 83% and 82% respectively [9].

A Machine Learning (ML)-based risk prioritization tool was developed to predict
imminent (within 24 h) ICU Transfer for Hospitalized COVID-19 patients in [33]. Several
time series analyses were used, including vital signs, nursing assessments, laboratory data,
and electrocardiograms, as input for training a Random Forest (RF) model. The dataset,
that was randomly split into training and test sets using a 70%:30% ratio, consisted of
1987 unique patients who were diagnosed with COVID-19 and admitted to non-ICU
hospital units. The research found that the median time to ICU transfer was 2.45 days
from the time of admission. Their model performed well compared to actual admissions,
with 72.8% sensitivity, 76.3% specificity, 76.2% accuracy, and 79.9% Receiver Operating
Characteristic (ROC) Area Under the ROC Curve (AUC).

A similar study was conducted by researchers who developed a Deep Learning
prediction of likelihood of ICU admission and mortality for COVID-19 patients, using
clinical variables. They collected data including demographics, chronic co-morbidities,
vital signs, symptoms and laboratory tests at admission. With the aid of a deep neural
model, they predicted ICU admission and mortality with an AUC of 0.780 and 0.844
respectively, whilst the corresponding risk scores yielded an AUC of 0.728 and 0.848,
respectively [22,33,34].

In [28,35], researchers attempted to detect early predictive factors upon admission to
enhance the management of COVID-19 patients hospitalized in ICUs. The study used data
from a hospital in Paris, France, and the authors utilized multivariable logistic regression
models; models’ performances, including discrimination and calibration (C-index, calibra-
tion curve, Coefficient of Determination (R2), Brier score) were evaluated. Their dataset
was about 152 patients hospitalized with positive severe COVID-19 symptoms and the
probability of ICU transfer or death was found to be 32% at the 14th day of hospitalization.

Huang et al. [33] developed an external validation of a prognostic multivariable
model on admission for hospitalized patients with COVID-19. They collected data from
299 patients for a hospital located at point zero of the pandemic, Wuhan, China (internal
evaluation) whilst the external validation was conducted using a retrospective cohort from
another Wuhan hospital (145 patients). They utilized a multivariable logistic regression
model to predict inpatient mortality for COVID-19 positive patients using 9 variables
common with acute respiratory symptoms. In this model they included parameters of age,
lymphocyte count, lactate dehydrogenase and SpO2 as independent predictors of mortality,
and performed very well in both internal (c = 0.89) and external (c = 0.98) validation.

Another study [12] tried to forecast the spread of COVID-19 and ICU requirements.
The authors used data from Kaggle repository and performed regression analysis (ARIMA)
in confirmed cases to predict future cases. In addition, using a dataset of 5644 samples,
the aid of RF and hard voting, they achieved the highest classification accuracy values close
to 98%, and the highest recall value of 98% when predicting whether a COVID-19 patient
needs to be admitted to an ICU or semi-ICU room for their treatment.

In addition, a short-term forecast of ICU beds in times of the COVID-19 crisis was pro-
vided. The authors concluded that “the use of analytics can provide relevant support for
decision making, even with incomplete data and without enough time to fully explore the
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numerical properties of all available forecasting methods”. Their model combined autore-
gressive, ML and epidemiological models to provide a short-term forecast of ICU utilization.
Their approach demonstrated average forecasting errors of 4% and 9% for one- and two-week
horizons, respectively, outperforming several other competing forecasting models [21].

Baas et al. [36] presented a mathematical model that provides a data-driven forecast
of the ward and the ICU maximum occupancy of COVID-19 patients in a Dutch hospital.
The model is based on the predicted inflow of patients, their Length of Stay (LoS), as well
as, transfer of patients between the ward and the ICU.

Heo et al. [37] developed and validated an integer-based score using data from Centres
for Disease Control and Prevention (CDC) of South Korea and provided a model for
prediction of patients requiring ICU for COVID-19. For a two-month period (from 19 March
2021 until 20 March 2021) the researchers gathered data for 4,663 patients, and developed a
model using only clinical variables, resulting in 0.884 AUC for the validation set. Even when
seven radiologic and laboratory variables were added (age, sex, initial body temperature,
dyspnoea, haemoptysis, history of chronic kidney disease, and activities of daily living),
the performance remained almost the same (0.880 AUC).

In [38], an approach for detecting COVID-19 outbreak transmission for Asia Pacific
countries utilized time series analysis. It expanded on three different forecasting models,
based on Long Short Term Memory (LSTM) networks, Recurrent Neural Network (RNN),
and Gated Recurrent Units (GRU), as deep learning techniques. The dataset used, com-
prised data about the virus spread in the countries under comparison, collected from the
WHO website and pre-processed. Their accuracy was close to 90% for the next 10 days.

In [39,40], ML methods such as Decision Trees (DT), Artificial Neural Network (ANN),
K-Nearest Neighbour (K-NN), RF, Linear Regression (LR), AdaBoost, Bayesian Boosting, Vote
(DT+K-NN), and Vote (DT+K-NN+LR) were employed for ICU mortality prediction. Data
about 180 patients were collected from a general hospital (between 2017 and 2018), including
demographic information with medical variables, such as Body Mass Index (BMI), stroke,
anemia, thrombosis, paraplegia, hypertension. Since there is plenty of research that can detect
the possibility of mortality from a medical point of view, in their work they used a different
approach that evaluated significant existence of several variables and captured the most
important processing scenarios. The findings of the models were compared, and clues were
detected about mortality due to underlying diseases, patient age, length of stay, smoking,
nutrition, by generating score risks based on results with high accuracy.

The study in [41] referred to India in comparison with other countries, and focused on
crucial sectors like the financial, educational, healthcare, industrial, energy, environment, oil
market, employment and used exponential smoothing, LR, Holt, Winters as mathematical
models to predict the impact on them during the pandemic period and how have lockdowns
helped. A comparison for the models was applied for finding similarities between them
and to conclude what was the best solution for predicting the impact on these sectors. They
concluded that if the growth of a country freezes, the problem of unemployment will increase
for these sectors. Results showed that the best performing model was Holt’s and Winter’s.

In another study, a usage of a triple-model forecasting strategy to minimize R2 and
maximize MAPE while concentrating on ICU beds was accomplished by the use of ANN,
Extreme Gradient Boosting (XGB) and RF algorithms, and showed that ANN had a median
R2 value of 99.17% for 21 days while RF and XGB was close with 99.06% and 99.05%
respectively [42].

