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Abstract: Affective computing focuses on instilling emotion awareness in machines. This area has
attracted many researchers globally. However, the lack of an affective database based on physiological
signals from the Asian continent has been reported. This is an important issue for ensuring inclu-
siveness and avoiding bias in this field. This paper introduces an emotion recognition database, the
Asian Affective and Emotional State (A2ES) dataset, for affective computing research. The database
comprises electrocardiogram (ECG) and photoplethysmography (PPG) recordings from 47 Asian
participants of various ethnicities. The subjects were exposed to 25 carefully selected audio–visual
stimuli to elicit specific targeted emotions. An analysis of the participants’ self-assessment and a list
of the 25 stimuli utilised are also presented in this work. Emotion recognition systems are built using
ECG and PPG data; five machine learning algorithms: support vector machine (SVM), k-nearest
neighbour (KNN), naive Bayes (NB), decision tree (DT), and random forest (RF); and deep learning
techniques. The performance of the systems built are presented and compared. The SVM was found
to be the best learning algorithm for the ECG data, while RF was the best for the PPG data. The
proposed database is available to other researchers.

Keywords: affective computing; emotion recognition system; physiological signals

1. Introduction

As the World Health Organization’s Director-General, Tedros Adhanom Ghebreyesus
remarked, in 2020, that mental health is essential for overall health and well-being [1]. The
outbreak of the COVID-19 pandemic brought new challenges to the issue of mental health.
According to the Kaiser Family Foundation’s investigation into the effect of COVID-19
on American life, the respondents were concerned about losing income due to the fact
of job loss, workplace closure, or reduced job hours during the pandemic [2]. Six out
of ten adults were concerned about getting an infection or exposing themselves or their
family to the virus while working. All of these concerns have negative effects on mental
health and emotions. Additionally, according to a survey conducted by Changwon Son’s
team [3], 71% of students in the United States claimed that their anxiety and stress levels
increased as a result of the pandemic. A report from the University of Saskatchewan,
Canada [4], focusing on the university’s medical students, also showed a similar result.
These findings demonstrate the seriousness of the COVID-19 pandemic’s impacts on mental
health. Therefore, in this challenging era of COVID-19, research on intelligent systems that
monitor for symptoms of unpleasant emotions building up in a person is becoming more
pressing.

An emotion recognition system (ERS) can recognise human emotions and can be used
in many different fields. For example, a stress detector that assesses employees’ stress
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levels using electrocardiogram (ECG) and galvanic skin response (GSR) is proposed in [5].
A cardiac-based ERS is proposed in [6–8] to assess driver stress levels and drowsiness
detection in [9]. Additionally, ERS have been proposed for various uses in the education
industry. In [10], voice-based emotion identification for affective e-learning is proposed.
A facial ERS that enables teachers to monitor students’ moods throughout class [11] and
physiological signal-based ERS adoption in an intelligent tutoring system (ITS) [12] are also
found among the works that reported the usage of ERS for education.

From the works discussed above, it can be observed that an ERS can be built using
multiple modalities: ECG, GSR, and voice and facial images. Notably, physiological
signals are commonly used. Among the physiological signals that are often utilised as ERS
modalities are electroencephalogram (EEG) [13,14] and ECG [15–18]. Some works integrate
several modalities for their ERS [19–21], while others use a single modality [17,22,23]. Due
to the high demand, the number of works on physiological-based ERS utilising wearable
devices and noninvasive sensors has also increased. Physiological-based ERS are good for
social masking avoidance [24] and are less prone to fake emotions and manipulation [25].
The utilisation of wearable devices is supported by the popularity of their usage among
consumers. Rock Health surveyed digital health adoption and discovered that wearable
device usage has increased significantly, from 24% in 2018 to 33% in 2019 [26]. Additionally,
Statista, a German-based online statistics source predicted that the number of smartwatch
users is expected to reach 1.2 million by 2024 [27]. According to this statistic, the endeavour
to build ERS using wearable devices represents a path towards a proper future with
significant advancements.

Many labelled emotion databases have been produced in recent years that comprise
various modalities [28], for example, a database for emotion analysis using physiological
signals (DEAP) [13]; a database for affect, personality, and mood research on individu-
als and groups (AMIGOS) [18]; a database for decoding affective physiological responses
(DECAF) [20]; and a multimodal physiological emotion database for discrete emotion recog-
nition (MPED) [16]. Several databases are composed of data collected using nonportable de-
vices and expensive technology; meanwhile, the databases for emotion recognition through
EEG and ECG (DREAMER) [14], wearable stress and affect detection (WESAD) [29], and
emotion recognition smartwatches (ERS) [30] are compilations of signals collected from
wireless, low-cost, and off-the-shelf devices. These databases have been utilised in studies
by researchers with different levels of success [13,18,20].

