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Abstract: This paper examines a calculus-based approach to building model functions in a derivative-
free algorithm. This calculus-based approach can be used when the objective function considered
is defined via more than one blackbox. Two versions of a derivative-free trust-region method are
implemented. The first version builds model functions by using a calculus-based approach, and
the second version builds model functions by directly considering the objective function. The
numerical experiments demonstrate that the calculus-based approach provides better results in most
situations and significantly better results in specific situations.
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1. Introduction

Trust-region methods are a popular class of algorithms for finding the solutions of
nonlinear minimization optimization problems [1,2]. Trust-region algorithms build a model
of the objective function in a neighborhood of the incumbent solution. The region in which
the model function behaves similarly to the objective function is called the trust region
and is defined through a trust-region radius. The optimization algorithm then finds a point
in the trust region at which the model sufficiently decreases. This step is known as the
trust-region sub-problem, and the point that provides a sufficient decrease is called the trial
point. The value of the objective function is then computed at the trial point. If the ratio
of the achieved reduction versus the reduction in the model is sufficient, then the incumbent
solution is updated and set to be equal to the trial point. If the ratio is not sufficient, then
the trust-region radius is decreased. This method iterates until a stopping condition implies
that a local minimizer has been located.

Extensive research has been done on this topic since 1944, when Levenberg published
what is known to be the first paper related to trust-region methods [3]. Early work on
trust-region methods includes the work of Dennis and Mei [4], Dennis and Schnabel [5],
Fletcher [6], Goldfeldt, Quandt, and Trotter [7], Hebden [8], Madsen [9], Moré [10,11], Moré
and Sorensen [12], Osborne [13], Powell [14–18], Sorensen [19,20], Steihaug [21], Toint [22–25],
and Winfield [26,27], to name a few. The name trust region seems to have been used for the
first time in 1978 by Dennis in [28].

In the works mentioned above, trust-region methods were designed and analyzed
under the assumption that first-order information about the objective function is available
and that second-order information (i.e., Hessians) may, or may not, be available. In the
case in which both first-order and second-order information is not available, or it is hard to
directly obtain, derivative-free trust-region (DFTR) methods can be used. This type of method
has become more popular in the last two decades due to the rise of blackbox optimization
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problems. Early works on DFTR methods include those of Conn, Scheinberg, and Toint [29],
Marazzi and Nocedal [30], Powell [31,32], and Colson and Toint [33], to name a few.

In 2009, the convergence properties of general DFTR algorithms for unconstrained
optimization problems were rigorously investigated [34]. The pseudo-code of an algo-
rithm that converges to a first-order critical point and the pseudo-code of an algorithm
that converges to a second-order critical point were provided. A complete review of the
DFTR methods for unconstrained optimization problems is available in [35] (Chapters
10 and 11) and [36] (Chapter 11). There now exist several DFTR algorithms for solving
unconstrained optimization problems, such as Advanced DFO-TRNS [37], BOOSTERS [38],
CSV2 [39], DFO [29,40], UOBYQA [31], and WEDGE [30]. In recent years, DFTR algorithms
have also been developed for constrained optimization problems. When an optimization
problem is bound-constrained, some of the algorithms available in the literature are BC-
DFO [41], BOBYQA [42], ORBIT [43,44], SNOBFIT [45], and TRB-POWELL [46]. Other
DFTR algorithms dealing with more general constrained optimization problems include
CONDOR [47], CONORBIT [48], DEFT-FUNNEL [49], LCOBYQA [50], LINCOA [51], and
S [52].

We define a blackbox as any process that returns an output whenever an input is
provided, but where the inner mechanism of the process is not analytically available to
the optimizer [36]. In this paper, we consider a situation in which the objective function,
F, is obtained by manipulating several blackboxes. For instance, F could be the product
of two functions, say, f1 and f2, where the function values for f1 are obtained through
one blackbox and the function values for f2 are obtained through a different blackbox.
An objective function that is defined by manipulating more than one function is called a
composite objective function.

