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Abstract: This paper proposes an interconnection of the MATLAB and GAMS software interfaces,
which were designed based on a master-slave methodology, to solve the mixed-integer nonlinear
programming (MINLP) model problem associated with the problem regarding the optimal location
and sizing of static distribution compensators (D-STATCOMs) in meshed and radial distribution
networks, considering the problem of optimal reactive power flow compensation and the fact that
the networks have commercial, industrial, and residential loads for a daily operation scenario. The
objective of this study is to reduce the annual investment and operating costs associated with energy
losses and the installation costs of D-STATCOMs. This objective function is based on the classical
energy budget and the capacity constraints of the device. In the master stage, MATLAB software
is used to program a discrete version of the sine-cosine algorithm (DSCA), which determines the
locations where the D-STATCOMs will be installed. In the slave stage, using the BONMIN solver of
the GAMS software and the known locations of the D-STATCOMs, the MINLP model representing
the problem under study is solved to find the value of the objective function and the nominal power
of the D-STATCOMs. To validate the effectiveness of the proposed master-slave optimizer, the
33-node IEEE test system with both radial and meshed topologies is used. With this test system,
numerical comparisons were made with the exact solution of the MINLP model, using different
solvers in the GAMS software, the genetic-convex strategy, and the discrete-continuous versions of the
Chu and Beasley genetic algorithm and the salp swarm optimization algorithm. The numerical
results show that DSCA-BONMIN achieves a global solution to the problem under study, making the
proposed method an effective tool for decision-making in distribution companies.

Keywords: GAMS computational tool; MATLAB computational tool; distribution networks; interface
interconnection; distribution static compensators; sine and cosine algorithm; radial and meshed
topology; minimizing annual operating costs

1. Introduction
1.1. General Context

Currently, power distribution systems are characterized by high power losses, which
are very high-power components compared to transmission lines, given the power levels
used and the radial topology with which these systems are built [1,2]. Therefore, to
avoid overloading the power distribution lines and take full advantage of their capacity,
utilities present solutions whose implementation can be costly and time-consuming in
some cases. An example of this involves system expansions through the construction of
new lines. Alternatively, there are operational measures with the same objective, such
as topology changes via network switching and active and reactive power flow control,
among others [3].

The distribution system delivers electricity to millions of end users. In the Colombian
context, electricity is supplied to medium- and small-sized sectors, i.e., with operating
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voltages typically between 15 and 10 kV [4]. One of the best options to reduce energy losses
is distributed generation (DG). When building distribution networks, a radial topology is
often used to reduce the financial costs of conductors and safety equipment. Nevertheless,
their initial investment and installation costs can be very high, especially when compared to
the installation of capacitor banks and strategies, such as grid reconfiguration [5]. Moreover,
one of the disadvantages of distribution networks when it comes to installing capacitor
banks is that it does not allow considering the daily demand of active, reactive, and
customer energy for a scenario in which reactive power is injected in fixed steps [6,7].

The economic factor is important for utilities, especially regarding energy losses at
the time of distribution. This can directly affect the finances of the company in charge of
supervising and maintaining the system. In addition, thanks to the increase in unbilled
energy, tariffs for the service’s end users can be increased to compensate for economic
losses. In Colombia, the energy losses of the electricity system are between 1.5% and 2.0%
of the total energy produced. In medium-sized grids, energy losses can vary from 5% to
18% [2]. According to the regulating bodies, loss levels below 10% correspond to networks
where maintenance has been carried out simultaneously with device replacements, and
scores above 10% are associated with poor management of distribution systems [2].

1.2. Motivation

In recent years, power electronics-based compensation has become essential to solving
the problems of shunt capacitor-based compensation devices [8,9]. These devices are
known as static power compensators (D-STATCOMs). The main characteristics of these
compensators include the injection of variable reactive power due to the variation in
amplitude and phase angle regarding the connected network. All of this is associated
with the behavior of the demand [10]. These devices are placed at the network nodes
to significantly reduce network losses. However, proper integration is necessary when
determining their sizing and location in order to reduce network losses. Some of the
advantages of implementing D-STATCOMs in a distribution network are: (i) low cost,
(ii) high reliability, and (iii) long lifespans (between 5 and 15 years) [11]. For this reason,
in this document, D-STATCOMs are integrated into AC distribution networks with radial
and meshed topologies, aiming to reduce the operating costs of the system, i.e., the costs of
purchasing power at the slack node or substation, together with the costs of installation,
operation, and maintenance of the D-STATCOMs.

Similarly, to find a solution, this research proposes a reduction in the total operating
costs of AC distribution systems with radial and meshed topologies when integrating
D-STATCOMs, which is achieved through the application of a discrete version of the sine-
cosine algorithm (DSCA), in conjunction with the BONMIN solver, considering the behavior
of the end users’ demand curve. Most distribution networks have radial topologies, except
for a small percentage with meshed topologies, which implies large voltage drops and
power losses due to their high resistance/reactance ratio [12]. This, together with the
fast-growing demand and the slow expansion of the electricity system, has generated a
series of inconveniences in distribution systems as a sector, as well as for the end users of
the system [13,14]. To find an adequate solution to these problems, it is of vital importance
that, in addition to the existing infrastructure, control devices can be integrated to offer a
technical-economic solution via the implementation of a structured system, as is the case
of the incorporating D-STATCOMs into distribution systems. This arises from the need to
increase efficiency through effective control of network power, as the optimal allocation of
these devices maximizes load capacity, minimizes power losses, compensates for reactive
power, and improves stability and power quality [15].
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Integrating D-STATCOMs is a key solution to improve the performance of distribution
systems with radial and meshed topologies. However, the best location for installing these
devices must be first identified, as well as the right size, in order to reduce the existing
issues of distribution networks. This makes the network more effective by increasing the
network capacity and system reliability.

1.3. Literature Review

Different methods and proposals for integrating D-STATCOMs into AC distribution
networks have been presented in the literature. In 2012, the authors of [16] presented a
combination of a genetic algorithm and particle swarm optimization to minimize power
losses in the network and improve voltage regulation and stability within the framework of
system operation and security restrictions in radial distribution systems. In the same year,
the authors of [17] proposed a mathematical model represented by an MINLP algorithm,
which was implemented in test systems of 33 and 69 nodes. After comparing the results
with those of different methods described in the scientific literature, their approach showed
superior efficiency and accuracy in terms of power loss reductions.