Considering all the aforementioned, this work attempts to predict COVID-19 ICU
needs for overall Greece and three distinct Greek areas (Attica, Thessaloniki and Northern
Greece) based on several algorithmic models and time series of respected attributes.

3. Research Design

This research attempts to predict COVID-19 ICU needs based on several algorith-
mic models and time series of six attributes, namely (i) cases, (ii) ICU, (iii) hospitalized,
(iv) intubated, (v) recovered patients, and (vi) deaths. These attributes may pose as highly
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mutable endogenous and exogenous variables, yielding a multi-variable phenomenon.
We propose three models (ARTXP and ARIMA, ARIMA and SARIMAX, and Multivariate
Regression) as presented in Section 3.2 and benchmark their results. Their purpose is
to provide distinct and insusceptible predictions. This section outlines the steps of the
proposed methodology. We constructed a database that aggregates and manages time
series data (Figure 3). Next, we pre-process data to deal with missing values, noisy data
and feature selection methodologies. Each model is executed on the trained time series
dataset. The outcome is combined into a unified, tri-model output.

Figure 3. Research methodology flowchart for all predictive models.

The tri-model output reports on the average values of each model per timestamp on
1-day time resolution for 141 days, from 23 November 2020 until 12 April 2021. Section 4
presents a detailed analysis and evaluates results.

3.1. Data Collection & Pre-Processing

The main data source is the Greek CDC [43] and Ministry of Health [44], but in order to
improve the predictions, we also use other data sources providing supplementary attributes
for improving forecasting [9]. The selected attributes are: COVID-19 cases, ICU, numbers
of hospitalized, intubated, recovered patients and deaths. The time series dataset contains
instances from 3 November 2020 until 23 March 2021, while the presentation and evaluation
of findings narrate on short and mid-term predictions for COVID-19 related metrics for
all the daily announced COVID-19 cases (hospitalized or not) overall Greece and three
distinct Greek areas which are Attica, Thessaloniki and Northern Greece (Northern Greece,
includes Thessaloniki, Macedonia, Thrace, Epirus, and Thessaly) for that period.

The process of data collection, management and cleansing takes place on a weekly
basis. We perform data pre-processing including filling in missing values (0.02% were
missing) by manually searching alternative sources to retrieve the actual values or by
computing the average between the two closest dates.

Table 1 contains the model execution timestamps related with the forecasting timeslots.
We split the timeslots into three intervals, namely one-week (7 days) ahead, two-weeks
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(14 days) ahead and three-weeks (21 days) ahead. We execute our models on a weekly
basis, forecasting daily ICU values for up to 21 days ahead.

Table 1. Periodic forecasting of dataset and model executions.

Variable Model Execution Date

d0 16 November 2020
d1 = d0 + x 23 November 2020
d2 = d1 + x 30 November 2020

... ...
dn−1 = dn−2 + x 1 March 2020

dn = dn−1 + x 8 March 2020
where d(0...n) all the execution dates, from 16 November 2020 up to 8 March 2021, and x = 7.

3.2. Models & Algorithms

We use a tri-model forecasting approach to establish the best accuracy. Our experimen-
tation process involves three different prediction models, namely ARIMA and SARIMAX,
ARTXP and ARIMA, and Multivariate Regression. All models are applied to the same data
source, yet utilizing data and parameters varies, as each model according to its process used
parameters like periodicity detection, instability sensitivity, complexity penalty, and historic
model count.

We implement algorithms and methods by using ML and data mining libraries for
classification and regression, such as scikit-learn [45]. These involve scientific libraries, such
as Pandas [46], Numpy [47] and Matplotlib [48] for calculus, linear algebra, probabilities,
and statistics that enable data analysis, mining and forecasting with Python.

3.2.1. ARIMA and SARIMAX

This model averages the output from ARIMA and SARIMAX algorithmic executions.
Next, we present the functionality of these two algorithms and the hyperparameter tuning
for our experimentation.

The ARIMA method models the next step in a sequence of observations. It uses a func-
tion to linearly calculate the dissimilarity of observations and residual errors of antecedent
time steps. A dissimilarity pre-processing step of the sequence and the integration of Autore-
gression (AR) with Moving Average (MA) models makes the sequence stationary, a process
labelled as integration (I). Mathematically, ARIMA can be represented by Equation (1).

∆yt = c + φ1∆yt−1 + θ1εt−1 + εt (1)

where, c: an intercept of the ARMA (Autoregressive Moving Average) model [49], ∆: the
first difference operator and y: the time lags.

For the execution of ARIMA we set the order of AR (p), I (d) and MA (q) models as
parameters where, p: the lags in the autoregressive model, d: the differencing/integration
order and q: the moving average lags. These parameters are often used to implement AR,
MA and ARIMA models.

We exploit ARIMA, when our data are univariate time series, with the existence of
trend, yet, with no seasonal components [50]. Initially, we set the order (p, d, q) to (1, 1, 0)
i.e., the default parameters set by scikit-learn [45] implementation of ARIMA. Next, since
our predictions were running on a weekly basis and as more data were being appended
to our initial dataset, we were recalibrating these parameters according to autocorrelation
coefficient (ACF) and partial autocorrelation coefficient (PACF) per week. For brevity,
we omit reporting these parameter values as it would require showing results for three
different models, from the first week of our experimentation until the end.

Next, to examine the existence of seasonality and exogenous variables, we utilized
SARIMAX. The exogenous variables are parallel input sequences containing data instances
at the time steps of the original (endogenous) data. The exogenous instances stick directly
to the model for each time step, while the endogenous time series are modelled differently
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(e.g., AR, MA). SARIMAX is often used to model the methods involved with exogenous
variables, such as ARX, MAX, ARIMAX and many others [49].

Mathematically, SARIMAX can be represented by Equation (2).

φp(L)φp(Ls)∆d∆D
s yt = A(t) + θq(L)θQ(Ls)εt (2)

where, φp(L): the non seasonal autoregressive lag polynomial, φp(Ls): the seasonal au-

toregressive lag polynomial, ∆d∆D
s yt: the time series, differenced d times, and seasonally

differenced D times, A(t): the trend polynomial (including the intercept), θq(L): the non
seasonal MA lag polynomial, and θQ(Ls): the seasonal MA lag polynomial.