In past research, the issues of racial inequities and bias toward wearable technology,
particularly for those with darker skin tones, have been raised [31,32]. Those with darker
skin tones, tattoos, or arm hair have lower accuracy when using wearable devices that
track their health activity or monitor their heart conditions. Noseworthy et al. [32] rec-
ommended that researchers should be aware of racial bias and disseminate study results
across demographic subgroups to minimise bias. To the best of our knowledge, there are
no existing physiological affective datasets collected from wearable devices that look at this
issue and include multi-Asian ethnicities. For example, the DEAP dataset comprises data
from European participants [13], while the MPED dataset consists of data from Chinese
participants only.

Thus, this paper introduces the Asian Affective and Emotional State (A2ES) Database
consisting of ECG and PPG recordings of 47 participants from various Asian ethnicities.
Both ECG and PPG recordings have been reported to be affected by skin colour [31,33]. An
ECG is used to detect the heart’s electrical activity, which starts from the sinoatrial node
to contract the heart muscles for continuing the blood pumping action in the body [34].
As illustrated in Figure 1, the ECG comprises three primary components: P wave, QRS
wave, and T wave. On the other hand, PPG is a low-cost and noninvasive way to measure
blood volume changes in a human during heart activity. PPG has two main components:
incoherent light source and photoreceiver [35]. A typical PPG signal element is shown
in Figure 2, complete with the systolic period associated with blood in-rush, the diastolic
period associated with relaxation, and the dicrotic notch associated with pulse reflection [36].
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The subjects that participated in the data collection were exposed to 25 audio–visual stimuli
to elicit specific emotions. The self-assessment ratings from the participants and the list of
the 25 stimuli are also presented here.
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Figure 2. Typical transmission of a PPG signal with the systolic period. Reproduced with permission
from [37].

The applicability of the A2ES’s ECG and PPG data for building an ERS was tested
using machine learning and deep learning approaches. Five machine learning algorithms,
namely, support vector machine (SVM), naive Bayes (NB), K-nearest neighbours (KNN),
decision tree classifier (DT), and random forest (RF), were applied. The ECG-based ERS
built using SVM and the PPG-based ERS built using RF were found to be the best. The
small data size did not suit deep learning, and poor performances were reported.

The rest of this paper is organised as follows. In Section 2, related works, including
ECG- and PPG-based ERS, as well as ECG- and PPG-based databases, are described. The
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experiment protocol is covered in Section 3, which includes the stimuli selection procedure,
participants’ details, and data collection setting and protocol. Section 4 describes the data
preprocessing and feature extraction process. In Section 5, an evaluation of the ECG- and
PPG-based ERS performances are presented. A concluding discussion and future work
directions are provided in Section 6.

2. Related Works

ECG and PPG are popular modalities for ERS. Many studies using these modalities
have achieved promising results in representing human emotions. Bagirathan et al. [22]
utilised ECG signals to recognise positive and negative valence states in children with
autism spectrum disorder (ASD). The proposed system successfully obtained an accuracy
of 81%. Meanwhile, a PPG-based ERS with a convolutional neural network (CNN) is
proposed in [38] for the fast emotional recognition of valence and arousal. The system
achieved a 75.3% and 76.2% valence and arousal accuracy within 1.1 s for short-term
emotion recognition. In 2021, Preethi et al. developed a real-time ERS to automate a music
selection system using emotion recognized based on PPG signals [39]. An accuracy of
91.81% was achieved utilising features extracted from phase-space geometry (Poincare’s
analysis). For binary classification and multiclass classification, maximum accuracy rates
of 96.67% and 91.11% were achieved, respectively. Hasnul et al. evaluated the performance
of an ECG-based ERS with the features extracted using two distinct feature extraction
toolboxes, TEAP and AUBT, and achieved an accuracy of up to 65% [17].

ECG and PPG are also commonly integrated with other physiological signals as a
strategy to improve ERS performance. In [40], ECG was used together with temperature
(TEMP), galvanic skin response (GSR), electromyography (EMG), respiration (RESP), ac-
celerometer signals, and facial expressions to recognise dimensional emotional states (high
arousal and high valence (HAHV), high arousal and low valence (HALV), low arousal and
high valence (LAHV), and low arousal and low valence (LALV)), arousal, and valence.
The accuracy obtained was in the range of 40 to 70%. Zainudin et al. [41] proposed stress
detection using ECG and GSR signals and categorised them using two approaches: machine
learning and deep learning. Their work successfully achieved the best accuracy of 95%.
Tian Chen et al. proposed a multimodal fusion ERS that includes EEG and ECG [42]. The
fusion ERS was better than the single-modality ERS, with an accuracy for valence of 85.38%
and for arousal of 77.52%.