The authors of [18] worked on an optimization algorithm for ant colonies, which inte-
grates a fuzzy technique with several objectives. This article proposed the implementation
of PV sources and D-STATCOMs in the IEEE 33-node system, in which these devices are
reconfigured and assigned to meet the objectives of improving voltage profiles and mini-
mizing grid losses. In the same year, the authors of [19] proposed the reduction of power
losses in radial networks using a heuristic method based on power loss and voltage metrics
for the optimal placement and sizing of D-STATCOMs in radial networks. Nevertheless,
the authors only considered the most demanding conditions for the 33-node system when
performing the computational validations.

In [12], the authors presented a combination between a second-order cone-based
mathematical programming method and a genetic algorithm for sizing and locating D-
STATCOMs in distribution networks. They made use of commercial, industrial, and
residential demand curves in the IEEE 33 and 69 test systems, demonstrating the efficiency
of the proposed methodology in comparison with the solution of the model in the GAMS
software. The authors of [20] aimed to determine the optimal sizing and positioning of
D-STATCOMs in distribution networks through an optimization method based on a multi-
objective particle swarm algorithm. The study aimed to stabilize the voltage index and
load factor, as well as to minimize the active losses in the distribution network. It should
be noted that the method considered the possibility of adapting the network for different
demand conditions, and the algorithm only works under load conditions. Therefore,
when working with the maximum load, the D-STATCOMs can be oversized. Finally, the
authors of [21] modified the sine-cosine algorithm to minimize power losses and improve
voltage profiles.

In 2021, the authors of [10] addressed the D-STATCOMs integration problem by
applying a discrete-continuous version of the Chu and Beasley genetic algorithm. This
work aimed at minimizing the total annual operating costs associated with the power
losses and installation costs of D-STATCOMs. Numerical results in the 33-node test system
with both radial and meshed topologies demonstrated the efficiency and robustness of the
proposed methodology when compared to other methods reported in the literature. In the
same year, reductions in investment and operating costs were achieved via the discrete-
continuous vortex search algorithm [22], genetic algorithms, conic programming [23], and
the solution of the exact MINLP model in GAMS software [24]. In 2022, the authors [25],
by means of second-order conic mixed-integer programming, sought to minimize energy
losses and reduce investment and operating costs.

A summary of the implemented algorithms, methodologies, and objective functions,
along with their year of publication, can be found in Table 1.
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Table 1. Overview of methodologies used in the literature for sizing and locating D-STATCOMs.

Method/Algorithm Objective Function Year Ref.

Genetic algorithm Minimization of power losses 2011 [26]
Artificial neural networks Mitigation of voltage sags under faults 2012 [27]

Immune algorithm Minimization of power losses and reduction of investment and
operating costs 2014 [28]

Particle swarm optimization Minimization of power losses and voltage profile improvement 2014 [29]
Ant colony optimization Minimization of power losses and voltage profile improvement 2015 [18]
Sensitivity indices Minimization of power losses and voltage profile improvement 2015 [30]
Harmony search algorithm Minimization of power losses 2015 [31]
Heuristic search algorithm Minimization of power losses 2016 [32]
Imperialist competitive algorithm Minimization of energy costs and voltage profile improvement 2017 [33]
Discrete-continuous vortex search algorithm Investment and operating costs reduction 2017 [34]

Modified crow search algorithm Reducing line losses, maximizing economic benefits, improving
voltage profiles, and reducing pollution levels 2018 [35]

Particle swarm optimization Reduction of power losses and voltage profile improvement 2019 [20]

Hybrid analytical-coyote Minimization of active power losses and voltage profile
improvement 2019 [36]

Modified sine-cosine algorithm Minimization of power losses and voltage profile improvement 2020 [37]
Discrete-continuous vortex search algorithm Reduction in investment and operating costs 2021 [2]
GAMS software for the solution of the exact
MINLP model Reduction in investment and operating costs 2021 [38]

Mixed-integer second-order conic
programming

Minimization of power losses and reduction of investment and
operating costs 2022 [25]

Note that the objective functions of most methodologies in Table 1 were to minimize
power losses and reduce investment costs. The metaheuristic nature of the methodologies
can also be highlighted, as is the case of genetic algorithms, which improve the adaptation
probability of each individual, thus improving efficiency; that of the immune algorithm,
which improves efficiency by protecting the host from negative selection, thus making it
able to regroup; and that of particle swarm optimization, ant colony optimization, and
the modified crow search algorithm, which are based on the behavior of living beings
and their mechanism for biological evolution. Moreover, the harmony search, heuristic
search, and imperialist competitive algorithms must all compare multiple solutions that
are found in different ways. In the current literature, it is common to use combinatorial
optimization methods to solve the problem regarding the optimal location and sizing
of D-STATCOMs in distribution networks. This research proposes a newly developed,
mathematics-inspired combinatorial methodology, together with the use of the GAMS
software, within the framework of master-slave optimization.

1.4. Contributions and Scope

To find a strategy that allows reducing the computational resources and time required
to carry out an optimization process, the idea is to communicate two specialized software
applications in order to achieve an optimal global solution. As shown above, several
optimization methods have been implemented to solve the D-STATCOMs sizing and
placement problem. However, most of these solutions can get stuck in local optima, which
is why this study implements an optimization methodology that connects the GAMS and
MATLAB software interfaces through a master-slave methodology. The benefits of this
methodology include the fact that the D-STATCOM’s placement and sizing problems can
be staged. The master stage, which uses the DSCA to solve the D-STATCOMs placement
problem, is programmed in MATLAB software. Then, using the BONMIN solver in the
GAMS software and the locations provided by the master stage, the mathematical model
that represents the problem are solved, finding the optimal size of the D-STATCOMs and
the value of the objective function that meets all the technical-operating conditions of the
system. Listed below are the main contributions of this research article:
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i. A complete description of the mathematical formulation representing the problem
under study while considering different load types in a daily operation scenario.

ii. The implementation of a new optimization methodology that uses MATLAB and
GAMS software interfaces in order to find the optimal global solution to the problem
of sizing and locating D-STATCOMs in electrical distribution networks with a meshed
or radial topology.

iii. A new form of the master-slave method to solve the mathematical model representing
the studied problem. In the master stage, MATLAB software is used as a tool to
develop the discrete version of the sine-cosine algorithm, with the aim of determining
the locations of the D-STATCOMs. In the slave stage, the GAMS software is used to
solve the MINLP model that represents the problem, thus finding the nominal power
of the D-STATCOMs and the total annual operating costs of the network.

