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Abstract: In our digital age, data are generated constantly from public and private sources, social
media platforms, and the Internet of Things. A significant portion of this information comes in the
form of unstructured images and videos, such as the 95 million daily photos and videos shared
on Instagram and the 136 billion images available on Google Images. Despite advances in image
processing and analytics, the current state of the art lacks effective methods for discovering, link-
ing, and comprehending image data. Consider, for instance, the images from a crime scene that
hold critical information for a police investigation. Currently, no system can interactively generate
a comprehensive narrative of events from the incident to the conclusion of the investigation. To
address this gap in research, we have conducted a thorough systematic literature review of existing
methods, from labeling and captioning to extraction, enrichment, and transforming image data
into contextualized information and knowledge. Our review has led us to propose the vision of
storytelling with image data, an innovative framework designed to address fundamental challenges
in image data comprehension. In particular, we focus on the research problem of understanding
image data in general and, specifically, curating, summarizing, linking, and presenting large amounts
of image data in a digestible manner to users. In this context, storytelling serves as an appropriate
metaphor, as it can capture and depict the narratives and insights locked within the relationships
among data stored across different islands. Additionally, a story can be subjective and told from
various perspectives, ranging from a highly abstract narrative to a highly detailed one.

Keywords: image processing and analytics; labeling; captioning; extraction; enrichment; contextualized
information and knowledge; storytelling with image data; curating; summarizing

1. Introduction

Due to the advancement of technology, a massive amount of data is generated on
various offline/online platforms. Data analysis and Big Data are at the forefront of business
and science today. These data are collected from online transactions, emails, images, videos,
audio files, log files, posts, health records, social networking interactions, scientific data,
sensors, and mobile phones. However, this Big Data is stored in different data islands that
grow immensely and are challenging to capture, store, organize, analyze, and visualize.
The challenges that big data carry include understanding the data, poor data quality,
data scaling, incorrect integration, considerable costs, real-time data issues, and data
verification. A substantial amount of this unstructured generated data consists of images
and videos, e.g., on Google Images and surveillance cameras. Moreover, the emergence
of social media has resulted in countless daily images uploaded by users on numerous
online platforms, such as Instagram and Facebook [1]. Therefore, managing, curating,
processing, and analyzing this vast amount of data is of significant importance. To be more
specific, data analysis can help businesses better understand their customers, increase sales,
improve customer targeting, diminish costs, and solve problems more effectively. It is used
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to evaluate data with statistical tools to discover useful information. Therefore, analyzing
data is crucial in many organizations, businesses, and research studies, as well as academia.

Images are one of the essential categories among the vast available data. There are
various means of processing and analyzing image data by assigning keywords, detecting
objects, annotating, captioning, or creating a textual description. Thus, there has been
an explosion of interest in this area, which is used in various applications such as im-
age annotation, object detection, and image captioning. Various traditional computer
vision approaches have been proposed for solving these tasks; however, they have lim-
ited capabilities. It is necessary to choose which features are important in each given
image in traditional methods (feature selection step). The traditional approaches use well-
established computer vision (CV) techniques such as feature descriptors (e.g., SIFT [2],
SURF [3], BRIEF [4]), and after that, a feature extraction step is carried out. The features in
an image are small areas of interest that are descriptive or informative. Several computer
vision algorithms may be involved in this step, such as edge detection, corner detection,
or threshold segmentation.

In recent years, machine learning (ML) and deep learning (DL) have been recognized
as highly effective means for advancing technology and have pushed the limits of what is
possible in the domain of image processing and artificial intelligence (AI) in general. As
a result, ML and DL are increasingly applied to machine vision applications. Furthermore,
multiple problems in vision tasks (e.g., object detection, image annotation, and multilabel
image classification) have leveraged these learning techniques to interpret an image to
figure out what is occurring. Recent DL-based approaches have demonstrated promis-
ing results in vision tasks, and the introduction of convolutional networks has set off a
technological revolution in “image understanding”.

In the last decade, we have witnessed a significant advancement in the field of image
processing, analytics, and understanding. We can discover patterns in raw image data
using data analytics techniques and gain valuable insights. However, these techniques
have limitations, such as hidden bias and complexity, which affects the decision process.
On the other hand, they do not provide sufficient techniques for discovering, linking,
and understanding image data. Transforming the data extracted from images into com-
monly understood and subjective descriptions to make subsequent decisions according
to the various interpretations of the image data is challenging. The current techniques in
image processing are incapable of deriving an understanding from various perspectives,
and image data analytics is often insufficient. Narratives are effective means of conveying
the underlying information in an image and gaining a rich understanding of it. We can
effortlessly distinguish between a story and a narrative by shuffling the order of events and
generating a new narrative of the same story every time we change the event order. Stories,
which are various combinations of narratives, are subjective and assist in understanding
images based on an analyst’s view. Storytelling with image data and image processing
are not the same but are deeply intertwined, since storytelling is integral to analytics.
Storytelling with image data is a broad and complicated task; its intention is to collect
images most representative of an event. Then, after steps such as curation, enrichment,
extraction, summarization, labeling, and narrative construction, a textual story is generated
based on the incidents in the images.

Storytelling with image data can play a crucial role in preventing tragedies such
as the 2016 Brussels airport bombings (https://en.wikipedia.org/wiki/2016_Brussels_
bombings, accessed on 1 December 2022) by using image analysis technology to detect
and automatically predict suspicious activities and unattended packages. By extracting
information from images and enriching it with external knowledge sources, AI systems can
generate detailed narratives that provide context and guidance for security personnel. This
enables them to respond quickly and effectively to potential threats, potentially preventing
harm to innocent civilians.

Figure 1 presents an exemplary end-to-end storytelling scenario that highlights the
potential of utilizing image data obtained from cameras installed in airports to gain a better
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understanding of events and activities. In the background, an AI system equipped with
image analysis technology constantly scans security camera footage for potential threats.
In an image of an airport, various objects can be extracted to detect suspicious activities,
these include the following:

• Unattended bags or packages: these can be detected by analyzing the shape, size,
and position of bags and packages in an image.

• People loitering or moving in a suspicious manner: this can be detected by analyzing
the movements and patterns of people in the image.

• Individuals wearing bulky or concealed clothing: this can be detected by analyzing
the size and shape of individuals in the image.

• Suspicious behavior: this can be detected by analyzing the posture and gestures of
individuals in the image.

• Abandoned vehicles or other objects: these can be detected by analyzing the position
and size of vehicles and other objects in the image.

By extracting information about these objects, an AI system can identify potential
threats and generate a detailed story that provides context and guidance for security
personnel. By enriching these data and linking information items to external knowledge
sources, such as social and historical police data, the AI system can generate a detailed
story that provides context for the situation. The system can highlight potential warning
signs, identify potential threats, and provide guidance on how to respond.

Accordingly, storytelling with image data is capable of capturing and representing
temporal/sequential order of key events [5]. Moreover, a story can be told at multiple
levels, i.e., a very abstract story versus a detailed story, to support the subjective nature of
storytelling with data. To the best of our knowledge, no system can interactively generate
different narratives from the timeline of events/activities that happened since the crime
incident up to the present time.

Figure 1. An end-to-end storytelling example. Storytelling with image data could be a critical tool in
preventing events like the 2016 Brussels bombings. By analyzing and connecting images from various
sources, including security cameras and social media, authorities can identify potential threats and
act preemptively to ensure public safety.

Storytelling with image data can be identified as an analytics approach to turning
insights into actions. Despite the early adoption, storytelling systems are still in the
early stages of development, with many unsolved theoretical and technical challenges
stemming from the lack of a formal framework for story modeling and creation from data
identifying the notion of story schema, story instance, story element, and narrative. Most
related works [6,7] in storytelling presented interactive visualizations to convey data-driven
discoveries in a captivating and intuitive way. However, storytelling with image data is
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much more than sophisticated ways of presenting data visually. Organizing image data,
contextualizing it, enhancing the discovery of related events and entities in the image,
and presenting it interactively to end-users are the main challenges in storytelling with
image data. However, more importantly, there is a need to evaluate the quality of the
constructed stories and narratives, which is still a big challenge. We further discuss the
current methods for assessing the quality of generated stories in Section 8; however, we
leave it as future work since there is a huge knowledge gap in this part and it is still an
active research field.

In this survey, we focus on the research problem of “understanding the image data” in
general and, more particularly, analyzing the state of the art in the curation, summarization,
and presentation of large amounts of image data in a succinct and consumable manner to
end-users. We argue that stories are able to combine data with narratives to reduce the
ambiguity of data, connect data with the context, and describe a specific interpretation.
We aim to advance the scientific understanding of storytelling with image data in gen-
eral, and image data curation, event/entity extraction and discovery, narrative formation
(e.g., event stream processing), Knowledge Bases [8], Knowledge Lakes [9], and Knowledge
Graphs [10,11] in particular. We provide a systematic review and comparative analysis
of methods and tools to identify, evaluate, and interpret relevant research in the field of
storytelling with image data. This paper introduces storytelling as a process that facil-
itates understanding image data. This process uses several phases, from cleaning and
cleansing, followed by curation and adding value. Several approaches in this paper focus
on preparing an image for data analytics and turning a raw image into contextualized
knowledge, which is very critical for the process of storytelling with image data. Therefore,
we decided to conduct a comprehensive review of the existing work in image processing,
cleaning, and curation, preparing the understanding of the importance of these phases
in the storytelling process. These phases and steps of storytelling with image data are
highlighted in Figure 2.

Figure 2. The proposed taxonomy for storytelling with image data.
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The method used to select the literature for this survey is described in Section 2.
Storytelling with image data is decomposed into five tasks. Data curation is the first
task toward story generation with image data, which is discussed in Section 3.1. Then,
in Section 4, we investigate the story modeling process. Intelligent narrative discovery is
further studied in Section 5. Story creation and intelligent widgets for narrative discovery
are discussed in Sections 6 and 7. Section 8 explains the quality assessment step. Finally,
in Section 9, we conclude our study and provide the future works that we have in mind.
The taxonomy of storytelling with image data is demonstrated in Figure 2.

2. Literature Selection
2.1. Background and Motivation

This work is a systematic literature review (SLR) on storytelling with image data based
on the standard guidelines for performing SLR in software engineering [12]. The most
crucial aspect of any SLR is identifying the research questions (RQs). Table 1 demonstrates
the list of research questions (RQs), the discussion, and the main motivation that we focus
on to identify state-of-the-art storytelling methods with image data, which is discussed in
detail in Section 2.2. Moreover, Figure 3a shows a word cloud representation of research
questions and their corresponding main motivations, with more frequent words in larger
font sizes. Word clouds, in general, are visual representations of textual data. They highlight
the most prominent or frequent words and ignore the most common words in the language.
These figures pinpoint the most important keywords in our search keywords and question–
motivation pairs for storytelling with the image data field. Finally, the detailed classification
of different categories with their subcategories, references, time period, and the number of
references in each subcategory is mentioned in Table 2 in this survey.

Table 1. Research questions (RQs) examined in this survey.

ID Research Question Description and Main Motivation

RQ1
What is storytelling with image
data, and how can it contribute to
understanding images?

Storytelling with image data aims to generate a coherent story based on a set of
relevant images. The main steps to understanding image data are curation,
summarization, and presentation in a succinct and consumable manner to
end-users. Storytelling with image data is therefore considered an appropriate
metaphor for capturing and representing the temporal/sequential order of key
events.

RQ2
How is storytelling with image data
different from image/video
captioning methods?

Storytelling with image data could differ from image/video captioning,
classification, and labeling tasks. In storytelling, the objective is to describe a set of
images subjectively. Due to different understandings, a data analyst may create
various narratives for a set of images. Based on the combinations of these narratives
and the goals of an analyst, personalized and customized stories could be
generated.

RQ3
What are the differences between
storytelling with a set of related
images rather than a single image?

Storytelling with a single image could differ from storytelling with a set of images.
Multiple images generate more features and consist of more dimensions, such as
time and location, resulting in diverse knowledge and context-aware narratives.
For example, imagine a single image showing a nervous woman in a meeting vs.
multiple images depicting her activities, such as waking up, having breakfast with
family, going to work, being late and stuck in traffic, being in a meeting nervously,
and finally going back home.

RQ4
What are the technical challenges
we face in storytelling with image
data?

Storytelling mainly focuses on understanding a set of related images. There is a
plethora of research in storytelling with textual data, which is well-matured,
and there has been significant progress in this field. It can develop, focus,
and deliver critical concepts from an unstructured corpus into a narrative. However,
the field of storytelling with image data is at an early stage. The challenges in
storytelling fundamentally differ from simple text generation based on an image.
Filling in the visual gap between the images with a subjective story is the main
challenge of storytelling with image data.
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Table 1. Cont.

ID Research Question Description and Main Motivation

RQ5 What techniques have been used in
storytelling with image data?

Although scattered work has been conducted in storytelling with image data, this
issue has not yet been coined. Object extraction, image captioning, labeling,
and annotation are some of the leading practices in this field. We take one step
forward and combine them to provide a detailed view at multiple levels to help
analysts to understand image data. In summary, we combine data with narratives
to reduce the ambiguity of data, connect data with context, and describe a specific
interpretation.

RQ6

What are the applications of
storytelling with image data,
and how can they provide value for
businesses?

We believe storytelling with image data is essential for advancing AI towards a
more human-like understanding. The need for understanding the massive amount
of image data published on social media platforms, IoT devices such as CCTV
cameras, smart cars, dash cams, and video captioning for the visually or hearing
impaired is strongly felt. Storytelling could help businesses to build personalized
stories. For example, numerous images/videos are captured by various CCTVs or
at the crime scene, which could help with the police investigation of crimes.
Accordingly, instead of individuals spending a lot of time looking for a specific clue,
storytelling could help speed up the investigation process and discover rich
insights.

RQ7 How can the quality of the stories
be assessed?

Researchers should ensure that a high-quality story (a semantically and logically
coherent story that accurately describes the objects in a given set of images and
engages the analyst) is generated, since trust is essential in storytelling with data.
For example, we can point out stories generated around fake news based on a set of
images. Moreover, story quality assessment could also be automated by using
human in the loop.

(a) (b)

Figure 3. Storytelling with image data research questions/motivations and keywords word cloud.
(a) Research questions/motivations word cloud. (b) Search keywords word cloud.
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Table 2. Classification of selected papers in this survey.
.

Category Subcategory Literature Time Period No.

Curation: Cleaning and
Preprocessing

Image Correction [13–17] [2014–2020] 5
Image Enhancement [18–23] [2013–2021] 6
Image Integration [24–27] [2007–2020] 4
Image Transformation [28–30] [2011–2018] 3
Image Preparation for Feature Extraction [16,31–37] [2013–2021] 8

Curation: Adding Value Extraction [38–61] [1981–2022] 24
Enrichment and Linking [62–65] [2012–2021] 4

Story modeling Organizing and summarizing Feature Data [66–68] [2014–2019] 3
Narrative Engineering [49,69–100] [2014–2022] 33

Intelligent Narrative Discovery Image Collection Summarization [37,101–109] [2009–2021] 10

Story Creation Framework and Techniques [62,110–122] [2016–2022] 14

Story Presentation and Querying Intelligent Widget/Visualization [6,123,124] [2012–2020] 3

Quality Assessment Automatic Assessment [112,117,125–132] [2002–2020] 10
Human Assessment [112,117,131–133] [2016–2020] 5

2.2. Research Questions

The use of image data in storytelling has gained significant attention in recent years
as an effective way for businesses to communicate their messages to their audience. Sto-
rytelling with image data can help brands stand out from the competition and increase
customer engagement by creating an emotional connection with their target audience.
However, there are several research questions that remain unanswered regarding the use
of image data in storytelling. In this section, we explore the main motivations behind
these research questions and summarize the findings that they offer to the field of visual
storytelling. By understanding the motivations behind these research questions and their
contributions to the field, we can gain insights into the best practices for using image data
in storytelling and the potential benefits for businesses. Table 1 illustrates the research
questions (RQs) examined in this survey.

RQ1. What is storytelling with image data, and how can it contribute to understand-
ing images?

The main motivation behind this research question is to explore the use of image data
as a means of storytelling and understanding visual content. In today’s world, we are
bombarded with vast amounts of visual data, and it is becoming increasingly important
to understand how we can effectively use these data to communicate ideas and convey
messages. The research question aims to identify and analyze the methods and techniques
used in storytelling with image data and explore how these methods can be used to enhance
our understanding of visual content.

The findings of this research question will offer insights into how images can be
effectively used as a medium for storytelling and how they can be used to convey complex
information in a way that is easy to understand and engaging for the audience. The research
question will offer a summary of the key techniques and strategies used in storytelling with
image data, including data visualization, image classification, and image recognition. It will
also provide insights into how these techniques can be used to improve our understanding
of images, including their context, content, and meaning.

RQ2. How is storytelling with image data different from image/video captioning methods?