Composite objective functions have inspired a particular direction of research under
the assumption that the functions involved do not have the same computational costs.
For instance, Khan et al. [53] developed an algorithm for minimizing F = φ + h ◦ f ,
where φ is smooth with known derivatives, h is a known nonsmooth piecewise linear
function, and f is smooth but expensive to evaluate. In [54], Larson et al. investigated the
minimization problem F = h ◦ f , where h is nonsmooth and inexpensive to compute and f
is smooth, but its Jacobian is not available. Recently, Larson and Menickelley developed
algorithms for bound-constrained nonsmooth composite minimization problems in which
the objective function F has the form F = h( f (x)), where h is cheap to evaluate, and f
requires considerable time to evaluate.

These ideas have led to research on more general calculus-based approaches to ap-
proximating gradients or Hessians of composite functions. In [55–57], the authors provided
calculus rules (integer power, product, quotient, and chain) for (generalized) simplex gradients.
These results were advanced to the (generalized) centered simplex gradient in [58] and to the
(generalized) simplex Hessian in [59]. In [60], a unified framework that provides general
error bounds for gradient and Hessian approximation techniques by using calculus rules
was presented.

Previous research has shown that a calculus-based approach to approximating gradi-
ents or Hessians can be substantially more accurate than a non-calculus-based approach in
several situations [55,58–60]. However, it is still unclear if these theoretical results translate
to a significant improvement in a derivative-free algorithm. The main goal of this paper is
to compare two versions of a DFTR algorithm designed to solve a box-constrained blackbox
optimization problem in which the objective function is a composite function: one that
employs a calculus-based approach and one that does not employ a calculus-based ap-
proach. It is worth emphasizing that it is not our intention to show that the DFTR algorithm
developed in this paper is better than state-of-the-art derivative-free algorithms. The main
goal is to analyze any benefits resulting from using a calculus-based approach in a DFTR
algorithm designed to minimize a composite objective function.

This paper is organized as follows. In Section 2, the context is established and funda-
mental notions related to the topic of this paper are presented. In Section 3, the pseudo-code
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of the DFTR algorithm is introduced, and details related to the algorithm are discussed. In
Section 4, numerical experiments are conducted to compare the calculus-based approach
with the non-calculus-based approach. In Section 5, the results of the numerical experi-
ments are scrutinized. Lastly, the main results of this paper, the limitations of this paper,
and future research directions are briefly discussed in Section 6.

2. Background

Unless otherwise stated, we use the standard notation found in [36]. We work in the
finite-dimensional space Rn with the inner product x>y = ∑n

i=1 xiyi. The norm of a vector
is denoted as ‖x‖ and is taken to be the `2 norm. Given a matrix A ∈ Rn×m, the `2 induced
matrix norm is used.

We denote by B(x0; ∆) the closed ball centered at x0 with radius ∆. The identity matrix
in Rn×n is denoted by Idn, and the vector of all ones in Rn is denoted by 1n. The Minkowski
sum of two sets of vectors A and B is denoted by A⊕ B. That is,

A⊕ B = {a + b : a ∈ A, b ∈ B}.

In the next sections, we will refer to a calculus-based approach and a non-calculus
approach to approximate gradients and Hessians. Let us clarify the meanings of these
two approaches.

We begin with the non-calculus-based approach. Let F : Rn → R and let QF(xk) be
a quadratic interpolation of F at xk using (n + 1)(n + 2)/2 distinct sample points poised
for quadratic interpolation. An approximation of the gradient of F at xk, denoted by gk, is
obtained by computing ∇QF(xk), and an approximation of the Hessian of F at xk, denoted
by Hk, is obtained by computing ∇2QF(xk).