The advantages of the proposed research should be highlighted, given the benefits of
these optimization methods for solving optimization problems that belong to the family of
MINLP models. A novel interface between MATLAB (which uses the sine-cosine algorithm)
and GAMS (which solves the nonlinear programming model for each combination of
binary variables) is proposed. Moreover, the numerical results of this research study
can be considered a new reference to the problem regarding the location and sizing of
D-STATCOMs and their implementation in electrical distribution networks.

Finally, it is worth mentioning some aspects not considered in the article, such as
demand uncertainty and simulation times. Moreover, the period of analysis of this study
is one year, in which three types of sectors is considered (industrial, commercial, and
residential) for two types of configurations (mesh and radial).

1.5. Document Structure

In this article, Section 2 presents the mathematical formulation associated with the
problem of integrating D-STATCOMs in power grids, with the objective function of mini-
mizing the total annual costs of operation. Section 3 presents the implemented MATLAB-
GAMS interface. This interface was developed using a master-slave methodology that
combines DSCA and the GAMS BONMIN solver. Section 4 presents the main characteristics
of the 33-node test systems with a radial and meshed configuration, the daily demand
curves for different zones (i.e., commercial, industrial, and residential), and the parameter
information needed to determine the value of the objective function. Section 5 analyzes the
results obtained, as well as the convergence of the proposed methodology. Finally, Section 6
presents the conclusions and future research derived from this work.

2. Mathematical Formulation

This section introduces the mathematical model that represents the problem regarding
the sizing and placement of D-STATCOMs in meshed or radial power distribution systems.
As this problem contains discrete variables (i.e., the location of D-STATCOMs at specific
nodes) and continuous variables (i.e., the size of the D-STATCOMs), it can be expressed
with a mixed-integer nonlinear programming (MINLP) model [38]. Additionally, the
sum of the costs of energy losses during a whole year of operation and the annualized
investment costs associated with installing the D-STATCOMs are considered the objective
function. The investigated problem is shown below.

2.1. Formulation of the Objective Function

To solve the optimization problem, an objective function, i.e., the annualized costs
function of the energy losses ( f1) and the annualized investment costs function of the
D-STATCOMs ( f2), are determined via Equations (1) and (2), respectively.

f1 = CkWhT ∑
h∈H

∑
k∈N

∑
m∈N

YkmVkhVmh cos(δkh − δmh − θkm)∆h, (1)



Algorithms 2023, 16, 138 6 of 20

f2 = T
(

k1

k2

)
∑

k∈N

(
α
(

QDS
k

)2
+ βQDS

k + γ

)
QDS

k , (2)

where CkWh is the average cost per kWh; T is a constant related to the study period
(i.e., 365 days); Ykm is the admittance magnitude of the line linking nodes m and k with an
angle θkm; Vkh and Vmh are the voltages related to nodes m and k in period h with angles
δkh and δmh, respectively; δh corresponds to the period in which the electrical variables are
assumed to be constant (i.e., 1 h); k1 refers to the annualized investment costs constant; and
k2 is the D-STATCOM lifetime constant. The parameters α, β, and γ are continuous and
positive, and they represent the variable installation costs of a D-STATCOM of nominal
power QDS

k . Finally, H and N are the sets containing all the network periods and nodes,
respectively. To obtain the general objective function of problem (3), the algebraic sum of
Equations (1) and (2) is performed.

min Acost = f1 + f2, (3)

with Acost being the predicted annual costs of the distribution network, which depend on
the installation costs and the power losses of the D-STATCOMs. The objective function
denoted in (3) and its two components f1 and f2 are defined in (1) and (2), respectively,
both of which are nonlinear and non-convex functions of the main decision variables. f1,
due to the presence of products between tensions and trigonometric functions, is nonlinear
and non-convex [39].Similarly, f2 is nonlinear, and because it has a cubic function in its
formulation, it is non-convex [40].

2.2. Set of Constraints

The constraints of the problem regarding the sizing and location of D-STATCOMs in
distribution networks are related to the main operating limits of the system, such as the
balance of reactive and active power, the voltage control limits, and the power limits that
can be provided by D-STATCOMs, among others. Equations (4)–(8) define the constraints
of the problem studied in this article.

Pg
kh − Pd

kh = ∑
kεN

∑
mεN

YkmVkhVmh cos(δkh − δmh − θkm), {∀k ∈ N , h ∈ H}, (4)

Qg
kh + QDS

k −Qd
kh = ∑

kεN
∑

mεN
YkmVkhVmh sin(δkh − δmh − θkm), {∀k ∈ N , h ∈ H}, (5)

Vmin ≤ Vkh ≤ Vmax, {∀k ∈ N , h ∈ H}, (6)

ZkQDS
min ≤ QDS

k ≤ ZkQDS
max, {∀k ∈ N}, (7)

∑
k∈N

Zk ≤ NDS
A , (8)

where Pg
kh is the active power injected in period h by a standard generator connected to

node k; Qg
kh is the reactive power injected by a conventional generator connected to node k

in period h; Pd
kh is the active power demanded during period h by the loads connected to

node k; Qd
kh is the reactive power demanded during period h by the loads connected to node

k; QDS
k is the reactive power generated by the D-STATCOM at node k; Vmin is the minimum

voltage at the system nodes; and Vmax is the maximum voltage at the system nodes. A
binary variable is defined for whether a D-STATCOM is connected at node k, Zk (Zk = 1)
or not (Zk = 0). Finally, NDS

A is the number of D-STATCOMs available for installation.

2.3. Model Interpretation

In Equations (1)–(8), the mathematical model is described, which includes continuous
variables related to the magnitudes, angles of voltages, and active and reactive power
production. This is a MINLP model that includes binary variables associated with the
placement of the D-STATCOMs in the network. In addition, due to active and reactive
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power balance constraints and the trigonometric functions and voltage products, this model
is nonlinear [2].

To understand the MINLP model described in Equations (1)–(8), some aspects must
be clarified. Equation (3) describes the total costs of one year of operating the distri-
bution network, which consists of Equation (1), representing the yearly cost of power
purchased at conventional generation node terminals, and Equation (2) expresses the
costs of installing the D-STATCOMs. Equations (4) and (5) are observed for each node
and period of the reactive and active power balance. Variable QDS

k is considered in
Equation (5), which injects the reactive power of the D-STATCOMs positioned at the
nodes. It is essential to clarify that the power varies as a function of the daily demand
curve. As imposed by the regulatory authorities of the electricity sector [41], (6) is the
inequality that defines, for each node, the lower and upper voltage limits of each period.
The nominal reactive power limits for each D-STATCOM and variable Zk, which is binary,
indicate whether the D-STATCOM is located at node k. This is observed in constraint (7).
The limit of D-STATCOMs installed in the grid is defined by inequality (8), where NDS

A is
the maximum number of D-STATCOMs allowed.