The main motivation behind this research question is to identify and understand the
unique approaches and techniques used in storytelling with image data compared with
image/video captioning methods. While both methods involve using images and videos
to convey information, the way they approach storytelling can be quite different. The
research question aims to analyze the differences between storytelling with image data
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and image/video captioning methods, including the use of context, narrative structure,
and audience engagement. It will explore how storytelling with image data is focused on
creating a narrative that engages and resonates with the audience, whereas image/video
captioning methods are often more focused on providing a concise and accurate description
of the visual content.

The findings of this research question will offer insights into the unique strategies and
techniques used in storytelling with image data, including the use of data visualization,
creative design, and visual storytelling. It will also provide a better understanding of how
these methods can be used to create more engaging and impactful visual content.

RQ3. What are the differences between storytelling with a set of related images rather
than a single image?

The main motivation behind this research question is to investigate the effectiveness
of using multiple images to tell a story as opposed to using a single image. The question
arises from the need to understand how different visual storytelling techniques can be
utilized to create more impactful and engaging narratives. The research question aims to
analyze the differences between using a set of related images and a single image to tell
a story, including the ways in which they convey information, create meaning, and engage
the audience. It will explore the various factors that contribute to the effectiveness of using
multiple images, such as context, sequence, and visual coherence.

The findings of this research question will offer insights into the unique strategies
and techniques used in storytelling with a set of related images, including the use of
visual hierarchy, narrative structure, and visual metaphors. It will also provide a better
understanding of how these methods can be used to create more engaging and impactful
visual content.

RQ4. What are the technical challenges we face in storytelling with image data?

The main motivation behind this research question is to identify the technical difficul-
ties that arise when utilizing image data for storytelling purposes. This research question
is crucial because, while there are numerous techniques available for analyzing and un-
derstanding image data, there are significant challenges that remain to be addressed in
utilizing image data for storytelling purposes. Some of the technical challenges that may
be addressed by this research question include issues related to image recognition, feature
extraction, data preprocessing, and scalability. Additionally, the research may delve into
challenges related to representing the narrative structure and visual language of the story
in a coherent and meaningful way.

The findings of this research question may offer insights into the limitations and
challenges of utilizing image data for storytelling and provide potential solutions to these
issues. By understanding these challenges, we may be able to improve the effectiveness
and efficiency of storytelling with image data and enhance our ability to communicate
complex concepts and narratives.

RQ5. What techniques have been used in storytelling with image data?

The main motivation behind this research question is to identify and understand the
different approaches and methods that have been used to create compelling stories using
image data. This research question is important because there are various ways to approach
storytelling with image data, and by examining the different techniques that have been
employed, we can gain insights into the strengths and limitations of each approach.

The findings of this research question may offer a comprehensive overview of the
techniques that have been used for storytelling with image data. This can include methods
such as visual narratives, data-driven narratives, photo essays, and multimedia storytelling.
By analyzing these different approaches, we can gain insights into their unique features,
advantages, and challenges. Additionally, this research may highlight emerging techniques
and trends in storytelling with image data, providing new avenues for exploration and
innovation in this field.
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RQ6. What are the applications of storytelling with image data, and how can they pro-
vide value for businesses?

The main motivation behind this research question is to explore the potential benefits
of using image data in storytelling for businesses. With the increasing availability of
visual data, businesses have the opportunity to communicate their brand messages in
more engaging and impactful ways through the use of images. By answering this research
question, we can gain insights into the various applications of storytelling with image
data, such as creating marketing campaigns, visualizing data, and enhancing customer
experiences. Additionally, we can explore how businesses can leverage these applications
to create value for their brand, increase customer engagement, and drive revenue growth.
Some potential findings that could arise from this research question include the following:

• Image data can be used to create compelling marketing campaigns that are more
engaging than traditional text-based approaches.

• Visualizations of data through image data can provide businesses with valuable
insights and help them make data-driven decisions.

• The use of image data can enhance the customer experience by creating more immer-
sive and interactive experiences.

• Storytelling with image data can help businesses to differentiate their brand and stand
out in a crowded marketplace.

• The adoption of image data in storytelling can lead to improved brand perception,
increased customer loyalty, and ultimately, increased revenue growth.

RQ7. How can the quality of the stories be assessed?

The main motivation behind this research question is to provide a framework for
evaluating the effectiveness of visual storytelling. While there is a growing interest in the
use of visual storytelling, there is a lack of guidance on how to measure the quality of
the stories being created. By answering this research question, we can gain insights into
the key elements that contribute to the quality of visual stories, such as the clarity of the
message, the coherence of the narrative, the use of visual elements to support the story,
and the emotional impact of the story. Additionally, we can explore how to measure these
elements to assess the overall quality of the story. Some potential findings that could arise
from this research question include the following:

• The identification of key elements that contribute to the quality of visual stories, such
as the use of clear and concise messaging, the use of compelling visual elements,
and the emotional impact of the story.

• The development of a framework for evaluating the quality of visual stories, includ-
ing the creation of metrics to assess the effectiveness of the story in achieving its
intended goals.

• The importance of considering the target audience when assessing the quality of visual
stories, as different audiences may have different preferences and expectations.

• The need to balance the creative and technical aspects of visual storytelling when
assessing quality, as both elements are important in creating effective stories.

• The potential for using technology, such as eye-tracking or emotional recognition
software, to measure the impact of visual storytelling on the viewer.

2.3. Literature Selection

We broke down our research questions into individual facets and conducted an ex-
tensive literature search on electronic sources such as Google Scholar (https://scholar.
google.com, accessed on 1 December 2022) and arXiv (https://arxiv.org/, accessed on 1
December 2022) based on sophisticated search queries and keywords. We did our best to
have an unbiased search strategy. The following search string uses AND and OR operators
to represent our “storytelling with image data” generic search query:

([“Image” AND “Captioning”] OR [“Image” AND “Caption” AND “Generation”])
AND ([“Visual” AND “Question” AND “Answering”] OR [“VQA”]) AND ([“Visual” AND

https://scholar.google.com
https://scholar.google.com
https://arxiv.org/
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“Question” AND “Generation”] OR [“VQG”]) AND (“Visual” AND “Dialog”) AND ([“Vi-
sual” AND “Storytelling”] OR [“Storytelling” AND “Image” AND “Data”] OR [“Multi-
Image” AND “Story” AND “Generation”]).

We included all possible search strings related to each part and did our best to make
sure no potential study is missed in our results. Moreover, the word cloud representation
for the search keywords is demonstrated in Figure 3b. In addition, we included articles
published since 1980, and the yearwise distribution of the selected articles after the paper
quality assessment phase is represented in Figure 4. These selected articles were included
in our study if they met the inclusion criteria explained in the following.

• English language studies.
• Articles dated between 1980 and 2022.
• Articles related to at least one aspect of our research questions.
• Reference list from relevant studies and review articles.

On the other hand, we excluded some articles based on our exclusion criteria, which
include the following items:

• Informal literature surveys (no defined research questions, no search process, no
defined data extraction or data analysis process).

• Articles that are not published (except for preprints and arXiv).
• Non-English articles.
• Studies not related to at least one aspect of our research questions.

Ultimately, the quality of the selected studies is assessed based on the following list:

• Frequency of citations.
• Are the study’s research challenges/contributions/experiments clearly explained?
• Is there a clear statement of the objectives of the research?
• Are the experiments realized to evaluate the ideas presented in the study?

Figure 4. Yearwise distribution of the selected articles.

3. Task 1. Building the Foundation for Organizing and Curating the Raw Image Data
3.1. Curation: Image Preparation Using Cleaning and Preprocessing

Preprocessing is a critical initial step in data analysis because it converts raw data into
cleaned data by removing undesired variance such as subjective and experimental abnor-
malities [134]. These data are then more suitable for the data analysis objectives. In contrast,
incorrect preprocessing can result in undesired variation. Appropriate preprocessing is
thus a vital step that directly impacts the performance of all subsequent pipeline processes
and, hence, the performance of the whole investigation [134].

Generally, image classification and segmentation are performed using real-time pic-
tures gathered from imaging centers and simulated images obtained from publicly available
databases [135]. These real-time images that have been stored in a database prior to being
processed are referred to as raw images. Typically, these raw images are unsuitable for
analysis since they may contain numerous types of noise. As a result, sufficient prepro-
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cessing techniques should be utilized to improve image quality. Techniques for image
preprocessing are fundamental for all image-based applications, such as storytelling with
image data. Such approaches’ accuracy and convergence rate should be extremely high in
order to ensure the success of succeeding phases. However, these strategies are frequently
overlooked, resulting in unsatisfactory outcomes [135]. Optimizing image brightness,
cleaning, and enhancement is significant because this information may be utilized for
other purposes, such as feature detection or navigation. In addition, these approaches can
independently access and operate with this information [136]. This section discusses the
various preprocessing techniques and approaches available for image analysis.

3.1.1. Image Correction

Prior to feature generation and analysis, potential noises in the images may need to be
addressed during image preprocessing. Various candidates for rectification are listed below.

• Image Denoising [13,14]. Noise might be created randomly or through the operation
of a device. The presence of noise distorts the photos and may confuse the identi-
fication process. Thus, image denoising is a critical preprocessing approach for the
subsequent phases of image processing. Traditionally used single-image denoising
methods frequently represent the image’s attributes and the noise they are intended
to remove analytically. In contrast, contemporary denoising techniques frequently use
neural networks to develop a mapping between noisy and noise-free pictures. While
DL models are able to reflect complex features of pictures and noise, they need con-
siderable paired samples to train such systems. Therefore, the majority of denoising
approaches that are based on learning make use of synthetic training datasets.

• Color Corrections [15]. Given that digital photographs are inherently color images,
such examination should make proper use of the color or spectral data contained in
the acquired data. However, prior to performing color picture analysis, considerable
preprocessing is often required to both enhance and facilitate effective analysis. Color
calibration is used to guarantee that correct color information is collected. In con-
trast, color enhancing ensures the efficient results of image analysis techniques that
are otherwise highly susceptible to imaging circumstances and scanner fluctuations.
The approaches used vary from calibrating cameras and scanners to adjusting the pre-
sented colors for converting the picture to another color representation, which can help
with following activities such as segmentation. The color technique would be utilized
to effectively distinguish the achievements of stains that are all in the same region.
This allows the assessment of strain-specific pictures, whereas color normalization
methods can be used to decrease different shades in histopathology images caused by
things such as scanner features, chemical color levels, or different procedures.

• Lighting Corrections [16,17]. Deep shadows cast by lighting can hide particular
textural characteristics; inconsistent lighting across the picture might distort findings.
Rank filtering, histogram equalization, and remapping are all possible corrective
approaches. Background can be caused by uneven illumination, which occurs when
the light source is on one side of the picture, and the overall brightness decreases
from one side to another. However, there are other different methods to establish
a background, and frequently, the background is so faint or normal that we have
difficulty noticing it at all. To address background issues, it is good to obtain a separate
image of the background. This method compensates for lighting issues and additional
background abnormalities.

3.1.2. Image Enhancement

Rather than correcting faults, enhancements are utilized to optimize for certain feature-
measuring methodologies. Sharpening and color balance are two well-known image
enhancement techniques. The followings are some broad types of image-enhancing tech-
niques and their possible advantages for feature description.
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• Enhancements to Illumination [18,19]. Lighting and contrast enhancement difficul-
ties are inextricably linked when it comes to low-light picture enhancement. Several
works have attempted to build frameworks for how lighting and noise in low-light
images are viewed jointly, resulting in noise control and low-light improvement find-
ings. Convolutional neural networks (CNNs) can simulate the usage patterns of
illuminance and picture noise accordingly and utilize them as restrictions to aid the
joint learning process. High-quality pictures require high-quality thin slices, should
be clean, free of imperfections, and consistent in thickness from center to edge to
minimize artificial intervention contrast—the narrower the segment, the smaller the
path variance and the lesser the intervention color.

• Pyramids of Scale-Space. Kim [20] developed defining the diffusion pyramid to
investigate lighting qualities over a range of scales precisely. They reasoned that by
aggregating the nonlinear rate of diffusion from wide to fine scales via max pooling,
the dazzling characteristic of lighting, even in the dark environment, would be well
shown from both domestic and global perspectives. Additionally, Pang et al. [21] sug-
gested a scale-aware deep CNN for deraining that has a multiscale features extraction
branch that is coupled to a scale-space invariant focus branch.

• Enhancements to the Blur. Motion blur is a typical occurrence due to the exposure
time taken by camera sensors, throughout which scenes are collected at distinct time
stamps and averaged (blurred) into a signal [137]. So, a slow shutter speed and change
in momentum of the camera or subject might create motion blur. It can also occur as a
result of a UAV (unmanned aerial vehicle) platform’s extreme vibrations, which might
impair fracture identification [22]. The noise of blurring produced by complementary
beam removal imaging could be reduced with a compressed blind deconvolution and
denoising technique [23].

Preprocessing and denoising are crucial procedures in image storytelling since they
enhance the quality of the used images. It involves various techniques, such as image
denoising, color correction, and contrast adjustment, which are used to improve the overall
appearance and readability of the image. Denoising an image by reducing undesired noise
can, for example, diminish the visual impact of the image for a storytelling purpose.

3.1.3. Image Integration

The process of image integration might involve preprocedural imaging, segmenta-
tion of the image, and registration of image [24]. Image integration has the ability to
improve the results of several image-processing applications. Active sensors are the root of
volumetric range image integration technologies [25]. The integration technique should
resist severe outliers in the range of pictures. The vast majority of 2D data integration
solutions rely on data-level picture fusion [26]. Integration of range photos in a robust
manner is a crucial step in creating high-quality 3D images [25]. Due to the fact that range
pictures and specific range maps from 2D images may contain a significant number of
outliers, any integration strategy attempting to produce high-quality models should be
more resilient. Bavirisetti et al. [27] have devised an image integration approach for data
absorbed from multifocus image fusion utilizing multiscale picture decomposition and
saliency identification. They were able to integrate just focused and sharpened portions
into the merged picture.

3.1.4. Image Transformation

Image-to-image transformations try to turn an input image into the required out-
put image, and they occur in a variety of image-processing, computer vision, and object
recognition applications [28], for example, creating high-quality photographs from com-
parable degraded (e.g., compressed, damaged, or low-resolution) images and modifying
images [28]. Using two examples of image transformation, the analysis highlights the role
of perception in defining, analyzing, and transforming images [29]. Following Jia et al. [30],
many challenges in computer vision might be formulated as image transformations. Nat-
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ural images are extremely high-dimensional, statically non-Gaussian, and have diverse
texture patterns. In recent years, CNNs have been trained under supervision for different
image-to-image transformation issues [28]. They encode the input image into a hidden
representation, which is subsequently decoded to produce the output image.

3.1.5. Other Preprocessing Methods for Feature Extraction

The feature extraction procedure makes use of a number of image-processing meth-
ods and statistical analyses to discover common patterns within the pictures. Texture
characteristics have been identified as one of the most critical imaging aspects in the field
of classification [31]. Preprocessing a picture can significantly influence the quality of
extracted features and image analysis outcomes. Preprocessing an image is comparable to
the mathematical normalization of data collection, which is a frequent stage in developing
several feature descriptor algorithms [16].

As Tofighi et al. [32] discussed, background removal is one of the preprocessing
procedures for preparing pictures for feature extraction. They stated that if an image has
a light-colored object on a dark background, it is possible to distinguish the grayscale pixels
of the object and background by identifying two main parts. A commonly used technique
for removing the background in this situation is selecting a threshold value that separates
these parts.

The extraction of an image’s features is a fundamental and critical element for image
modeling [33]. Based on the work by Heaton [34] to employ feature engineering, the feature
vector of a system is enlarged by introducing new features that are calculated from the
existing features. Manual feature engineering is eliminated by utilizing a CNN to learn the
visual representation for the collection challenge. However, such a presentation needs to be
as simple as feasible to facilitate the retrieval and preservation of document images [35].
Some detection algorithms receive the extracted features of unannotated pictures, annotated
images, and a code book as the input [36]. The critical stage in evaluating an image’s
numerous properties is feature extraction. One goal of feature selection and extraction may
be to reduce the dimensions of data for better analysis [37]. Then, in the next section, we
cover how to manage image collection summarization.

3.2. Curation: Adding Value

Adding value to the preprocessed images is critical in image analysis processes be-
cause it turns the raw unstructured images into useful information items. In the storytelling
process, specifically, adding a value to the images is highly important for extracting hid-
den information, topics, and keywords, and adding more real-world contexts by linking
the images to the knowledge base within a particular area is of the utmost significance.
The rest of this section reviews the techniques and methods used to add value to images as
a preprocessing step of storytelling.

3.2.1. Extraction

The first insight extracted from images for any image analysis process is the very
explicit terms, such as different objects, topics, and contexts. This part reviews the tech-
niques and methods of feature extractions that lead to extracting the additional terms
mentioned above.