This method is suitable for univariate time series with the existence of trend and/or
seasonality and exogenous instances. Similarly, to ARIMA the (p, d, q) parameters set the
AR parameters, dissimilarity, and MA parameters. The parameter d is an integer for the
integration, p an integer for the AR order and q an integer for the MA order. Otherwise,
these parameters are iterables for AR and MA lags for the model. Regarding the seasonal
process of SARIMAX we set a (P, D, Q, s) order that models AR, dissimilarities, MA and
periodicity, respectively. Parameter D is an integer for the integration process order, P an
integer for AR order, Q an integer for MA order or they can be parameters for iterables for
AR and/or MA lags for the model, while parameter s gives the periodicity (4 is for quarterly,
12 for monthly data resolution etc.) [49]. After multiple trials for fine hyperparameter
tuning, we set the order (p, d, q) to (1, 1, 2) and seasonal order (P, D, Q, s) to (1, 1, 1, 3).

3.2.2. ARTXP and ARIMA

This model utilises ARTXP and ARIMA time series algorithms from MS SQL Server
Analysis Services [51]. ARIMA allows the determination of correlations in observations to
be taken sequentially in time, as well as the inclusion of error terms in the model. ARTXP
and ARIMA support multiplicative seasonality or periodicity generating options for alter-
ing the number of possible segments and expected cycles during algorithmic execution.
This iterative process increases accuracy. Figure 4 depicts the execution process of this
model. ARTXP forecasts the next possible value and ARIMA increases long-term accu-
racy. As for ARIMA’s parameter tuning, we set the order the same way as explained in
Section 3.2.1, since we deal with exactly the same dataset. Each algorithm runs indepen-
dently before combining results. The combined output is based on historic predictions
using actual data. Each forecasted item links with a variable associating it with the historic
executions for generating indexing weights.

The combination of algorithmic executions based on indexed weights achieves a cross-
prediction process optimised towards the short or medium-term horizon. Depending on the
forecasting period and if there is a lockdown in place, we empirically smooth over ARTXP
or ARIMA based on historic outputs of this model. In general, when data observations
are limited ARTXP performs better. When more data observations are available, ARIMA
outperforms ARTXP.

The first step in the ARTXP methodology was to preprocess the time series data related
to the spread of COVID-19. Cleaning the data, converting variables, and removing any
outliers or abnormalities are all part of this operation. Next, the time series data were
divided into segments. For each segment, an autoregressive model fits the data in that
segment. The autoregressive models are used to make predictions for future time points.
The prediction from the autoregressive models determines which model to use, based on
the current state of the time series. This allows the ARTXP model to capture complex,
non-linear relationships in the data and to make accurate predictions for future time-points.
The performance of the ARTXP model was evaluated (with the metrics reported in this
paper) by comparing the predictions with actual values for the spread of COVID-19.
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Figure 4. ARTXP and ARIMA process.

Also, ARTXP tends to report with high accuracy in the short term, i.e., forecasting up
to one-week ahead. Although ARIMA is more preferable for predictions beyond a week,
it yields a high error rate for the 1st week. For this reason, we utilized a mixed mode
prioritizing reporting on ARTXP for the first week and ARIMA for subsequent weeks.

The ARTXP and ARIMA model implements algorithmic optimization by calculating
the error rate for each execution iteration. Error rate detects accuracy reduction and
enables a mechanism that re-trains the model by automatically introducing coefficients for
re-calibrating output values. Model calibration utilizes past error rates.

After experimenting with the effect of error rates on this model’s output, we noticed
that by forecasting error rate and supplying it as input to the model, it may improve the
model’s performance. In case there are post forecasting actual values available for week n,
we perform this process, else we apply error correction based on week n− 1. Identically,
the same process applies for n + 1 weeks and so on. We calculate the error_rate (%) on a
specific timestamp t according to Equation (3).

error_ratet =
|Predictedt − Actualt|

Actualt
× 100 (3)

Finally, the ARTXP and ARIMA model utilizes a variance as a metric for reporting on
lower and upper forecasting bounds. Since this model is the most complex among the ones
we used, we provide Appendix A clarifying its execution process and parameters involved.

3.2.3. Multivariate Regression

This model takes the average of two predictive scenarios. The first is pessimistic and
the second optimistic, following a Multivariate Regression (MR- or multiple LR) model.
The MR model is an enhancement of the simple LR equation by increasing the complexity
and adding more independent variables in the model. In addition, it considers R0 and
lockdown variables. The mathematical formula for this model is presented by Equation (4):

ICUbeds = b0 + b1 × PositiveCases + b2 × R0 − b3 × lockdown + e (4)

where, bx: vector/scalar, PositiveCases: an independent variable, R0 and lockdown: inde-
pendent variables and e: the statistical error of the equation.

According to Equation (4), the ICU Beds give a forecast based on PositiveCases
(dependent variable), R0 and lockdown (which are the independent parameters of the
equation) considering the statistical error e and the vector bx that follows the trend of the
phenomenon. Concerning this research study, the output is two datasets of prediction,
the pessimistic and the optimistic. Their average is the result of the Multivariate Regression
forecasting. Regression analysis is a method which tries to identify and quantify the
relationships between multiple variables. The outcome can be adjusted according to the
impact of other factors. The advantages of regression are the ease of variable control and
isolation by keeping them constant in case of need [52–54].



Algorithms 2023, 16, 140 10 of 27

Moreover, the maximum likelihood estimate was utilised for this model in order
to maximise the likelihood of the model’s accuracy based on the observed data. Conse-
quently, the optimal values were attained, and this estimate was chosen on the basis of the
independent and identical data distribution [55,56].

This method attempts to identify the best fit in their linear multivariate relationship
with all variables of the model. Regression is used by quantifying relationships in case of
lockdown. When the country was under strict lockdown the independent binary variable
lockdown was activated in the equation as a decreasing coefficient. Regression analysis has
the capacity to quantify relationships for ICU bed prediction in the short and mid-term. Based
on regression analysis by the Multivariate Regression model, there is a relationship between
ICU beds (the predicted value), positive COVID-19 cases and the metrics of R0 and lockdown.
Experimental trials influenced feature selection with the purpose to eliminate noise of other
independent variables that do not affect ICU Beds and finalizing independent parameters
(R0 and lockdown) of the multivariate model. By selecting different features and checking the
correlation of dependent and independent variables separately as for hospitalized, recovered,
deaths, R0, means of transport mobility, this study concluded to using positive COVID-19
cases, R0 and the existence of lockdown as independent variables for the regression model.