3. Proposed Hybrid Optimization Approach

A master-slave methodology is employed in this study to solve the D-STATCOM’s
optimal placement and sizing problem. This methodology uses an interface connection
that involves GAMS and MATLAB as the basis of operation. The master stage proposes the
implementation of a discrete version of the sine-cosine algorithm in MATLAB software.
The DSCA is responsible for defining the locations where the available D-STATCOMs will
be installed. In the slave stage, the GAMS software uses the known locations to determine
the nominal power of each D-STATCOM, which is defined via Equations (4)–(8), as well as
to find the value of the objective function given in Equation (3).

3.1. Master Stage: DSCA

The DSCA, a metaheuristic optimization technique, explores and exploits the solution
space using trigonometric sine and cosine functions whose amplitude varies over a number
of iterations [42]. One of the key features of the DSCA is that it is a population-based
optimization technique, so the optimization process starts with random solutions. This
set is repeatedly evaluated using an objective function and improved by applying a set of
evolution rules, which are shown below.

3.2. Initial Population

The initial population of individuals in the DSCA takes the structure shown in (9):

Xt =


Xt

11 Xt
12 · · · Xt

1Nv
Xt

21 Xt
22 · · · Xt

2Nv
...

...
. . .

...
Xt

Ni1
Xt

Ni2
· · · Xt

Ni ,Nv

 (9)

In Equation (9), it is observed that Xt is the population of individuals at iteration t, Ni
is the number of individuals that make up the population, and Nv is the variable number
or the size of the solution space for this study—it is the total number of D-STATCOMs to be
deployed in the grid (NDS

A ). To create the initial population of individuals (10), a matrix of
discrete random numbers within the lower and upper bounds defined for the D-STATCOM
placement problem is employed.

X0 = round(yminones(Ni, Nv) + (ymax − ymin)rand(Ni, Nv)) (10)

Equation (10) considers ones(Ni, Nv) to be an array of ones in matrix form. rand(Ni, Nv)
is a matrix of random numbers between 0 and 1 generated from a uniform distribution.
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round() is a function that rounds each population element to the nearest integer. Finally,
ymin and ymax are vectors representing the lower and upper bounds of the decision variables
associated with the location of the D-STATCOMs at the demand nodes.

Finally, each individual of the population in the objective function has to be evaluated
by the slave stage. At this point, the best solution is chosen as the best individual found so
far (i.e., Xt

best).

3.3. Evolution Criteria

The DSCA is designed to evolve while considering a simple sine-cosine rule, where
there is a 50% probability of evolving with the sine function and a 50% probability of
evolving with the cosine function, as shown in Equation (11) [42]. With this equation, it is
possible to create new descendant individuals Pt+1

i from Xt
best.

Pt+1
i =

{
round(Xt

i + r2 sin(r3)
∣∣r4Xt

best − Xt
i

∣∣) if r1 < 0.5
round(Xt

i + r2 cos(r3)
∣∣r4Xt

best − Xt
i

∣∣) if r1 ≥ 0.5
(11)

In Equation (11), Pt+1
i is the value obtained by the evolutionary method. It is a possible

solution that can substitute Xt
i . Parameter r1 is a constant number from 0 to 1, which

ensures the equivalence of the transformation between the sine and cosine trigonometric
functions [43]. Parameter r2 is a variable that determines where the resulting new individual
should move, i.e., the closest possible to the best solution Pbest in the solution space [43], as
shown in (12).

r2 = a− t
a

tmax
(12)

In Equation (12), t is the current iteration, tmax is the maximum number of iterations,
and a is a constant used for this article, with a value of 2, as recommended in [43]. r3 is a
random number between 0 and 2π that determines how far or how close the new potential
solution moves with regard to the current best solution [43]. Finally, r4 is a random number
between 0 and 1.

3.4. Updating the Individuals

Finally, an individual Xt
i from the current population is replaced if and only if the

value of the objective function of a potential individual Pt+1
i is smaller (i.e., minimization

problem); otherwise, this individual remains in the population. This behavior is reflected
in (13).

Xt+1
i =

{
Pt+1

i if F(Pt+1
i ) < F(Xt

i )

Xt+1
i otherwise

(13)

In Equation (13), F(·) represents the objective estimate of an individual in the slave
stage. Once the individuals in the population have been updated, the best individual in the
new population Xt+1 is taken as Xbest.

Algorithm 1 summarizes the DSCA’s implementation to solve the D-STATCOM lo-
cation problem. The first thing to do is store the information related to the optimization
problem so that the initial report is generated from Equation (9). In line three, the time
must be set to zero so that the value of the objective function of each individual in the slave
stage can then be evaluated with the aim of selecting the best solution. However, in line
six, by making the time equal to one so that the values are generated, the power of each
individual is determined according to Equation (11), and the value of the objective function
of the potential individual in the slave stage is evaluated. This process and the previous
one are carried out to compare the results, and if a better solution is found, it is replaced,
with the last value being the best solution obtained so far. Thus, the individual is retained
in the population.
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Algorithm 1: Pseudo-code for the proposed DSCA approach in optimization
problems.

1 Data: The information related to the optimization problem is stored, as well as the
DSCA criteria; Generate the initial information from Equation (9);

2 Do t = 0;
3 Evaluate the value of each individual’s objective function in the slave stage;
4 Select the best solution from the population as Xt

best;
5 for t = 1 : tmax do
6 for i=Ni do
7 Generate the values r1, r2,r3, and r4;
8 Determine the potential individual Pt+1

i from Equation (11);
9 Evaluate the objective function value of the potential individual in the slave

stage;
10 if F(Pt+1

i ) < F(Xt
i ) then

11 Replace the individual in the population with the potential individual;
12 else
13 Retain the individual in the population;

14 Select the best solution from the new population as Xbest;

15 Result: Take Xbest as the result and solution for the optimization problem.

3.5. Slave Stage: GAMS

The GAMS software specializes in design for modeling real-world optimization prob-
lems in a simple programming language. This software executes linear, nonlinear, and
mixed-integer optimization problems, finding solutions of excellent quality solutions with
reduced processing times and low standard deviations, sometimes reaching the optimal
solutions to the problem [44]. This computational tool offers the user an interface to easily
enter the mathematical model of the problem, giving the user a choice between different
solvers and displaying the model’s behavior and the resulting variables. Thus, it allows
the user to obtain the result of a robust mathematical model in a few seconds through
mathematical operations and iterations. One of the advantages of this software is that it
makes it easy for the user to check the progress of the answer by comparing the initial
solution with the final one.