Object Extraction. In computer vision, object detection is the task of detecting the
objects of a particular class, such as cars, humans, and different types of plants and animals.
Object detection can be considered a combination of image classification and object localiza-
tion. Every object in the image is given a class label and a bounding box. On the other hand,
image annotation is often formulated as a multilabel image classification problem [55].
Since object detection and image annotation are critical steps after organizing feature data
and before narrative construction, we further investigated some state-of-the-art models
addressing this problem. Generally, the object detection approaches could be divided into
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traditional ML- and DL-based categories [38]. We review some popular algorithms for
object detection in this part.

• Traditional Methods. Traditional object detection methods use handcrafted features
and feed them to a classifier or use the correlation between them in different images to
detect different objects [39]. A suitable feature extraction technique could be extracting
the geometric features from the images using General Hough Transform [40]. This
feature extractor detects geometric shapes such as lines, circles, and curves on a
grayscale image. Corners and edges are other features used for detecting objects.
Harris Corner and Edge detector [41] is one of the feature extractors that could be used
in this regard. This method could detect different objects and shapes in the image by
extracting the corners and edges of two images and calculating their correlation [39].
The problem with these features is that they are all sensitive to rescaling and rotation.
To be able to detect the objects without the rotation and scaling concerns, intersect
point and local features detectors such as Scale-Invariant Feature Transform (SIFT) [42]
and Speeded Up Robust Features (SURF) [43] could be used. These feature descriptors
are rotation- and scale-invariant by considering the features as objects. The Histogram
of Oriented Gradients (HOG) [44] is another feature descriptor of the same type;
however, it is not rotation-invariant and is only robust to scaling [38,39].

• Deep Learning Models. Generally, deep learning object detection approaches are
divided into two categories: (i) two-stage: in this approach, first, the regions are
extracted, and each region is then fed to a model to detect the object inside that region;
(ii) single-stage: in this approach, an end-to-end model will detect both the regions
and the class of different objects [38,45]. The following reviews some of the most
popular methods in the above categories.

– Two-Stage. A two-stage model finds the object regions first, and then for the next
step, each region is treated as a single image and is fed to a model to classify the
object in it. Table 3 shows a summary of some of the well-known two-stage object
detection models.
R-CNN [48]: In this method, 2000 regions of interest will be first selected based
on the selective search technique [138] at first. Then, each of these regions is fed
to a CNN architecture, resulting in a 4096-dimensional feature vector for each
region. In the final step, the feature vector is fed to a pretrained SVM to classify
the objects inside that region.
SSP-Net [46]: The problem with the R-CNN approach is that it might miss some
of the objects that are divided into multiple regions and partially exist in each
region. To solve this problem, SPP-Net was proposed using the idea of spatial
pyramid matching (SPM) [139]. In this method, in the fifth convolution layer,
three kernels with sizes of one, two, and four are applied in each region to
consider different objects with different sizes.
Fast R-CNN [47]: Like R-CNN, SPP-Net has multiple stages of extracting the
feature vector, feeding to SVM for classification, and refining bounding box
regions. Fast R-CNN solved this issue by altering the architecture of the CNN in
SPP-Net so that the feature vector layer is then connected to two sibling output
layers. One is a softmax layer for classifying objects, and one is regarding refining
the position of the object’s bounding box.
Faster R-CNN [49]: The problem with the proposed approaches is selecting the
suitable regions in a costly way. In Faster R-CNN, a Region Proposal Network
(RPN) is proposed that could propose accurate bounding boxes for the objects in
an image cost-effectively. Adding RPN to the CNN architecture leads to a more
efficient and faster solution.
ORE [60]: The Open-World Object Detector (ORE) is a new method for detect-
ing objects in the open world using contrastive clustering and energy-based
identification.
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Table 3. Two-stage object detection models.

Model Region Finding Method Feature Extraction
Model Classifier

R-CNN [48] Selective Search CNN SVM
SSP-Net [46] Edge Box CNN SVM
Fast R-CNN [47] Selective Search CNN Softmax Layer
Faster R-CNN [49] Region Proposal Network CNN Softmax Layer
ORE [60] Region Proposal Network CNN Energy-based Layer

– Single-Stage. Single-stage models are end-to-end frameworks that perform the
region selection and object detection with the same model; hence, the computation
cost is drastically reduced in these models. Here, we review some of the popular
models in this category.
YOLO v1. [50]: In this method, the image is divided into SxS grids, and for
each cell of the grid, the bounding boxes plus their confidence scores and the
object that is centered on that cell plus its confidence score are calculated. Finally,
the prediction of an object will be a function of the two confidence scores of the
bounding box and object.
SSD [51]: The problem with YOLO is that sometimes it might not detect small
objects very well due to its fixed-size grids. SSD solves this issue by proposing
a more accurate and faster solution using a set of anchor boxes with different
scales to make a discrete output space.
RetinaNet [52]: RetinaNet uses a new loss function (also known as Focal Loss)
which forces the model to focus on misclassified samples in the training stage.
By doing so, the model could reach a comparable accuracy to the two-stage models.
NAS-FPN [56]: By utilizing a feature pyramid network, this method intends
to learn a more reasonable object detection architecture without designing it
manually. This architecture aggregates features at multiple scales.
EfficientDet [58]: This method examines the design options for neural network
models for object detection and suggests critical optimizations to enhance effi-
ciency. These optimizations are used to design a novel family of detectors called
EfficientDet. Feature networks and class prediction networks need to be scaled
up to optimize accuracy and efficiency, as the authors claim.

Extracting Additional Information. The same object detection approaches and other
deep learning models could also be used to detect the image’s relations, concepts, and key-
words. In some studies, the detected objects are referred to as concepts [62,64]. In another
study, topic extraction was addressed from the image [53]. The image is first fed to a pre-
trained neural network to extract the features, those features are used as the input to a topic
generation model, and the related topics are extracted. RW-AIA [59] finds image keywords
by considering label dependencies and modeling the relationship between these labels.
They construct a vocabulary graph and, by applying graph convolutional networks (GCNs),
find the tag descriptors. Finally, QAIA [61] uses a reweighting quantization function to
calculate the similarity between each pair of image keywords in the vocabulary graph.

3.2.2. Enrichment and Linking

Storytelling is the task of creating a coherent and reasonable story that contains
imaginary concepts from an input of a set of images. So far, we have reviewed the explicit
term extraction methods from the images. However, generating a story with the explicit
extracted terms would be monotonous and limited to a set of words. To fill this gap,
enriching the extracted terms with external commonsense knowledge bases and graphs is
required as the next step of the storytelling framework. In this part, we review some of the
enrichment methodologies.

Yang et al. [62] used an object detection method to extract the terms and then used an
external knowledge base (ConceptNet [63]) to enrich each term by the external common-
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sense knowledge. They created a set for the explicit terms and another set for the nodes
directly connected to each term in ConceptNet’s Knowledge Graph. They also proposed a
vision-aware directional encoding to reduce the noise and obtain the most relevant and
informative set of concepts. Chen et al. [64] used a similar approach to select the best
concepts from the ConceptNet. They proposed two concept selection methodologies: one
using an attention mechanism to select the most relevant concepts in one image and another
using an encoder–decoder to directly select the concepts from the images. In another study,
Li et al. [65] proposed a new approach to enrich the items. They used association rules
mining to mine the cross-modal rules and infer implicit concepts.

4. Task 2. Story Modeling

Data curation is the preprocessing, organization, enrichment, and integration of data
collected from various sources. In previous sections, we discussed data curation approaches
for image data in detail. To aggregate this huge amount of curated feature data, we can
shift away from the common feature data and move to a better organization of data in the
form of Knowledge Graphs, a collection of interlinked descriptions of concepts, entities,
relationships, and events. Knowledge Graphs put the data into context via linking, as well
as semantic metadata, created by subject-matter experts.

We present the Story Model, which transforms the raw image data into contextualized
knowledge. Then, it automatically discovers and links the events and entities of interest
from the contextualized data to create a Knowledge Graph. Ultimately, it summarizes the
Knowledge Graph and facilitates intelligent narrative discovery. It is a primary step before
modeling and representing the story based on the data. As a semantic network, this Story
Model represents a network of real-world entities, i.e., objects, events, or concepts. It is
a reusable data layer for answering complex queries across data silos.

Images require summarization, representation, understanding, and analysis from
various perspectives. Summarization is the presentation of a summary of generated data
in an informative manner. The image features are considered the cornerstone of image
summarization, and the most crucial issue is what features are to be considered in the
summarization process. On the other hand, narratives are perhaps the most efficacious
way to understand these images. Narratives are a choice of which events/entities to relate
to and in what order each narrative can be constructed based on a specific path in the data
Knowledge Graph in the Story Model. However, narratives are subjective and depend
on the analyst’s perspective. Therefore, analyzing image data narratives using models is
indispensable to understanding how analysts reason about images. Therefore, various
aspects of the narrative, such as its structure, time, purpose, and listener’s role, should be
considered to accomplish this. A story based on multiple images is a unique combination
of a set of narratives. Storytelling with image data deals with presenting large amounts of
data in a straightforward manner to end-users. Storytelling best represents image data since
it captures and represents temporal/sequential relationships between key events. There
are multiple levels to a story, i.e., an abstract story might differ from a detailed story. In this
section, we first focus on organizing and summarizing feature data to create narratives and
the final story. Then, we focus on narrative engineering from the summarized data and
categorize it from different perspectives.

4.1. Organizing and Summarizing Feature Data

In previous sections, we discussed how different features have been extracted, col-
lected, summarized, and curated from raw data. In this section, we discuss organizing
and summarizing feature data to be prepared for narrative engineering. Here, we examine
classification, clustering, and summarization techniques to organize the feature data.

4.1.1. Classification

Multiple features are extracted from images, and images are enriched with metadata
extracted from different sources. These metadata belong to various categories and classes.
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For example, some are words of places and some are human names; some are separate
objects and items in the image. These metadata must be classified into various categories
to organize our final feature data. Several existing classification methods are suitable for
different data types; in this article, some of the most useful ones are described [66].

• Decision Tree. Decision trees are one of the classification methods that classify the
data based on several conditions, each including one or more features of the data. It is
a tree model, in that each node contains a condition that divides the training data into
two or more parts, and the number of leaf nodes will determine the number of classes.

• Probabilistic Methods. A model created using probabilistic classifiers estimates the
probability of the relation between the feature and its class. Naive Bayes and Logistic
Regression are two popular probabilistic classifiers.

• Support Vector Machines. Support Vector Machines classify the data into two classes
and are suitable for binary classification tasks. In the feature space for the data,
this method tries to fit a hyperplane that separates the two data classes, so that the
hyperplane has the maximum margin with the data of both categories.

• Neural Networks. Neural networks are also one type of classifier. Different architec-
tures of neural networks with different output and input layers could be used based
on the type of data and the number of classes to nonlinearly classify the data into
different categories.

4.1.2. Clustering

Sometimes the metadata we use do not belong to specific categories; however, different
metadata groups have similar features and could be clustered into a single group. Several
existing clustering methods fit different data types. In this section, some of the most useful
ones are described [67].

• Representative-Based Methods. These methods are the most straightforward clus-
tering techniques, since they use the similarity or distance of the data points in the
feature space. In these methods, candidates are chosen among either the data points or
a function of the data points, such as mean or median, to be the center of the clusters.
The most popular techniques in this category are K-Means, K-Median, and K-Medoids.

• Hierarchical Clustering Methods. Hierarchical clustering methods cluster the data
on different levels. In the hierarchical clustering approach, a tree-shaped clustering is
produced so that each tree level demonstrates one option for clustering with a specific
number of clusters. e.g., the first node of the tree represents all data points in one
cluster, and the leaf nodes represent clustering with C clusters, in which C is the
number of data points. This approach is advantageous when we need different
insights from the clustering and we could obtain those insights by looking at each
tree level. Bottom-Up (Agglomerative) and Top-Down (Divisive) are two types of
hierarchical clustering approaches.

• Probabilistic Methods. In the probabilistic approaches, for each data point, C like-
lihoods will be calculated, in which C is equal to or less than the number of the
clusters. In these approaches, each data point could belong to multiple clusters but
with different probabilities. This method is called soft clustering.

• Density-Based Methods. The problem with distance-based and probabilistic clus-
tering is that the shapes of the clusters are always defined based on the model we
are using, e.g., the K-means technique’s cluster shape is always spherical. However,
sometimes the clusters of our data points have multiple odd shapes, and the clusters
are too close to each other. In this scenario, none of the above functions can correctly
cluster them. Density-based clustering solves this problem by identifying fine-grained
dense regions.

4.1.3. Feature Data Summarization

The features extracted in the previous sections are of different types, such as images,
text, words, items, and keywords, and they also have a large volume. Using data summa-
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rization is of the utmost importance to effectively analyze such extensive data. There are
several summarization techniques for each of the data types. In the storytelling use case,
we are dealing with unstructured data as our features. Hence, in this part, we introduce
some popular summarization techniques for unstructured data. Different classification and
clustering methods discussed in the previous part could also be used to summarize the fea-
ture data. e.g., Decision trees, Hidden Markov Model (HMM), Artificial Neural Networks
(ANN), and similarity-measure-based models. For text summarization, topic modeling,
and natural language processing (NLP), summarization techniques are also widely used.
For item and keyword summarization, techniques such as removing irrelevant and less
effective items and keywords, frequent itemset selection, and sampling could be used [68].

4.2. Narrative Engineering

Narrative construction develops descriptive text for images using computer vision
and natural language processing. However, over and above that, an accurate image and
language understanding should be paired syntactically and semantically. There have been
various approaches to tackling the task of “Image Narrative Generation” [100,140]. In this
section, we first define the concept of a narrative, then investigate its generation process
from different perspectives. Narrative construction can be studied and categorized into
learning-based, feature-map-based, language-based, and narrative length-based methods.

Definition 1. A narrative N is a specific subgraph, path, or walk in a Story Model starting from
a random node i and ending in another random node j while traversing the Knowledge Graph G
with a sequence of vertices in-between them. Graph G is the Knowledge Graph containing the
contextualized data information, extracted concepts, objects, topics, captions, metadata, and rules
from the image data.

Learning-Based Methods. Narrative construction has utilized a variety of learning-
based approaches. We classify them into three main categories. A supervised learning
method, which is the first category, refers to training the model under the supervision
of a teacher. Labels are used to supervise the learning process. In the second category,
reinforcement learning (RL) aims to maximize the long-term reward of agents by taking the
optimal action (through trial and error) in a particular state. Finally, a generative adversarial
network (GAN) trains a generative model by defining the problem as a supervised learning
problem consisting of two submodels: a generator and a discriminator. The generator
generates fake new samples and the discriminator tries to ascertain whether the input
samples are real or fake. Finally, a zero-sum adversarial game is used to train these two
models together until the discriminator is fooled half the time.

• Supervised Learning Methods. Multimodal Recurrent Neural Network (m-RNN)
architecture has been proposed in [69] to handle these two tasks: (1) image-to-sentence
description generation and (2) image and sentence retrieval. Additionally, this archi-
tecture is trained by utilizing a log-likelihood cost function. The model parameters are
learned by differentiating from the cost function given the input and the backprop-
agation algorithm. Karlpathy et al. [70] introduce a multimodal RNN architecture
that learns to generate narratives for image regions based on inferred alignments
(multimodal embeddings of convolutions over images and bi-RNNs over sentences).
They map every image and sentence into a shared space of h-dimensional vectors.
The supervision is carried out at the entire image and sentence level, so they formulate
an image–sentence score based on the individual region scores. Vinyals et al. [71]
present an end-to-end solution to the caption generation problem, which is fully train-
able by employing stochastic gradient descent, and the loss is the sum of each step’s
negative log-likelihood of the correct word.

• Reinforcement Learning (RL). SCST [72] is a reinforcement learning (RL) optimiza-
tion technique that normalizes rewards by exploiting the output of its test-time infer-
ence algorithm. This approach baselines the REINFORCE approach more efficaciously,
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leading to better results with nondifferentiable evaluation metrics. Ren et al. [73]
take a collaborative approach and propose a decision-making framework. They use
a policy and value network to predict the word for each step of narrative generation.
Specifically, an actor–critic RL algorithm is introduced to learn these two networks.
Gordon et al. [74] introduce the Interactive Question Answering (IQA) task (answering
questions that demand the agent’s interaction with a dynamic environment) and pro-
pose the Hierarchical Interactive Memory Network (HIMN). HIMN is factorized into
a Planner, a set of controllers, and a semantic spatial memory. The Planner, formulated
as an RL problem, invokes the controllers to explore the environment and answer the
question in the IQA task.

• Generative Adversarial Networks (GANs). Patro et al. [75] present a Correlated Col-
laborative Model (CCM) that guarantees the coherence of the generated textual expla-
nations and answers. CCM collaborates with the answer and explanation features and
employs generative adversarial strategies for training. In addition, the results are robust
to noise in images and text (even if the model is not trained for noise-based attacks).