In [43], another emotion-based music recommendation engine system was built using
a combination of PPG and GSR signals from wearables. The emotional information from
PPG and GSR was fed to a collaborative and content-based recommendation engine, and
the best accuracy rate obtained exceeded 70%. Domínguez-Jiménez et al. [44] also proposed
an ERS using PPG and GSR from wearable devices. The ERS recognises three emotions:
amusement, sadness, and neutral. The system successfully recognised all three emotions,
with a testing accuracy of up to 100%. In [45], a deep physiological affect network, which
is a robust physiological model that recognises human emotions using PPG and EEG
signals, is presented. The proposed system achieved 78.72% and 79.03% overall accuracy
for recognising valence and arousal emotions, respectively.

Although both ECG and PPG signals can be used independently or integrated with
other physiological signals, they can also be fused together to upgrade the robustness
and improve an ERS’s performance. For example, Li et al. [46] proposed a group-based
individual response specificity (IRS) to improve the emotion recognition performance by
fusing the statistical features from ECG and PPG with GSR. The highest performance
achieved was 78.06% using the MLP classifier. The authors of [47] also proposed an
automatic ERS with the fusion of the ECG and PPG features and successfully achieved the
best performance of 85.70%. Additionally, the fusion of the ECG and PPG features was also
used in [48]. They classified three emotions, positive, neutral, and negative, using a CNN
and achieved an accuracy of 75.40%.
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In affective computing, existing datasets that collect data from either a single modality
or a multimodality using physiological and physical signals are important for the advance-
ment of this field. Existing datasets and their size (number of participants and number
of stimuli), type of stimuli, modalities used, devices, and labels are tabulated in Table 1.
Most of the listed datasets contain ECG signals. The ECGs were collected using various
devices, namely, Shimmer, Biosemi Active System, Biopac System, FlexComp, Procomp
Infinity, and Mobi. Only two of the datasets contain PPG only without ECG: DEAP [13] and
DEAR-MULSEMEDIA [49]. In these works, the PPG signals were recorded using Biosemi
ActiveTwo and Shimmer devices. Four works have both cardio-based physiological signals
(ECG and PPG): CASE [50], CLAS [51], ECSMP [52], and K-EmoCon [19]. The datasets
CASE and CLAS contain ECG and PPG signals measured using Thought Technology and
Shimmer3, respectively. ECSMP and K-EmoCon used AECG-100 and Polar H7 for ECG
and Empatica E4 for PPG. The ECSMP [52] dataset has the greatest number of subjects,
and EMDC [53] has the greatest number of stimuli compared to the other datasets. Twelve
datasets used audio–visual stimuli, making it the most common type of stimuli to elicit
emotions. Additionally, most of the datasets used valence and arousal as emotion anno-
tations in addition to basic emotions, such as joy, anger, sadness, fear, disgust, stress, or
neutral. A review paper [25] discusses in detail most of these datasets.

Table 1. Summary of the existing cardiological-based ERS datasets.

Dataset Data Stimuli Used Modalities Used Cardiac-Based
Devices Emotion Label

AMIGOS [18] 40 subjects, 24
stimuli Audio–visual ECG, EEG, GSR Shimmer Valence, arousal,

dominance

ASCERTAIN [54] 58 subjects, 36
stimuli Audio–visual ECG, EEG, GSR NA Valence, arousal

AuBT [55] 1 subject, 4 stimuli Audio ECG, EMG, RESP,
GSR NA Joy, anger, sadness,

pleasure

CASE [50] 30 subject, 20
stimuli Audio–visual ECG, PPG, EMG,

GSR
Thought

Technology Valence, arousal

CLAS [51] 62 subjects, 32
stimuli

Audio–visual,
visual ECG, PPG, GSR Shimmer3 Valence, arousal

DEAP [13] 32 subjects, 40
stimuli Audio–visual PPG, EEG, GSR,

EOG Biosemi ActiveTwo Valence, arousal,
liking

DEAR-
MULSEMEDIA

[49]

18 subjects, 4
stimuli

Audio–visual,
tactile, olfaction,

haptic
PPG, EEG, GSR Shimmer Valence, arousal

DECAF [20] 30 subjects, 76
stimuli Audio–visual

ECG, EOG, EMG,
MEG, facial
expression

NA Valence, arousal,
dominance

DREAMER [14] 23 subjects, 18
stimuli Audio–visual ECG, EEG Shimmer Valence, arousal,

dominance

DSDRWDT [56] 24 subjects Driving task ECG, EMG, GSR,
RESP FlexComp Stress

ECSMP [52] 89 subjects, 6
stimuli

Audio–visual,
cognitive

assessment task

ECG, PPG, EEG,
GSR, TEMP, ACC

AECG-100A
(ECG), Empatica

E4 (PPG)

Neutral, fear, sad,
happy, anger,

disgust, fatigue
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Table 1. Cont.