We now explain the calculus-based approach. Let F : Rn → R be constructed using
f1 : Rn → R and f2 : Rn → R. Let Q f1 and Q f2 be quadratic interpolation functions of
f1 and f2, respectively. When a calculus-based approach is employed and the composite
objective function F has the form F = f1 · f2, then

gk = ∇(Q f1 ·Q f2)(xk) = f1(xk)∇Q f2(xk) + f2(xk)∇Q f1(xk), (1)

and

Hk = ∇2(Q f1 ·Q f2)(xk) = f2(xk)∇2Q f1(xk) +∇Q f1(xk)
(
∇Q f2(xk)

)>
+∇Q f2(xk)

(
∇Q f1(xk)

)>
+ f1(xk)∇2Q f2(xk). (2)

Similarly, when the composite objective function F has the form F = f1
f2

, then (assuming

f2(xk) 6= 0)

gk = ∇
(

Q f1

Q f2

)
(xk) =

f2(xk)∇Q f1(xk)− f1(xk)∇Q f2(xk)

[ f2(xk)]2
. (3)

and

Hk = ∇2

(
Q f1

Q f2

)
(xk) =

1
[ f2(xk)]3

[
[ f2(xk)]2∇2Q f1(xk)− f1(xk) f2(xk)∇2Q f2(xk) + 2 f1(xk)∇Q f2(xk)∇Q f2(xk)>

− f2(xk)
(
∇Q f1(xk)∇Q f2(xk)> +∇Q f2(xk)∇Q f1(xk)>

)]
, (4)

To compute Hk, the technique called the (generalized) simplex Hessian is utilized [59].
When the two matrices involved in the computation of the simplex Hessian are square
matrices that have been properly chosen, the simplex Hessian is equal to the Hessian of
the quadratic interpolation function. The formula for computing simplex Hessians is based
on simple matrix algebra. Hence, this technique is straightforward to implement in an
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algorithm. The formula for computing the simplex Hessian requires the computation of
n + 1 simplex gradients.

Definition 1 ([55]). (Simplex gradient). Let f : dom f ⊆ Rn → R. Let x0 ∈ dom f be
the point of interest. Let T =

[
t1 t2 · · · tn] ∈ Rn×n with x0 ⊕ T ∈ dom f . The simplex

gradient of f at x0 over T is denoted by ∇s f (x0; T) and defined by

∇s f (x0; T) = T−>δ f (x0; T)

where

δ f (x0; T) =


f (x0 + t1)− f (x0)
f (x0 + t2)− f (x0)

...
f (x0 + tn)− f (x0)

 ∈ Rn .

Definition 2 ([59]). (Simplex Hessian). Let f : dom f ⊆ Rn → R and let x0 ∈ dom f be the
point of interest. Let S =

[
s1 s2 · · · sn] ∈ Rn×n and T ∈ Rn×n with x0 ⊕ S, x0 ⊕ T, x0 ⊕

S⊕ T ∈ dom f . The simplex Hessian of f at x0 over S and T is denoted by ∇2
s f (x0; S; T) and

defined by

∇2
s f (x0; S; T) = S−>δ∇s f (x0; S; T),

where

δ∇s f (x0; S; T) =


(∇s f (x0 + s1; T)−∇s f (x0; T))>

(∇s f (x0 + s2; T)−∇s f (x0; T))>
...

(∇s f (x0 + sn; T)−∇s f (x0; T))>

 ∈ Rn×n .

The simplex gradient and simplex Hessian do not necessarily require the matrices S
and T to be square matrices with a full rank. These two definitions may be generalized by
using the Moore–Penrose pseudoinverse of a matrix [55,59].

Last, we recall the definition of a fully linear class of models.

Definition 3 ([36]). (Class of fully linear models). Given f ∈ C1, x ∈ Rn and ∆̄ > 0, we say
that { f̃∆ : ∆ ∈ (0, ∆̄]} is a class of fully linear models of f at x parametrized by ∆ if there exists a
pair of scalars κ f ≥ 0 and κg ≥ 0 such that, given any ∆ ∈ (0, ∆̄], the model f̃∆ satisfies

1. | f (x + s)− f̃∆(x + s)| ≤ κ f (x)∆2 for all s ∈ B(0; ∆),

2. ‖∇ f (x + s)−∇ f̃∆(x + s) ≤ κg(x)∆ for all s ∈ B(0; ∆).

