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Abstract: Passwords are ubiquitous in today’s world, as are forgetting and stealing them. Biometric
signs are harder to steal and impossible to forget. This paper presents a complete system of methods
that takes a secret key and the iris image of the owner as input and generates a public key, suitable
for storing insecurely. It is impossible to obtain source data (i.e., secret key or biometric traits) from
the public key without the iris image of the owner, the irises of other persons will not help. At the
same time, when the iris image of the same person is presented the secret key is restored. The system
has been tested on several iris image databases from public sources. It allows storing 65 bits of the
secret key, with zero possibility to unlock it with the impostor’s iris and 10.4% probability to reject
the owner in one attempt.

Keywords: biometric cryptosystem; iris identification; error-correcting codes

1. Introduction

Nowadays, cryptographic algorithms are widely used for information protection.
A large number of them, as well as their applications, have been invented and introduced [1].
These algorithms and systems are mathematically grounded and reliable. The weak link
in their implementation and usage, as usual, is human. Cryptography requires keys,
i.e., sequences of digits, which should be reproduced precisely. While a human is able to
remember and reproduce a personally invented password (though there are difficulties here
already), it is practically impossible to memorize a long sequence of pseudorandom sym-
bols, which is created automatically [2]. Meanwhile, humans possess biometric features that
are simple to retrieve, difficult to alienate, and contain a significant amount of information.
The disadvantage of biometric traits is their variability: it is impossible to exactly replicate
the measurement results, we can only say that two sets of traits taken from one person are
in some sense closer than the sets obtained from different people. It is of great interest to
combine these two approaches, i.e., to develop methods for obtaining unique cryptographic
keys from variable biometry data of a given person.

The eye iris is the most suitable biometric modality among all non-invasive ones due to
its highest information capacity. The number of degrees of freedom of the iris template was
evaluated as 249 [3]. It promises to be almost as good as a strong symmetric cryptography
key length of 256 bit, while the net coming fingerprint is reported to have 80 bits [4]. In
order to design a practically usable system it is advisable to base it on the iris. Up to
now a major focus in developing automated biometric is building an identification system,
i.e., the system, which executes a scenario: sample biometric features once, record, take
them sometime later and decide whether these samples belong to the same person.

The workflow of the biometric identification system can be combined of the blocks:
capture, segmentation, template generation, and template matching, see Figure 1.
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Figure 1. Biometric system workflow.

Note that in this scenario the biometric template should be securely stored and exclude
the intruder from obtaining it. Here, a different problem is solved, thus only capture,
segmentation and partly template generation blocks are inherited, and matching is replaced
by embedding/extracting the cryptographic key into/from the biometric features.

The explanation here goes alongside the data processing: from the source iris image
to the embedding of the secret key. The capture process, i.e., obtaining eye images with a
camera device, is beyond the scope of this paper. We start from the image segmentation
task and present a framework for locating the iris in an eye image. In the next section clue
methods of the framework are described. Then feature extraction and matching methods
are given. Following is the discussion of the application scenario of embedding the secret
key to biometric features. The successful extraction of the embedded key depends on the
difference between registered and presented biometric features, the value of this difference
is determined based on several databases. In the next section the methods of encoding and
decoding the key are presented, and the selection of their optimal parameters is discussed.

The contribution of this work is comprised of the following.

• The system of iris segmentation methods is presented which combines preliminary
detection with refinement steps. The first steps use the most common geometric prop-
erties of the eye and accept the widest range of image conditions, while the final steps
take care of details. The core of the system is a special base radii detection method.

• The cascade of error correction codecs adopted to iris code nature. A novel step of pseu-
dorandom bit shuffling is introduced, accompanied by bit dubbing.
This contradicts known methods, which do not use bit dubbing and deliberately
avoid bit shuffling.

• The combination of the iris segmentation system and error correction cascade results in
a practically applicable method, proven for several databases of variable image quality.

2. Eye Segmentation Framework

Methods, algorithms and applications of iris biometrics have attracted much attention
during the last three decades [5–7] and continue developing rapidly in recent years [8].
The main trend of the latest development is switching from heuristic approaches and
hand-crafted methods to employing neural networks in various tasks. A wide variety
of artificial neural networks has emerged and is applied to iris segmentation, starting
from earlier research with fully connected nets [9] to latest applications of attention-driven
CNNs [10], U-Nets [11], hybrid deep learning [12]. Another trend comes from the in-born
ability of neural networks to classify objects (say, pixels, textures, images) rather than
calculate their positions and other numerical properties. Due to this, most of the works in
iris segmentation rely on detecting masks, i.e., pixels belonging to regions of the iris (or
pupil, or else) in the image. Positions and sizes of pupil and iris are then derived from
these masks. Surely, detecting masks is what one calls segmentation; however, such an
approach ignores the clear and simple geometry of the iris and is prone to detecting irises of
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unnatural shape as is shown in [12]. Some works [13,14] apply a neural network to detect
the position of the iris as a number; however, it seems a strained decision.

Here we adopt a “classical” method. The obvious approach to iris region extraction in
eye imaging is a chain of operations that starts with the detection of the pupil (the most
distinctive area that is dark and has an expressed circular shape). Then outer iris border is
presumably located. Finally, the visible iris part is refined by cutting off the areas distorted
by reflections, eyelids and eyelashes. Most researchers and developers follow this method.
Detection of each iris feature is usually carried out only one time and it is not recalculated
any more even after obtaining other features, which can serve for refinement. For instance,
in [15–18] full set of iris features is detected; however, pupil parameters are obtained at the
first step and are not revised any more.

Only a few papers develop something different from this sequence “first pupil, then
iris, once determined, and never reviewed”. In [19,20], the position of the iris center is
estimated first which makes pupil detection more robust. In [21], pupil parameters are
refined using iris size after the iris is located. In [21,22], detection methods run iteratively
several times for refinement. In [20,23], a multi-scale approach is used, and methods run in
several scales. However, none of these works use various types of methods for detecting
any iris feature.

Here we develop a system of methods for segmentation of the iris in an eye image.
Evaluating of each of parameters is performed at several steps. The main idea of this
system is that at first the most general characteristics of objects are defined, which are then
sequentially supplemented by more specific and refined ones. Beginning steps do not need
to output precise final parameters, used as final. Instead, they should be robust and general
and tolerate a wide range of conditions, i.e., detect the object of any quality. Later steps
should have the highest possible precision and may reject poor quality data.

Iris region in frontal images is delimited by two nearly concentric nearly circular
contours, called inner and outer borders. Hereinafter the contour separating iris and pupil
is referred to as inner border, pupil border or simply pupil, and the contour delimiting iris and
sclera is called outer border or iris. In most cases pupil border is wholly visible in the image,
but some part of the iris border is frequently overlapped by eyelids and eyelashes.

Since the pupil and iris are almost concentric, one eye center point may serve as an
approximate center for both contours. It can be considered the most general geometric prop-
erty of the iris, and the first step of eye detection should be locating this eye center. Note that
only the position of the center is to be found, rather than the size of any contour. Excluding
size and allowing approximate detection involves both concentric borders in the process.
This is especially significant for eyes with poorly visible inner boundaries, where pupil
location alone fails frequently. A modification of Hough method [24] is used.