Dataset Data Stimuli Used Modalities Used Cardiac-Based
Devices Emotion Label

EMDC [53] 3 subjects, 360
stimuli Audio ECG, EMG, GSR,

RESP Procomp2 Infiniti Valence, arousal

K-EmoCon [19] 32 subjects Naturalistic
conversation

ECG, PPG, EEG,
GSR, TEMP

Polar H7 (ECG),
Empatica E4 (PPG) Valence, arousal

MAHNOB-HCI
[57]

27 subjects, 20
stimuli Audio–visual ECG, EEG, GSR,

RESP, TEMP Biosemi ActiveTwo Valence, arousal,
dominance

MPED [16] 23 subjects, 28
stimuli Audio–visual ECG, EEG, GSR,

RESP Biopac System
Joy, funny, anger,
fear, disgust, sad,

neutral

RECOLA [58] 46 subjects
Spontaneous and

naturalistic
interactions

ECG, GSR, voice,
facial expression Biopac MP36 Valence, arousal

SWELL [5]

25 subjects, 4
working

conditions with
stressors

Writing,
presenting,

reading, searching
task

ECG, GSR, facial
expression, body

posture
Mobi (TMSi) Valence, arousal,

stress

WESAD [29] 15 subjects, 10
stimuli

Audio–visual,
public speaking,

mental arithmetic
task

ECG, PPG, GSR,
EMG, TEMP, RESP

RespiBan
Professional2

(ECG), Empatica
E4 (PPG)

Neutral, stress,
amusement

3. Data Collection Protocol
3.1. Emotion Annotation and Stimuli Selection

The labelling and annotating of the A2ES data were conducted based on the discrete
emotional model (DEM), also known as basic emotions [16]. The seven selected basic
emotions were happy, sad, anger, fear, disgust, surprise, and neutral. The self-labelling
process was conducted directly after the subjects watched each video. A self-assessment
form, as shown in Figure 3, was prepared and a brief description for the user on how to
comply was written for the first video assessment. The subjects were encouraged to be
truthful concerning their introspective emotions instead of thinking of what is expected
from the videos. The first part identified the emotion experienced from watching the video,
and the second part requested the subjects to rate the intensity of the emerged feeling on a
scale, where one was the lowest and five was the highest. The combination of these two
parts allowed us to map the emotion to the valence and arousal scale.

The experiment was designed to collect data with an equal distribution of the six
emotions to promote variation and reduce bias. Prior to the data collection, a pilot study
on stimuli selection with respect to the targeted emotion was conducted. The findings of
the pilot study are presented in [59]. Based on the outcome of the pilot study, the stimuli
selection was refined. The stimuli were suited to the targeted participant’s background. All
videos were procured from YouTube, with a duration ranging from one to five minutes.
The total duration of all of the video clips was 1 h 15 min. The subjects were presented
with one neutral video before and after three consecutive videos with a similar targeted
emotion. The targeted emotional sequence was happy > surprise > fear > disgust > sad >
anger, with an interlude of a neutral video. The list of the 25 selected videos used to elicit
an emotional response for the data collection can be found in [60].
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Figure 3. The self-assessment form prepared in Google Forms.

The ECG signals were recorded using a KardiaMobile (KM) device. KM is a one-lead
ECG device by AliveCor. It works by placing two fingers of each hand on the electrodes
(Figure 4). It can capture 30, 60, or 300 s of raw and filtered ECG data and transfer
them to the connected smartphone via an ultrasonic audio-based wireless communication
protocol. Several studies have assessed and validated the KM device and its algorithm.
The sensitivity and specificity obtained varied between 55–100% and 84–99%, respectively,
depending on the patient population and reference technique [61–66]. The PPG was
collected using a Maxim Band. It is a wrist-worn activity and heart-rate monitor that makes
use of a maxim analogue front-end (AFE), accelerometer, optical sensors, and an internal
algorithm. The band is shown in Figure 5. When collecting the signals from the ECGs, the
subject was instructed to start the recording only when they began to feel the emotion. This
was because an ECG has a limitation of one minute as a maximum length. As for PPG, the
signals were recorded continuously while the video played.
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Figure 6 shows the percentage of the data distribution between the targeted emotion
and real samples. The targeted happy, sad, anger, fear, disgust, and surprise data were
equally distributed at 12%. Neutral was considered as the absence of any particular emotion,
and the targeted sample size percentage was larger at 28%. The real samples based on the
participants’ feedback had a size for neutral of 27%. In the real data distribution, happiness
had the highest sample compared to the other five discrete emotions, with an extra 8%,
while anger had the least, with only 8% of the total data. The reason for such an imbalance
is that some emotions, such as anger and sadness, are typically harder to trigger by only
watching videos. Another reason for the slight imbalance is because different persons have
different perspectives when dealing with stimuli.