Note that a fully linear model is equivalent to a model that is order-1 gradient accurate
and order-2 function accurate based on the definitions introduced in [56].

We are now ready to introduce the pseudo-code of the DFTR algorithm that will be
used to compare the calculus-based approach with the non-calculus-based approach.

3. Materials and Methods

In this section, the algorithm designed to minimize a box-constrained blackbox opti-
mization problem involving a composite objective function is described. The algorithm
will be used to perform our comparison between the calculus-based approach and the
non-calculus-based approach in Section 4.

Let ∆max > 0 be the maximum trust-region radius allowed in the DFTR algorithm.
The minimization problem considered is
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min
`≤x≤u

F(x) (5)

where F : dom F ⊆ Rn → R is twice continuously differentiable on⋃
`≤x≤u

B(x; ∆max) (6)

where `, u ∈ Rn, and the inequalities ` ≤ x ≤ u are taken component-wise. It is assumed that
F is a composite function obtained from two blackboxes with similar computational costs.

Before introducing the pseudo-code of the algorithm, let us clarify some details about
the model function and the trust-region sub-problem.

The model function built at an iteration k will be denoted by mk. The model is a
quadratic function that can be written as

mk(xk + sk) = F(xk) + (gk)>sk +
1
2
(sk)>Hksk, (7)

where gk denotes an approximation of the gradient ∇F(xk), Hk is a symmetric approxima-
tion of the Hessian ∇2F(xk), and sk ∈ Rn is the independent variable.

When a calculus-based approach is used, both gk and Hk are built by using the calculus-
based approach presented earlier in Section 2. Similarly, if the non-calculus-based approach
is used, then both gk and Hk are built with the non-calculus approach. We define the
sampling radius, ∆k

s , as the maximum distance between the incumbent solution xk and a
sampling point used to build the approximations gk and Hk.

The trust-region subproblem solved in the DFTR algorithm (Step 2 of Algorithm 1) at
an iteration k is

minimize
s∈Rn

mk(xk + s) = F(xk) + (gk)>s +
1
2
(s)>Hks (8)

subject to ‖s‖ ≤ ∆k, and ` ≤ xk + s ≤ u.

where ∆k > 0 is the trust-region radius at an iteration k.
Recall that the first-order necessary condition for solving (5) is that the projected gradient

is equal to zero. The projected gradient of the model function mk at s = 0 onto the feasible
box, which is delimited by ` and u where ` < u, is defined by

πk
m = xk − Proj[`,u](xk −∇mk(xk)) = xk − Proj[`,u](xk − gk)

where the projection operator, Proj[`,u](y), is defined component-wise by

[Proj[`,u](y)]i =


`i if yi < `i,

ui if yi > ui,

yi if otherwise.

(9)

Similarly, we define the projected gradient of the objective function at s = 0 onto the box by

πk
F = xk − ProjBox(xk −∇F(xk)).

Next, the pseudo-code of our DFTR algorithm is presented. This is essentially the pseudo-
code in [34] (Algorithm 4.1), but adapted for a box-constrained problem (see also Algorithm
10.1 in [35] and Algorithm 2.1 in [61]). The algorithm is a first-order method in the sense
that it converges to a first-order critical point.

Several details about the pseudo-code require some clarification. The procedure
employed in our algorithm to build the model function at an arbitrary iteration k guarantees
that the model mk is fully linear on B(xk; ∆k). To see this, first note that when a model mk is
built in Algorithm 1, we always have that the sampling radius ∆k

s ≤ ∆k. It is known that the
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gradient of a quadratic interpolation function built with (n + 1)(n + 2)/2 sample points
poised for quadratic interpolation is O(∆2

s ). The Hessian of this quadratic interpolation is
O(∆s). It was shown in [60] that the calculus-based approach to approximating gradients
described in (1) and (3) is O(∆2

s ). It was also shown in [59,60] that the calculus-based
approach to approximating the Hessians described in (2) and (4) was O(∆s). Hence, gk

and Hk are O(∆k)-accurate. The next proposition shows that if gk and Hk are both O(∆k)-
accurate approximations of the gradient and Hessian at xk, respectively, then the model
function mk is fully linear on B(xk; ∆k).