3.3. Evaluation Metrics

For the validation of results we used MAPE, RMSE, R2 and MAE which refer to the
performance of models ARTXP and ARIMA, ARIMA and SARIMAX, and Multivariate Re-
gression as described in Section 3.2. A short description and the mathematical formulation
per metric follows.

3.3.1. Mean Absolute Percentage Error (MAPE)

MAPE is a metric that defines the accuracy of a forecasting model. It represents the average
of the absolute percentage error of each actual value to assess how close the predicted values
were compared with the actual ones. The formula for MAPE is given by Equation (5):

MAPE =
100

i

i

∑
t=1
|Actualt − Forecastt

Actualt
| (5)

where, Actualt is the actual value, Forecastt the forecasted value, i number of fitted points
and t the timestamp.

3.3.2. Root Mean Squared Error (RMSE)

The RMSE is defined as the square root of the average squared difference of actual
value and prediction value. RMSE is widely used, since it is measured in the same unit
as the target variable. This metric applies more weight to larger errors, given that the
impact of a single error on the total is in proportion to its square rather than its magnitude.
The formula for RMSE is given by Equation (6):

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − fi)2 (6)

where yi is the actual and fi is the forecasted value for ICUs and N is the amount of values.

3.3.3. R-Squared (R2)

The coefficient of determination (R2) constitutes the comparison of the variance of
the errors to the variance of the data to be modeled. It refers to the proportion of variance
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described by the forecasting model and, unlike other error-based metrics, a higher value
means better fit. The formula of R2 is given by Equation (7):

R2 = 1− SSres

SStot
= 1− ∑(yi − fi)

2

∑(yi − y)2 (7)

where SSres is the sum of squares of residuals (errors) and SStot is the total sum of squares
(proportional to the variance of the data), yi is the actual ICUs value, y is the mean of the
actual values and fi is the forecasted value for the ICUs.

3.3.4. Mean Absolute Error (MAE)

The calculation of MAE is relatively simple, since it just sums the absolute values of
the errors (i.e., the difference between the actual and the predicted value) and then dividing
the total error by the number of observations. Compared to other statistical methods, MAE
considers all errors having the same weight. The formula of MAE is given by Equation (8):

MAE =
1
N

N

∑
i=1
|yi − fi| (8)

where yi is the actual and fi is the forecasted ICU value and N is the amount of values.

3.4. Limitations

There are various parameters that introduce uncertainty, threatening the validity of
our results. For example, parameters related with different demographics and government
mitigation actions, changes on traffic regulations, mask policies, social distancing, mini
lockdowns in various areas and enforcement of area-specific regulations.

During the COVID-19 spread the Greek government enforced a series of nationwide
lockdowns. The first lasted from 22 March 2020 up to 4 May 2020, relaxing special mobility
rules in a gradual manner. It was the beginning of the novel COVID-19 virus spread and
data were scarce. When more data started to become available, collection and validation
involved a quality process of extensive cross checking with other available accredited
sources leading to the conception of our proposed forecasting approach [57,58].

In addition, during the first and the second nationwide lockdowns, with the latter
lasting from 7 November 2020 until 18 January 2021, Greek citizens complied with the
government’s rules and recommendations yielding low levels of mobility, which may be
associated with COVID-19 spread. The Greek tactic posed as a paradigm for imitation by
other EU countries [59]. These exponential rises or drops in values of observations, such as
mobility, were not captured, occasionally resulting in poor forecasting performance [60].

This study reports on a forecasting period from 23 November 2020 until 12 April 2021,
engulfing the third nationwide lockdown that lasted from 18 February 2021 until 5 April
2021. Since the datasets improved in terms of observations and validity, the algorithms were
recalibrated and performed more efficiently. In addition, the data availability increased,
enabling the proposed algorithms to train with bigger dataset and give more accurate results.
The main challenge during this period was to consider the forecasting distortion due to
lockdowns. We had different kinds of lockdowns and strict government regulations in this
time frame. Mini, short-term, long-term, (i.e., days, weeks, months) and distinct lockdowns
in various geographical places were applied. In addition, two nation-wide lockdowns took
place. This study considers lockdown attribute in a binary form (Yes/No = 1/0), and does
not identify hot spots of COVID-19 spread.

COVID-19 outbreaks may also be affected by vaccinations, but during the period of
the study the rates were rather low (9% of Greek population fully vaccinated) in order to be
considered for our models. In the last three months of the forecasting period (January 2021
to March 2021) more than one million citizens had been vaccinated. We do not consider
how this parameter may affect forecasting accuracy [61]. The abovementioned points,
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generate biases and limitations for the proposed approach to be discussed in Section 5.1,
and reduce the accuracy levels of our tri-model approach.

4. Results & Evaluation

The trained forecasting algorithms get as input daily time series including COVID-19
cases, hospitalized, intubated, recovered, ICU patients and deaths. All results were collected
to calculate new values, such as error rate to be used for further calculations. For evaluating
model accuracy, the average of each metric for all algorithms was compared with actual values.

The forecasting period expands from 23 November 2020 until 12 April 2021, utilizing
data from 3 November 2020 until 23 March 2021. We focused on predicting hospitalized
patients and more specifically ICU requirements. Confirmed cases may not represent the
real number of infected people, as there is a limitation in the number of COVID-19 tests,
but official numbers of ICU admissions is a solid data source.

In order to evaluate the accuracy of each method, we used MAPE (Table 2), RMSE
(Table 3), R2 (Table 4) and MAE (Table 5) for the predicted versus the actual values for this
period, for four separate geographical regions of interest (Thessaloniki, Northern Greece,
Attica and Greece) and for 1–3 weeks ahead. In these tables we also include the 3-day MA
values per metric, providing a more reliable outlook on prediction error, given that the
3-day MA method unravels data collection lags attributed to weekends or national holidays.

The first region in our report is the prefecture of Thessaloniki. For 1-week ahead
predictions, from 23/11 until 22/3 the actual day and 3-day MA of all Models’ Average for
MAPE were 11.53% and 10.69%, for RMSE were 16.56 ICUs and 15.14 ICUs, for R2 were
93% and 94%, and for MAE were 12.13 ICUs and 11.04, respectively. Regarding the 2-weeks
ahead prediction, from 7/12 until 22/3 the actual day and 3-day MA of all Models’ Average
for MAPE were 21.80% and 19.53%, for RMSE were 31.25 ICUs and 28.61 ICUs, for R2 were
85% and 88%, and for MAE were 24.05 ICUs and 22.24 ICUs, respectively. Finally, for the
3-weeks ahead prediction, from 21/12 until 22/3 the actual day and 3-day MA of all Models’
Average for MAPE were 29.80% and 27.95%, for RMSE were 40.27 ICUs and 37.92 ICUs,
for R2 were 63% and 68%, and for MAE were 31.33 ICUs and 29.77 ICUs, respectively.