It is very likely that after center detection pupil size should be estimated. To the best
of our knowledge, this is carried out in all works where iris segmentation starts from eye
center location, as in [19]. However, this method is not stable and universal for a wide
range of imaging conditions. Detecting the radius may easily mistake the outer border
for the inner, especially for images with poor inner border contrast [25]. Here we decide
to employ both correlated contours around the detected center, and detect sizes of them
simultaneously. Hereinafter this detection is referred to as base radii detection, meaning
that it finds approximate (base) radii of inner and outer circles around a given center.
The method relies on circular projections of gradient [26]. Base radii detection produces
approximate center coordinates and radii of pupil and iris circles, which satisfy some
reasonable limitations. Furthermore, the quality of detection is calculated. The quality
should be high enough to pass the image to further processing.

Then both boundaries are re-estimated with better precision (refined). Pupil refinement
is carried out by a specially developed version of the shortest path method [27]. Iris is
refined by the same method as that of base radius. The difference is that the position of the
pupil is now fixed and only the iris center and radius are being searched. Iris segmentation
here results in detecting two nearly concentric circles, which are approximating the inner
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and outer borders of the iris ring. Occlusion detection [28] is carried out to ensure the
quality of iris data, i.e., to reject strongly occluded irises from further processing, but apart
from this the occlusion mask is not used.

Summing up, the segmentation stage of the system employs five steps: center detection,
base radii detection, pupil refinement, iris refinement and occlusion detection, see Figure 2.

Figure 2. Workflow of iris segmentation methods.

At each stage of segmentation, quality value is estimated and the process is terminated
if the quality is below acceptable.

3. Eye Segmentation Methods

Methods of iris segmentation are briefly presented in this section.

3.1. Center Detection

The algorithm finds the coordinates (xC, yC) = ~c of eye center in the image b(~x),
and does not need to estimate pupil or iris size. There is also no need to find the center
position precisely, it is sufficient to locate it somewhere inside the pupil. Thus, pixels of both
pupil and iris borders are used in Hough’s procedure. Furthermore, the algorithm has low
computational complexity since only two parameters are estimated and a two-dimensional
Hough accumulator is used.

The algorithm runs the following five steps.

Step 1. Gradient calculation.

Consider rectilinear coordinate system Oxy in the image with the center in the left
bottom corner and axes Ox and Oy directed along its borders. Denote brightness b(~x) in
image point~x. Brightness gradient ~∇b(~x) = ~g(~x) is estimated by standard Sobel masks [29].

Step 2. Outlining voting pixels.

We need edge pixels to vote. These are selected with the help of a gradient value
threshold. Cumulative distribution of brightness gradient values in pixels over the image is
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calculated, and set Ω1 of pixels with brightness gradient in the upper 5% of this distribution
are selected:

H(G) = |{~z : ‖~g(~z)‖ 6 G}| ,

Ω1 = {~x : H(‖~g(~x)‖) > (1− τs)N} ,
(1)

where |S| is power (count of elements) of set S, N is total number of image pixels, τs = 0.05
is the share of points being selected.

Step 3. Voting to accumulator.

Hough methods use accumulator function, which is defined over a parameter space.
We detect the eye center, which is some point in the image, and its parameters are its
coordinates in the image. Thus, the parameter space is 2D vector ~x and the accumulator is
A(~x) with the same size as the source image.

Ray from some given point ~x ∈ Ω1 in anti-gradient direction−~∇b(~x) is the locus of all
possible dark circles with border passing through this point. A set of such rays, drawn in
the accumulator, traced from each pixel coordinated selected at step 2 will produce clotting
at the center of any roundish dark object. The more circle-like this object is, the more
expressed will be its central clotting.

Step 4. Accumulator blurring.

The accumulator A(~x) is subject to a low-pass filter, to suppressed noise such as
singular sporadic rays produced by non-circular edges in the image. Denote the result as
AB(~x).

Step 5. Maximum location.

Maximum position
~c = arg max

~x
AB(~x) (2)

in blurred accumulator corresponds to the center of the best round-shaped object in the
image. It is the most probable eye center. However, local maxima exist in any image due to
noise. In order to decide whether there is a noticeable circular object, one can compare the
value of local maxima against the values produced by noise. Since τs pixels of the image
are voting and for each point voting procedure draws a segment of approximately 0.5W
pixels, where W is a linear size of the image, the average brightness level is near 0.5τsW.
Selecting desirable signal to noise ratio PSNR, one can write the condition of accepting the
located maximum (2) for eye center:

QC = max
~x

AB(~x) >
1
2

PSNRτsW . (3)

If condition (3) does not hold, the decision is made that there is no eye in the im-
age b(~x).

3.2. Base Radii Detection

The algorithm simultaneously locates two iris boundaries as circle approximations:
inner (pupil) (xP, yP, rP) and outer (iris) (xI , yI , rI) starting from the center ~c (2). In this
section, we set (xC, yC) = ~c as coordinate origin. Anti-gradient vector at the boundary of
the dark circle and the direction to the circle center coincide or form a small angle. As the
pupil and iris are both dark circles on the brighter background, one can state the following
condition for pixels ~x of their boundaries:

φ(~x) = arccos
~g(~x) ·~x
‖~g(~x)‖ ‖~x‖ < τφ . (4)
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We use a threshold value τφ = 450.
Furthermore, the condition for gradient value (1) is applicable. Pixel ~x satisfying the

conditions (1), (4) probably belongs to the inner or outer boundary. Call it candidate. Define
the set of candidate pixels as Ω2:

Ω2 =
{
~x : φ(~x) < τφ, H(‖~g(~x)‖) > (1− τs)N

}
. (5)

For each radius r a ratio of candidate count at this radius to the count of all pixels at
this radius is estimated:

Π(r) =
|{~x : ‖~x‖ ∈ [r− 0.5, r + 0.5),~x ∈ Ω2}|
|{~x : ‖~x‖ ∈ [r− 0.5, r + 0.5)}| . (6)

If there is a dark circle of some radius ρ with the center near the coordinate origin
its border pixels are likely to belong to the set Ω2, and are likely to have distance ρ to the
coordinate origin. Thus, Π(ρ) will be big, i.e., have local maximum. Other contours will
not vote to the same radius of circular projection and will not form local maxima therein.

The image plane is divided into four quadrants, left, right, top and bottom by the lines
y = x and y = −x. In each quadrant, a sub-projection is calculated separately according
to (6). Positions of local maxima on the right, left, top, and bottom sub-projections are:

µα(n) = arg loc
n

max
r

Πα(r) , α = {R, L, T, B} . (7)

The quality of maxima is simply the value of histogram at the point

qα(n) = Πα(µα(n)) . (8)

If not occluded, each of the two circular contours (inner and outer borders) gives a
local maximum in each sub-projection. Other maxima may arise due to occlusions such as
eyelashes and eyelids or due to other details in eye images, including patterns of the iris
itself. Combining local maxima positions (7) gives set of hypothetical pupils:

xi,j
P =

1
2
(µR(i)− µL(j)) , i = 1, nR , j = 1, nL ,

yk,l
P =

1
2
(µT(k)− µB(l)) , k = 1, nT , l = 1, nB ,

ri,j,k,l
P =

1
4
(µR(i) + µL(j) + µT(k) + µB(l)) .

(9)

Qualities of combinations are also defined from values (8):

qi,j,k,l
P =

1
4
(qR(i) + qL(j) + qT(k) + qB(l)) . (10)

Irises are estimated by just the same formulas:

xi,j
I =

1
2
(µR(i)− µL(j)) , i = 1, nR , j = 1, nL ,

yk,l
I =

1
2
(µT(k)− µB(l)) , k = 1, nT , l = 1, nB ,

ri,j,k,l
I =

1
4
(µR(i) + µL(j) + µT(k) + µB(l)) ,

qi,j,k,l
I =

1
4
(qR(i) + qL(j) + qT(k) + qB(l)) .