Proposition 1. Let F ∈ C2, xk ∈ dom F, sk ∈ Rn and ∆k > 0. Assume that xk + sk ∈ B(xk; ∆k),
where k is any iteration of Algorithm 1. Let the model function mk be defined as in Equation (7).
If gk is an O(∆k)-accurate approximation of the gradient of F at xk and Hk is an O(∆k)-accurate
approximation of the Hessian of F at xk, then the model mk is fully linear on B(xk; ∆k).

Algorithm 1 DFTR pseudo-code.

Step 0: Initialization.
Choose a feasible initial point x0, an initial trust-region radius ∆0 > 0, an initial

sampling radius 0 < ∆0
s ≤ ∆0, and a maximal trust-region radius ∆max > 0.

Build an initial fully linear model m0(x0 + s) on B(x0; ∆0). Denote by g0 and H0 the
gradient and Hessian of the initial model at s = 0.
Choose the constants 0 ≤ η1 ≤ η2 < 1 (with η2 6= 0), 0 < γ < 1 < γinc, εstop > 0, µ > 0.
Set k = 0.
for do k = 0, 1, 2, . . .

Step 1: Criticality step.
If ‖πk

m‖ ≤ εstop and ∆k ≤ µ‖πk
m‖,

stop. Return xk.
If ‖πk

m‖ ≤ εstop and ∆k > µ‖πk
m‖,

set ∆k ← min{µ‖πk
m‖, ∆k}.

If ∆k
s > ∆k,
set ∆k

s ← ∆k

update the model mk to make it fully linear on B(xk; ∆k).
Step 2: Trust-region sub-problem.

Find an approximate solution sk to the trust-region sub-problem (8).
Step 3: Acceptance of the trial point.

Compute

ρk =
F(xk)− F(xk + sk)

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1,
set xk+1 ← xk + sk and build a fully linear model mk+1.
Otherwise (ρk < η1),
set mk+1 ← mk and xk+1 ← xk.
Step 4: Trust-region radius update.

∆k+1 ∈
{
[∆k, min{γinc∆k, ∆max}], if ρk ≥ η2,

{γ∆k}, if ρk < η2.

If ∆k
s > ∆k,

set ∆k+1
s ← ∆k.

If ρk < η1,
attempt to improve the accuracy of the model.
Increment k by one and go to Step 1.

end for
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Proof. For any xk + sk ∈ B(xk; ∆k), we have

‖∇F(xk + sk)−∇mk(xk + sk)‖ = ‖∇F(xk + sk)− gk − (sk)>Hk‖
≤ ‖∇F(xk + sk)−∇F(xk) +∇F(xk)− gk‖+ ∆k‖Hk‖
≤ Lg∆k + C1∆k + ‖Hk‖∆k

where Lg ≥ 0 is the Lipschitz constant of ∇F on B(xk; ∆k), and C1 ≥ 0. Note that ‖Hk‖ is
bounded above, since

‖Hk‖ = ‖Hk −∇2F(xk) +∇2F(xk)‖
≤ C2∆k + ‖∇2F(xk)‖.

Since F is twice continuously differentiable on the box constraint, we have ‖∇2F(xk)‖ ≤
M for some nonnegative scalar M independently of k. Therefore, ‖Hk‖ ≤ C2∆max + M.
Letting κg = (Lg + C1 + C2∆max + M), we obtain

‖∇F(xk + sk)−∇mk(xk + sk)‖ = κg∆k.

Hence, the first property in Definition 3 is verified. The second property can be
obtained by using a similar process to that used in [62] (Proposition 19.1). Therefore, the
model mk is fully linear on B(xk; ∆k).

It follows from Proposition 1 that Algorithm 1 always builds a fully linear model on
B(xk; ∆k).