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 21 
 

 

 

Figure 4. AliveCor Kardia Mobile device and its application. 

 

Figure 5. Maxim PPG Band. 

Figure 6 shows the percentage of the data distribution between the targeted emotion 

and real samples. The targeted happy, sad, anger, fear, disgust, and surprise data were 

equally distributed at 12%. Neutral was considered as the absence of any particular emo-

tion, and the targeted sample size percentage was larger at 28%. The real samples based 

on the participants’ feedback had a size for neutral of 27%. In the real data distribution, 

happiness had the highest sample compared to the other five discrete emotions, with an 

extra 8%, while anger had the least, with only 8% of the total data. The reason for such an 

imbalance is that some emotions, such as anger and sadness, are typically harder to trigger 

by only watching videos. Another reason for the slight imbalance is because different per-

sons have different perspectives when dealing with stimuli. 

  

Figure 6. Data distribution of the emotion labels. 

Happy
12%

Sad
12%

Anger
12%

Fear
12%

Disgust
12%

Surprise
12%

Neutral
28%

TARGET DATA DISTRIBUTION

Happy
20%

Sad
9%

Anger
8%

Fear
11%

Disgust
13%

Surprise
12%

Neutral
27%

REAL DATA DISTRIBUTION

Figure 6. Data distribution of the emotion labels.

Table 2 shows the number of the subjects’ responses towards each video. As can
be observed, perspective differences existed among the participants. Additionally, some
participants experienced contradictory emotions that were opposed to the targeted emotion.
Video 4, for example, failed to induce the targeted emotion of happiness in the majority of
the participants. The video concerns the anticipation of a happy ending in a well-known
fictional movie; the popularity of this movie, as well as the suspense element of the clip,
contributed to a greater number of participants selecting neutral and surprise. In another
case involving videos 18 and 20, they were supposed to conjure sadness in the viewers,
and the majority of the subjects reported feeling happy instead. Video 18 portrays a pitiful
situation of a young man who encounters difficulties, but the act of kindness shown by the
strangers towards him may have caused the viewers to feel happy instead of sad. Video 20



Algorithms 2023, 16, 130 9 of 21

shows a collection of heart-warming father–daughter relationships in the context of the
latter’s wedding day. Although the scene is touching and sad, most viewers perceived
it as happiness, because the situations take place on a wedding day, which is typically
perceived as a happy occasion. In occasions where the targeted emotion was different than
the participants’ feedback, this study considered the individual self-assessments as the data
labels.

Meanwhile, disgust had the most similar majority votes, with all three of the videos
managing to obtain more than 40 subjects (out of 48) experiencing the targeted emotion.
Video 15 recorded the highest number of participants experiencing the targeted disgust
emotion (46), and only two participants experienced other emotions, with one participant
reporting being not affected by the video (neutral), while another participant felt fear after
watching the video. This video depicted a girl eating frogs. For the surprise, fear, and
anger videos, the majority of the votes in the self-assessments were similar to the targeted
emotions. Videos 1, 5, 9, 13, 17, 21, and 25 were considered neutral, and they were played
between other targeted emotion videos to regulate the participants’ emotions and lower
the intensity of the emotion felt from the previous videos. Hence, some of the subjects
might have experienced a residual emotion from the previous videos, causing them to label
the presence of emotions instead of neutrality. Meanwhile, after a sequence of unpleasant
videos, such as anger-inducing videos, a neutral video might provide a pleasant and happy
feeling in the participants, where 15 reported feeling happy for video 25. The deviance
of the reported emotion by the participants and the targeted emotion was not a major
problem, as the objective of the experiment was to record the ECG and PPG signals of the
subjects when they experienced a specific emotion. Nonetheless, this contributed to an
imbalance of the real data distribution in contrast to the targeted distribution, as shown
in Figure 6. In the second part of the self-assessment form, the intensity of an emotion
was captured. This was used to analyse whether the intensity of an emotion was low or
high when experienced by the participants after exposure to the stimulus. The intensity of
the emotions experienced by the 48 participants when watching the videos are shown in
Figure 7. The three videos targeting the same emotion are clustered together in the figure.
The blue with a darker shade on the left side shows that the subjects selected a low intensity
for the felt emotion, while the blue with a brighter shade on the right side shows the
opposite. Video 15 managed to elicit the highest intensity of emotion (disgust), as it shows
an act of eating foods that are beyond social norms. The second highest intensity count was
for video 16, also in the disgust category, where rotten foods are shown in the clip. Video
8 also had a high count of subjects rating it as high intensity. The surprising factor that
contributed to such a degree of scale came from the extraordinary human capacity to solve
difficult tasks. A low intensity of an emotion towards the stimulus might be because the
subjects were already familiar with the videos shown. No subject rated videos 2, 19, 20,
and 23 as one in the scale.
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Table 2. Number of subjects that labelled the videos according to the discrete emotional model.