• Combined Methods (RL + GAN). To generate more human-like answers to ques-
tions, Wu et al. [76] combine RL with GANs and introduce a novel framework. This
framework updates the generator by employing the reward of the generator policy
at each training step. After sampling data from the dialog history (a sequence of
textual data), maximum likelihood estimation (MLE) is used to update the generator.
Chen et al. [77] introduce a conditional generative adversarial captioning technique to
extend RL-based architectures. Furthermore, CNN- and RNN-based architectures are
presented for the discriminator module. The discriminator judges whether a human
described the resulting caption or if it is machine-generated.

Feature-Map-Based Methods. One of the critical challenges in narrative construction
based on an image is extracting visual features which best represent the image content.
Therefore, we categorize these methods into three main groups based on various strate-
gies proposed for extracting visual features: CNN-based, attention-based, graph-based,
and vision-transformer-based methods, which are discussed in detail in the following para-
graphs.

• CNN-Based Methods. Vinyals et al. [71] employ a vision CNN model to extract image
features, since CNNs can embed images in fixed-length vectors. They utilize the result
feature vector of GoogleNet [141] for the visual feature extraction step. Moreover,
Karpathy et al. [70] used the visual features extracted from AlexNet [142]. Many
studies employ the CNN modules to extract features such as [72,143,144].

• Attention-Based Methods. Simple CNN-based methods have the main advantage of
being compact and straightforward. At the same time, the extreme compactness and
lack of granularity are crucial issues that need to be addressed. An attention module
handles this issue by computing attention weights and attending to specific parts of
the visual features. Many approaches fit into attention-based methods that can be
divided into three main categories: grid-based, region-based, and self-attention. In the
following items, these three categories are further discussed.

– Grid-Based Attention Methods. A significant proportion of image captioning
methods use the attention mechanism to make captioning more flexible and
provide better granularity. Xu et al. [78] introduced an attention-based image
captioning model inspired by a recent study in machine translation [79] and
object detection [80,81]. The authors proposed two attention-based image caption
generators: a “soft” deterministic attention mechanism and a “hard” stochastic
attention mechanism. An adaptive encoder–decoder model [82] also automati-
cally determines when to rely on the language model and when to look at the
image (the spatial CNN features at each of the k grid locations of the image).

– Region-Based Attention Methods. Anderson et al. [83] employ a novel bottom-
up and top-down attention module (based on Faster R-CNN [49] and task-specific
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context). First, the bottom-up visual attention module extracts salient regions
of an image and represents them using convolutional feature vectors. Then,
the top-down module estimates the distribution of attention over image regions
(specifies weights of the features). As a result, a weighted average of all image
features is the final attended feature vector. The Look-Back and Predict-Forward
(LBPF) approach [84] presents two main modules: Look-Back (LB) module and
Predict-Forward (PF) module. As the input of the attention module, the LB
module concatenates the previous attention vector and the current hidden state.
In contrast, the PF module sequentially predicts the two following hidden states
based on the current hidden state. For constructing high-quality image captions,
the Reflective Decoding Network (RDN) [85] improves the capability of the
standard caption generator to handle long sequential modeling by examining the
caption’s word consistency. Li et al. [145] also addresses both the tasks of VQA
and VQG using the attention mechanism after extracting the visual features from
the input image.

– Self-Attention Methods. Despite the widespread use of attention mechanisms
in image captioning, we still do not know how closely related attended vectors
and given attention queries are. Therefore, Huang et al. [86] proposed the “At-
tention on Attention” (AoA) module, which specifies the attention results and
queries relevancy. Applying AoA to both the encoder and decoder in this re-
search, the authors introduced AoANet for image captioning. Guo et al. [87] first
proposed a normalized self-attention (NSA), which indicated that conducting
this normalization on the hidden activations inside self-attention is advantageous.
Then, a geometric-aware self-attention (GSA) module was proposed to compute
the objects’ geometric bias to assist with image comprehension. Furthermore,
the self-attention module in the encoder facilitated the EnTangled Attention (ETA)
model [88] to examine the detected entities’ relationships.

• Graph-Based Methods. This image encoder incorporates two kinds of visual rela-
tionships (semantic and spatial object relationships) in the proposed GCN-LSTM
framework [89], which attempts to explore the relations between objects. Based on
these visual relationships, they developed graphs over the detected objects in an
image and used GCNs proposed in [146]. The Scene Graph Auto-Encoder (SGAE) [90]
embeds inductive bias into a dictionary unsupervised. Subsequently, it is shared as
a re-encoder for text generation, enhancing the encoder–decoder performance. For cap-
tioning, Yao et al. [91] utilize the hierarchical structure in images at the instance, region,
and whole image level. This hierarchical structure is analyzed with a tree-structured
LSTM model, and each instance-, region-, and image-level feature is improved. Image
encoding is also based on a hierarchical scene parsing architecture.

• Vision-Transformer-Based Methods. In this category, the methods [147–149] study
the importance of spatial dimension conversion and its effectiveness on Vision Trans-
former (ViT) [150]. These methods are considered a better-performing detector-free
image captioning model.

Language-Based Methods. Story generation is a cross between computer vision
and natural language processing. Researchers use various methods to encode or decode
textual data. We categorize these approaches into four groups: RNN-based, CNN-based,
Transformer-based, BERT-like, and Diffusion-based methods.

• RNN-Based Methods. RNNs are a class of artificial neural networks that are derived
from feedforward neural networks. RNNs can process variable-length sequences of
inputs using their internal state (memory) and are used to handle text data generation
due to the sequential structure of the language. Recurrent methods can be divided
into three primary types: single-layer, stacked-layer, and attention-based approaches.

– Single-Layer Approaches. Vinyals et al. [71,151] propose a simple single-layer
LSTM-based [152] captioning system. Specifically, a convolutional neural Net-
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work is employed as an image encoder, followed by LSTM Recurrent Neural
Networks as decoders to generate the output sequence. The authors conceptual-
ize image captioning in a way that predicts the probability of a given sentence
based on the input image.

– Stacked-Layers Approaches. LRCN model [153] processes the visual input with
CNN modules, whose outputs are fed into a stack of recurrent sequence models
(two-layer LSTMs) to generate a variable-length sentence description for an input
image. Donahue et al. input the image and context word features to the recurrent
model at each step instead of feeding visual features to the system solely at the
initial phase.

– Attention-Based Approaches. This work [83] introduces top-down and bottom-
up attention to salient objects and other image regions. According to this work,
based on Faster R-CNN [49], the bottom-up mechanism proposes image regions
with a feature vector associated with them (each represented by a pooled convo-
lutional feature vector). In contrast, the top-down mechanism uses task-specific
context to predict an attention distribution over the image regions and determine
feature weights.

• CNN-Based Methods. LSTM modules overlook a sentence’s underlying hierarchy.
Moreover, a memory cell’s long-term dependencies also demand notable storage,
which leads to the introduction of CNNs as language models. Unlike LSTMs, CNNs
are faster and can learn the internal structure of sentences. The language CNN model
introduced in [154] is able to capture long-range dependencies in sequences. It exam-
ines the hierarchical and temporal data sequentially for image captioning. An image
captioning method using convolutional LSTM units is proposed in [92] to resolve
this issue that arises from LSTM units’ complexity and sequential nature. It uses
convolutional machine translation models combined with an attention mechanism to
utilize spatial image features. The authors of this work provide valuable insights, such
as CNNs produce more entropy, do not suffer from vanishing gradients, and are more
accurate. The CNN + CNN framework [93], another fast and competitive model with
LSTM-based language models, investigated how the kernel width and layer depth of
the language CNN impact image captioning. In a meaningful way, according to the
authors, the model can visualize learned attention maps and discover the concepts by
paying attention to the related areas in images.

• Transformer-Based Methods. The majority of conventional captioning systems use
an encoder–decoder framework. First, an input image is encoded into a representation
of information within the image and then decoded into an image description. How-
ever, these practical and state-of-the-art methods overlook the spatial relationships
among the detected objects. The Object Relation Transformer [94] integrates object
spatial relationship modeling into image captioning. The Dual-Level Collaborative
Transformer (DLCT) [95] leverages region and grid features to enhance image caption-
ing. Moreover, the locality-constrained cross-attention (LCCA) module designed in
this work addresses the problem of semantic noise produced when two sources of
features are directly fused. To guide the alignment of two sources of features, LCCA
constructs a geometric alignment graph.

• BERT-Like Paradigm Methods. Instead of constructing the narrative of an image
using the encoder–decoder framework, some approaches have attempted to tackle
this task by following the structure of BERT [155]. This category of methods, such
as the Vision-Language Pretraining (VLP) model [96], which can be fine-tuned for
image-to-text generation and understanding tasks, directly connect the visual and
textual inputs.

• Diffusion-Based Methods. In image captioning, the text tokens are decoded one
at a time using an auto-regressive method. Non-autoregressive methods, such as
diffusion-based captioning models [156–158], emit all words simultaneously, enabling
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bidirectional textual message exchange, in contrast to autoregressive methods that
generate sentences word-by-word.

Narrative Length-Based Methods. Most methods generate narratives for the com-
plete scene in the query image. On the other hand, another category for narrative construc-
tion, called dense captioning, generates narratives for each scene region. These two various
approaches are discussed in detail in the following paragraphs.

• Complete Narrative Construction. All the image captioning and narrative construc-
tion techniques that generate single or multiple captions for the whole scene and
the occurrences in the image fall into this category. The studies and research in this
category are discussed in previous sections.

• Dense Narrative Construction. Dense narrative construction, or dense captioning,
introduced by Johnson et al. [97], simultaneously recognizes and describes salient
image regions through short text sentences. As a result, it can be viewed as the gen-
eralization of the object detection task, where a caption substitutes a tag, or image
captioning, where a single region substitutes the entire image. Another proposed
approach for dense captioning [98] is based on two ideas: joint inference and context
feature fusion. The localization bounding box gradually adapts to the correct position
based on the predicted descriptions through a step-by-step joint inference method.
Meanwhile, the fusion of context features from regions of interest can better predict
image narratives. The notion of relational captioning is introduced in [99], a novel
captioning approach to generate captions and narratives concerning relational infor-
mation among objects in a given image. Furthermore, the multitask triple-stream
network (MTTSNet) has been proposed to train the relational information effectively.

5. Task 3: Intelligent Narrative Discovery

In this section, we focus on the issue of intelligent narrative discovery. First, we argue
that intent discovery is an indispensable element in comprehending the ultimate goal of an
end-user. Then, the image summarization approaches are further discussed.

5.1. Intent Discovery

By exploring raw data—numeric or qualitative datasets—data analysts assist many
organizations to make better decisions. In addition, these analysts assist in solving prob-
lems by taking vast volumes of complex data and extracting hidden insights from these
data. An analyst’s goal is based on prior knowledge and personal assumptions about the
data. Accordingly, understanding the analysts’ goal is the primary concern in successful
storytelling with data. Based on an analyst’s goal, various stories could be generated,
given a set of relevant images. Various studies have been related to intent discovery in
various tasks [159,160]. Analysts deliver feedback based on their technical expertise and
application domain knowledge. By discovering the end-user’s intention and extracting
features from it, the feedback subjectively guides the story generation process.

There are various ways to communicate with the end-users. A common phrase
heard over the phone for decades was, “How may I help you?”. Today, online chatbots
(i.e., software applications that perform online chat conversations via text or text-to-speech
rather than by contacting a live human agent. Through messaging platforms, they can
automate conversations and facilitate interactions with customers) accomplish the same
task and help us to interact with users. Myriad stories may be generated for a specific goal
based on an objective. Therefore, as mentioned before, analyzing the audience is the starting
point for developing efficacious chatbots. For example, when used in a police investigation,
the chatbot can help determine the investigator’s goal and generate the story based on
requirements to give the investigators a deep insight (which is impossible or hard for them
to gain without storytelling), freeing them to focus on higher-level problem solving.
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5.2. Image Collection Summarization

Intent discovery, mentioned in the previous section, facilitates the image collection
summarization process and determines what or how the data are summarized. Existing
techniques for storytelling with image data may be split into two categories: vision-based
techniques and text-based techniques [101]. Vision-based methods rebuild successive
pictures or frames based on a narrative or plot. Visual summarization chiefly consists of
selecting important frames or pictures from a series to create a plot. The vision and text
techniques primarily focus on summarizing or sorting consecutive pictures or frames and
are a shallower task than what is often referred to as “storytelling” [101].

Following Riahi et al. [102], the number of online picture collections is rapidly growing,
and it has resulted in an explosion of photos and an accumulation of multimedia data.
They also discussed that managing this massive quantity of data is a significant challenge,
and novel strategies are necessary to aid users in viewing, browsing, and summarizing
these massive collections. Techniques for image summarizing might be classified into two
broad categories: visual summarization and multimodal summarization. The term “visual
summarizing approaches” refers to a type of work that uses exclusively visual aspects
as its summary features. Multimodal image collection summarizing approaches often
incorporate additional modalities such as textual, geospatial, or other data types.

Visual Collection Summarization. Singh et al. [37] discussed summarizing an image
collection as a critical undertaking that continues to escape practitioners due to the inherent
difficulties and distinctions between image collection summarizing and video collection
summarizing. Due to the fact that the video contains numerous temporal links that can
be utilized using temporal neural networks such as Long Short-Term Memory (LSTM) or
Recurrent Neural Networks (RNNs), they confirm to be advantageous when constructing
DL-based architectures for the incident and video summarization.

As Sharma et al. [103] mentioned, when we use digital cameras, we usually end up
with repeating and similar photographs that people wish to delete. Manually sorting
through such a vast collection and selecting the finest photographs is time-consuming.
Sharma et al. [103] suggested a method for summarizing a collection of pictures into
a unique set of representative images. They partitioned the photos into a “Bag of words”
representation constructed using Scale-Invariant Feature Transform (SIFT) vectors and then
clustered these vectors into categories using a simplified Latent Dirichlet Allocation (LDA)
approach. They portrayed each photo as a “bag of words” using SIFT vectors by clustering
these vectors into multiple bins and displaying each image as a histogram of the probability
density of these vectors over such bins. Finally, they classified the picture collection into
clusters using the topic modeling LDA approach. The image vector determines the best
image with the smallest sum of square distances inside the cluster from the other image
vectors [103].

Camargo et al. [104] presented a technique for incorporating domain knowledge into
summarizing large image sets. They employed a multiclass kernel alignment technique
to train a kernel function that takes domain knowledge into account. The kernel function
serves as the foundation for a clustering technique that creates a subset of the visual
collection, termed the summary.

Features are retrieved from the remaining pictures, and the kernel function is com-
puted using the previously acquired combination function. Following them, when a new
image is added to the collections, it may be categorized into one of the clusters by calculat-
ing its resemblance to the medoids utilizing the combination function.

Sreelakshmi et al. [105] developed two unsupervised approaches for extractive im-
age summarizing. The first technique, termed image summarization through clustering,
employs One-Class Support Vector Machine (SVM) clustering accompanied by outlier
identification in the process of extracting representative images. The second technique,
dubbed image summarization using an auto-encoder, employs an auto-encoder to assign
a representative value to each picture in the collection and then creates a summary using
photos with varying values.
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Multimodal Image Collection. The phrase “multi-modal image collection” refers to a
collection of photos that include other modalities such as video, text, and hyperlinks [109].
Chen et al. [106] approached extractive multimodal summarization as a classification
problem and proposed a text–image classification technique based on a multimodal RNN
model. Their strategy encrypts words or phrases using hierarchical RNNs frameworks
and the ordered image set using a CNN model and an RNN model, further determining
the probability of sentences being selected and the likelihood of sentences being aligned
using a logistic classifier with characteristics for text coverage, text duplication, photo
set coverage, and photo set duplication. By merging the essential scores of words and
the hidden sentence–image arrangement, two techniques are provided for computing the
image set redundant feature.

For event summarization, Qian et al. [107] argued that it had been a contentious topic
of how to make sense of this deluge of data in order to discover and forecast breaking
events. Additionally, they highlighted that while the majority of existing systems focus
on event recognition, event location estimate, and text-based summary, a tiny number of
works have concentrated on event summarizing. Then, they designed a framework for
event summarizing based on social media, consisting of three stages: (1) A coarse-to-fine
filtering technique is used to reduce superfluous data. (2) A unique technique called User–
Text–Image Co-Clustering (UTICC) is suggested for simultaneously discovering subevents
from blogs that contain several media types—user, text, and image. (3) A multimedia event
summarizing approach is used to find representative words and pictures, which are then
combined to provide a holistic, visually represented summary of the incidents.

Kuzovkin et al. [108] investigated the idea of context-aware picture quality evaluation,
in which the photo context is determined using clustering, and statistics from both the
extracted context and the complete photo collection are utilized to assist the detection
of low-quality photographs. They selected to show their concept by utilizing sharpness
as the primary criterion for image quality. As such, it is proposed that a photograph be
eliminated if its sharpness is insufficient in the scope of the collection. They also believed
that, simultaneously, sharpness needs vary significantly according to content type and user
purpose, necessitating context-aware customization.