(11)

The nature of the pupil and iris imposes certain limitations on their locations and sizes.
We use the following four inequalities: pupil size is not less than 15% of iris size and not
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more than 75% of iris size; center of the iris is inside pupil; pupil cannot be displaced too
much from iris center. This can be written as:

rP > 0.15rI , rP < 0.75rI , d < rP , 2(rI − rP − d) > rI − rP + d , (12)

where~cP = (xP, yP),~cI = (xI , yI) are centres of pupil and iris, d = ‖~cP −~cI‖ is a distance
between these centres.

From all possible variants of pupil-iris pair given by (9)–(11) we select those satisfying
conditions (12). The quality of combination is a sum of pupil and iris qualities (10) and a
weighted quality of fitting to conditions (12):

Q = qP + qI + γq f it ,

q f it = min
{

rP − 0.15rI
rP

,
0.75rI − rP

rP
,

rP − d
rP

,
rI − rP − 3d

rI − rP

}
.

(13)

The combination with the best quality is selected. If Q is below the given threshold,
it is supposed that the eye in the image is squinted and upper and lower eyelids cover a
big share of the iris border. In this case, the variant with absent top and bottom iris local
maxima is tested. The formulas (9) and (10) are modified accordingly, iris center vertical
position is taken equal to that of the pupil: yI ≡ yP. If Q is below the threshold again, it is
decided that there is no feasible iris ring and in the image. Other types of occlusion are
not treated, the iris images are considered too bad for processing in this case. Thresholds
for Q and value of γ in (13) are estimated experimentally so as to reject the biggest share
of erroneously detected irises while preserving good outcomes. So, the method runs in
six steps:

Step 1. Gradient calculation.

This step is common with center detection.

Step 2. Candidates selection.

This step is similar to Step 2 of center detection. In addition to gradient value condi-
tion (1) angular condition (4) is imposed.

Step 3. Circular projecting.

Calculating circular projections (6) in four quadrants.

Step 4. Enumeration of maxima.

Finding local maxima (7) in projections. Prior to this the projections are smoothed
with a Gaussian filter to suppress redundant local maxima originating from noise.

Step 5. Enumerations of hypothetical irises.

Finding coordinates and radii of inner and outer circles from combinations of max-
ima (9), which hold conditions (12).

Step 6. Selecting the best iris.

Pair of circles is selected according to the qualities (8), (10), (13).
If no feasible iris is detected in step 5, the result is “no eye detected”.
A sample of the projection combination is presented in Figure 3. Real positions of

pupil and iris borders, taken from expert marking are depicted by arrows. There is no local
maxima corresponding to the iris border in the top projection ΠT(r) since the iris border is
occluded. Such minor obstacles do not prevent choosing correct combination.
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Figure 3. Four circular projections, their maxima positions and correct position of borders.

3.3. Pupil Refinement

Circular shortest path method constructs a closed contour in a circular ring [30].
The ring is centered at a given point and has inner and outer radii. CSP method is a
kind of optimal path method, i.e., it optimized the functional, which is the cost of the path.
We take the ring concentric to the approximate pupil circle and spread 30% of its radius
inside and outside.

In order to ease calculations polar transformation is carried out. The ring shape in
the source image is unwrapped to a rectilinear raster. Radial and angular coordinates of
the ring are mapped to abscissa and ordinate. Thus, the problem of locating the circular
shortest path is reduced to a problem of detecting the optimal path from the left to the
right side of the rectangle such that terminal points of the path have the same ordinate.
Contour is represented as a function ρ(φ), φ ∈ [0; 2π], ρ(0) = ρ(2π) with limited derivative
dρ/dφ < 1. In a discrete rectilinear raster of size W×H the contour is turns to a sequence of
points: {(n, ρn)}, n ∈ [0; W− 1]. Limitations to the derivative transforms to |ρn+1− ρn| 6 1,
edge condition is set as |ρW−1 − ρ0| 6 1.

Consider points (n, ρ′) and (n + 1, ρ′′) from adjacent columns of the raster. Denote the
cost of passing between them as

C((n, ρ′), (n + 1, ρ′′)) ≡ Cn(ρ
′, ρ′′) = C(I)

n (ρ′, ρ′′) + C(O)
n (ρ′, ρ′′) . (14)

This cost is a sum of inner and outer parts.
Inner cost is a function of contour shape, designed in a way to promote its smoothness:

C(I)
n (ρ′, ρ′′) =


0 , ρ′ = ρ′′ ,
τi , |ρ′ − ρ′′| = 1 ,
∞ , |ρ′ − ρ′′| > 1 .

(15)

Value of τi > 0 is a parameter defining the magnitude of a “force”, which pulls the
contour towards a straight line. Optimizing the inner part alone would give horizontal
lines in polar raster, i.e., ideal circles with the given center in source image.



Algorithms 2023, 16, 87 9 of 25

Outer cost is designed to make the contour pass through border pixels. So it is low in
boundary points (the gradient vector is big and perpendicular to the local direction of the
contour) and is high otherwise. The outer part is the cost of passing the point (n, ρ′):

C(O)(n, ρ) =

{
0 , (x, y) ∈ Ω3 ,
τo; , (x, y) /∈ Ω3 ,

(16)

where Ω3 is the set of points defined by (5), x and y are the coordinates of the source image
point, which was mapped to (n, ρ).

Optimal contour S = {ρn}W
n=1 is the one minimizing the total cost:

S∗ = arg min
S

W

∑
n=1

Cn(ρn, ρn+1) . (17)

This discrete optimization problem can be solved by various methods. Here the method
works in quite a narrow ring and the exhaustive search is faster due to small overhead.

Denote sum in (17) as Σ. In the best case Σ = 0, in the worst case Σ = W(τi + τo).
Mapping this into the range [0; 1] where value 1 stands for best we obtain the quality

Qre f = 1− Σ
W(τi + τo)

. (18)

The contour is considered acceptable if Qre f > 0.5, otherwise the decision is made that
the pupil border cannot be detected with the required precision and the segmentation is
terminated.

The algorithm runs in five steps.

Step 1. Candidates selection.

The same gradient calculation as in the first step of previous methods is used.
Then the conditions (1), (4) are imposed as in Step 2 of base radii detection. However,
a smaller angular threshold τφ = 300 is set since the center position is known with bet-
ter precision.

Step 2. Polar transform.

The transform creates an image (rectangular raster) P(φ, ρ), φ ∈ [0, W − 1], ρ ∈
[0; H − 1] by calculating a brightness value in each of its pixels (φ, ρ). This brightness is
taken from source image b(x, y) where its coordinates are estimated as

x(φ, ρ) =

(
r1 +

r2 − r1

H
ρ

)
cos
(

2πφ

W

)
,

y(φ, ρ) =

(
r1 +

r2 − r1

H
ρ

)
sin
(

2πφ

W

)
,

(19)

where r1 and r2 are the inner and outer radii of the ring in the source image, and the
coordinate origin of the source image is placed at the center of the ring. The brightness of
the point of the polar image is obtained by bilinear interpolation:

N(ρ, φ) =

(1− {x})(1− {y})b(bxc, byc)+
{x}(1− {y})b(bxc+ 1, byc)+
(1− {x}){y}b(bxc, byc+ 1)+

{x}{y}b(bxc+ 1, byc+ 1) ,

(20)

where bac and {a} define integer and fractional parts of a.
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Step 3. Optimal path tracking.

Finding S∗ according to (14)–(17).

Step 4. Transforming to original coordinates.

Restore the coordinates of the optimal path from Oρφ polar system back to the source
image Oxy system.