The second region is Northern Greece, including Thessaloniki along with Macedonia,
Thrace, Epirus, and Thessaly. For 1-week ahead predictions, from 23/11 until 22/3 the
actual day and 3-day MA of all Models’ Average for MAPE were 10.88% and 9.12%,
for RMSE were 46.26 ICUs and 43.57 ICUs, for R2 were 95% and 96%, and for MAE
were 26.83 ICUs and 23.92 ICUs, respectively. Regarding the 2-weeks ahead prediction,
from 7/12 until 22/3 the actual day and 3-day MA of all Models’ Average for MAPE were
20.61% and 17.98%, for RMSE were 52.51 ICUs and 48.33 ICUs, for R2 were 84% and 87%,
and for MAE were 42.96 ICUs and 39.38 ICUs, respectively. Finally, for the 3-weeks ahead
prediction, from 21/12 until 22/3 the actual day and 3-day MA of all Models’ Average for
MAPE were 31.94% and 30.94%, for RMSE were 77.63 ICUs and 74.40 ICUs, for R2 were
63% and 66%, and for MAE were 63.37 ICUs and 60.86 ICUs, respectively.

The third region is Greece, nationwide. For 1-week ahead predictions, from 1/2 until
22/3 the actual day and 3-day MA of all Models’ Average for MAPE were 5.45% and 4.73%,
for RMSE were 40.44 ICUs and 36.45 ICUs, for R2 were 94% and 95%, and for MAE were
29.89 ICUs and 27.10 ICUs, respectively. Regarding the 2-weeks ahead prediction, from 8/2
until 22/3 the actual day and 3-day MA of all Models’ Average for MAPE were 11.40% and
10.24%, for RMSE were 78.5 ICUs and 73.38 UCUs, for R2 were 81% and 83%, and for MAE
were 64.09 ICUs and 58.89 ICUs, respectively. Finally, for the 3-weeks ahead prediction,
from 15/2 until 22/3 the actual day and 3-day MA of all Models’ Average for MAPE were
18.81% and 17.86%, for RMSE were 126.05 ICUs and 121.32 ICUs, for R2 were 58% and 61%,
and for MAE were 105.61 ICUs and 100.66 ICUs, respectively.
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Table 2. MAPE of Predicted vs. Actual ICUs.

Geographical
Area

Weeks
Ahead

Prediction
Target

ARTXP and
ARIMA

(Actual/3d)
(%)

ARIMA and
SARIMAX
(Actual/3d)

(%)

Multivariate
Regression
(Actual/3d)

(%)

All Models’
Average

(Actual/3d)
(%)

Thessaloniki 1 12.22/11.36 13.35/12.41 13.09/11.88 11.53/10.69
2 26.46/25.12 27.86/25.74 22.63/20.77 21.80/19.53
3 41.97/39.89 32.72/31.82 35.95/34.17 29.80/27.95

Northern
Greece 1 17.26/15.92 9.36/7.99 9.74/8.12 10.88/9.12

2 32.05/29.52 21.80/19.40 18.80/16.50 20.61/17.98
3 52.56/49.56 34.44/33.77 30.05/29.18 31.94/30.94

Greece 1 8.15/7.51 5.05/4.69 5.53/4.80 5.45/4.73
2 16.73/15.48 13.90/13.11 9.73/8.52 11.40/10.24
3 24.15/23.28 23.49/22.87 21.32/19.80 18.81/17.86

Attica 1 7.07/6.47 5.83/4.60 7.92/6.26 6.26/4.79
2 14.76/13.79 12.20/10.87 14.07/12.74 12.14/11.07
3 23.96/23.50 17.63/16.69 21.42/20.19 18.55/17.81

Overall
Average 23.11/21.78 18.14/17.00 17.52/16.08 16.60/15.23

Table 3. RMSE of Predicted vs. Actual ICUs.

Geographical
Area

Weeks
Ahead

Prediction
Target

ARTXP and
ARIMA

(Actual/3d)
(ICUs)

ARIMA and
SARIMAX
(Actual/3d)

(ICUs)

Multivariate
Regression
(Actual/3d)

(ICUs)

All Models’
Average

(Actual/3d)
(ICUs)

Thessaloniki 1 16.88/16.00 16.81/15.25 15.98/14.17 16.56/15.14
2 35.58/33.38 33.13/30.13 25.03/22.33 31.25/28.61
3 49.57/46.88 34.97/33.03 36.28/33.86 40.27/37.92

Northern
Greece 1 41.96/39.20 20.54/16.86 76.28/74.66 46.26/43.57

2 70.25/65.88 48.01/43.60 39.26/35.50 52.51/48.33
3 107.01/102.87 66.60/64.29 59.29/56.03 77.63/74.40

Greece 1 54.47/52.32 32.71/28.12 34.14/28.91 40.44/36.45
2 100.46/94.69 73.40/69.97 61.64/55.47 78.50/73.38
3 139.97/134.86 124.58/122.09 113.60/107.02 126.05/121.32

Attica 1 19.87/19.32 18.17/15.21 23.29/18.08 20.44/17.54
2 46.40/45.08 35.21/32.10 42.24/37.27 41.28/38.15
3 83.28/82.27 55.60/52.41 69.02/63.98 69.30/66.22

Overall
Average 63.81/61.06 46.64/43.59 49.67/45.61 53.37/50.09

The last region is the prefecture of Attica. For 1-week ahead predictions, from
23 November 2020 until 22 March 2021, the actual day and 3-day MA of all Models’ Average
for MAPE were 6.26% and 4.79%, for RMSE were 20.44 ICUs and 17.54 ICUs, for R2 were
98% and 99%, and for MAE were 17.73 ICUs and 15.09 ICUs, respectively. Regarding the
2-weeks ahead prediction, from 7/12 until 22/3 the actual day and 3-day MA of all Models’
Average MAPE were 12.14% and 11.07%, for RMSE were 41.28 ICUs and 38.15 ICUs, for R2

were 95% and 96%, and for MAE were 36.77 ICUs and 33.52 ICUs, respectively. Finally,
for the 3-weeks ahead prediction, from 21/12 until 22/3 the actual day and 3-day MA of all
Models’ Average MAPE were 18.55% and 17.81%, for RMSE were 69.3 ICUs and 66.22 ICUs,
for R2 were 90% and 91%, and for MAE were 61.59 ICUs and 58.29 ICUs, respectively.
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Table 4. R2 of Predicted vs. Actual ICUs.