5.3. Narrative Extension

The presented Story Model is a Knowledge Graph constructed after curating and
preprocessing the raw data. This graph contains all the raw and contextualized data infor-
mation, extracted concepts, objects, topics, captions, metadata, and rules. This Knowledge
Graph is a network of interconnected data that integrates semantics to allow further inter-
pretation of the underlying data. Since stories can be subjective and the intent discovery
is a critical step, a vast number of stories may be generated. In this section, extending the
resulting narrative, finding particular paths in a graph, and finally, defining it as a unique
narrative based on the requested intentions are further explored.

We aim to find specific paths/subgraphs based on end-users’ intent. Various ap-
proaches, such as graph2vec [161], have been proposed to work with graph data. Using
graph2vec, several rooted subgraphs can be extracted based on the analyst’s intention and
the Story Model. An entire graph is treated as a document in graph2vec, with the rooted
subgraphs around each node as words. Graphs are composed of different subgraphs in the
same way that sentences and documents are composed of different words. In addition to
rooted subgraphs, other substructures such as nodes, paths, and walks could constitute
a graph’s atomic entities. Accordingly, the output of this step is a set of graph walks/paths
or subgraphs employing the graph2vec algorithm. We intend to extend feature/narrative
engineering to discover narratives that could be generated based on the needs of an ana-
lyst. Finally, the story could be generated based on some high-level extracted knowledge,
i.e., these subgraphs, and graph paths/walks, as discussed in the following Section 6.
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6. Task 4: Story Creation
6.1. Story Creation Framework

How can we generate a coherent story from a collection of images? How can that
story use rich vocabulary and various styles that accurately describe the objects and
concepts in the pictures and ensure that the sentences are semantically and logically
coherent? Different narratives can be constructed in a subjective manner based on end-user
intent. In this section, we study the story creation framework and techniques based on the
narratives and the user’s intentions, which should be further assessed by domain experts.
The feedback received from the human-in-the-loop process and the knowledge of experts
assist in enriching/annotating the data using RL approaches.

The framework of constructing the Data Lake [162] and Knowledge Lake [163] from
the raw data has been studied well in the context of textual data. However, for storytelling
with image data, an Image Data Lake is constructed based on the raw image data. By cre-
ating the Image Data Lake, researchers seek to organize the raw image data. Moreover,
the Image Knowledge Lake contains all the curated and contextualized image data created
by the raw image. Various features, objects, concepts, captions, keywords, topics, and/or
rules may be extracted using different techniques. All these features constitute a story graph
model, which contains high-level knowledge and results in different paths/subgraphs.
These paths/subgraphs, intelligent interactive widgets, and visualization strategies facil-
itate the story-generation process. Although there are automatic approaches to creating
and assessing the generated story, RL techniques are also considered very effective in
creating stories.

6.2. Story Creation Techniques

Storytelling with image data involves describing a series of images in a story-like
manner. A storytelling approach aims not only to describe facts but also to convey human-
like narratives. The literal and concrete content of the image is captured when trying
to consider images in isolation. However, generating human-like narratives demands
further inference and creativity. The first dataset of sequential images with descriptions
and some baseline experiments has been introduced in [110] for storytelling with image
data. Lukin et al. [119] define the task of storytelling with image data as a pipeline of three
separate task modules: Object Identification, Single-Image Inferencing, and Multi-Image
Narration. This pipeline helps construct a story tailored to a target audience. Table 4
summarizes all the proposed methods for storytelling with image data, and TR is the
short form for transformer. The Relevant Phases column refers to phases proposed in
Figure 2. Although these works may be relevant to other phases (2, 3, and 5), they are
directly relevant to phases 1, 4, and 6.

6.2.1. RL-Based Methods

Similarly to image captioning, RL has been applied to storytelling with image
data [112–114,117,164,165]. Unlike image captioning, storytelling with image data presents
a much broader range of potential stories than image captioning, so finding the right reward
function can be tricky. The Adversarial REward Learning (AREL) technique [112] creates
more human-like narratives with expressive language styles and learns an intelligent re-
ward function. A Boltzmann distribution associates reward learning with distribution
approximation before designing an adversarial process using policy and reward models.
The policy model produces the story, whereas a reward model learns the reward function,
which can be used to optimize the policy.

An algorithm for generating stories for photo streams is also introduced in [113].
The hierarchical structure of the model and the RL framework with two discriminators
leads to the creation of relevant and explicit paragraphs. The story generator exploits
the hierarchical RNN to extract the paragraph structure. A multimodal and a language-
style discriminator act as two critic networks and guarantee the generated paragraphs’
relevancy and style. The story generator intends to create indistinguishable human-like
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stories, and the two discriminators are trained to differentiate a generated story from a
real one. The visual story generation problem for an image sequence is further studied
in [114]. This problem is divided into two hierarchical decoders employing reinforcement
learning. It is demonstrated that hierarchical RL can enhance story creation. The Relevance–
Expressiveness–Coherence through Reinforcement Learning (ReCo-RL) [117] model has
composite reward functions, which result in a relevant, expressive, and coherent story
based on a sequence of images. This method contains two layers: (1) a high-level decoder
and (2) a low-level decoder with three quality evaluation components.

Table 4. Storytelling with Image Data Models. The check marks demonstrate that the model employs
and supports the corresponding module and the cross marks depict the opposite of this case.

No. Model Relevant Phases CNN RNN GNN GAN RL TR TCN

1 [110] 1, 4, 6 X X × × × × ×
2 [111] 1, 4, 6 X X × × × × ×
3 [112] 1, 4, 6 X X × X X × ×
4 [114] 1, 4, 6 X X × × X × ×
5 [62] 1, 4, 6 X X × × × × ×
6 [115] 1, 4, 6 X X × × × X ×
7 [116] 1, 4, 6 X X × × × × ×
8 [117] 1, 4, 6 X X × × X × ×
9 [118] 1, 4, 6 X X × × × X ×
10 [120] 1, 4, 6 X X X × × × ×
11 [65] 1, 4, 6 X X × × × × ×
12 [164] 1, 4, 6 X X × X X × ×
13 [165] 1, 4, 6 X X × × X X ×
14 [121] 1, 4, 6 X × × × × X ×
15 [166] 1, 4, 6 X X × × × × ×
16 [167] 1, 4, 6 X X × × × × ×
17 [168] 1, 4, 6 X X X × × × X
18 [122] 1, 4, 6 X X × × × × ×
19 [64] 1, 4, 6 X X × × × × ×
20 [101] 1, 4, 6 X X × × × X ×
21 [169] 1, 4, 6 X X × × × × ×
22 [170] 1, 4, 6 X X × × × × ×

6.2.2. Other Methods

The dataset of sequential images with descriptions has been first introduced in [110] for
storytelling with image data. This sequential vision-to-language dataset helps researchers
to move forward from processing images in isolation to creating creative stories based
on an image stream. In this section, we further investigate those methods that attempt to
tackle storytelling with image data with or without intermediate data.

Yu et al. [111] propose a three-step framework for storytelling. These three steps are
hierarchically attentive RNNs that encode the whole album photos, select representative
photos using selection mechanisms, and compose a story by taking the weighted represen-
tation. Most visual story generation approaches lack commonsense reasoning. Stories are
written artistically and may include many imaginary concepts that do not exist in the image.
Accordingly, rational reasoning and semantic association are essential for generating these
concepts. The model presented in [62] proposes a commonsense-based generative model to
address this challenge. Vision-aware common sense reasoning and knowledge-augmented
generation are both parts of this model. KG-Story, proposed in [115], is a three-stage tech-
nique that exploits external resources, such as Knowledge Graphs, to generate engaging
sequential stories for a given image. First, it extracts representative words, enriches the set
using Knowledge Graphs, and generates stories based on this enriched set.

Jung et al. [116] propose an effective method to learn imaginative capability for sto-
rytelling with image data by using a hide-and-tell training strategy. The authors aim to
learn to imagine a storyline that bridges the visual gap between the given images with
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the subjective story. First, some of the images are randomly removed from the image set
in this strategy, and then the model is trained to generate a sequential story without the
removed images. The authors in [118] argue that an auxiliary transitional adaptation task
is necessary between the pretraining and fine-tuning phases. For challenging tasks such as
storytelling with image data, the transitional adaptation seeks to harmonize visual encoding
and language modeling. Based on the human logic of how we write stories, Xu et al. [120]
introduced a new imagine–reason–write (IRW) model for storytelling with image data.
To develop human-like stories, they leveraged an imagining module, a reasoning module
to utilize the exterior commonsense knowledge, and a guiding unit to combine visual and
semantic knowledge. Many other approaches have attempted to tackle storytelling with
image data, such as [64,65,101,121,122,166–177], which fall into this category.

7. Task 5: Story Presentation and Querying
7.1. Intelligent Widget for Narrative Discovery

In the past decades, numerous images have been uploaded to online platforms con-
taining hidden, interesting information that should be discovered. However, the uploaded
raw data do not deliver any insights. Accordingly, these raw data should be curated
and transformed into knowledge. Data analytics helps understand the data; however, it
is insufficient, and a solution to accomplish such knowledge could be storytelling with
image data.

Personalized storytelling demands human–computer interaction, since direct inter-
action with the end-users is indispensable. Story creation has complicated challenges;
however, representing the generated story to end-users is another issue that needs careful
attention. Creating graphical representations of data is known as data visualization. Visual-
ization techniques translate information into a visual context, such as a map or graph, so
the human brain can comprehend and extract hidden insights. For example, large datasets
can be visualized to identify patterns, trends, and outliers. Therefore, an interactive visu-
alization module, a dashboard, is the most proper environment for engaging users and
being able to recommend various data based on the user’s needs. Regardless, storytelling
with image data is more than simply visualizing data. Instead, this process transforms
raw image data into insightful narratives by highlighting valuable information and prov-
ing key points. Together, storytelling and visualization make a powerful combination.
An intelligent widget allows for presenting a contextual and visual component alongside
content in a platform, supplying the end-users with a visual fragment of the most relevant
and representative data. It also enables user interaction and uses domain knowledge and
expertise to achieve a subjective demand. Visualization objectives, benefits, and challenges
are discussed in the following.

Visualization Objectives. Data visualization serves a straightforward objective. It is
to comprehend the data and use them for the end-user benefit. However, since data are
complex, they attain more value when visualized. Therefore, visualization is crucial for
communicating data findings, identifying patterns, and interacting with data.

Visualization Benefits. In addition to providing a better understanding of the data,
data visualization facilitates sharing information with some audiences, helps accurately
analyze data, and uncovers relationships between events and entities.

Visualization Challenges. Visualization delivers estimation, not accuracy. It may not
be objective, may have improper design issues, and the core messages may be skipped.

7.2. Visualization Techniques

Data visualization involves various strategies, so knowing which ones to utilize and
when is essential. We can point out bar charts, line charts, pie charts, histograms, radial
maps, box plots, and violin plots as some of the essential data visualization techniques.

Static Data Visualization. There is no interaction capability in static data visualization,
and the information does not change over time. Because static visualizations cannot be
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adjusted, such as through filtering and zooming, it is vital to consider what data are
displayed. Knaflic et al. [123] mainly focuses on static data visualization.

Interactive Data Visualization. Users can better identify patterns and discover new
relationships within their data by allowing direct interaction. Data visualization assists in
transforming raw data into valuable insights. Using interactive visualization, the end-user
experience is also collected, which assists the customer journey/experience process. As an
interactive data visualization approach, we can point to the storytelling engine in iStory
presented in [6].

Adaptive Data Visualization. This visualization improves visualization by incorpo-
rating adaptations, i.e., changing the visualization based on various end-user features,
either explicitly provided or inferred from the traces of the user’s actions. For example,
Toker et al. [124] proves that specific user characteristics significantly affect task efficiency,
user preference, and ease of use.

8. Task 6: Quality Assessment and Dataset

Storytelling with image data is the process of constructing a literary story from an im-
age stream, which necessitates a more in-depth knowledge of the stream’s event flow [112].
After creating digital storytelling, it is critical to undertake assessments to ensure that
the systems are more reflective and accurate [178]. Different assessors evaluated digital
storytelling. Assessments of machine-generated descriptions of images may be classified
as automatic or human assessments [131]. Some distinct metrics were initially developed
for machine translation, and image captioning is used to undertake automatic evalua-
tions. Bilingual Evaluation Understudy (BLEU) [125], Metric for Evaluation of Translation
with Explicit Ordering (METEOR) [126], Consensus-based Image Description Evaluation
(CIDEr) [128], Word Mover’s Distance (WMD) [179], Recall-oriented Understudy for Gist-
ing Evaluation (ROUGE) [180], and Semantic Propositional Image Captioning Evaluation
(SPICE) [127] are some of these models. Human assessments are also conducted due to
the poor performance of automatic metrics in light of the reality that the same image can
be described in a variety of ways [131]. In this section, we discuss automatic assessments
and human evaluation separately. The quality assessment process is demonstrated in
Figure 5. As represented in the story generation process, the quality of the generated
story should be evaluated. We categorize the quality assessment measures into two classes
based on evaluation approaches proposed for storytelling with image data. Automatic
assessments such as BLEU and SPICE are examples of the first category. For the second
category, the knowledge of human beings and domain experts is utilized to assess and
fine-tune the Knowledge Lake.

Figure 5. Quality assessment process.
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8.1. Automatic Assessment

Determining the quality of created text remains a significant difficulty [117]. In ma-
chine translation, some metrics such as BLEU [125] and METEOR [126] are commonly
utilized. In addition, for image captioning evaluation, CIDEr [128] and SPICE [127] are
a kind of text summarization evaluation tool. However, each of these metrics has draw-
backs for analyzing natural language performance, as there is a significant gap between
automated metrics and human evaluation [117]. Recent research has focused on more
natural evaluations of text creation tasks, such as structuredness, variety, and readabil-
ity [112,129,130]. As follows, we discuss each metric in detail, and [131,132] Table 5
indicates a summary of the evaluation metrics considered in this section.

Bilingual Evaluation Understudy (BLEU). BLEU [125] is one of the earliest and most
widely used metrics used to measure the similarity between two texts and is established
for the automatic evaluation of machine translation platforms [132]. It is a precision-based
measure that calculates the n-gram overlap between the assumption and the reference [133].
BLEU represents the proportion of overlapping n-grams to the total number of n-grams
in the assumption [133]. To be accurate, the numerator includes the total number of
overlapping n-grams across all hypotheses, whereas the denominator comprises the total
number of n-grams throughout all assumptions [133]. BLEU stipulates that a high-scoring
explanation should meet the ground truth in length, i.e., a precise match of words and their
arrangement [131]. An accurate match will receive a BLEU assessment score of 1 [131].

Metric for Evaluation of Translation with Explicit Ordering (METEOR). METEOR [126]
is another measurement for machine translation. It was designed to overcome the inade-
quacies of BLEU, and instead of requiring a precise lexical match, METEOR implements
semantic matches [131]. It may be described as the arithmetic mean of accuracy and recall
of unigram matches among texts [132]. The METEOR score depends on how effectively
the produced and reference phrases are constructed [131]. Each phrase is represented as
a collection of unigrams, and alignment is accomplished by mapping the unigrams of
nominees and reference phrases [131]. A unigram in a nominee phrase (or reference phrase)
would map to either a unigram in the reference phrase (or candidate phrase) or to zero
throughout the mapping process [131]. Furthermore, it uses synonyms and the matching
of phrases. METEOR solves various shortcomings of BLEU, such as the assessment of
recall and the absence of direct word matching [132]. In cases when numerous alignment
possibilities are available between two phrases, the alignment arrangement with the fewest
crossings is selected [131]. After completing the alignment procedure, the METEOR score
is determined [131].

Recall-Oriented Understudy for Gisting Evaluation (ROUGE). In 2004, ROUGE [180]
was first developed for evaluating summarization programs, and this assessment is per-
formed by comparing overlapping n-grams, word sequences, and word pairs [132]. Using
n-grams, the algorithm determines the recall value of the created sentences that match the
reference phrases [131]. Comparable to BLEU, ROUGE is determined by altering the num-
ber of n-grams. ROUGE is based on recall rates, whereas BLEU is based on accuracy [131]
Since the ROUGE metric depends heavily on recollection, it favors extended sentences [132].
In addition to n-gram variations of ROUGEn, there is also ROUGEL (Longest Common
Subsequence), ROUGES (Skip-Bigram Co-Occurrences Statistics), ROUGEW (Weighted
Longest Common Subsequence), and ROUGESU variants (extension of ROUGES) [131].

Semantic Propositional Image Captioning Evaluation (SPICE). SPICE [127] is a re-
cently developed measure for measuring the similarity of picture captions [132]. It is
determined by comparing the scenery graph tuples of the prospective phrase with those of
all reference phrases [132]. Using a dependency tree structure, the semantic image graph
represents the objects’ properties and relationships [131]. The SPICE value is thereafter
defined as the F1-score depending on the correspondence between the candidates and
reference description tuples [132].