Videos (Number of Subjects That Chose the Labelled Emotion)
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Figure 7. Intensity of the emotions rated by the subjects for each video, except neutral.

3.2. Participants

A total of 47 people took part in this study. Participation was on a volunteer basis.
Each session started with the participants filling out a self-report of any psychological
problems and cardiovascular disease. Additionally, since the data collection was conducted
during the height of the COVID-19 pandemic, the participants were asked about COVID-19
symptoms. The data collection session for a participant proceeded only if the participant
answered “no” for all screening questions.

Among the 47 participants, there were 29 men and 18 women (refer to Figure 8). As
shown in Figure 9, the ages ranged from 19 to 47 years old (mean = 27.81 years). Out of
the 47 participants, 20 were between 18 and 24 years old, 19 were between 25 and 36 years
old, and 8 were older than 36 years, with the oldest being 47 years old. The ethnic diversity
included Malay (=18), Bangladesh (=10), Arab (=7), Chinese (=4), Indian (=3), Myanmar
(=2), Pakistani (=2), and others (=1). Almost 75% of the participants were students (=35) of
our university, and the rest were either academicians (=7) or from the community (=5) near
our institution. Figures 10 and 11 provide a demographic chart of the participants’ race
and occupation.
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Figure 11. The demography of the participants’ occupation.

There was a maximum number of two data collection sessions per day, totalling 47
sessions altogether. Once the participant arrived at the data collection lab, the attendee
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explained the data collection procedure and devices used and obtained the participant’s
consent via the provided form. The KM device was positioned in front of the participant
at an arms-level height. The participants had to place two fingers from each hand on
the electrodes to record a 60 s ECG whenever they experienced an intense emotion. The
MaximBand was worn on the participant’s left hand, and the duration of the PPG recordings
varied depending on the length of the videos.

Two computers were used for the data collection, as depicted in Figure 12. The setup
of the left computer was for the participant to watch the videos and self-evaluate their
emotional states, while the setup of the right computer was for the attendee to control
the video displayed, as well as the participant’s system. A divider was placed between
the attendee and the participant to allow them to maintain their full concentration on the
videos. The room temperature was set to 22 degrees Celsius. After the participants grasped
the data collection procedure, the sensors status was verified, and the attendee started to
play the videos without any further interaction with the participant. After each session,
the PPG and ECG readings were gathered and stored on a secure drive. The KM and
MaximBand applications were then reset for the next session.
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4. Data Preprocessing and Features Extraction
4.1. ECG

Augsburg Biosignal Toolbox (AuBT) is a MATLAB-based emotion recognition toolbox
developed by a team of researchers at the University of Augsburg, Germany [55]. The func-
tionality of the toolbox includes a comprehensive graphical user interface (GUI) with ECG
preprocessing, feature extraction, feature combination, feature selection, and classification.
Additionally, the toolbox also has the capability to process EMG, SC, and RSP. This toolbox
was adopted for the A2ES ECG data preprocessing and feature extraction. The toolbox has
also been adopted in prior research, such as in [14].

Prior to the extraction of the HR and HRV features from the ECG signals, lowpass
filtering and normalization were applied during the preprocessing. Next, each P, Q, R, S,
and T peak was detected. There were nine feature types, with a total of 81 mixed variations
that could be extracted using the AuBT. The list of statistical features is shown in Table 3.
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The mean, median, standard deviation (Stdev), max, min, and range (max–min) of an
interval refer to the amplitude characteristics of the time series. For the heart rate variability
(HRV), the RR interval of the time series was taken for measurement. Both the heart rate
(HR) and HRV features could be used to detect emotions and stress. The HRV feature
pNN50 is the number of adjacent R-to-R intervals, also known as the normal-to-normal, and
the percentage was greater than 50 ms. The mean of the frequency spectrum (specRange)
of the HRV was calculated based on the calculated range. The triangular index (TriInd)
represents the sum of all normal-to-normal intervals divided by the height of the histogram
of all RR intervals restrained on a distinct scale with bins of 7.8125 ms. In short, 66 HR
statistical features from the ECG intervals and selected amplitudes with 15 time domain
HRV features were extracted and combined, leading to a total of 81 features extracted by
the AuBT.

Table 3. AuBT’s ECG features.