Step 5. Estimating equivalent circle.

Pupil border contour is not a circle precisely; however, we can define an equivalent
circle, with area and center of mass same as those of the figure enclosed into the pupil
border contour. The center and radius of the equivalent circle are:

xeq =
Mx

M
, yeq =

My

M
, req =

√
M
π

,

M = |Ω4| , Mx = ∑
(x,y)∈Ω4

x , My = ∑
(x,y)∈Ω4

y ,
(21)

where Ω4 is the area inside contour S∗ in source image. This equivalent circle is further
used as the pupil border, and it happens to be a better model due to its stability [31].

4. Experiments with Iris Segmentation

Iris segmentation here results in detecting two nearly concentric circles, which are
approximating inner and outer borders of iris ring.

Assessment of the iris segmentation quality can be carried out in the following ways:

• Matching against manual segmentation by a human.
• Matching against rivals disclosed in the literature.
• Applying obtained segmentation further to iris recognition. Under the assumption that

more precise detection reduces the number of classification errors this will indirectly
estimate segmentation quality.

In order to compare the results of the proposed system with the known analogs,
the following publicly available iris image databases were used: CASA-3-Lamp and
CASIA-4-Thousand [32] (totally 54,434 images), BATH [33] (31,988 images), NDIRIS [34]
(64,980 images), UBIRIS-1 [35] (1207 images).

4.1. Matching against Manual Segmentation

All images were processed by a human expert, who marked two circles approximating
iris borders in each of them or rejected if the iris was not visible or of poor quality. (In fact,
there were very few, less than a hundred altogether, images rejected at this stage.) We as-
sume that the expert did it accurately; therefore this segmentation is taking for ground truth.
Denote the manually marked circles as (x, y, r)∗P for pupil and (x, y, r)∗I for the iris. Values
of absolute and relative errors of eye center detection averaged in databases

εC,abs = 〈∆〉 , εC,rel =

〈
∆
r∗P

〉
, ∆ =

(
(xC − x∗P)

2 + (yC − y∗P)
2
)1/2

(22)

are given in Table 1.
It can be seen that for all databases except for the small bases MMU and UBIRIS,

which contain low-resolution images, and UBIRIS, which contain images with small pupil
size, the mean absolute deviation of the detected eye center from the true center of the
pupil does not exceed four pixels and the relative deviation does not exceed one-tenth of
the radius.



Algorithms 2023, 16, 87 11 of 25

Table 1. Errors of eye center detection.

Database εC,abs, Pixels εC,rel , %

BATH 2.85 5.27

CASIA 2.94 7.47

MMU 3.22 15.5

NDIRIS 3.12 6.30

UBIRIS 8.29 22.3

The next method of the system is base radius detection. Table 2 presents the average
deviations of the detected centers and radii of the pupil and the iris from those marked by
human experts.

εP,abs =

〈(
(xP − x∗P)

2 + (yP − y∗P)
2
)1/2

〉
, εrP,abs = 〈rP − r∗P〉 ,

ε I,abs =

〈(
(xI − x∗I )

2 + (yI − y∗I )
2
)1/2

〉
, εrI,abs = 〈rI − r∗I 〉 ,

(23)

Table 2. Errors of base radii detection, pixels.

Database εP,abs εrP,abs εI,abs εrI,abs

BATH 2.15 1.66 6.23 2.05

CASIA 2.58 1.60 17.41 4.21

MMU 3.31 2.05 13.01 5.11

NDIRIS 2.33 2.73 5.34 2.34

UBIRIS 6.03 5.78 7.68 11.35

It is seen that the mean error in detecting the pupil center is reduced compared with
the first column of Table 1.

Table 3 shows the errors for the final circles of the pupil and the iris obtained by the
system, calculated according to (23).

Table 3. Errors of final iris parameters detection, pixels.

Database εP,abs εrP,abs εI,abs εrI,abs

BATH 0.52 1.42 2.48 1.71

CASIA 1.05 1.13 2.44 1.62

MMU 0.97 1.77 1.92 4.35

NDIRIS 0.84 1.14 1.97 2.26

UBIRIS 2.27 5.37 3.25 5.82

4.2. Matching against Other Methods

Table 4 compares the computation time and errors in determining the pupil parameters
for the presented system and its analogs. The comparison was carried out with the methods
described in [3,36–39].

The third method to assess the algorithm of iris segmentation, i.e., applying its results
to iris recognition is disclosed further.
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Table 4. Matching against other methods.

Database Error, Method

Pixels Wildes Daugman Masek Ma et al. Daugman-2 Presented

BATH εP,abs 3.44 3.73 5.32 4.29 3.27 0.52
εrP,abs 4.38 4.54 6.72 4.65 3.19 1.42

CASIA εP,abs 5.37 2.15 3.67 4.79 1.19 2.44
εrP,abs 6.12 4.39 5.15 5.39 3.02 1.62

MMU εP,abs 3.15 2.61 4.98 3.92 1.14 0.97
εrP,abs 3.96 4.18 5.78 4.67 3.76 1.77

NDIRIS εP,abs 6.37 2.13 5.59 5.92 1.79 0.83
εrP,abs 7.51 3.53 7.23 7.38 3.11 1.14

5. Feature Extraction and Matching

We use the standard approach [3] here, which first transforms the iris ring to a so-called
normalized image. This image is a rectangular raster, it is obtained from the iris ring by the
polar transformation, analogous to (19), (20), where r1 and r2 are set to the radius of pupil
and iris, respectively. In fact, more elaborate version of (19) is used:

x(φ, ρ) =
(

1− ρ

H

)
x1

(
2πφ

W

)
+

ρ

H
x2

(
2πφ

W

)
,

y(φ, ρ) =
(

1− ρ

H

)
y1

(
2πφ

W

)
+

ρ

H
y2

(
2πφ

W

)
,

x1(φ) = xP + rP cos(φ) , y1(φ) = yP + rP sin(φ) ,

x2(φ) = xI + rI cos(φ) , y2(φ) = yI + rI sin(φ) ,

(24)

where xP, yP, rP are the position and radius of pupil and xI , yI , rI are the position and
radius of iris. In comparison to (19) this variant accounts for the difference of pupil and
iris centres.

The key idea of standard iris feature extraction is to convolve the normalized iris
image with a filter, calculating the most informative features of the texture. Earlier Gabor
wavelet was used for feature extraction. In one-dimensional space, it is represented as

gσλ(x) = exp
(
− x2

2σ2

)
exp

(
−i

x
λ

)
, Gσλ(u) = exp

(
− (u− λ−1)2σ2

2

)
, (25)

where σ defines the width of the wavelet in the spatial domain, λ is the wavelength of
modulation of the Gaussian by a harmonic function. By introducing inverse values S = 1/σ
and W = 1/λ, a simplified representation in the frequency domain can be obtained:

GSW(u) = exp
(
− (u−W)2

2S2

)
. (26)

It turned out that the modification of the Gabor wavelet called Log-Gabor function is better
for feature extraction. Log-Gabor is given in the frequency domain as:

GSW(u) = exp

(
− log2(u/W)

2 log2(S/W)

)
= exp

(
− (log u− log W)2

2 log2 L

)
. (27)

This is equivalent to (26), in which each variable is replaced by its logarithmic coun-
terpart. L = S/W = λ/σ represents the ratio of the modulation wavelength to the width
of the Gaussian. Research has shown that Log-Gabor wavelets are most likely optimal for
the template generation problem. Therefore, we use this type of filter. The parameter λ is
essentially the characteristic size of the objects in the image extracted by this filter, and L
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is the number of periods of the harmonic function in Equation (25) which have sufficient
amplitude and influence to the result. Optimal values of λ and L are selected according
to [40].