Geographical
Area

Weeks
Ahead

Prediction
Target

ARTXP and
ARIMA

(Actual/3d)
(%)

ARIMA and
SARIMAX
(Actual/3d)

(%)

Multivariate
Regression
(Actual/3d)

(%)

All Models’
Average

(Actual/3d)
(%)

Thessaloniki 1 94/95 94/95 91/93 93/94
2 86/88 85/88 83/88 85/88
3 64/70 69/72 56/62 63/68

Northern
Greece 1 91/92 97/98 96/97 95/96

2 76/79 91/94 85/87 84/87
3 44/49 77/79 69/72 63/66

Greece 1 89/90 96/98 96/97 94/95
2 68/71 87/89 87/90 81/83
3 45/48 70/72 58/62 58/61

Attica 1 99/99 98/99 98/98 98/99
2 93/94 97/97 96/96 95/96
3 88/89 92/93 91/92 90/91

Overall
Average 78/80 88/89 84/86 83/85

Table 5. MAE of Predicted vs. Actual ICUs.

Geographical
Area

Weeks
Ahead

Prediction
Target

ARTXP and
ARIMA

(Actual/3d)
(ICUs)

ARIMA and
SARIMAX
(Actual/3d)

(ICUs)

Multivariate
Regression
(Actual/3d)

(ICUs)

All Models’
Average

(Actual/3d)
(ICUs)

Thessaloniki 1 11.67/10.26 12.52/11.59 12.19/11.29 12.13/11.04
2 27.37/25.63 25.53/23.37 19.26/17.71 24.05/22.24
3 38.41/36.59 27.71/26.51 27.88/26.21 31.33/29.77

Northern
Greece 1 33.38/30.49 15.19/12.27 31.90/28.99 26.83/23.92

2 58.37/54.49 37.95/34.32 32.58/29.33 42.96/39.38
3 84.82/81.08 55.24/53.57 50.06/47.92 63.37/60.86

Greece 1 40.10/37.28 22.76/20.72 26.81/23.30 29.89/27.10
2 81.79/76.25 63.37/59.13 47.11/41.28 64.09/58.89
3 112.47/107.98 104.12/100.45 100.24/93.55 105.61/100.66

Attica 1 17.91/17.45 15.00/11.94 20.27/15.88 17.73/15.09
2 41.30/38.79 32.80/29.29 36.20/32.49 36.77/33.52
3 74.00/72.26 49.78/46.48 61.00/56.14 61.59/58.29

Overall
Average 51.80/49.04 38.50/35.80 38.79/35.34 43.03/40.06

In addition, in Tables 2–5 we highlighted with bold text the best individual value per
prediction horizon, model and geographical area. Therefore, for the Thessaloniki area the
best values for MAPE are reported by All Models’ Average (1–3 weeks ahead), for RMSE
by Multivariate Regression (1–2 weeks ahead) and ARIMA and SARIMAX (3 weeks ahead),
for R2 by ARTXP and ARIMA (1–2 weeks ahead) and ARIMA and SARIMAX (1 week and
3 weeks ahead), and for MAE by Multivariate Regression (2–3 weeks ahead) and ARTXP
and ARIMA (1 week ahead). For the Northern Greece area, the best values for MAPE are
reported by ARIMA and SARIMAX (1 week ahead) and Multivariate Regression (2–3 weeks
ahead), for RMSE by ARIMA and SARIMAX (1 week ahead) and Multivariate Regression
(2–3 weeks ahead), for R2 by ARIMA and SARIMAX (1–3 weeks ahead), and for MAE by
ARIMA and SARIMAX (1 week ahead) and Multivariate Regression (2–3 weeks ahead). For
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the Greece area, the best values for MAPE are reported by ARIMA and SARIMAX (1 week
ahead) and Multivariate Regression (2 weeks ahead) and All Models’ Average (3 weeks
ahead), for RMSE by ARIMA and SARIMAX (1 week ahead) and Multivariate Regression
(2–3 weeks ahead), for R2 by ARIMA and SARIMAX (1 week and 3 weeks ahead) and Multi-
variate Regression (2 weeks ahead), and for MAE by ARIMA and SARIMAX (1 week ahead)
and Multivariate Regression (2–3 weeks ahead). Finally, for the Attica area, the best values
for MAPE are reported by ARIMA and SARIMAX (1 week and 3 weeks ahead) and All
Models’ Average (2 weeks ahead), for RMSE by ARIMA and SARIMAX (1–3 weeks ahead),
for R2 by ARTXP and ARIMA (1 week ahead) and ARIMA and SARIMAX (2–3 weeks
ahead), and for MAE by ARIMA and SARIMAX (1–3 weeks ahead).

Time series models such as ARIMA and ARIMAX, require sufficient amount of his-
torical data to accurately estimate the parameters of the model. During the COVID-19
pandemic, the situation was evolving, and the number of cases could significantly in-
crease or decrease in response to various interventions, such as lockdowns or vaccine
rollouts. Regression models typically do not consider the impact of exogenous variables,
such as interventions. These interventions can have a significant impact on the number
of cases and the demand for ICU beds, and ignoring these factors can lead to inaccurate
predictions [28,62,63].

5. Conclusions

The healthcare domain attracts a great amount of research interest, often requiring inter-
disciplinary approaches. It involves predictive analytics for prompt forecasting and prevention
methods incorporating a mix of concepts from statistics, medicine, computer science etc. [64].

Many countries, including Greece, early on during the COVID-19 epidemic attempted
to avoid ICU bed shortage, which could put a strain on intensive care patient management.
Accurate forecasting assisted Health authorities to deploy resources and prioritise patient
care. ICU bed management during the COVID-19 pandemic emphasises the necessity
of accurate forecasting in public health decision making. Health officials were able to
respond to patient needs and prevent the healthcare system from becoming overloaded by
employing data-driven approaches, saving lives.

This work reports on findings regarding forecasting COVID-19 ICU bed needs during
the pandemic. According to the literature, most of the forecasting attempts utilize a mix
of SIS and SIR models or incorporate them in their approach [17]. Also, they base their
forecasting accuracy in a limited number of observations [11,12,41,43] or report forecasting
results for a short timeframe (2 months) [44]. The evaluation of results involves a variety of
metrics, such as sensitivity, specificity, accuracy ROC, AUC [11,21,41,43].