Consensus-Based Image Description Evaluation (CIDEr). CIDEr [128] is intended as
a specialized measure for evaluating picture captioning, although it operates in a cognitive,
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technical manner and only expands current metrics by weighting tf-idf across n-grams [132].
It assesses the agreement between an anticipated sentence and the image’s reference phrases.
It executes stemming and transforms all candidate and reference phrases’ words into the
root types [131]. Each phrase is represented by a collection of n-grams comprising one to
four words via CIDEr [131]. To encode the agreement between the anticipated phrase and
the reference phrase, the co-occurrence rate of n-grams in both phrases is measured [131].
Therefore, for the purpose of computing this measure, initial stemming is performed,
and each phrase is represented by a set of 1 to 4 grams [132].

As a summary, we have discussed various metrics that are commonly used to eval-
uate the quality of text generated by machine translation and image captioning systems.
The metrics discussed include BLEU, METEOR, ROUGE, SPICE, and CIDEr. BLEU is a
precision-based measure that calculates the overlap between the generated text and a refer-
ence text using n-grams [133]. METEOR, on the other hand, is also a measure for machine
translation; it was designed to overcome the limitations of BLEU by using semantic matches
instead of requiring a precise lexical matches [131]. ROUGE is a metric developed for eval-
uating summarization programs; it is performed by comparing overlapping n-grams, word
sequences, and word pairs [132]. SPICE is a measure that is recently developed for measur-
ing the similarity of picture captions [132]. Lastly, CIDEr is a specialized measure intended
for evaluating image captioning; it operates in a cognitive and technical manner [132].
In general, each metric has its own strengths and weaknesses, and it is more appropriate to
use one depending on the specific task and its requirements.

In addition to the objective metrics (described above) that several storytelling studies
appear to employ in their evaluations, subjective metrics such as fidelity and coherence are
also necessary. For a work involving creative generation, such as story generation, there are
no valid automatic evaluation criteria for assessing qualities such as interestingness and
coherence [129]. There are four primary subjective metrics: fidelity (if the story corresponds
to the title), coherence (if the story is logically valid and cohesive), interestingness (if the
story is engaging), and overall user satisfaction (how readers enjoy the story) [129]. Then,
a cohesive narrative should arrange its sentences in the proper sequential sequence and
maintain the same theme between adjacent sentences [117]. In addition, one technique to
determine the relevance between an image and its produced explanation is to match the
things specified in the explanation to the image’s bounding boxes [117].

Table 5. An overview of the assessment metrics taken into account for this research work.

Name of Metric Developed to Evaluate Technique

BLEU [125] Automatic translation n-gram accuracy
METEOR [126] Automatic translation n-gram with matching of synonyms
ROUGE [180] Documentation summary n-gram recall
SPICE [127] Image description Scene-to-synonym correspondence
CIDEr [128] Image description tf-idf weighted n-gram correlation

8.2. Human Assessment

The optimal method for evaluating a language processing system is to have humans
analyze the system’s results [133]. Due to the unavailability of reference captioning and the
low connection between automated assessment measures and human assessments, human
evaluations are frequently utilized to assess the quality of robot captions [131]. Depending
on the criteria of the project and the evaluation’s purpose, the evaluators might be special-
ists, crowd-sourced annotators, or perhaps even end-users [133]. Such human judgments
can be organized further using metrics such as coherence or grammar accurateness [131].
The majority of human assessments are focused on checking for completion of the task,
i.e., people are asked to score or examine the generated phrases (and the producing systems)
to determine how well they match the overall task criteria [133]. In systems that evaluate
grammatical accuracy, the phrases are evaluated based on their grammatical correctness,
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even without image content being seen by the evaluators; in this scenario, many phrases
may receive the same score [131].

Wang et al. [112] developed and conducted a rigorous human assessment using
Amazon Mechanical Turk, which reveals that the produced tales of their technique are
superior in terms of relevancy, creativity, and definiteness. Kilickaya et al. [132] analyzed
the degree to which automated measures resemble human evaluations by evaluating their
relationships with the obtained human evaluations. Hu et al. [117] stated that given the
complicated nature of the narrative problem, they undertook additional human review
utilizing Amazon Mechanical Turk to specifically check the quality of the stories created by
all the models.

8.3. Dataset

The Visual Storytelling Dataset (VIST) [110], which is a sequential vision-to-language
dataset, has been widely used for storytelling with image data. This dataset consists of
10,117 Flickr albums with 210,819 unique photos. Each album has an average of 20.8 photos,
and the average duration of each album is 7.9 h. Stories consist of five images from an
album with five descriptions (mainly one sentence per image). Amazon’s Mechanical Turk
(AMT) workers have chosen, organized, and annotated these images, and the same album
is paired with five various stories as a reference. After filtering, the size of the dataset
is 50,136 samples and is divided into 3 primary splits: training, validation, and testing.
The training size is about 40,098 samples: 4988 for validation and 5050 for testing. The VIST-
Edit1 dataset [181] also includes 14,905 human-edited versions of 2981 machine-generated
visual stories.

The AESOP dataset [182] is built with three guiding principles: (i) Creativity Over
Perception, (ii) Causal and Coherent Narratives, and (iii) Constrained World Knowledge.
In AESOP, stories are composed of three image–text panels, with the visual parts generated
by the drag-and-drop interface. In total, 7062 stories containing 21,186 abstract visual
scenes with corresponding text were collected. In the VHED (VIST Human Evaluation
Data) dataset [183], the story pairs with zero ranking gap are removed, which yields
13,875 story pairs altogether. The authors divided the train–test–validation sets into 11,208,
1351, and 1316 story pairs in an 8:1:1 ratio.

On the other hand, an image-based cooking dataset [173] is presented for sequen-
tial procedural (how-to) text generation, which consists of 16,441 cooking recipes with
160,479 photos (for food, dessert, and recipe topics) associated with different steps. The au-
thors used 80% of the dataset for training, 10% for validation, and 10% for testing their
models. Another similar dataset, Recipe1M+ [184], is a new large-scale, structured corpus
of over 1 million cooking recipes and 13 million food images. An overview of the datasets
and the approaches that utilized these datasets in their study are represented in Table 6.

Table 6. An overview of the datasets.

Dataset Description References

VIST [110] (2016) 40,098 train, 4988 validation, and 5050 test samples [65,101,110–117,120,164,165,167,181]
VIST-Edit1 [181] (2019) 14,905 human-edited versions of 2981 generated stories [115,121,165,181]

AESOP [182] (2021) 7062 stories containing 21,186 abstract visual scenes with
corresponding text [182]

VHED [183] (2022) 11,208 train, 1351 validation, and 1316 test samples [183]

Cooking [173] (2019) 16,441 recipes with 160,479 photos with 80% train, 10%
validation, and 10% test [173–175,185,186]

Recipe1M+ [184] (2019) Over 1 million recipes and 13 million food images [184,187,188]

9. Conclusions, Discussion, and Future Directions

The field of storytelling with image data is a relatively new area of research that has not
been well-established despite recent accomplishments in storytelling in general. To address
this, a systematic review and a comparative analysis of methods and tools were conducted
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to identify, evaluate, and interpret relevant research in this field. The state of the art in the
curation, summarization, and presentation of large amounts of image data in a succinct
and consumable manner to end-users was analyzed, and a taxonomy was introduced to
identify important tasks in constructing narratives and stories from image data.

The proposed taxonomy consists of several phases, including data curation (from pre-
processing to extraction, enrichment, linking, and adding value), story modeling, intelligent
narrative discovery, story creation, and story presentation and querying. It is argued that
storytelling is distinct from simple data visualization techniques or image data analytics,
since it enables the discovery and understanding of hidden, complex, and valuable data
insights. The paper also discussed the evaluation measures for assessing the quality of the
generated story, which are crucial for ensuring that the story is both informative and rele-
vant to the end-user. In summary, this paper lays the foundation for further research in the
field of storytelling with image data by providing a framework for identifying important
tasks and evaluation measures.

9.1. Discussion

The proposed approach of storytelling with image data has several advantages. First,
this framework can help address the challenges in understanding and analyzing large
amounts of image data, which are often scattered across different sources and data islands.
By curating and summarizing these data in a digestible manner, storytelling with image
data can help users gain a better understanding of the insights and relationships locked
within the data. Moreover, the use of storytelling as a metaphor can make the data more
accessible to a wider range of users who may not have the technical skills to understand
complex data analysis techniques.

However, this approach also faces several challenges. One of the major obstacles is the
lack of effective methods for labeling, captioning, and extracting information from images.
As a result, it can be difficult to ensure the accuracy and relevance of the data presented
in the stories. Another challenge is the potential for bias and subjectivity in the narratives
presented in the stories. Depending on the storyteller’s perspective, the story may focus
on certain details and overlook others, potentially leading to incomplete or misleading
interpretations of the data. Additionally, the sheer volume of image data available poses
a significant challenge for data processing and storage, making it necessary to develop
scalable and efficient methods for analyzing and presenting these data in a meaningful way.

In particular, while the storytelling with image data approach has great potential for
improving data comprehension and analysis, it also faces several challenges. Addressing
these challenges will require ongoing research and development of new methods for image
data labeling, extraction, and analysis, as well as careful consideration of the potential for
bias and subjectivity in the narratives presented in the stories. With continued innovation
and collaboration, storytelling with image data has the potential to revolutionize the way
we analyze and understand large amounts of unstructured data in the digital age.

9.2. Future Directions

The field of storytelling with image data is a rapidly evolving research area, with on-
going efforts to improve the techniques and metrics used to assess the generated story.
Despite recent advances, there are still significant knowledge gaps and limitations in the
state-of-the-art methods. Recent research in text generation has focused on open-ended
domains, such as stories, but evaluating the quality of the generated text remains a complex
challenge. Current evaluation methods often rely on human judgments of the quality
of narratives, which can be unreliable if not properly conducted. Improving the quality
assessment of storytelling with image data is essential and requires further investigation.
Additionally, benchmark datasets in different domains of storytelling with image data need
to be properly labeled to facilitate research and development in this field.

In future work, we aim to use the knowledge gained from this survey to present
an Open Story Model that will transform raw image data into contextualized data and
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knowledge. The model will automatically discover and connect events and entities from
the contextualized data to construct a Knowledge Graph. This graph will be summarized
and used to facilitate intelligent narrative discovery, enabling image data stories to combine
with narratives to reduce ambiguity and connect image data with context. The model
will also support interactive visualization on top of the data summaries to help analysts
construct their own stories based on their points of view and subjective goals.

There are several other potential areas for future research and development in the
field of storytelling with image data. Some potential avenues of exploration include the
following: (i) Developing more advanced metrics for evaluating image data stories, such as
those that take into account sentence structure and topic coherence. These metrics could
help improve the quality assessment of image data stories and provide insights into specific
errors made by the model. (ii) Exploring new approaches for generating image data stories
that are more creative and engaging. For example, researchers could explore the use of
generative adversarial networks (GANs) to create more visually appealing and realistic
image data stories. (iii) Investigating the use of multimodal data sources to enhance the
quality of image data stories. For example, combining image data with text, audio, or video
data could help to provide a more complete and engaging story. (iv) Developing new
interactive tools and platforms for creating and sharing image data stories. These tools
could be designed to make it easier for users to explore and interact with image data
stories and to share their own stories with others. (v) Applying image data storytelling
techniques to new domains and applications. For example, researchers could explore the
use of image data stories in education, healthcare, or social media, where they could be
used to communicate complex information in a more engaging and accessible way.

Overall, the field of storytelling with image data is still in its early stages, and there is
a wealth of potential areas for future research and development. As researchers continue to
explore these areas, we can expect to see significant advances in the techniques and tools
used to create and evaluate image data stories, with far-reaching implications for a wide
range of applications.

Author Contributions: Conceptualization, F.L. and A.B.; validation, F.L., A.B., M.J. and H.B.; formal
analysis, F.L. and A.B.; investigation, F.L. and A.B.; resources, F.L. and A.B.; writing—original
draft preparation, F.L., A.B., H.F. and M.P.; writing—review and editing, F.L., A.B., M.J. and H.B.;
visualization, F.L. and A.B.; supervision, A.B., M.J. and H.B.; project administration, F.L. and A.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.

Acknowledgments: We acknowledge the the Centre for Applied Artificial Intelligence (https://www.mq.
edu.au/research/research-centres-groups-and-facilities/centres/centre-for-applied-artificial-intelligence,
accessed on 1 December 2022) at Macquarie University for funding this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Beheshti, A.; Ghodratnama, S.; Elahi, M.; Farhood, H. Social Data Analytics; CRC Press: Boca Raton, FL, USA, 2022.
2. Lindeberg, T. Scale Invariant Feature Transform; KTH: Stockholm, Sweden, 2012.
3. Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359.

[CrossRef]
4. Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. Brief: Binary robust independent elementary features. In Proceedings of the

European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany,
2010; pp. 778–792.

5. Li, Q.; Li, J.; Sheng, J.; Cui, S.; Wu, J.; Hei, Y.; Peng, H.; Guo, S.; Wang, L.; Beheshti, A.; et al. A Survey on Deep Learning Event
Extraction: Approaches and Applications. IEEE Trans. Neural Netw. Learn. Syst. 2022, Early Access. [CrossRef]

6. Beheshti, A.; Tabebordbar, A.; Benatallah, B. istory: Intelligent storytelling with social data. In Proceedings of the Companion
Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 253–256.

https://www.mq.edu.au/research/research-centres-groups-and-facilities/centres/centre-for-applied-artificial-intelligence
https://www.mq.edu.au/research/research-centres-groups-and-facilities/centres/centre-for-applied-artificial-intelligence
http://doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1109/TNNLS.2022.3213168


Algorithms 2023, 16, 135 34 of 40

7. Thöny, M.; Schnürer, R.; Sieber, R.; Hurni, L.; Pajarola, R. Storytelling in interactive 3D geographic visualization systems. ISPRS
Int. J. Geo-Inf. 2018, 7, 123. [CrossRef]

8. Beheshti, A. Knowledge base 4.0: Using crowdsourcing services for mimicking the knowledge of domain experts. In Proceedings
of the 2022 IEEE International Conference on Web Services (ICWS), Barcelona, Spain, 11–15 July 2022; IEEE: Piscataway, NJ, USA,
2022; pp. 425–427.

9. Beheshti, A.; Benatallah, B.; Sheng, Q.Z.; Schiliro, F. Intelligent knowledge lakes: The age of artificial intelligence and big data. In
Proceedings of the International Conference on Web Information Systems Engineering, Amsterdam, The Netherlands, 20–24
October 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 24–34.

10. Zhang, D.; Cui, M.; Yang, Y.; Yang, P.; Xie, C.; Liu, D.; Yu, B.; Chen, Z. Knowledge Graph-based image classification refinement.
IEEE Access 2019, 7, 57678–57690. [CrossRef]

11. Gong, W.; Zhang, X.; Chen, Y.; He, Q.; Beheshti, A.; Xu, X.; Yan, C.; Qi, L. DAWAR: Diversity-aware web APIs recommendation
for mashup creation based on correlation graph. In Proceedings of the 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022; pp. 395–404.

12. Keele, Staffs. Guidelines for Performing Systematic Literature Reviews in Software Engineering; EBSE Technical Report; ver. 2.3 ebse
Technical Report; Keele University: Keele, UK, 2007.

13. Sagheer, S.V.M.; George, S.N. A review on medical image denoising algorithms. Biomed. Signal Process. Control 2020, 61, 102036.
[CrossRef]

14. Brooks, T.; Mildenhall, B.; Xue, T.; Chen, J.; Sharlet, D.; Barron, J.T. Unprocessing images for learned raw denoising. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019;
pp. 11036–11045.

15. Saafin, W.; Schaefer, G. Pre-processing techniques for colour digital pathology image analysis. In Proceedings of the Annual
Conference on Medical Image Understanding and Analysis, Edinburgh, UK, 11–13 July 2017; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 551–560.

16. Krig, S. Image pre-processing. In Computer Vision Metrics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 35–74.
17. Heilbronner, R.; Barrett, S. Pre-processing. In Image Analysis in Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2014;

pp. 59–73.
18. Wang, Y.; Cao, Y.; Zha, Z.J.; Zhang, J.; Xiong, Z.; Zhang, W.; Wu, F. Progressive retinex: Mutually reinforced illumination-noise

perception network for low-light image enhancement. In Proceedings of the 27th ACM International Conference on Multimedia,
Nice, France, 21–25 October 2019; pp. 2015–2023.

19. Heilbronner, R.; Barrett, S. Image Analysis in Earth Sciences: Microstructures and Textures of Earth Materials; Springer Science &
Business Media: Berlin, Germany, 2013; Volume 129.