The objective of the slave stage executed by the GAMS software is to evaluate the
optimization model using the locations generated by the DSCA in order to determine
the sizes of each D-STATCOM and, with these two parameters, to evaluate the objective
function, which is fitted to the constraints according to Section 2. After this operation,
GAMS returns the total cost associated with the objective function, and this value is sent to
MATLAB as an input parameter when executing the DCSA.

3.6. Interface Connection

To link the interfaces of the two applications, file compatibility between the two
programs must be considered. In this sense, the Excel software is used as an intermediate
stage to ensure an effective exchange of information between MATLAB and GAMS, so
the linking of the interfaces is performed through files in .xlsx format, in which the data
necessary for the evaluation of the MINLP mathematical model defined in Section 2 are
sent and received. However, as shown in Figure 1, it is necessary to use a function that
allows the reading and writing of these files in the software.
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MATLAB

Excel

GAMS

Excel

xlswrite(.xslx)

GDXXRW(.gdx)

GDXXRW(.xslx)

xlsread(.m)

Figure 1. Diagram of the information exchange in the MATLAB–GAMS interface.

The GAMS software uses the GDXXRW feature, which allows reading and writing
Excel spreadsheets [45], as well as a .gdx file extension to read multiple data ranges in
.xslx format. Conversely, this function allows writing these data in .xslx format from the
GAMS software for further processing in Excel. With MATLAB, the xlswrite and xlsread
functions are used. The former allows writing data with the .m extension in the Excel files
used to write the D-STATCOM locations. The latter function allows reading the .xlsx file in
MATLAB. This function is used to read the value of the objective function resulting from the
optimization carried out in GAMS [45]. One of the advantages of this information exchange
is that the connection between the two interfaces allows .xlsx and .csv files to be executed
so that large amounts of data can be processed in reduced computation times. However,
it should be noted that the GDXXRW function is only available for devices running the
Windows operating system [45].

Figure 1 summarizes the methodology used in this research, depicting the duty cycle
based on the implemented methodology. The MATLAB computational tool performs the
function of evaluating the objective function associated with the total costs, as described
in Equation (3) within the DSCA and, as a result, it generates the initial locations of the
D-STATCOMs, which are sent to the Excel tool to be later read by GAMS. Afterward, the
locations are evaluated, taking into account the constraints in terms of optimal power flow,
power balance, and reactive power injected by the D-STATCOMs and the new value of the
objective function, which is then sent to an Excel file to be read by MATLAB, which restarts
the process and evaluates the number of iterations.

4. Test Systems

To apply the methodology of this case study, a 32-node, 32-line grid distribution
network, referred to as the IEEE 33-node system, was tested. This system has a 12.66 kV
voltage at the substation node, an active power consumption of 3715 kW, and a reactive
power of 2300 kvar at its peak hour. In addition, the total network losses during the peak
hour are 210.9876 kW [2]. For this study case, the distribution system was divided into three
different zones: (i) commercial zone (red), (ii) industrial zone (blue), and (iii) residential
zone (green). Similarly, this test system’s radial and meshed versions were considered to
solve the D-STATCOM placement and sizing problem. Figures 2 and 3 show the electrical
diagram of the IEEE 33-node test system in its radial and meshed versions [46], respectively.
Note that, for the case of the meshed network, nodes 12, 18, 22, 25, 29, and 33 are active,
thus forming closed cycles.
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Figure 2. Electrical diagram of the IEEE 33-node radial test system.
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Figure 3. Electrical diagram of IEEE 33-node meshed test system.

Table 2 provides the resistance and reactance values of the distribution lines, as well
as the demand of bus j, which make up this 33-bus IEEE test system. Note that the values
of the active and reactive power correspond to the peak values.

Similarly, Table 3 shows the electrical parameters of the distribution lines that allow
the test system to be connected in a meshed topology (dotted lines).

As mentioned above, the proposed networks (Figures 2 and 3) have three zones with
different load types, so each of these areas has a different daily demand curve. Figure 4
contains the daily demand data for these load types.

Finally, Table 4 presents the parameters used to evaluate the objective function in
Equation (3). In addition, the basic voltage and power data of the grid are shown. A
number of these values are taken from [2].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(h)

D
em

an
d

C
ur

ve
(p

.u
.)

Industrial
Residential
Commercial

Figure 4. Load curves: industrial, commercial, and residential.
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Table 2. Electrical parameters for the 33-bus IEEE network with a radial structure.

Bus i Bus j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0922 0.0477 100 60
2 3 0.4930 0.2511 90 40
3 4 0.3660 0.1864 120 80
4 5 0.3811 0.1941 60 30
5 6 0.8190 0.7070 60 20
6 7 0.1872 0.6188 200 100
7 8 1.7114 1.2351 200 100
8 9 1.0300 0.7400 60 20
9 10 1.0400 0.7400 60 20
10 11 0.1966 0.0650 45 30
11 12 0.3744 0.1238 60 35
12 13 1.4680 1.1550 60 35
13 14 0.5416 0.7129 120 80
14 15 0.5910 0.5260 60 10
15 16 0.7463 0.5450 60 20
16 17 1.2890 1.7210 60 20
17 18 0.7320 0.5740 90 40
2 19 0.1640 0.1565 90 40
19 20 1.5042 1.3554 90 40
20 21 0.4095 0.4784 90 40
21 22 0.7089 0.9373 90 40
3 23 0.4512 0.3083 90 50
23 24 0.8980 0.7091 420 200
24 25 0.8960 0.7011 420 200
6 26 0.2030 0.1034 60 25
26 27 0.2842 0.1447 60 25
27 28 1.0590 0.9337 60 20
28 29 0.8042 0.7006 120 70
29 30 0.5075 0.2585 200 600
30 31 0.9744 0.9630 150 70
31 32 0.3105 0.3619 210 100
32 33 0.3410 0.5302 60 40

Table 3. Additional electrical parameters for the 33-bus IEEE network with a meshed structure.

Bus i B j Rij (Ω) Xij (Ω)

12 22 2 2
18 33 0.5 0.5
25 29 0.5 0.5

Table 4. Data on the D-STATCOM parameters for calculating the investment costs.