In contrast, our approach does not depend on epidemiological models like SIS and SIR;
it rather uses a dataset comprising features for a whole country (Greece), it expands the fore-
casting timeframe to almost 5 months (141 days) and reports findings utilizing four metrics
(MAPE, RMSE, R2 and MAE). We argue that these characteristics constitute it an efficient,
comprehensive and intelligible novel approach on health related time series forecasting.

We employed various state-of-the-art ML algorithms to address this challenge. The re-
sults show that the adopted algorithms performed very well when reporting on their 3-day
MA metric values.

For one week ahead predictions using the MAPE metric (Table 2), the best average
model was 10.69% for Thessaloniki, 4.79% for Attica, 9.12% for Northern Greece and 4.73%
for Greece. For the two weeks ahead predictions the results were expectedly less accurate,
the best average model MAPE was 19.53% for Thessaloniki, 11.07% for Attica, 17.98% for
Northern Greece and 10.24% for Greece. Even for three weeks ahead forecasting, the results
may be useful for healthcare recourse management as the algorithms performed with
significantly lower average MAPE, at 27.95% for Thessaloniki, 17.81% for Attica, 30.94%
for Northern Greece and 17.86% for Greece. Similar reports apply for the other metrics as
shown in Table 3 for RMSE, Table 4 for R2 and Table 5 for MAE.
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It should be noted that population-wise Thessaloniki as well as Northern Greece is
much smaller than Attica, which hosts nearly half the Greek population, which may partly
explain why predictions for Thessaloniki and Northern Greece were substantially less
accurate than for Greece or Attica.

Considering the results presented in Tables 2–5, we conclude that for the short term
1-week ahead prediction, ARIMA and SARIMAX is more accurate for the majority of the
investigated regions. For the 2-weeks ahead prediction, Multivariate Regression outper-
forms the other two models. Finally, for the medium term 3-weeks ahead prediction the
Multivariate Regression and ARIMA with SARIMAX show the best results.

5.1. Implications

The pandemic caused enormous pressure on the healthcare systems all over the world.
The excessive COVID-19 spread rate forced governments to take specific measures like
social distancing, remote working, distance learning, wearing surgery masks or in some
cases, wide-ranging lockdowns to mitigate the virus spread. Despite the government
measures, there has been a lot of pressure on national health systems, especially on ICUs,
which require high standards and scarce resources, such as qualified medical staff.

The exact forecast of ICU requirements can be very useful for the optimal management
of finance, resource planning and human resources [65], especially in the short to mid-
term where life-saving decisions may take place. Since the human factor is involved, any
such attempts should yield high precision results (low statistical error) mitigating disease
uncertainty variables and biases. Pressure applies in financial and asset management
often relating with materials and medical personnel. For example, ventilators, protection
equipment, resource allocation and prioritization. A tool that offers predictive analytics
should be able to offer options for relaxing healthcare system pressure, while enhancing
the quality of offered services to the patients. Such implementations may constitute sub-
components incorporating data mining and ML approaches for smart healthcare support
in smart city ecosystems [66].

Governments and policy makers require such produced insights for enforcing policies
at local, state or nation-wide level. Timely and efficient public health decision making for
optimal resource management offers new capabilities for addressing world-wide event
issues (e.g., reducing morbidity and mortality) such as pandemics.

5.2. Future Work

We aim to expand our research on COVID-19 forecasting and optimize our models
based on the following directions.

1. Regarding the choice of features for forecasting, the utilization of a correlation process
that relates virus epidemiological characteristics with metrics may yield even better
results [67]. In addition, the impact of temperature, climate and incubation period
are important factors which can be used in correlation with demographics or country
characteristics [11]. Furthermore, different government mitigation actions (lockdown,
social distancing etc.) in terms of time and strictness are also crucial and could be
assigned extra weight in the aggregated formula for the predictions [11,68].

2. Time series modelling, especially predicting infectious diseases like COVID-19, has
heavily exploited LSTM and RNN models. These models predict complex time series
trends. They rely on time series length, frequency of observations, number of variables,
and training data. These algorithms learn from similar trends, and with more data
forecasting accuracy may be improved. Data augmentation and subsampling handle
the trade-off between enough data to train the model and too much data that makes
it computationally intractable or may cause overfitting. Greece initially had low
volume of data. A held-out validation set should rigorously examine the model to
avoid overfitting to training data. Thus, enough data against too much data must be
carefully considered. Considering the above, future research could also include tests
with LSTM and RNN algorithms.
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3. We also aim to enhance the forecasting capabilities in geographical partitions by utilizing
Deep Learning (DL) and ANN. An extra step regarding COVID-19 ICU forecasting
would be the use of different and/or combined machine and deep learning algorithms.
Since the amount of data is increasing over time and there might be also other parameters
that could have a significant impact on COVID-19 infection [9], utilizing DL and ANNs
could make a difference. Moreover, other regression algorithms, like RF regressor or
XGB regressor could be tested, possibly combined with ANNs like LSTMs [16].

4. Finally, according to the reported limitations, identification of time series trend traver-
sal could improve forecasting accuracy. We aim to develop a rule-based methodology
that effectively analyses trends in ICU time series and fully adapts them according
to changes in trends. Hence, this process would enhance forecasting capabilities by
improving the selection of the time series training dataset.
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MA Moving Average
ARX Autoregressive Exogenous Regressors
MAX Moving Average Exogenous Regressors
DL Deep Learning

Appendix A. Supplementary Captions

Appendix A.1. Table

Table A1 showcases an example for clarifying the execution output of ARTXP and
ARIMA model. It reports on an arbitrary selected 3-week sub-period of the overall fore-
casting period. Algo Output is the algorithmic output value predicted, Variance is the
algorithmic output on predicted values, Lower Limit is the algorithmic output minus
Variance, Upper Limit is the algorithmic output + Variance, Error on Week is the error rate
gained from the previous weeks on previous forecasting, Algo Output over Error is Algo
Output * Error on Week; Avg Calculated Output is the average (Lower Limit, Algo Output
over Error, Algo Output, Upper Limit) and Model Prediction Value is the average publicly
announced value (Algo Output, Avg).

Table A1. ARTXP and ARIMA model Predictions sing error correction.