20. Kim, W. Low-light image enhancement by diffusion pyramid with residuals. J. Vis. Commun. Image Represent. 2021, 81, 103364.
[CrossRef]

21. Pang, B.; Zhai, D.; Jiang, J.; Liu, X. Single image deraining via scale-space invariant attention neural network. In Proceedings of
the 28th ACM International Conference on Multimedia, Virtual/Seattle, WA, USA, 12–16 October 2020; pp. 375–383.

22. Liu, Y.; Yeoh, J.K.; Chua, D.K. Deep learning–based enhancement of motion blurred UAV concrete crack images. J. Comput. Civ.
Eng. 2020, 34, 04020028. [CrossRef]

23. Bai, C.; Liu, C.; Yu, X.; Peng, T.; Min, J.; Yan, S.; Dan, D.; Yao, B. Imaging enhancement of light-sheet fluorescence microscopy via
deep learning. IEEE Photonics Technol. Lett. 2019, 31, 1803–1806. [CrossRef]

24. Dong, J.; Dickfeld, T. Image integration in electroanatomic mapping. Herzschrittmachertherapie Elektrophysiologie 2007, 18, 122–130.
[CrossRef] [PubMed]

25. Zach, C.; Pock, T.; Bischof, H. A globally optimal algorithm for robust tv-l 1 range image integration. In Proceedings of the 2007
IEEE 11th International Conference on Computer Vision, Rio De Janeiro, Brazil, 14–21 October 2007; IEEE: Piscataway, NJ, USA,
2007; pp. 1–8.

26. Dogra, A.; Kadry, S.; Goyal, B.; Agrawal, S. An efficient image integration algorithm for night mode vision applications. Multimed.
Tools Appl. 2020, 79, 10995–11012. [CrossRef]

27. Bavirisetti, D.P.; Dhuli, R. Multi-focus image fusion using multi-scale image decomposition and saliency detection. Ain Shams
Eng. J. 2018, 9, 1103–1117. [CrossRef]

28. Wang, C.; Xu, C.; Wang, C.; Tao, D. Perceptual adversarial networks for image-to-image transformation. IEEE Trans. Image
Process. 2018, 27, 4066–4079. [CrossRef]

29. Sarid, O.; Huss, E. Image formation and image transformation. Arts Psychother. 2011, 38, 252–255. [CrossRef]
30. Jia, K.; Wang, X.; Tang, X. Image transformation based on learning dictionaries across image spaces. IEEE Trans. Pattern Anal.

Mach. Intell. 2012, 35, 367–380. [CrossRef] [PubMed]
31. Vial, A.; Stirling, D.; Field, M.; Ros, M.; Ritz, C.; Carolan, M.; Holloway, L.; Miller, A.A. The role of deep learning and radiomic

feature extraction in cancer-specific predictive modelling: A review. Transl. Cancer Res. 2018, 7, 803–816. [CrossRef]
32. Tofighi, G.; Venetsanopoulos, A.N.; Raahemifar, K.; Beheshti, S.; Mohammadi, H. Hand posture recognition using K-NN and

Support Vector Machine classifiers evaluated on our proposed HandReader dataset. In Proceedings of the 2013 18th International
Conference on Digital Signal Processing (DSP), Fira, Greece, 1–3 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–5.

http://dx.doi.org/10.3390/ijgi7030123
http://dx.doi.org/10.1109/ACCESS.2019.2912627
http://dx.doi.org/10.1016/j.bspc.2020.102036
http://dx.doi.org/10.1016/j.jvcir.2021.103364
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000907
http://dx.doi.org/10.1109/LPT.2019.2948030
http://dx.doi.org/10.1007/s00399-007-0571-z
http://www.ncbi.nlm.nih.gov/pubmed/17891488
http://dx.doi.org/10.1007/s11042-018-6631-z
http://dx.doi.org/10.1016/j.asej.2016.06.011
http://dx.doi.org/10.1109/TIP.2018.2836316
http://dx.doi.org/10.1016/j.aip.2011.07.001
http://dx.doi.org/10.1109/TPAMI.2012.95
http://www.ncbi.nlm.nih.gov/pubmed/22529324
http://dx.doi.org/10.21037/tcr.2018.05.02


Algorithms 2023, 16, 135 35 of 40

33. Zhao, S.; Ge, D.; Zhao, J.; Xiang, W. Fingerprint pre-processing and feature engineering to enhance agricultural products
categorization. Future Gener. Comput. Syst. 2021, 125, 944–948. [CrossRef]

34. Heaton, J. An empirical analysis of feature engineering for predictive modeling. In Proceedings of the SoutheastCon 2016,
Norfolk, VA, USA, 30 March–3 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6.

35. Wiggers, K.L.; Britto, A.S.; Heutte, L.; Koerich, A.L.; Oliveira, L.E.S. Document image retrieval using deep features. In Proceedings
of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 1–8.

36. Farhood, H.; He, X.; Jia, W.; Blumenstein, M.; Li, H. Counting people based on linear, weighted, and local random forests. In
Proceedings of the 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney,
Australia, 29 November–1 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–7.

37. Singh, A.; Sharma, D.K. Image collection summarization: Past, present and future. In Data Visualization and Knowledge Engineering;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 49–78.

38. Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 99, 1–20. [CrossRef]
39. Zou, X. A Review of object detection techniques. In Proceedings of the 2019 International Conference on Smart Grid and Electrical

Automation (ICSGEA), Xiangtan, China, 10–11 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 251–254.
40. Ballard, D.H. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 1981, 13, 111–122. [CrossRef]
41. Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference, Manchester, UK,

31 August–2 September 1988; Citeseer: Manchester, UK, 1988; Volume 15, pp. 1–6.
42. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
43. Bay, H.; Tuytelaars, T.; Gool, L.V. Surf: Speeded up robust features. In Proceedings of the European Conference on Computer

Vision, Graz, Austria, 7–13 May 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 404–417.
44. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; IEEE: Piscataway, NJ,
USA, 2005; Volume 1, pp. 886–893.

45. Zhao, Z.Q.; Zheng, P.; Xu, S.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019,
30, 3212–3232. [CrossRef]

46. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

47. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

48. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

49. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]

50. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

51. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 21–37.

52. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

53. Dash, S.K.; Acharya, S.; Pakray, P.; Das, R.; Gelbukh, A. Topic-based image caption generation. Arab. J. Sci. Eng. 2020,
45, 3025–3034. [CrossRef]

54. Hu, H.; Gu, J.; Zhang, Z.; Dai, J.; Wei, Y. Relation networks for object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3588–3597.

55. Guo, H.; Zheng, K.; Fan, X.; Yu, H.; Wang, S. Visual attention consistency under image transforms for multi-label image
classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 729–739.

56. Ghiasi, G.; Lin, T.Y.; Le, Q.V. Nas-fpn: Learning scalable feature pyramid architecture for object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7036–7045.

57. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 213–229.

58. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 10781–10790.

59. Lotfi, F.; Jamzad, M.; Beigy, H. Automatic Image Annotation using Tag Relations and Graph Convolutional Networks. In
Proceedings of the 2021 5th International Conference on Pattern Recognition and Image Analysis (IPRIA), Kashan, Iran, 28–29
April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6.

http://dx.doi.org/10.1016/j.future.2021.07.005
http://dx.doi.org/10.1109/JPROC.2023.3238524
http://dx.doi.org/10.1016/0031-3203(81)90009-1
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/TNNLS.2018.2876865
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1007/s13369-019-04262-2


Algorithms 2023, 16, 135 36 of 40

60. Joseph, K.; Khan, S.; Khan, F.S.; Balasubramanian, V.N. Towards open world object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 5830–5840.

61. Lotfi, F.; Jamzad, M.; Beigy, H. Automatic Image Annotation Using Quantization Reweighting Function and Graph Neural
Networks. In Proceedings of the International Conference on Service-Oriented Computing, Seville, Spain, 29 November–2
December 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 46–60.

62. Yang, P.; Luo, F.; Chen, P.; Li, L.; Yin, Z.; He, X.; Sun, X. Knowledgeable Storyteller: A Commonsense-Driven Generative Model
for Visual Storytelling. In Proceedings of the IJCAI, Macao, China, 11–12 August 2019; Volume 3, p. 7.

63. Speer, R.; Havasi, C. Representing general relational knowledge in conceptnet 5. In Proceedings of the LREC, Istanbul, Turkey,
23–25 May 2012; Volume 2012, pp. 3679–3786.

64. Chen, H.; Huang, Y.; Takamura, H.; Nakayama, H. Commonsense knowledge aware concept selection for diverse and informative
visual storytelling. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35,
pp. 999–1008.

65. Li, J.; Shi, H.; Tang, S.; Wu, F.; Zhuang, Y. Informative visual storytelling with cross-modal rules. In Proceedings of the 27th ACM
International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2314–2322.

66. Aggarwal, C.C. Data classification. In Data Mining; Springer: Berlin/Heidelberg, Germany, 2015; pp. 285–344.
67. Aggarwal, C.C.; Reddy, C.K. Data clustering. In Algorithms and Applications; Chapman & Hall/CRC Data Mining and Knowledge

Discovery Series; Chapman & Hall: London, UK, 2014.
68. Ahmed, M. Data summarization: A survey. Knowl. Inf. Syst. 2019, 58, 249–273. [CrossRef]
69. Mao, J.; Xu, W.; Yang, Y.; Wang, J.; Huang, Z.; Yuille, A. Deep captioning with multimodal recurrent neural networks (m-rnn).

arXiv 2014, arXiv:1412.6632.
70. Karpathy, A.; Fei-Fei, L. Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3128–3137.
71. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3156–3164.
72. Rennie, S.J.; Marcheret, E.; Mroueh, Y.; Ross, J.; Goel, V. Self-critical sequence training for image captioning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7008–7024.
73. Ren, Z.; Wang, X.; Zhang, N.; Lv, X.; Li, L.J. Deep reinforcement learning-based image captioning with embedding reward.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 290–298.

74. Gordon, D.; Kembhavi, A.; Rastegari, M.; Redmon, J.; Fox, D.; Farhadi, A. Iqa: Visual question answering in interactive
environments. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 4089–4098.

75. Patro, B.; Patel, S.; Namboodiri, V. Robust explanations for visual question answering. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 1577–1586.

76. Wu, Q.; Wang, P.; Shen, C.; Reid, I.; Van Den Hengel, A. Are you talking to me? reasoned visual dialog generation through
adversarial learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–22 June 2018; pp. 6106–6115.

77. Chen, C.; Mu, S.; Xiao, W.; Ye, Z.; Wu, L.; Ju, Q. Improving image captioning with conditional generative adversarial nets. In
Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33,
pp. 8142–8150.

78. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption
generation with visual attention. In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July
2015; 2015; pp. 2048–2057.

79. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
80. Ba, J.; Mnih, V.; Kavukcuoglu, K. Multiple object recognition with visual attention. arXiv 2014, arXiv:1412.7755.
81. Mnih, V.; Heess, N.; Graves, A. Recurrent models of visual attention. Adv. Neural Inf. Process. Syst. 2014, 27, 2204–2212.
82. Lu, J.; Xiong, C.; Parikh, D.; Socher, R. Knowing when to look: Adaptive attention via a visual sentinel for image captioning.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 375–383.

83. Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould, S.; Zhang, L. Bottom-up and top-down attention for image
captioning and visual question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–22 June 2018; pp. 6077–6086.

84. Qin, Y.; Du, J.; Zhang, Y.; Lu, H. Look back and predict forward in image captioning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 8367–8375.

85. Ke, L.; Pei, W.; Li, R.; Shen, X.; Tai, Y.W. Reflective decoding network for image captioning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Repulic of Korea, 27 October–2 November 2019; pp. 8888–8897.

86. Huang, L.; Wang, W.; Chen, J.; Wei, X.Y. Attention on attention for image captioning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Repulic of Korea, 27 October–2 November 2019; pp. 4634–4643.

http://dx.doi.org/10.1007/s10115-018-1183-0


Algorithms 2023, 16, 135 37 of 40

87. Guo, L.; Liu, J.; Zhu, X.; Yao, P.; Lu, S.; Lu, H. Normalized and geometry-aware self-attention network for image captioning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020;
pp. 10327–10336.

88. Li, G.; Zhu, L.; Liu, P.; Yang, Y. Entangled transformer for image captioning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Repulic of Korea, 27 October–2 November 2019; pp. 8928–8937.

89. Yao, T.; Pan, Y.; Li, Y.; Mei, T. Exploring visual relationship for image captioning. In Proceedings of the European Conference on
Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 684–699.

90. Yang, X.; Tang, K.; Zhang, H.; Cai, J. Auto-encoding scene graphs for image captioning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 10685–10694.

91. Yao, T.; Pan, Y.; Li, Y.; Mei, T. Hierarchy parsing for image captioning. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, Seoul, Repulic of Korea, 27 October–2 November 2019; pp. 2621–2629.

92. Aneja, J.; Deshpande, A.; Schwing, A.G. Convolutional image captioning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 5561–5570.

93. Wang, Q.; Chan, A.B. Cnn+ cnn: Convolutional decoders for image captioning. arXiv 2018, arXiv:1805.09019.
94. Herdade, S.; Kappeler, A.; Boakye, K.; Soares, J. Image captioning: Transforming objects into words. Adv. Neural Inf. Process. Syst.

2019, 32, 11135–11145.
95. Luo, Y.; Ji, J.; Sun, X.; Cao, L.; Wu, Y.; Huang, F.; Lin, C.W.; Ji, R. Dual-level collaborative transformer for image captioning. arXiv

2021, arXiv:2101.06462.
96. Zhou, L.; Palangi, H.; Zhang, L.; Hu, H.; Corso, J.; Gao, J. Unified vision-language pre-training for image captioning and

vqa. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 13041–13049.

97. Johnson, J.; Karpathy, A.; Fei-Fei, L. Densecap: Fully convolutional localization networks for dense captioning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4565–4574.

98. Yang, L.; Tang, K.; Yang, J.; Li, L.J. Dense captioning with joint inference and visual context. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2193–2202.

99. Kim, D.J.; Choi, J.; Oh, T.H.; Kweon, I.S. Dense relational captioning: Triple-stream networks for relationship-based captioning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June
2019; pp. 6271–6280.

100. Uehara, K.; Mori, Y.; Mukuta, Y.; Harada, T. ViNTER: Image Narrative Generation with Emotion-Arc-Aware Transformer.
In Proceedings of the Companion Proceedings of the Web Conference 2022, Virtual Event/Lyon, France, 25–29 April 2022;
pp. 716–725.

101. Su, J.; Dai, Q.; Guerin, F.; Zhou, M. BERT-hLSTMs: BERT and hierarchical LSTMs for visual storytelling. Comput. Speech Lang.
2021, 67, 101169. [CrossRef]

102. Riahi Samani, Z.; Ebrahimi Moghaddam, M. Image Collection Summarization Method Based on Semantic Hierarchies. AI 2020,
1, 209–228. [CrossRef]

103. Sharma, V.; Kumar, A.; Agrawal, N.; Singh, P.; Kulshreshtha, R. Image summarization using topic modelling. In Proceedings of
the 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia, 19–21
October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 226–231.

104. Camargo, J.E.; González, F.A. A multi-class kernel alignment method for image collection summarization. In Proceedings of
the Iberoamerican Congress on Pattern Recognition, Guadalajara, Mexico, 15–18 November 2009; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 545–552.

105. Sreelakshmi, P.; Manmadhan, S. Image Summarization Using Unsupervised Learning. In Proceedings of the 2021 7th International
Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 19–20 March 2021; IEEE:
Piscataway, NJ, USA, 2021; Volume 1, pp. 100–103.

106. Chen, J.; Zhuge, H. Extractive summarization of documents with images based on multi-modal RNN. Future Gener. Comput. Syst.
2019, 99, 186–196. [CrossRef]

107. Qian, X.; Li, M.; Ren, Y.; Jiang, S. Social media based event summarization by user–text–image co-clustering. Knowl. Based Syst.
2019, 164, 107–121. [CrossRef]

108. Kuzovkin, D.; Pouli, T.; Cozot, R.; Meur, O.L.; Kervec, J.; Bouatouch, K. Context-aware clustering and assessment of photo
collections. In Proceedings of the Symposium on Computational Aesthetics, Los Angeles, CA, USA, 29–30 July 2017; pp. 1–10.

109. Camargo, J.E.; González, F.A. Multimodal image collection summarization using non-negative matrix factorization. In
Proceedings of the 2011 6th Colombian Computing Congress (CCC), Manizales, Colombia, 4–6 May 2011; IEEE: Piscataway, NJ,
USA, 2011; pp. 1–6.

110. Huang, T.H.; Ferraro, F.; Mostafazadeh, N.; Misra, I.; Agrawal, A.; Devlin, J.; Girshick, R.; He, X.; Kohli, P.; Batra, D.; et al.
Visual storytelling. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 1233–1239.