Iris features V(φ, ρ) are calculated by convolution of the normalized image (20) with a
Gabor or Log-Gabor filter, the transformation is performed in the spectral domain:

V(φ, ρ) =N(φ, ρ) ∗ gσλ(φ) =

=F−1{F{N(φ, ρ)}F{gσλ(φ)}} =
=F−1{F{N(φ, ρ)}GλL(u)} .

(28)

where σ and λ define the width of the wavelet along the angular axis and the modulation
frequency, s is the width along the radial axis, F is the Fourier transform. The features used
to form the patterns are computed as binary values of real and imaginary parts of the array
V(φ, ρ):

TRe(φ, ρ) = H[<(V(φ, ρ))] ,

TIm(φ, ρ) = H[=(V(φ, ρ))] ,
(29)

where H[·] is the Heavyside function. So, eye image b(x, y) produces a template T(φ, ρ),
and each element of the template contains two bits.

We use features raster of 13 pixels in radial direction r and 256 pixels in tangential
direction φ. Since each pixel produces two bits in (29) the total size of the template is
6656 bit [40].

Although here we do not build a classification system, which calculates a distance
between templates and compares it against a classification threshold, template matching
is implicitly present, as it will be shown below. Thus, we need to describe the match-
ing method.

In a standard iris recognition approach templates T1 and T2 are matched by normalized
Hamming distance:

ρ0(T1, T2) =
1
|Ω| |{T1(φ, ρ) 6= T2(φ, ρ), (φ, ρ) ∈ Ω}| , (30)

where Ω = M1 ∩M2 is the intersection of the visible areas (presenting true data) of the
two irises. Because of the uncertainty of the iris rotation angle, a more complex distance
formula is used. The rotation of the original image of the eye is equivalent to a cyclic shift
of the normalized image along the Oφ axis. Therefore, one of the templates (together with
the mask) is subjected to several shift and compare operations:

ρ(T1, T2) = min
ψ

ρψ(T1, T2) ,

ρψ(T1, T2) =
1

Ω(ψ)
|{T1(φ + ψ, ρ) 6= T2(φ, ρ), (φ, ρ) ∈ Ω(ψ)}|

Ω(ψ) = M1(φ + ψ) ∩M2(φ) ,

(31)

where ψ ∈ [−S; S] is the image rotation angle.
Here things may be simplified. For the embedding method, only irises with low

occlusion levels are acceptable. Thus, it is supposed that masks M1 and M2 cover all of the
iris area, and Ω set spans all templates. Omitting mask, rewriting |{T1 6= T2}| as ∑ T1 ⊕ T2
and using single order index i instead of coordinates (φ, ρ) put (30) as:

ρ0(T1, T2) =
1
N

N

∑
i=1

T1(i)⊕ T2(i) , (32)
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where T(i) is the i-th bit of the template, operation ⊕ is the sum modulo 2, N is the size of
the template. Furthermore, (31) transforms to

ρ(T1, T2) = min
ψ

ρψ(T1, T2) ,

ρψ(T1, T2) =
1
N

N

∑
i=1

T1(i(ψ))⊕ T2(i) ,
(33)

where i(ψ) index is recalculated accordingly.
The recognition system is designed to supply the following conditions with the lowest

possible errors:

T1, T2 taken from same person =⇒ ρ(T1, T2) 6 θ ,

T1, T2 taken from different persons =⇒ ρ(T1, T2) > θ .
(34)

Violation of the first condition in (34) is called false reject and its probability is referred
to as false reject rate (FRR). FRR of the system is estimated in tests as the ratio of the
number of false rejects to the number of all matches of biometric traits of the same persons.
Analogously, violation of the second condition in (34) is called false accept and its probability
is named false accept rate (FAR). The threshold θ is chosen from a trade-off between FRR
and FAR.

6. Selecting the Embedding Method

There are many works, where biometry is used in combination in combination with
other security measures such as usual secured passwords, for instance [41,42]. Here, we
intend to develop a system that uses only data transmitted insecurely—the only protection
is the iris of the owner.

We also limit ourselves to the case of symmetric encryption. During encoding the
message M and the secret key K are combined into the code by the encoder function Φ:
C = Φ(M, K), and during decoding the message is reconstructed from code and key by
decoder functions Ψ: M = Ψ(C, K). If key K is not present, it is impossible to obtain M from
C, thus the code C can be made public. Symmetric encryption requires that K is repeated
exactly. Not a single bit of it can be changed.

The central problem in automatic biometry systems can be put as developing the
optimal classifier. The classifier consists of a distance function between two biometric data
samples ρ(D1, D2) and a threshold θ (34). The function ρ can be treated as a superposition
of two sub-functions. The first one is the calculation of the biometric template T from
source data T = T(D), Second sub-function is the calculation of the distance itself ρ(T1, T2).
Features should be selected, which are stably close for the same person and stably far for
different persons with respect to function ρ. As a rule, the elements of biometric templates
are highly correlated. On the contrary, cryptographic keys are deliberately developed so as
to have uncorrelated bits. However, the entropy (information amount) of an iris template
is comparable to that of currently used cryptographic keys [43]. This suggests that it is
possible to implement a cryptographic key in biometrics without reducing its robustness.

It should be noted that most of the works presenting the application of cryptographic
methods to biometrics, develop the scenario of cancelable biometrics [44]. Its essence is
producing such biometric templates that source biometric data cannot be extracted or
guessed anyhow from any number of templates. Cancelable biometrics is nothing but a
kind of fuzzy hashing [45]. Formally, an additional step is introduced in the calculation
of the distance function ρ. Distance ρ(S1, S2) is calculated, S = S(T) is the hash function.
Obviously, the recognition problem is still being solved here. Thus, cancelable biometrics is
just a remake of identification and cannot be used for our purposes.

There are two approaches to how to process volatile biometrics, leading them to an
unchanging cryptographic key. The first approach employs already computed biometric
features constituting the template T, which are supplemented with error correction using
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different variants of redundant coding. This approach is used here. In the second ap-
proach [46] biometric features are not obtained in explicit form. Instead, a neural network
is trained, which directly produces a target key from raw biometric data D. The advantage
of this approach is said to be less coding redundancy by using continuous data at all stages
and quantization only at the end. Disadvantages are the unpredictability of neural network
training, lack of guaranteed quality of performance, including uncertainty in retaining
quality in a wider set of data than that used in training.

The task of reproducing a cryptographic key is accomplished by biometric cryptosystems
(BC) [45,47], also called biometric encryption [48]. There are two classes of BCs, which
implement different approaches: key generation and key binding.

Methods of key generation, i.e., direct production of the key from raw biometry or
template without using supplementary code are studied in [49–51]. Biometric template T
is mapped into the space of cryptographic keys (usually bit strings) by a special function:
K(T) : T → {0, 1}n, where n is the length of the key. One function is used for registration
and recognition. The conditions must hold

T1, T2 taken from one person =⇒ K1 = K2 ,

T1, T2 taken from different persons =⇒ K1 6= K2 .
(35)

These conditions are closely related to (34); however, in (35) the task is to reproduce
the sequence of bits. The results of the methods without supplementary data are not
very hopeful for practical applications. Error level is generally very high in this approach.
In [50] the authors report FRR = 24% at FAR = 0.07% even for homogeneous high-quality
images [32]. In [51], the idea is based on assumption that two iris codes can be mapped
to some “closest” prime number and this number will be the same for the codes from one
person. Considering the variability of iris codes even for ideal conditions this is unlikely to
happen. The authors do not report the study of recognition errors.