ICU Predictions on data from 1 October 2020 to 22 March 2021 with Output Variance: 61.436
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23/03 631 675 692 753 688 690 678 98 98 Yes

−2.51

24/03 632 676 693 754 689 691 681 99 98 Yes
25/03 631 675 692 753 688 690 703 98 98 Yes
26/03 633 677 694 755 690 692 704 98 99 Yes
27/03 638 681 699 760 695 697 718 97 97 Yes
28/03 645 688 706 767 702 704 726 97 97 Yes
29/03 653 696 714 775 710 712 723 98 99 Yes

W
ee

k
2

30/03 660 610 721 782 693 707 735 96 98 Yes

−15.39

31/03 667 616 728 789 700 714 738 97 99 Yes
01/04 674 622 735 796 707 721 741 97 99 Yes
02/04 681 628 742 803 713 728 747 97 99 Yes
03/04 689 635 750 811 721 736 750 98 100 Yes
04/04 697 641 758 819 729 743 750 99 99 Yes
05/04 706 649 767 828 737 752 748 99 97 Yes

W
ee

k
3

06/04 715 589 776 837 729 753 746 99 96 Yes

−24.10

07/04 724 596 785 846 738 761 762 100 97 Yes
08/04 734 603 795 856 747 771 772 100 97 Yes
09/04 744 611 805 866 757 781 764 98 95 Yes
10/04 755 619 816 877 767 791 777 98 95 Yes
11/04 766 628 827 888 777 802 786 98 95 Yes
12/04 778 637 839 900 788 814 790 97 94 Yes

Average Accuracy: 98 97
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Appendix A.2. Figures

Figure A1 (one week ahead), Figure A2 (two weeks ahead) and Figure A3 (three
weeks ahead) showcase the results per model (ARTXP/ARIMA, ARIMA/SARIMAX and
Multivariate Regression) of Predicted vs. Actual ICUs for the Thessaloniki area.

Figure A1. One week Predicted vs. Actual ICUs—Thessaloniki.

Figure A2. Two weeks Predicted vs. Actual ICUs—Thessaloniki.
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Figure A3. Three weeks Predicted vs. Actual ICUs—Thessaloniki.

Figure A4 (one week ahead), Figure A5 (two weeks ahead) and Figure A6 (three
weeks ahead) showcase the results per model (ARTXP/ARIMA, ARIMA/SARIMAX and
Multivariate Regression) of Predicted vs. Actual ICUs for the Northern Greece area.

Figure A4. One week Predicted vs. Actual ICUs—Northern Greece.
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Figure A5. Two weeks Predicted vs. Actual ICUs—Northern Greece.

Figure A6. Three weeks Predicted vs. Actual ICUs—Northern Greece.

Figure A7 (one week ahead), Figure A8 (two weeks ahead) and Figure A9 (three
weeks ahead) showcase the results per model (ARTXP/ARIMA, ARIMA/SARIMAX and
Multivariate Regression) of Predicted vs. Actual ICUs for the Greece area.
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Figure A7. One week Predicted vs. Actual ICUs—Greece.

Figure A8. Two weeks Predicted vs. Actual ICUs—Greece.
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Figure A9. Three weeks Predicted vs. Actual ICUs—Greece.

Figure A10 (one week ahead), Figure A11 (three weeks ahead) and Figure A12 (three
weeks ahead) showcase the results per model (ARTXP/ARIMA, ARIMA/SARIMAX and
Multivariate Regression) of Predicted vs. Actual ICUs for the Attica area.

Figure A10. One week Predicted vs. Actual ICUs—Attica.
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Figure A11. Two weeks Predicted vs. Actual ICUs—Attica.

Figure A12. Three weeks Predicted vs. Actual ICUs—Attica.

References
1. Hermanowicz, S. Forecasting the Wuhan Coronavirus (2019-nCoV) Epidemics Using a Simple (Simplistic) Model. MedRxiv 2020.

Available online: https://www.medrxiv.org/content/early/2020/02/10/2020.02.04.20020461 (accessed on 12 December 2022).
[CrossRef]

2. Yang, Z.; Zeng, Z.; Wang, K.; Wong, S.; Liang, W.; Zanin, M.; Liu, P.; Cao, X.; Gao, Z.; Mai, Z.; et al. Modified SEIR and AI
prediction of the epidemics trend of COVID-19 in China under public health interventions. J. Thorac. Dis. 2020, 12, 165–174.
[CrossRef] [PubMed]

https://www.medrxiv.org/content/early/2020/02/10/2020.02.04.20020461
http://doi.org/10.1101/2020.02.04.20020461
http://dx.doi.org/10.21037/jtd.2020.02.64
http://www.ncbi.nlm.nih.gov/pubmed/32274081


Algorithms 2023, 16, 140 25 of 27

3. Bullock, J.; Luccioni, A.; Pham, K.; Lam, C.; Luengo-Oroz, M. Mapping the landscape of Artificial Intelligence applications against
COVID-19. J. Artif. Intell. Res. 2020, 69, 807–845. [CrossRef]

4. Li, Q.; Feng, W.; Quan, Y. Trend and forecasting of the COVID-19 outbreak in China. J. Infect. 2020, 80, 469–496.
5. Petala, M.; Dafou, D.; Kostoglou, M.; Karapantsios, T.; Kanata, E.; Chatziefstathiou, A.; Sakaveli, F.; Kotoulas, K.; Arsenakis,

M.; Roilides, E.; et al. A physicochemical model for rationalizing SARS-CoV-2 concentration in sewage. Case study: The city of
Thessaloniki in Greece. Sci. Total Environ. 2021, 755, 142855. Available online: https://www.sciencedirect.com/science/article/
pii/S0048969720363853 (accessed on 12 December 2022). [CrossRef] [PubMed]

6. Bertsimas, D.; Boussioux, L.; Cory-Wright, R.; Delarue, A.; Digalakis, V.; Jacquillat, A.; Kitane, D.; Lukin, G.; Li, M.; Mingardi,
L.; et al. From predictions to prescriptions: A data-driven response to COVID-19. Health Care Manag. Sci. 2021, 24, 253–272.
[CrossRef]

7. Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [CrossRef]
8. Worldmeter—Coronavirus Pandemic. Available online: https://www.worldometers.info/coronavirus/ (accessed on 8 May 2021).
9. Johns Hopkins Hospital and Medicine. Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering

(CSSE) at Johns Hopkins University (JHU). Johns Hopkins University. 2022. Available online: https://coronavirus.jhu.edu/map.
html (accessed on 20 December 2022).
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