111. Yu, L.; Bansal, M.; Berg, T.L. Hierarchically-attentive rnn for album summarization and storytelling. arXiv 2017, arXiv:1708.02977.
112. Wang, X.; Chen, W.; Wang, Y.F.; Wang, W.Y. No metrics are perfect: Adversarial reward learning for visual storytelling. arXiv

2018, arXiv:1804.09160.

http://dx.doi.org/10.1016/j.csl.2020.101169
http://dx.doi.org/10.3390/ai1020014
http://dx.doi.org/10.1016/j.future.2019.04.045
http://dx.doi.org/10.1016/j.knosys.2018.10.028


Algorithms 2023, 16, 135 38 of 40

113. Wang, J.; Fu, J.; Tang, J.; Li, Z.; Mei, T. Show, reward and tell: Automatic generation of narrative paragraph from photo stream by
adversarial training. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February
2018; Volume 32.

114. Huang, Q.; Gan, Z.; Celikyilmaz, A.; Wu, D.; Wang, J.; He, X. Hierarchically structured reinforcement learning for topically
coherent visual story generation. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27
January–1 February 2019; Volume 33, pp. 8465–8472.

115. Hsu, C.C.; Chen, Z.Y.; Hsu, C.Y.; Li, C.C.; Lin, T.Y.; Huang, T.H.; Ku, L.W. Knowledge-enriched visual storytelling. In Proceedings
of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 7952–7960.

116. Jung, Y.; Kim, D.; Woo, S.; Kim, K.; Kim, S.; Kweon, I.S. Hide-and-tell: Learning to bridge photo streams for visual story-
telling. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 11213–11220.

117. Hu, J.; Cheng, Y.; Gan, Z.; Liu, J.; Gao, J.; Neubig, G. What makes a good story? Designing composite rewards for visual
storytelling. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020;
Volume 34, pp. 7969–7976.

118. Yu, Y.; Chung, J.; Yun, H.; Kim, J.; Kim, G. Transitional Adaptation of Pretrained Models for Visual Storytelling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 12658–12668.

119. Lukin, S.M.; Hobbs, R.; Voss, C.R. A pipeline for creative visual storytelling. arXiv 2018, arXiv:1807.08077.
120. Xu, C.; Yang, M.; Li, C.; Shen, Y.; Ao, X.; Xu, R. Imagine, Reason and Write: Visual Storytelling with Graph Knowledge and

Relational Reasoning. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35,
pp. 3022–3029.

121. Wang, E.; Han, C.; Poon, J. RoViST: Learning Robust Metrics for Visual Storytelling. arXiv 2022, arXiv:2205.03774.
122. Li, T.; Wang, H.; He, B.; Chen, C.W. Knowledge-enriched attention network with group-wise semantic for visual storytelling.

IEEE Trans. Pattern Anal. Mach. Intell. 2022, Early Access. [CrossRef]
123. Knaflic, C.N. Storytelling with Data: Let’s Practice!; John Wiley & Sons: Hoboken, NJ, USA, 2019.
124. Toker, D.; Conati, C.; Carenini, G.; Haraty, M. Towards adaptive information visualization: On the influence of user characteristics.

In Proceedings of the International Conference on User Modeling, Adaptation, and Personalization, Montreal, QC, Canada, 16–20
July 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 274–285.

125. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: A method for automatic evaluation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 7–12 July 2002; pp. 311–318.

126. Banerjee, S.; Lavie, A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In
Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization,
Ann Arbor, MI, USA, 29 June 2005; pp. 65–72.

127. Anderson, P.; Fernando, B.; Johnson, M.; Gould, S. Spice: Semantic propositional image caption evaluation. In Proceedings of the
European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 382–398.

128. Vedantam, R.; Lawrence Zitnick, C.; Parikh, D. Cider: Consensus-based image description evaluation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4566–4575.

129. Yao, L.; Peng, N.; Weischedel, R.; Knight, K.; Zhao, D.; Yan, R. Plan-and-write: Towards better automatic storytelling. In
Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33,
pp. 7378–7385.

130. Chen, Y.C.; Bansal, M. Fast abstractive summarization with reinforce-selected sentence rewriting. arXiv 2018, arXiv:1805.11080.
131. Aafaq, N.; Mian, A.; Liu, W.; Gilani, S.Z.; Shah, M. Video description: A survey of methods, datasets, and evaluation metrics.

ACM Comput. Surv. (CSUR) 2019, 52, 1–37. [CrossRef]
132. Kilickaya, M.; Erdem, A.; Ikizler-Cinbis, N.; Erdem, E. Re-evaluating automatic metrics for image captioning. arXiv 2016,

arXiv:1612.07600.
133. Sai, A.B.; Mohankumar, A.K.; Khapra, M.M. A survey of evaluation metrics used for NLG systems. ACM Comput. Surv. (CSUR)

2022, 55, 1–39. [CrossRef]
134. Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L.M. Breaking with trends in pre-processing?

TrAC Trends Anal. Chem. 2013, 50, 96–106. [CrossRef]
135. Hemanth, D.J.; Anitha, J. Image pre-processing and feature extraction techniques for magnetic resonance brain image analysis.

In Proceedings of the International Conference on Future Generation Communication and Networking, London, UK, 12–14
December 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 349–356.

136. Rajesh, S.D.; Almeida, J.M.; Martins, A. Image Cleaning and Enhancement Technique for Underwater Mining. In Proceedings of
the OCEANS 2019, Marseille, France, 17–20 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

137. Jiang, Z.; Zhang, Y.; Zou, D.; Ren, J.; Lv, J.; Liu, Y. Learning event-based motion deblurring. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 3320–3329.

138. Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J. Comput. Vis. 2013,
104, 154–171. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2022.3230934
http://dx.doi.org/10.1145/3355390
http://dx.doi.org/10.1145/3485766
http://dx.doi.org/10.1016/j.trac.2013.04.015
http://dx.doi.org/10.1007/s11263-013-0620-5


Algorithms 2023, 16, 135 39 of 40

139. Lazebnik, S.; Schmid, C.; Ponce, J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories.
In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New
York, NY, USA, 17–22 June 2006; IEEE: Piscataway, NJ, USA, 2006; Volume 2, pp. 2169–2178.

140. Shin, A.; Ushiku, Y.; Harada, T. Customized Image Narrative Generation via Interactive Visual Question Generation and
Answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22
June 2018; pp. 8925–8933.

141. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

142. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1106–1114. [CrossRef]

143. Fang, H.; Gupta, S.; Iandola, F.; Srivastava, R.K.; Deng, L.; Dollár, P.; Gao, J.; He, X.; Mitchell, M.; Platt, J.C.; et al. From captions to
visual concepts and back. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA,
USA, 7–12 June 2015; pp. 1473–1482.

144. Wu, Q.; Shen, C.; Liu, L.; Dick, A.; Van Den Hengel, A. What value do explicit high level concepts have in vision to language
problems? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June
2016; pp. 203–212.

145. Li, Y.; Duan, N.; Zhou, B.; Chu, X.; Ouyang, W.; Wang, X.; Zhou, M. Visual question generation as dual task of visual question
answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22
June 2018; pp. 6116–6124.

146. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
147. Malakan, Z.M.; Hassan, G.M.; Mian, A. Vision Transformer Based Model for Describing a Set of Images as a Story. In Proceedings

of the AI 2022: Advances in Artificial Intelligence: 35th Australasian Joint Conference, AI 2022, Perth, WA, Australia, 5–8
December 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 15–28.

148. Cao, S.; An, G.; Zheng, Z.; Wang, Z. Vision-Enhanced and Consensus-Aware Transformer for Image Captioning. IEEE Trans.
Circuits Syst. Video Technol. 2022, 32, 7005–7018. [CrossRef]

149. Fang, Z.; Wang, J.; Hu, X.; Liang, L.; Gan, Z.; Wang, L.; Yang, Y.; Liu, Z. Injecting semantic concepts into end-to-end image
captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022; pp. 18009–18019.

150. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

151. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: Lessons learned from the 2015 mscoco image captioning challenge.
IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 652–663. [CrossRef]

152. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
153. Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-term recurrent

convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2625–2634.

154. Gu, J.; Wang, G.; Cai, J.; Chen, T. An empirical study of language cnn for image captioning. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1222–1231.

155. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

156. Zhu, Z.; Wei, Y.; Wang, J.; Gan, Z.; Zhang, Z.; Wang, L.; Hua, G.; Wang, L.; Liu, Z.; Hu, H. Exploring Discrete Diffusion Models for
Image Captioning. arXiv 2022, arXiv:2211.11694.

157. Luo, J.; Li, Y.; Pan, Y.; Yao, T.; Feng, J.; Chao, H.; Mei, T. Semantic-Conditional Diffusion Networks for Image Captioning. arXiv
2022, arXiv:2212.03099.

158. Xu, S. CLIP-Diffusion-LM: Apply Diffusion Model on Image Captioning. arXiv 2022, arXiv:2210.04559.
159. Cheung, J.C.K.; Li, X. Sequence clustering and labeling for unsupervised query intent discovery. In Proceedings of the Fifth ACM

International Conference on Web Search and Data Mining, Seattle, WA, USA, 8–12 February 2012; pp. 383–392.
160. Vedula, N.; Lipka, N.; Maneriker, P.; Parthasarathy, S. Towards open intent discovery for conversational text. arXiv 2019,

arXiv:1904.08524.
161. Narayanan, A.; Chandramohan, M.; Venkatesan, R.; Chen, L.; Liu, Y.; Jaiswal, S. graph2vec: Learning distributed representations

of graphs. arXiv 2017, arXiv:1707.05005.
162. Beheshti, A.; Benatallah, B.; Nouri, R.; Chhieng, V.M.; Xiong, H.; Zhao, X. Coredb: A data lake service. In Proceedings of the 2017

ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 2451–2454.
163. Beheshti, A.; Benatallah, B.; Nouri, R.; Tabebordbar, A. CoreKG: A knowledge lake service. Proc. VLDB Endow. 2018, 11, 1942–1945.

[CrossRef]
164. Li, N.; Liu, B.; Han, Z.; Liu, Y.S.; Fu, J. Emotion reinforced visual storytelling. In Proceedings of the 2019 on International

Conference on Multimedia Retrieval, Ottawa, ON, Canada, 10–13 June 2019; pp. 297–305.

http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TCSVT.2022.3178844
http://dx.doi.org/10.1109/TPAMI.2016.2587640
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.14778/3229863.3236230


Algorithms 2023, 16, 135 40 of 40

165. Hsu, C.Y.; Chu, Y.W.; Huang, T.H.; Ku, L.W. Plot and Rework: Modeling Storylines for Visual Storytelling. arXiv 2021,
arXiv:2105.06950.

166. Nahian, M.; Al, S.; Tasrin, T.; Gandhi, S.; Gaines, R.; Harrison, B. A hierarchical approach for visual storytelling using image
description. In Proceedings of the International Conference on Interactive Digital Storytelling, Little Cottonwood Canyon, UT,
USA, 19–22 November 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 304–317.

167. Kim, T.; Heo, M.O.; Son, S.; Park, K.W.; Zhang, B.T. Glac net: Glocal attention cascading networks for multi-image cued story
generation. arXiv 2018, arXiv:1805.10973.

168. Wang, R.; Wei, Z.; Li, P.; Zhang, Q.; Huang, X. Storytelling from an image stream using scene graphs. In Proceedings of the AAAI
Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 9185–9192.

169. Zhang, B.; Hu, H.; Sha, F. Visual storytelling via predicting anchor word embeddings in the stories. arXiv 2020, arXiv:2001.04541.
170. Gonzalez-Rico, D.; Fuentes-Pineda, G. Contextualize, show and tell: A neural visual storyteller. arXiv 2018, arXiv:1806.00738.
171. Wang, P.; Zamora, J.; Liu, J.; Ilievski, F.; Chen, M.; Ren, X. Contextualized scene imagination for generative commonsense

reasoning. arXiv 2021, arXiv:2112.06318.
172. Smilevski, M.; Lalkovski, I.; Madjarov, G. Stories for images-in-sequence by using visual and narrative components. In Proceed-

ings of the International Conference on Telecommunications, Saint Malo, France, 26–28 June 2018; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 148–159.

173. Chandu, K.; Nyberg, E.; Black, A.W. Storyboarding of recipes: Grounded contextual generation. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 6040–6046.

174. Salvador, A.; Gundogdu, E.; Bazzani, L.; Donoser, M. Revamping cross-modal recipe retrieval with hierarchical transformers and
self-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville,
TN, USA, 19–25 June 2021; pp. 15475–15484.

175. Nishimura, T.; Hashimoto, A.; Ushiku, Y.; Kameko, H.; Yamakata, Y.; Mori, S. Structure-aware procedural text generation from an
image sequence. IEEE Access 2020, 9, 2125–2141. [CrossRef]

176. Qi, M.; Qin, J.; Huang, D.; Shen, Z.; Yang, Y.; Luo, J. Latent Memory-augmented Graph Transformer for Visual Storytelling. In
Proceedings of the 29th ACM International Conference on Multimedia, Virtual, 20–24 October 2021; pp. 4892–4901.

177. Hong, X.; Shetty, R.; Sayeed, A.; Mehra, K.; Demberg, V.; Schiele, B. Diverse and Relevant Visual Storytelling with Scene Graph
Embeddings. In Proceedings of the 24th Conference on Computational Natural Language Learning, Online, 19–20 November
2020; pp. 420–430.

178. Joana, K.; Chan, S.W.; Chu, S.K. Quality assessment for digital stories by young authors. Data Inf. Manag. 2021, 5, 174–183.
179. Kusner, M.; Sun, Y.; Kolkin, N.; Weinberger, K. From word embeddings to document distances. In Proceedings of the International

Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 957–966.
180. Lin, C.Y. Rouge: A package for automatic evaluation of summaries. In Text Summarization Branches Out; Association for

Computational Linguistics: Barcelona, Spain, 2004; pp. 74–81.
181. Hsu, T.Y.; Huang, C.Y.; Hsu, Y.C.; Huang, T.H. Visual story post-editing. arXiv 2019, arXiv:1906.01764.
182. Ravi, H.; Kafle, K.; Cohen, S.; Brandt, J.; Kapadia, M. AESOP: Abstract Encoding of Stories, Objects, and Pictures. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 2052–2063.
183. Hsu, C.Y.; Chu, Y.W.; Chen, V.; Lo, K.C.; Chen, C.; Huang, T.H.; Ku, L.W. Learning to Rank Visual Stories From Human Ranking

Data. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Dublin, Ireland, 22–27 May 2022; pp. 6365–6378.

184. Marin, J.; Biswas, A.; Ofli, F.; Hynes, N.; Salvador, A.; Aytar, Y.; Weber, I.; Torralba, A. Recipe1m+: A dataset for learning
cross-modal embeddings for cooking recipes and food images. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 187–203. [CrossRef]

185. Wang, H.; Lin, G.; Hoi, S.C.; Miao, C. Decomposed generation networks with structure prediction for recipe generation from food
images. arXiv 2020, arXiv:2007.13374.

186. Nishimura, T.; Hashimoto, A.; Ushiku, Y.; Kameko, H.; Mori, S. Recipe Generation from Unsegmented Cooking Videos. arXiv
2022, arXiv:2209.10134.

187. Fain, M.; Twomey, N.; Ponikar, A.; Fox, R.; Bollegala, D. Dividing and conquering cross-modal recipe retrieval: From nearest
neighbours baselines to sota. arXiv 2019, arXiv:1911.12763.

188. Sakib, M.S.; Paulius, D.; Sun, Y. Approximate task tree retrieval in a knowledge network for robotic cooking. IEEE Robot. Autom.
Lett. 2022, 7, 11492–11499. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2020.3043452
http://dx.doi.org/10.1109/TPAMI.2019.2927476
http://dx.doi.org/10.1109/LRA.2022.3191068

	Introduction
	Literature Selection
	Background and Motivation 
	Research Questions
	Literature Selection

	Task 1. Building the Foundation for Organizing and Curating the Raw Image Data
	Curation: Image Preparation Using Cleaning and Preprocessing
	Image Correction
	Image Enhancement
	Image Integration
	Image Transformation
	Other Preprocessing Methods for Feature Extraction

	Curation: Adding Value
	Extraction
	Enrichment and Linking


	Task 2. Story Modeling
	Organizing and Summarizing Feature Data
	Classification
	Clustering
	Feature Data Summarization

	Narrative Engineering

	Task 3: Intelligent Narrative Discovery 
	Intent Discovery
	Image Collection Summarization
	Narrative Extension

	Task 4: Story Creation
	Story Creation Framework
	Story Creation Techniques
	RL-Based Methods
	Other Methods


	Task 5: Story Presentation and Querying
	Intelligent Widget for Narrative Discovery
	Visualization Techniques

	Task 6: Quality Assessment and Dataset
	Automatic Assessment
	Human Assessment
	Dataset

	Conclusions, Discussion, and Future Directions
	Discussion
	Future Directions

	References