Parameter Value Unit Parameter Value Unit

CkWh 0.139 USD-kW/h T 365 days
∆h 1 h α 0.3 USD/Mvar3

β −305.1 USD/Mvar2 γ 127.380 USD/Mvar
NDS

A 3 - ∆V ±10 %
QDS

min 0 kvar QDS
max 2000 kvar

Vbase 12.66 kV Sbase 10.000 kVA

5. Numerical Results, Analysis, and Discussions

This section presents the numerical results obtained by applying the proposed method-
ology to solve the D-STATCOM’s optimal integration problem in the two aforementioned
test systems, as well as their validation, analysis, and discussion. All numerical simulations
were performed by interfacing MATLAB version R2022a and the GAMS software on a
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computer with an AMD Ryzen 5 5500U processor, Radeon Graphics at 2.10 Ghz, 20 GB of
RAM, and a 64-bit Windows 11 Pro operating system.

To evaluate the performance of the proposed solution methodology, composed of
the DSCA (MATLAB) in the master stage and the BONMIN solver (GAMS) in the slave
stage, the results are contrasted with the following methodologies (which have been
used previously to solve the problem addressed in this research): (i) the XPRESS, SBB,
DICOPT, and LINDO solvers of GAMS (exact solution of the MINLP model); (ii) the genetic-
convex algorithm [34]; (iii) the continuous, discrete version of the Chu and Beasley genetic
algorithm (DCCBGA) [47]; and (iv) the salp swarm optimization algorithm (SSA) [47].

5.1. Radial Configuration

To validate the effectiveness of the proposed solution methodology and visualize the
best results for this configuration, the proposed methodology was executed one time for
100 iterations, whose different solutions could be observed, as shown in Table 5. Here, the
evaluated fitness function (operation costs), node locations, and sizes of the D-STATCOM
are shown.

Table 5. List of best results obtained for a radial configuration with the proposed methodology.

Solution No. Node Location Sizes (Mvar) Energy Loss Costs
(USD/Year)

Investment Costs
(USD/Year)

Annual Cost
(USD/Year)

1 [13, 30, 24] [0.2503, 0.6923, 0.0668] 93,867.77 12,843.90 106,711.67
2 [13, 15, 30] [0.1476, 0.1054, 0.6983] 94,574.27 12,103.25 106,677.52
3 [14, 8, 30] [0.1992, 0.1174, 0.6721] 93,949.70 12,579.28 106,528.98

The following remarks can be made from Table 5:

X The solution with the best annual operating costs is number 3, with 106,528.98 USD
per year. For this solution, the selected nodes are 14, 8, and 30, which connect
D-STATCOMs of 0.1992, 0.1174, and 0.6721 Mvar. This scenario reduces the annual
operating costs by 18.42% when compared to the base case.

X The worst cost function achieved by the DSCA-BONMIN corresponds to solution 1.
In this scenario, nodes 13, 30, and 24 connect D-STATCOMs of 0.2503, 0.6923, and
0.0668 Mvar. The difference between the best and worst fitness functions is 182.69 USD
per year of operation.

X Node 30 appears for all solutions to the problem. Node 13 appears in solutions 1 and
2. The former is located in the commercial zone, and the latter is in the industrial zone.
Finally, nodes 8 and 14, which are within the optimal solution, are also located in the
industrial zone, which means that the most suitable locations for a D-STATCOM are
in the industrial and commercial zones (Figure 2).

X The difference between solution 3 (the best) and solution 1 (the worst) is approximately
183 USD per year of operation, which corresponds to 0.1712%. Therefore, when it
comes to minimizing operating costs in this distribution network with a higher number
of nodes at a higher number of iterations, the annual cost solutions can be considered
efficient, which indicates the accuracy of the implemented algorithm.

X In the solutions, the costs associated with energy losses are 87.96% (solution 1),
88.77% (solution 2), and 88.19% (solution 3). In turn, the investment costs are 12.03%
(solution 1), 11.34% (solution 2), and 11.80% (solution 3), which corresponds to the
fact that the costs associated with energy losses represent a higher percentage of the
total cost than those related to investment.

Table 6 presents the results regarding the location, size, and annual operating costs
of the D-STATCOMs, as obtained with the proposed methodology and the methods used
for comparison.
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Table 6. Results obtained by the metaheuristic optimizers and the proposed methodology for the
radial configuration.

Methodology Node Location Sizes (Mvar) Annual Cost (USD/Year) Reduction (%)

Benchmark case - - 130,580.82 -

XPRESS [13, 16, 32] [0.1822, 0.0727, 0.2328] 112,376.45 13.94
SBB, DICOPT, and LINDO [13, 16, 32] [0.1850, 0.0825, 0.4478] 109,768.70 15.94

Genetic-Convex [34] [14, 30, 32] [0.2896, 0.5593, 0.1177] 109,455.96 16.18
DCCBGA [47] [14, 25, 30] [0.2327, 0.1056, 0.5403] 108,196.46 17.14

DSCA-BONMIN [14, 8, 30] [0.1992, 0.1174, 0.6721] 106,528.98 18.42

Based on the information in Table 6, the following can be concluded:

X The GAMS solvers used to solve the MINLP model are stuck when in local optima
compared to the developed DSCA-BONMIN methodology. The SBB, DISCOPT, and
LINDO solvers reduce the annual operating costs of the distribution network by
15.94%, while the XPRESS solver only reduces it by 12.94%. In addition, the solvers
identify similar locations and sizes for the D-STATCOMs.

X The DCCBGA methodology reduces the annual operating costs of this radial distribu-
tion network by 17.14%, which is an improvement compared to the GAMS solvers
and the genetic-convex methodology. However, the DSCA-BONMIN proposed in this
article reduces annual costs by 1,667.48 USD compared to the DCCBGA. This result
represents a reduction of 18.42% in the objective function value with respect to the
base case, which represents savings of 24,051.84 USD for the network operator.

X A remarkable aspect of the DSCA-BONMIN methodology is the existence of
D-STATCOMs in the commercial and industrial zones (Figure 2), similar to the GAMS
solvers and the genetic-convex methodology and unlike the DCCBGA methodol-
ogy, where there are D-STATCOMs in each zone. Furthermore, the sizes of the
D-STATCOMs located by the DCCBGA and DSCA-BONMIN are similar. The only
representative differences are the change from node 25 to node 8, and a reduction
of 14.39% for the first location, 11.17% for the second, and 24.39% for the third with
regard to the size in each of the locations. These differences represent the improvement
in the annual operating costs.

Finally, Figure 5 shows the convergence graph of the methodology implemented
for the 33-node IEEE test system in its radial version, from which the following can be
concluded. The DSCA-BONMIN finds a value of 106,711.67 USD/year for this system in
its first iteration. In the second iteration, it finds a lower objective function value, with
106,677.52 USD, demonstrating the efficiency of the methodology. Around iteration 19, the
DSCA-BONMIN continues to reduce the value of the objective function, which indicates
that the proposed methodology is rapidly converging to the global optimum.