Scenario with helper code demonstrates much better performance. During registration
the encoder takes the template T1, computes the key K1 = K(T1), encrypts the message
M with K1 and additionally outputs some helper code h = Φ(T1). Immediately after
this the original T1, M, and K1 are destroyed, leaving only encoded message M′ and
helper code h. The original template T1 or key T1 cannot be recovered from M′ and h.
During presentation another set of biometric traits T2 is obtained and the key K2 = Ψ(T2, h)
is calculated. Functions Φ and Ψ are designed so as to satisfy (35). Thus, by providing
biometrics and helper code, the registered user can obtain the original key K2 = K1,
and hence the message M. At the same time, the intruder, even knowing h, will not be able
to obtain K1 [52], so the helper code h can be made non-secret.

The biometric data itself may be used as a key: K ≡ T. In this case, at the stage
of presentation, original biometrics T1 is restored from presented T2. This scenario is
called secure sketch [53]. However, the works based on secure sketches and available in the
literature show rather modest results. For example, the system [54] is workable under the
assumption that intraclass variability of features is below 10%. In practice, the variability is
more than 20%. This conditions the inoperability of the proposed method.

The key binding scheme in the above terms looks like a pair of encoder function
C = Φ(K1, T1) and decoder function K2 = Ψ(C, T2), which holds the (35) condition.
The advantage is that K1 is set externally, rather than created by the developed algorithm.
From this point of view, K1 can be perceived as a message M, which is external to the
encryption system. This immediately simplifies the biometric cryptosystem to a symmetric
encryption scenario. The difference is that the secret key K must be the same in encoding
and decoding in symmetric encryption, whereas the biometric features (also secret) differ:
T1 6= T2. This scenario is called fuzzy extractor [53].

If Ψ is an inverse of Φ and biometric data are composed of real numbers the scenario
is referred to as shielding functions [55]. So-called fuzzy vault [43] is another popular method
of key embedding. It is founded on Shamir’s secret separation scheme [56]. Here rather
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low, practically meaningful error values are obtained: [57] reports FRR = 0.78% and [58]
reports FRR = 4.8% at zero FAR. However, both results are shown using a single small
image database (less than 1000 samples).

The most promising for use in iris biometry is fuzzy commitment scenario [59]. In [60],
a simple algorithm is proposed. The basic idea is to use employ the error correcting coding
(ECC) [61]. ECC is widely used in data transmission over noisy channels. Generally, data
transmission involves a pair of functions also called encoder and decoder. The encoder
R = Φp(K) maps the transmitted message K into a larger redundant code R. Then R is
passed through the transmission channel, which alters each of its symbols independently
with the probability q, and the altered code R′ is received at the other side. The decoder
K = Ψp(R′) is able to restore K back from R′ under the condition that no more than a p
share of values were altered. Call p as tolerated error probability. Thus, if q < p then the
message is restored with a probability close to 1. Otherwise, the probability to restore K
is close to 0. One can design Φ and Ψ for a wide range of transition error probabilities
p ∈ [0; 0.5). Redundancy grows as p approaches to 0.5, for p = 0.5 it becomes infinite.

Here ECC is used as follows. The encoder and decoder are constructed so as to have a
tolerated error probability equal to the classification threshold of the biometric recognition
system: p = θ. Upon registration, a password K1 is constructed and the user’s template T1 is
obtained. The code R1 = Φp(K1) (it generally looks like pseudorandom numbers) is bitwise
summed modulo 2 (exclusive or) to the iris template yielding the public code C = R1 ⊕ T1.
After C is calculated, template T1, message K1, and redundant code R1 are destroyed. None
of them can be extracted from C alone. Thus, it is possible to expose C publicly and transmit
it through unprotected channels. Upon presentation iris of a person is registered once
more and a new template T2 is formed. Of course, it is not equal to the original one. Since
R2 = C ⊕ T2 = (R1 ⊕ T1)⊕ T2, then R1 ⊕ R2 = T1 ⊕ T2. If the templates T1 and T2 are
taken from one person, the distance is very likely to be less than the classification threshold:
ρ(T1, T2) 6 θ, so ρ(R1, R2) 6 θ. By the nature of (32) it means that less than p share of bits
differ in R1 and R2 and the original secret key K1 = K2 = Ψp(R2) will be recovered. On the
other hand, if the templates are classified as belonging to different persons ρ(T1, T2) > θ,
the probability of restoring the original K1 is close to zero. The scenario of operation is
shown in Figure 4.

Figure 4. Scenario of the method [60].
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Work [60] proposes a cascade of two ECC algorithms: Reed–Solomon [62] and
Hadamard [61]. Reed–Solomon coding handles an entire block of data of length L, process-
ing it as a set of L/s s-bit symbols. Any arbitrary symbols (not bits!) can be different as
long as their number is not greater than pL. In [60], this coding is aimed to combat group
errors appearing from various occlusions (eyelashes, eyelids), which cover significant areas
of the iris. Hadamard coding processes small chunks of data (few bits), and corrects no
more than 25% of the errors in each chunk. For Hadamard code to be most successful in
error correction, the errors (deviations of T′ from T) should be evenly scattered across the
template with a density of no more than 25%. This coding is designed to deal with single
pixel deviations arising from camera noise. The key K is encoded by Reed–Solomon code,
the result is processed by Hadamard code.

This cascade performs well if the share of altered bits in one person’s templates does
not exceed 25%. However, in practical databases and applications this share is bigger which
leads to an unacceptably high (more than 50%) false reject probability. To overcome this
difficulty, it is proposed [42] to introduce additional template masking: every fourth bit of
the iris templates is set to zero. Due to this, the proportion of altering bits in the templates
of one person is reduced below 20%. This easy solution ruins the very idea of security:
if some bits of the template are fixed, then appropriate bits of redundant code are made
known to code crackers and can be used to attack the code. A critique of this method
in terms of resistance to cracking is given in [46]. The attack is carried out by gradually
restoring the original template.

Here we attempt to refine the fuzzy extractor [60] in a more feasible method and build
a practically applicable key embedding method. Based on the iris feature extraction system,
experiments against several publicly available iris databases are carried out. Two steps
are added to the encoder tail (and hence, decoder head): majority coding of single bits
and pseudorandom bit mixing. Three of these four steps have parameters, which affect
their properties, including error tolerance and size. Optimal values of these parameters are
selected to fit the redundant code size into the iris template size, keep the error tolerance
near the target level, and maximize the size of encoded key.

7. Determining the Threshold

So, if the registration template T and the presentation template T′ are at Hamming
distance (32) below the threshold θ, then the encrypted message M is recovered with high
confidence; otherwise, the probability to recover it is extremely low (order of random
guess). Thus, the threshold θ separates “genuine” and “intruder” templates T′ with respect
to T.

It is necessary to determine the value of the threshold p, which will be used for
separating “genuines” and “impostors”. With this value redundant coder Φp and decoder
Ψp will be devised, capable to restore message for “genuine” template and making it
impossible for “impostor” template.

The following publicly available databases were used for the experiments: CASIA-4-
Thousand [32], BATH [33], ICE subset of NDIRIS [34], UBIRIS-1 [35].

Table 5 gives a list of databases used with the obtained thresholds.

Table 5. Database characteristics and thresholds.