Underlying Features Statistical Features Number of Features

RR, PP, QQ, SS, TT, PQ, QS, ST interval Mean, Median, Stdev, Min, Max, Range 48

P, R, S amplitude Mean, Median, Stdev, Min, Max, Range 18

HRV Mean, Median, Stdev, Min, Max, Range,
pNN50, specRange 8

HRV distribution Mean, Median, Stdev, Min, Max, Range,
TriInd 7

Total number of features: 81

4.2. PPG

The Toolbox for Emotional feAture extraction from Physiological signals (TEAP) is
an open-source toolbox developed in [67] to process multimodal physiological signals for
emotion detection. The TEAP can preprocess and extract features from EEG, GSR, ECG,
PPG, EMG, RSP, and ST. This study focused only on applying the TEAP for PPG, which
was implemented in MATLAB.

Upon implementing the TEAP on the raw PPG signals, the preprocessing is performed
automatically. A low-pass median filter with a window equal to the sample rate cleaned the
signals. Then, 17 features were extracted from the time and frequency domains of the clean
PPG signals, and the list of features are shown in Table 4. The inter-beat-interval (IBI) is the
time interval calculated between individual heartbeats. Based on the IBI, the HRV can be
calculated by applying the standard deviation of all normal-to-normal intervals contained
in each segment. The mean square error (MSE) features were calculated from the multiscale
entropy at five levels, and they provide an insight into the complexity of the PPG signal
fluctuations over the range of the time scale. The low, medium, and high frequencies of
the tachogram power were also calculated as features. Four frequency ranges of the power
spectral density (PSD) along with the statistical features of the mean and the mean IBI were
also extracted. The last two features were the energy ratio for the spectral power density
and tachogram power.
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Table 4. PG features extracted using TEAP.

Features Abbreviation Description Number of Features

IBI meanIBI, HRV Mean IBI, HRV (std(IBI)) 2

MSE MSE1, MSE2, MSE3, MSE4,
MSE5 Multiscale entropy at 5 levels 5

Tachogram power
Tachogram_LF,
Tachogram_MF,
Tachogram_HF

log (PXLF(f )), log (PXMF(f )),
log (PXHF(f )), log

(PXMF(f ))/log (PXLF(f ))+
log (PXHF(f )), where LF:f ∈

[0.01, 0.08] Hz, MF:[0.08, 0.15]
Hz, HF:[0.15, 0.4] Hz

3

PSD sp0001, sp0102, sp0203,
sp0304

Log(PX(f)), f ∈ {[0, 0.01], [0.1,
0.2], [0.2, 0.3], [0.3, 0.4]} Hz log
(PXLF(f )PXHF(f ), where LF:f
∈[0.0, 0.08] Hz and HF:f ∈

[0.15, 5.0] Hz

4

Statistical moments mean_ Mean 1

Energy ratio sp_energyRatio,
tachogram_energy_ratio

Spectral power ratio between
the 0.0–0.08 Hz and 0.15–0.5

Hz bands, energy ratio
tachogram_MFSP/(tachogram_HSP+tachogram_LFSP)

2

Total number of Features: 17

5. Experimental Results and Discussion

In order to validate the proposed dataset, an emotion recognition experiment was
conducted using machine learning and deep learning algorithms. The emotion recognition
was performed using each modality: ECG and PPG. From the emotion types and intensities
labelled by the participants, the emotions were reclassified according to the arousal classes
of high and low, valence classes of high and low, and the dimensional classes of high arousal
and high valence (HAHV), high arousal and low valence (HALV), low arousal and high
valence (LAHV), and low arousal and low valence (LALV). Classifying emotions according
to arousal and valence is commonly adopted in emotion recognition works, as seen in [68].
Before the classification, the data were split into subsets for training and testing. The ratio
of the training and testing was 70 to 30%.

5.1. Machine Learning

In this study, five machine learning (ML) algorithms were used. The algorithms were,
namely, support vector machine (SVM), naive bayes (NB), K-near neighbours (KNN), de-
cision tree classifier (DT), and random forest (RF). These algorithms have been observed
to be popularly chosen among researchers of affective computing [14,20,21,54,69]. Grid-
SearchCV [70] was utilized to tune the hyperparameters of the algorithms, and the model
was fit with the optimal parameters. This study also utilised the KFold cross-validation
technique, with 10 folds. The accuracy of each ML in classifying the emotions were then
compared.

5.1.1. ECG

Table 5 displays the classification performance of the ERS based on the ECG signals
according to the arousal, valence, and dimensional model. The classification was conducted
using the features extracted by AuBT. The results demonstrate that SVM was the best
classifier among the five ML algorithms for the arousal and valence classification, with
68.75% and 58.81%, respectively. Other affective datasets have also reported an accuracy
within same range [14]. KNN provided the highest accuracy for the dimensional values,
with 32.10%. The classification of the dimensional multiclasses was more complex than the
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binary classification of arousal and valence. Thus, a lower accuracy was expected. Overall,
the findings indicate that SVM and KNN are suitable for predicting arousal, valence, and
dimensional emotions. On the other hand, the NB classifier was not able to provide a
good performance in the classification of the ECG signals according to the three types of
classification problems.