The above confirms that the DSCA-BONMIN is an effective and robust tool to solve
the problem regarding the location and sizing of D-STATCOMs in distribution systems in
order to reduce the annual operating costs. This makes the proposed methodology the best
option to solve the studied problem in 33-node IEEE test systems with a radial topology
and obtain the best solution from an economic point of view while respecting all of the
system operator’s constraints.
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Figure 5. Convergence curve of the IEEE 33-node system with a radial configuration.

5.2. Meshed Configuration

As in the previous case, for this configuration, the proposed methodology was exe-
cuted one time for 100 iterations, and the results obtained are shown in Table 7. In this
case, the number of solutions was higher than those found in Section 5.1. These results are
presented together with the sizes and locations of the D-STATCOMs nodes.

Table 7. Results obtained by the metaheuristic optimizers and the proposed methodology for the
meshed configuration.

Solution No. Node Location Sizes (Mvar) Energy Loss Costs
(USD/Year)

Investment Costs
(USD/Year)

Annual Cost
(USD/Year)

1 [30, 19, 32] [0.5107, 0,0.2348] 68,433.39 9488.47 77,921.86
2 [30, 33, 27] [0.5238, 0.2113, 0.0266] 68,201.11 9694.85 77,895.96
3 [30, 18, 22] [0.5644, 0.1890, 0] 68,299.6 9588.11 77,887.74
4 [4, 14, 30] [0, 0.1510, 0.6358] 67,860.69 10,011.27 77,871.96
5 [9, 30, 33] [0.0846, 0.5163, 0.1941] 67,656.69 10,120.19 77,776.88
6 [15, 30, 33] [0.1049, 0.5279, 0.1480] 67,776.07 9,938.80 77,714.87
7 [14, 33, 30] [0.1104, 0.1524, 0.5256] 67,649.24 10,035.84 77,685.08

Based on the information in Table 7, it can be concluded that:

X The results confirmed that, for this scenario, node 30, being in all the solutions obtained
by the proposed methodology, is the most sensitive to the minimization of operating
costs. Additionally, the two other nodes found in most of the reported solutions are
node 33, with a percentage of 57.14%, and node 14, with 28.57%, which are related to
the total responses. This occurs when considering discriminated sectors and hourly
load profiles. As for nodes 30 and 33, they are nodes located in the commercial zone,
and node 14 belongs to the industrial zone (Figure 3).

X The difference between solution 7 (the best) and solution 1 (the worst) is 236.78 USD,
which corresponds to a 0.3039% improvement between the first and the optimal
solutions obtained. As a result, as the number of iterations increases, the solutions in
Table 7 improve in quality. This result confirms the accuracy of the DSCA-BONMIN
method when it comes to minimizing operating costs in this distribution network.

X In the solutions, with regard to the total costs, the costs associated with energy
losses represent 87.82% (solution 1), 87.55% (solution 2), 87.68% (solution 3), 87.14%
(solution 4), 86.98% (solution 5), 87.21% (solution 6), and 87.08% (solution 7); and the
investment costs represent 12.17% (solution 1), 12.44% (solution 2), 12.31% (solution 3),
12.85% (solution 4), 13.01% (solution 5), 12.78% (solution 6), and 12.91% (solution 7).
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This means that the costs of energy losses represent a higher percentage of the total
cost than the investment costs.

Table 8 shows the results for the location, size, and annual costs of the D-STATCOMs,
as obtained by the comparison methodologies and the one proposed in this research.

Table 8. Results obtained by the metaheuristic optimizers and the proposed methodology for the
meshed configuration.

Methodology Node Location Sizes (Mvar) Annual Cost (USD/Year) Reduction (%)

Benchmark case - - 86,882.81 -

XPRESS [13, 16, 32] [0.2000, 0.0453, 0.3923] 79,535.02 8.46
SBB, DICOPT, and LINDO [13, 16, 32] [0.0960, 0.0531, 0.4480] 79,350.36 8.67

SSA [47] [32, 30, 14] [0.2023, 0.3944, 0.1462] 77,870.17 10.37
DCCBGA [48] [14, 30, 32] [0.1134, 0.4705, 0.1503] 77,809.98 10.44

DSCA-BONMIN [14, 33, 30] [0.1104, 0.1524, 0.5256] 77,685.08 10.59

Based on the information in Table 8, the following was concluded:

X In comparison with the developed DSCA-BONMIN methodology, the local optima
used by the GAMS solvers stagnate. The SBB, DISCOPT, and LINDO solvers reduced
the annual network operating costs by 8.67%, while XPRESS only reduced them
by 8.46%. The solvers define the exact same nodes for reactive compensation. The
dimensions of the D-STATCOM range from 0.104 Mvar at node 13, 0.0078 Mvar at
node 16, and 0.0557 Mvar at node 32. The most noticeable size variation takes place at
node 13, suggesting that this compensator overcomes the higher capital costs that are
not included in the energy loss cost.

X The SSA methodology reduces the annual operating costs by 10.37%, and the DC-
CBGA methodology shows a 10.44% reduction in the operating costs of this meshed
distribution network, where the locations of the nodes are the same, unlike the sizes,
which vary by 0.0328 Mvar at node 14, 0.052 Mvar at node 32, and 0.0761 Mvar at
node 30. Of all, the most notable size difference is at node 30, suggesting that this
compensator offsets the higher capital cost, which is not included in the reduction of
the energy losses cost.

X The DSCA-BONMIN methodology reduces the annual operating costs by 1667.48 USD
compared to DCCBGA. This result represents a reduction of 10.59% in the objective
function evaluated for the base case, as well as savings of 9197.73 USD for the net-
work operator.

X A notable aspect of the DSCA-BONMIN methodology is the existence of D-STATCOMs
in the commercial and industrial zones (Figure 3), similar to the SSA and DCCBGA. In
addition, the sizes of the D-STATCOMs located by the DCCBGA and DSCA-BONMIN
are similar. The only representative differences with respect to the methodology to be
compared are the change from node 32 to node 33 and reductions of 2.65% for node 14
and 11.711% for node 30 with respect to the size of each of the locations mentioned.
Therefore, these differences represent an improvement in annual operating costs.