In [61], Hough and Roberts analyzed the convergence properties of a DFTR algorithm
for an optimization problem of the form

min
x∈C

F(x)

where C ⊆ Rn is closed and convex with a nonempty interior and F : Rn → R . The
main algorithm developed in their paper, Algorithm 2.1, follows the same steps as those
of our algorithm. Since a box constraint is a convex closed set with a nonempty interior,
the convergence results that were proven in [61] may be applied to Algorithm 1. For
completeness, we recall the three assumptions and convergence results of [61].

Assumption 1. The objective function F is bounded below and continuously differentiable. Fur-
thermore, the gradient ∇F is Lipschitz continuous with the constant L∇F ≥ 0 in ∪kB(xk; ∆max).

Assumption 2. There exists κH ≥ 0 such that ‖Hk‖ ≤ κH for all k.

Assumption 3. There exists a constant c1 ∈ (0, 1) such that the computed step sk satisfies
xk + sk ∈ C, ‖sk‖ ≤ ∆k, and the generalized Cauchy decrease condition is

mk(xk)−mk(xk + sk) ≥ c1πk
m min

(
πk

m
1 + ‖Hk‖

, ∆k, 1

)
.

Theorem 1. Suppose that Algorithm 1 is applied to the minimization problem (5). Suppose that
Assumptions 1–3 hold. Then,

lim
k→∞

πk
F = lim

k→∞
xk − Proj[`,u](xk −∇F(xk)) = 0.

To conclude this section, we provide details on the different choices made while
implementing Algorithm 1.
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3.1. Implementing the Algorithm

Let us begin by specifying the value used for all of the parameters involved in the
algorithm. Our choices were influenced by some preliminary numerical results and the
values proposed in the literature, such as [1] (Chapter 6).

In our implementation, the parameters are set to:

∆0 = 1 (initial trust-region radius),

∆0
s = 0.5 (initial sampling radius),

∆max = 103 (maximal trust-region radius),

η1 = 0.1 (parameter for accepting the trial point),

η2 = 0.9 (parameter for the trust-region radius update),

γ = 0.5 (parameter for decreasing the trust-region radius),

γinc = 2 (parameter for increasing the trust-region radius),

εstop = 10−5 (parameter for verifying optimality),

µ = 1 (parameter for verifying the size of the trust-region radius).

To build an approximation of the Hessian Hk, we compute a simplex Hessian, as
defined in Definition 2. Two matrices of directions S and T must be chosen; at every
iteration k, the matrices Sk and Tk are set to

Sk =
∆k

s
2

Idn,

Tk =
∆k

s
2

Idn .

Multiplying the identity matrix by ∆s
2 to form Sk and Tk guarantees that the sampling

radius for building an approximation of the Hessian is equal to ∆s. Setting Sk and Tk in this
fashion creates (n + 1)(n + 2)/2 distinct sample points poised for quadratic interpolation.
This implies that the simplex Hessian is equal to the Hessian of the quadratic interpolation
function [59]. Clearly, other matrices Sk and Tk could be used, and Sk does not necessarily
need to be equal to Tk, nor to always be a multiple of the identity matrix for every iteration
k. More details on how to choose S and T so that the resulting set of sample points is poised
for quadratic interpolation can be found in [59].

To build an approximation of the gradient gk, the gradient of the quadratic interpo-
lation function built using the same (n + 1)(n + 2)/2 sample points used to obtain Hk

is simply computed. Therefore, building a model mk requires (n + 1)(n + 2)/2 function
evaluations.

Note that the sample points utilized to build gk and Hk may be outside of the box
constraint. This is allowed in our implementation.

To solve the trust-region sub-problem, the Matlab command quadprog with the
algorithm trust-region-reflective is used. In theory, this method satisfies Assumption 3.

Based on the preliminary numerical results, the version of Algorithm 1 that is utilized
to conduct the numerical experiments in this section does not attempt to improve the
accuracy of the model in Step 4. The results obtained suggest that rebuilding a new model
function when ρk < η1 decreases the efficiency of our algorithm.