Table 5. Machine learning models’ performance for ECG.

SVM DT NB KNN RF

Arousal 68.75 66.19 40.06 66.76 65.91
Valence 58.81 55.4 54.55 54.83 54.55

Dimensional 29.26 30.11 17.33 32.1 31.82

5.1.2. PPG

The accuracy of the emotion classification utilising PPG signals is shown in Table 6.
The RF had the highest classification accuracy for the arousal and dimensional emotions,
with 67.30% and 40.00%, respectively. Whereas the SVM obtained the highest PPG-based
ERS classification accuracy for valence at 64.94%. Table 7 demonstrates that compared
to other algorithms, SVM and RF performed comparably well in identifying emotions
based on the overall results, where they were either the best or the second best algorithm.
Interestingly, although the features extracted were fewer, it was observed that the accuracy
of the PPG-based ERS built for the valence and dimensional emotional model were better
than the ECG-based ERS. Meanwhile, for arousal the difference was marginal.

Table 6. ML models’ performance for PPG.

SVM DT NB KNN RF

Arousal 64.61 63.64 63.31 60.06 67.30

Valence 64.94 53.25 54.22 54.55 57.07

Dimensional 37.01 36.69 25.00 34.42 40.00

Table 7. DL parameter settings.

Parameter Parameter Setting

Input nodes 17,920

Hidden layers 33

Activation function (hidden layers) Relu

Activation function (output layer) Sigmoid

5.2. Deep Learning

In addition to ML, deep learning (DL) was also used in this study to assess the usability
of the proposed ECG- and PPG-based ERS datasets. The DL network implemented here is
depicted in Figure 13. The architecture consists of 33 convolutional layers, followed by a
fully connected layer with a SoftMax activation function. Table 7 provides a summary of
the DL parameter settings.
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5.2.1. ECG

The DL achieved a testing accuracy of 63.50% for arousal, 53.26% for valence, and
57.50% for the dimensional classes. The results are tabulated in Table 8. Compared to
the results obtained by ML, DL had a poorer performance in classifying arousal and
valence. Specifically, the SVM achieved a better performance, whereas in the dimensional
classification, DL had the best performance, outperforming ML. It is worth mentioning that
the size of A2ES is relatively small. Techniques to increase the size of the data such as data
augmentation were not applied here. Future work should focus on this aspect before the
adoption of DL for ERS development using the A2ES dataset.

Table 8. DL model’s performance for ECG.

DL

Arousal 63.50

Valence 53.26

Dimensional 57.50

5.2.2. PPG

The performance of the PPG-based ERS is tabulated in Table 9. DL obtained 34.63%
for arousal, 56.8% for valence, and 24.35% for dimensional. These results are lacking in
comparison to what was obtained by ML. The disparity in the results can be explained by
the fact that the A2ES’s small dataset may not be ideal for deep learning, which requires a
larger dataset to train effectively. Additionally, the number of features for PPG was also
less.
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Table 9. DL model’s performance for PPG.

DL

Arousal 34.63

Valence 56.8

Dimensional 24.35

6. Discussion and Conclusions

In this era of COVID-19 and many other challenges, developing an emotion aware
system is beneficial for society’s mental health. Therefore, an affective research dataset,
A2ES, was proposed in this paper. The dataset consists of ECG and PPG recordings
collected from 47 Asian participants from various ethnicities using wearables and off-
the-shelf devices. This was conducted to address the lack of such datasets for affective
computing research and bias avoidance in future research. The participants were exposed
to 25 audio–visual stimuli to elicit specific targeted emotions. The self-assessment ratings
from the participants and a list of the 25 stimuli used were included, along with the ECG
and PPG performance evaluations using ML and DL approaches. The findings prove
the usability of the A2ES for emotion recognition. The performance of ML in classifying
emotions using the A2ES with ECG and PPG was better than DL. This was because the size
of the data was limited due to the small sample size of the A2ES dataset. The A2ES data
are available upon request for other researchers and noncommercial purposes. Although,
the data are labelled according to the seven basic emotions of neutral, happy, surprise, fear,
disgust, sad, and anger, as well as their intensity, the data can be relabelled to arousal and
valence. The data are not tagged to the participants. It is suggested that future research
adopting the A2ES should consider different methods of feature extraction and feature
selection and reduction to ensure only informative features are applied for more accurate
classification, enhanced classification algorithms, and ensemble classifiers, as well as for
addressing the imbalance in the data of the different classes. Additionally, to benefit from
the strength of DL, the prospective focus should be to enhance the ERS by increasing the
size of the data, such as by applying a data augmentation technique to expand the size
of the data. The inclusion of the A2ES dataset with other affective computing datasets in
building an ERS is expected to lead to an unbiased ERS.
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