Finally, Figure 6 shows the convergence graph of the implemented methodology for the
33-node IEEE test system in its meshed version, from which the following can be concluded.
In its first iteration, the DSCA-BONMIN finds a value of 77,921.86 USD/year. In the third
iteration, it reduces the value of the objective function to 77,895.96 USD/year, thus showing
the efficiency of the proposed methodology. In the fourth iteration, it shows a reduction
to 77,871.9 USD/year. As of iteration 7, there is an annual cost of 77,871.96 USD/year.
In iteration 28, there is a cost of 77,871.96 USD/year. In iteration 42, there is a reduction
to 77,714.87 USD/year. Around iteration 93, the DSCA-BONMIN finds the lowest objec-
tive function value for the system, which is 77,685.08 USD/year. This indicates that the
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proposed methodology, by increasing the number of iterations, quickly converges to the
global optimum.
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Figure 6. Convergence curve of the IEEE 33-node with a meshed configuration.

This confirms that the DSCA-BONMIN is an effective and robust tool to solve the
problem regarding the location and sizing of D-STATCOMs in power distribution systems
in order to reduce annual operating costs. Thus, the proposed methodology is the best
option to solve the studied problem in 33-node IEEE test systems with a meshed topology,
as it achieves the best solution from an economic point of view while respecting all of the
system operator’s constraints.

6. Conclusions and Future Works

This research managed to determine the siting and sizing of D-STATCOMs, even
in light of the typical load variations associated with segregation by zones (commercial,
residential, and industrial). This was achieved by linking two interfaces (MATLAB and
GAMS) in conjunction with a master-slave strategy. The MATLAB software was entrusted
with determining the best positions for the D-STATCOMs via a discrete version of the
SCA. In the slave stage, the BONMIN solver of GAMS was used to evaluate the MINLP
model of the studied problem while observing all of its constraints, thus obtaining the
nominal power of each D-STATCOM the objective function value, i.e., the minimization of
the annual operating costs, including the purchasing of electrical energy at the substation
node terminals and the installation costs of the D-STATCOMs.

Numerical results validate the effectiveness and relevance of this approach as tested in
the IEEE 33-node system with both radial and meshed topologies. The results obtained for
both configurations differ, which is explained by the strong influence of network topology.
However, the proposed optimization methodology is unaffected by this. The objective function
of the radial topology was 106,528.98 USD/year, with a reduction of 18.42% with respect to
the base case. For the meshed topology, this value was 77,685.08 USD/year, with a reduction
of 10.59% with respect to the base case. That is to say, a difference of 28,843.9 USD per year of
operation. This is due to the fact that the meshed topology improves the voltage profiles and
allows better power flow distribution in the network.

The DSCA-BONMIN methodology performed better than the GAMS XPRESS, SBB,
DICOPT, and LINDO solvers for both meshed and radial configurations. In both cases,
the GAMS solvers were stuck on a locally optimal solution. This occurs because these
solvers find an exact solution to the MINLP model representing the problem, which has a
non-convex solution space, thus increasing the complexity of the problem. Additionally,
the results obtained were compared with those of the genetic-convex, DCCBGA, and SSA
methods for both configurations, managing to find a better solution. A benefit of connecting
these two interfaces is that the solution of any mixed-integer nonlinear optimization
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problem can be scaled while dividing it by stages, which reduces the computational time
and resources needed to solve the MINLP model. Furthermore, it allows the generating,
evaluating, and further developing of all of the results obtained, making it possible to find
the optimal global solution in a much shorter time.

This methodology can be used to solve other types of problems, such as (i) considering
a 10- or 20-year planning perspective with regard to the coupling of D-STATCOMS and
renewable energy sources in order to reduce the grid operation costs; (ii) employing
the generalized normal optimizer and the arithmetic optimization algorithm, currently
considered metaheuristic optimizers, to aid the solution of the master-slave optimization
methods presented herein (moreover, for MINLP models, it is vital to consider the joint use
of D-STATCOMs and batteries); (iii) considering longer time periods, be it weeks or months,
and their effect on charging behaviors (a study dealing with uncertainties related to demand
curves could address optimization issues); (iv) considering relevant load imbalances within
three-phase networks caused by the installation of D-STATCOMs and evaluating their
impact, as well as further analyzing the voltage stability of the network with these devices,
along with the net present value (NPV), where the savings associated with network losses
could be compared against the installation costs in order to assess the project’s profitability
and even calculate the break-even period; and (v) studying the network reconfiguration
via sensitivity analysis in order to observe the effects of integrating D-STATCOMs into
different network configurations.

Author Contributions: Conceptualization, methodology, software, and writing (review and edit-
ing), G.F.B.-P., B.C.-C. and O.D.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This article is derived from the graduation project Optimal integration of D-
STATCOMs in radial and meshed distribution networks using a MATLAB-GAMS interface, presented
by the student Germán Francisco Barreto Parra to the Electrical Engineering program of Universidad
Distrital Francisco José de Caldas Engineering School as a partial requirement to obtain a degree in
Electrical Engineering.

Conflicts of Interest: The authors of this paper declare no conflict of interest.

References
1. Cavellucci, C.; Lyra, C. Minimization of energy losses in electric power distribution systems by intelligent search strategies. Int.

Trans. Oper. Res. 1997, 4, 23–33. [CrossRef]
2. Montoya, O.D.; Gil-González, W.; Hernández, J.C. Efficient operative cost reduction in distribution grids considering the optimal

placement and sizing of D-STATCOMs using a discrete-continuous VSA. Appl. Sci. 2021, 11, 2175. [CrossRef]
3. Rawat, M.S.; Tamta, R. Optimal placement of TCSC and STATCOM for voltage stability enhancement in transmission network.

In Proceedings of the 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer
Engineering (UPCON), Gorakhpur, India, 2–4 November 2018.

4. Alam, M.S.; Arefifar, S.A. Energy management in power distribution systems: Review, classification, limitations and challenges.
IEEE Access 2019, 7, 92979–93001. [CrossRef]

5. Verma, H.K.; Singh, P. Optimal reconfiguration of distribution network using modified culture algorithm. J. Inst. Eng. (India) Ser.
B 2018, 99, 613–622. [CrossRef]

6. Sultana, S.; Roy, P.K. Optimal capacitor placement in radial distribution systems using teaching learning based optimization. Int.
J. Electr. Power Energy Syst. 2014, 54, 387–398. [CrossRef]

7. Sadovskaia, K.; Bogdanov, D.; Honkapuro, S.; Breyer, C. Power transmission and distribution losses—A model based on available
empirical data and future trends for all countries globally. Int. J. Electr. Power Energy Syst. 2019, 107, 98–109. [CrossRef]

8. Satyanarayana, P.; Radhika, A.; Reddy, C.R.; Pangedaiah, B.; Martirano, L.; Massaccesi, A.; Flah, A.; Jasiński, M. Combined
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