Number of θ at FAR at FRR at
Database Eyes Images FAR= 10−4 θ = 0.35, θ = 0.35,

×10−4 ×10−2

BATH 1600 31988 0.402 0.03 4.46
CASIA 2000 20000 0.351 0.97 6.71
ICE 242 2953 0.395 0.011 7.13
UBIRIS 240 1207 0.401 0.001 5.18

For each database the following numbers are given:
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• The number of individual eyes. It does not match the number of participating persons
as some persons in the database supplied images from both eyes.

• The number of eye images. Each eye produced from one to several hundred images,
depending on the database collection scenario.

• Value of the threshold θ, at which the false accept rate (FAR) is 10−4. This value is
the probability of a random guess of a four-digit pin code. It is used for reference in
developing biometric recognition systems so that they would have the same or less
probability of being defeated as pin-code-based systems.

• False accept rate at θ = 0.35.
• False reject rate at θ = 0.35.

Since FAR(θ) is a monotonous growing function, we select a minimal θ(FAR = 10−4)
from the fourth column of the table. It is θ = 0.351 for the CASIA database. Other databases
have even smaller FAR with this value of θ.

So, the value of θ = 0.35 is the tolerated error probability p for constructing the
ECC. Table 5 shows the values of false accept and false reject rates for this threshold.
The maximum false reject rate does not exceed 8%.

8. Error Correction Cascade

We describe the applied methods in the sequence of their execution by the decoder,
which is also the method “from simple to complex”. In the beginning data unit is a
single bit, at the end it is the whole message. The problem is to devise an error correction
method, which encodes a message into a block of data with redundancy, and then is able
to reconstruct the message if no more than p 6 0.35 share of these bits is altered. Popular
Walsh-Hadamard and Reed-Muller [63] methods can be used only for p < 0.25, thus they
are not directly applicable. Furthermore, the errors of neighboring elements of the template
are strongly correlated, whereas almost all ECC methods show the best performance against
uncorrelated errors.

8.1. Decorrelation by Shuffling

It is more difficult to design methods usable against correlated errors, and their
performance is worse compared to the case of uncorrelated errors. Much of the effort in
this case is directed precisely at decorrelation. Luckily, the whole block of data is available
in our task (rather than sequentially feeding with symbols as in many transmission channel
systems) and a simple method of decorrelation can be applied which is the quasi-random
shuffling of iris template bits. A bit of the template array T is placed from position i into
position ij mod N:

T̃(ij mod N) = T(i) , i = 0, N − 1 , (36)

where j is a number, relatively prime to total number N of bits in array. Relatively prime
condition guarantees ij mod N number being unique for i = 0, N − 1 and the shuffling
T → T̃ being reversible. After shuffling the neighboring bits of T̃ are taken from bits,
which were far away from each other in T and their errors are uncorrelated. If one rule
of shuffling is always applied then bits in all templates change their position in the same
method, and calculation (32) affects the same pairs of bits. Thus, Hamming distance is
unchanged and all developments from it are preserved.

This method does not change the size of the code.

8.2. Bit-Majority Coding

The error rate p = 0.35 is too big for most error correction codes. Practically, the only
possibility here is the majority coding of single bits. It is applicable for p < 0.5. At the
coding stage, the bit is repeated n times. At the decoding stage, the sum of n successive
bits is counted. If it is below n/2, zero bit value is decoded, otherwise a unit. It is easy to
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see that odd values of n are preferable. If p is the error probability of a single bit and bits
are altered independently the error probability of decoded bit is

pD(p) = 1−
(n−1)/2

∑
l=0

(
n
l

)
pn−l(1− p)l = 1− (1− p)n

(n−1)/2

∑
l=0

(
n
l

)(
p

1− p

)l
. (37)

If the error probability of one bit of the code is p = 0.35, then bit majority coding with
n = 7 will transmit bits with error probability pD = 0.2. This value is below 0.25 and allows
the use of Hadamard codes. Majority coding with n = 15 will give pD = 0.12 for p = 0.35.
A larger duplication is possible, but results in a larger code size.

The parameter of this method, affecting its size and error probabilities is the bit
repetition rate n.

8.3. Block Coding

Denote the set of all bit strings of length n as Bn. This set can be viewed as a set of
vertices of n-dimensional binary cube. Consider the string of length k called message here:
M ∈ Bk. There can be 2k different messages. Consider the set of 2k strings of length n > k
called codes. There is a one-to-one correspondence of messages and codes. Since the code
length is greater than the message length, the coding is redundant and it is possible to alter
some bits of the code but still be able to restore the corresponding message. The idea of
block coding is to select such 2k codes out of their total amount of 2n, that the probability
of restoration error is minimal. The set of selected codes is called code table C. In terms of
the n-dimensional binary cube, this means selecting 2k vertices so as to maximize minimal
Hamming distance between selected vertices:

C∗ = arg max
C

min
u,vs.∈C

u 6=v

ρ(u, v) , ρ∗ = min
u,vs.∈C∗

u 6=v

ρ(u, v) , (38)

where ρ is the distance (32).
Hadamard coding is based on a Hadamard matrix, which is constructed iteratively:

H0 = (0) , Hn+1 =

(
Hn Hn
Hn Hn

)
, (39)

where H is a bit inversion of all elements of H. Hadamard matrix Hk is a square matrix
with 2k rows. It gives the coding table naturally: each row number is the message and
the row contents is the code. It can be proven that for Hadamard codes ρ∗ = 2k−1. We
use so-called augmented Hadamard codes, where another 2k strings are added to the code
table. These strings are bitwise inverted versions of the strings obtained from (39). For this
code table ρ∗ = 2k−2.

There is a simple and well-known estimation (called Hamming boundary) of the proba-
bility of block coding error, which for augmented Hadamard codes is:

pH 6 1− Pcorr = 1− (1− p)n
(n−1)/4

∑
l=0

(
n
l

)(
p

1− p

)l
, (40)

where p is the probability of bit inversion. Since this stage inputs the output of bit majority
decoding, the value of p here is the value of pD from (37). Let us redefine pD → p in this
section for simplicity. Furthermore, one can note that (40) is the same as (37) except for the
upper summation limit.

However, this is a rather rough estimate, which grows worse with the increase in n.
For small n exact calculations performed by simple exhaustive search, the results are given
below. The message is decoded assuming that the original code is distorted minimally,
i.e., for the code C we will look for the closest code C∗ ∈ C. Let us call it attractor. There can
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be several attractors (several codes can have the same minimal distance to C). If there are
several attractors, a random one is chosen. Let us denote the set of attractors for C as A(C).

The probability of decoding the correct message is that of choosing the correct attractor

Pcorr = ∑
M

P(M)∑
C

p(C∗|C)p(C|C∗) , (41)

where P(M) is the probability to obtain message M as input. Message M is encoded by
code C∗ ∈ C. Then p(C|C∗) is the probability to obtain distorted code C while transmit-
ting C∗, p(C∗|C) is probability to recover C∗ (hence, correct M) from distorted code C.
Suppose the probability of all messages is the same. Then the sum by M is reduced and

Pcorr = ∑
C

p(C∗|C)p(C|C∗) . (42)

Without loss of generality, due to the symmetry of Hadamard codes [61], we can
assume C∗ to be a zero code, i.e., a string of zero bits (as is in standard code). Then
the probability of obtaining a certain code C from zero code is pb(C)(1− p)n−β(C), where
β(C) ≡ ρ(0, C) is number of unit bits in C, and

Pcorr = ∑
C

p(0|C)pβ(C)(1− p)n−β(C) , (43)

where p(0|C) is the likelihood to obtain zero code from C. Define the set of attractors for
string C as code table entries with minimal distance to the code:

A(C) =
{

C′ ∈ C : ρ(C′, C) = ρmin(C)
}

,

ρmin(C) = min
C′∈C

ρ(C, C′) . (44)

Define the cardinality of this set as α = |A(C)| and state that α = 0 if there is another
code table entry more close to C then the correct code: ∃C′ ∈ C, C′ 6= C∗ : ρ(C′, C) <
ρ(C∗, C). Then we can write

p(0|C) =
{

0 , α = 0 ,
1/α , α 6= 0 .

(45)

For small values of n all points of code space Bn can be enumerated and their distribu-
tion by distance to zero β and attractor number α can be estimated:

H(β̃, α̃) =
∣∣{C : 0 ∈ A(C), |α(C)| = α̃ , β(C) = β̃

}∣∣ ,

β̃ ∈ [0; n] , α̃ ∈ [1; 2k] .
(46)

Substituting to (43) we get:

Pcorr = ∑
α 6=0

∑
β

H(β, α)

α
pβ(1− p)n−β = ∑

β

pβ(1− p)n−β ∑
α 6=0

H(β, α)

α
(47)

and decoding error

pH = 1− Pcorr = 1− (1− p)n ∑
β

h(β)

(
p

1− p

)β

, h(β) = ∑
α 6=0

H(β, α)

α
. (48)

The formula is the same as (40) except for the coefficients and summation limits.
The values of h(β) for the augmented Hadamard code of order 5 (n = 25 − 1 = 31,
k = 5 + 1 = 6) are given in Table 6. All meaningful values are given, and values for other
α and β are zero. For instance, if the code is distorted in 12 bits or more, it will be never
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recovered to the correct value, since there will be another valid code from the code table,
closer to distorted value.

Table 6. Values h(β) and pH(β) for Hadamard code k = 6, n = 31.

β h(β) pH(β)

0 1 0.
1 31 0.
2 465 0.
3 4495 0.
4 31,465 0.
5 169,911 0.
6 736,281 0.
7 2,629,575 0.
8 7,490,220 0.026
9 13,798,100 0.164
10 8,265,964 0.508
11 427,924 0.810

Up to values β = 7 only one attractor is chosen, i.e., at this or less divergence the
message is definitely recovered. This corresponds to Hamming boundary (40). However,
even with larger divergences, up to β = 11 there is a significant probability of correct
recovery. This plays a big role since the majority of distorted codes fall outside of Hamming
boundary but still have the significant probability to restore the message correctly. Thus,
the probability (40) is overestimated. For example, for the considered code and error
p = 0.250, the formula (40) gives pH = 0.527, which would seem to prevent using such a
code. However, the calculation using the formula (48) gives pH = 0.261, which is fairly
suitable for use in the next step of coder.

The Hadamard coding parameter is only the word length k. The size of the codeword
n is dependent: n = 2k−1 for the augmented variant.

8.4. Reed–Solomon Message Coding

The unit of encoding for Reed–Solomon’s algorithm is the entire message, which is
divided into codewords of fixed size, s bits each. A stream of L bits is cut into k = dL/se
words. Then additional words can be added up to the total count of n by the coding
algorithms. It turns out that if no more than t = b(n− k)/2c codewords are altered then
it is possible to recover the message. So, Reed–Solomon code corrects no more than t of
errors, where t is half the number of redundant words. Denoting p = t/n, we get

p 6
n− k

2n
. (49)

This number is an estimate of the tolerated error probability of a codeword.
The Reed–Solomon method also imposes a limitation to a codeword count in the whole
message:

n 6 2s − 1 . (50)

The error probability in (49) is determined by the previous step: p = pH .
Hence, possible Reed–Solomon codes here are determined by codeword length s and
message length L.

9. Selection of Code Parameters

Four ECC methods are organized in a chain. Encoder runs Reed–Solomon, Hadamard,
bit majority and shuffling to obtain the redundant code. The decoder executes this chain
in reverse order. The encoder should obtain the code of size no more than the size of the
iris template, i.e., N = 6656 bits for the presented system. The code size cannot be larger,
duplication and masking are unacceptable, as they make it trivial to break such a code.
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Furthermore, of course, it is desired to embed the message of reasonable size. This is a
discrete constrained optimization problem.

ECC methods used here have the following parameters affecting their characteristics:
(1) decorrelation has no parameters; (2) majority coding is governed by the bit duplication
count n; (3) Hadamard coding depends on word size k, Reed–Solomon coding is parameter-
ized by word size s and message length L. Combinations of (n, k, s, L) values yield different
encoding with specific code length C(n, k, s, L) and error probabilities. The errors are the
aforementioned FRR and FAR. False rejection is a failure to recover the embedded key after
presenting the same person’s biometrics. False acceptance is recovering the person’s key
with another person’s biometric. The errors depend on ECC parameters: FRR(n, k, s, L)
and FAR(n, k, s, L). Furthermore, the formal statement of the problem is

FRR(n, k, s, L)→ min ,

s.t. FAR(n, k, s, L) 6 10−4 , C(n, k, s, L) 6 N.
(51)

10. Results and Comparison with Literature

The solution of (51) was found: L = 65, n = 13, k = 5, s = 5, FRR = 10.4%. Message
size L = 65 bits is considered satisfactory for “common” user keys. For bigger message
sizes there reasonable solution was not discovered. It should be noted that without bit
shuffling (not explicitly involved in (51)) the problem is not solved even for L = 65.

Table 7 contains the results reported in the literature in contrast with those presented
in this work.

Table 7. The results of iris biometric cryptosystems

Authors FRR/FAR DataSet Keybits

Wu et al. [64] 5.45/0.73 CASIA v1 1024
Rathgeb & Uhl [50] 4.92/0.0 CASIA v3 128

Hao et al. [60] 0.42/0.0 70 persons 140
Bringer et al. [65] 5.62/0.0 ICE 2005 40

Kanade08 et al. [42] 2.48/0.0008 ICE 2005 234
Presented 10.4/0.0 mixed 65

The presented system may seem not very successful against its rivals with respect
to error level and key length. However, one should note that each of these systems was
tested with a single database. Both CASIA databases have images of one eye taken from
adjacent video frames that results in the extremely high similarity of iris codes, inaccessible
in practice. The same issue concerns [60], they use a small laboratory database and their
results cannot be extended to real applications. ICE 2005 database is much closer to the real
world, it contains images of varying quality, time and conditions of registration. However,
both works [42,65] based on it use interleaving bits. If the bit sequence is fixed and known,
this ruins the cryptographic strength. If it is made secret, then it turns to just another
secret key, which should be passed securely: the very thing we try to avoid. Although the
presented system has the highest FRR, it is practically applicable and has no obvious holes
in security.

11. Conclusions

The set of methods allowing to build biometric cryptosystem based on iris images
is presented. It contains three main parts: iris segmentation, biometric template gen-
eration, and the method of embedding/extracting the cryptographic key to/from bio-
metric features. The original system of iris segmentation methods is described. Its dis-
tinction is estimating iris parameters at several steps (initial rough calculation, then re-
finement), by algorithms of a different kind. The sequence of detection of iris param-
eters is different from commonly employed as well. The template creation method is
a de facto standard Daugman-style convolution. The method for introducing a cryp-
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tographic key into iris biometrics is constructed using a fuzzy extractor paradigm. A
key of size up to 65 bits can be embedded, for larger sizes no solution has been ob-
tained. The challenge of high variance of biometric features has been overcome by
introducing bit majority coding. A high local correlation of errors was removed by
quasi-random shuffling. The system was tested on several databases of iris images.
A study of cryptography stability is still required.
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