Reducing Numerical Errors

We next discuss two strategies that decrease the risk of numerical errors. When the
sampling radius ∆s is sufficiently small, numerical errors occur while computing gk and Hk,
and this can cause gk and Hk to be very bad approximations of the gradient and Hessian
at xk. To avoid this situation, a minimal sampling radius ∆s min is defined. Every time the
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sampling radius ∆k
s is updated in Algorithm 1 (this may happen in Step 1 or Step 5), the

rule implemented is the following:

∆k
s ← max{∆s min, ∆k

s}. (10)

In our implementation, ∆s min = 10−4. Numerical errors can occur with relatively
large values of the sampling radius ∆s. The following example illustrates this situation.
This motivates our choice of setting ∆s min = 10−4.

Example 1. Let

F(x) = f1(x) · f1(x) =
(

0.5x>
[

10 9
9 10

]
x +

[
10 9

]
x
)2

Let x0 =
[
5 5

]>. Set S = T = h
2 Id2, where h > 0. Note that the sampling radius is

∆s = h. Table 1 presents the relative error of the simplex Hessian ∇2
s F(x0; S, T), which is denoted

by RE(∇2
s F(x0; S, T)).

Table 1. Relative error of the simplex Hessian ∇2
s F(x0; S, T) for different values of h.

∆s RE(∇2
s F(x0; S, T))

5× 10−1 4.7× 10−2

1× 10−1 9.3× 10−3

1× 10−2 9.2× 10−4

1× 10−3 9.2× 10−5

1× 10−4 8.8× 10−6

1× 10−5 4.5× 10−5

We see that numerical errors occur at a value of ∆s between 10−4 and 10−5.

A maximal sampling radius ∆s max is also defined to ensure that the sampling radius
∆s does not become excessively large when the trust-region radius is large. The parameter is
set to ∆s max = 0.5. Therefore, after checking (10), the following update on ∆k

s is performed:

∆k
s ← min{∆s max, ∆k

s}.

In Step 3, in the computation of ρk, the denominator satisfies

mk(xk)−mk(xk + sk) = F(xk)−
(

F(xk) + (gk)>sk +
1
2
(sk)>Hksk

)
= (gk)>sk +

1
2
(sk)>Hksk. (11)

As mentioned in [1] (Section 17.4), to reduce the numerical errors, we use (11) to
compute this value.

To compute the ratio ρk, we again follow the advice given in [1] (Section 17.4.2) and
proceed in the following way. Let ε = 104 · εM, where εM is the relative machine precision.
Let δk = ε max(1, |F(xk)|). Define

δFk = F(xk + sk)− F(xk)− δk,

δmk = mk(xk + sk)−mk(xk)− δk = F(xk) + (gk)>sk +
1
2
(sk)>Hksk − δk
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Then,

ρk ∈


1, if |δFk| < ε and |F(xk)| > ε,

δFk

δmk , otherwise.

3.2. Data Profiles

To perform the comparisons in the next section, data profiles were built [63]. The
convergence test for the data profiles is

f (x) ≤ fL + τ
(

f (x0)− fL

)
(12)

where τ > 0 is a tolerance parameter and fL is the best known minimum value for each
problem p in P . Let tp,s be the number of function evaluations required to satisfy (12) for a
problem p ∈ P by using a solver s ∈ S given a maximum number of function evaluations
µ f . In this paper, the parameter is µ f = 1000(np), where np is the dimension of the problem
p ∈ P . Note that µ f is set to ∞ if (12) is not satisfied after µ f function evaluations. The data
profile of a solver s ∈ S is defined by

ds(α) =
1
|P| size

{
p ∈ P :

tp,s

np + 1
≤ α

}
Three different values of τ will be used to build the data profiles: 10−1, 10−3, 1005.

3.3. Experimental Setup

Algorithm 1 was implemented in Matlab 2021a while using both the calculus-based
and non-calculus-based approach to approximating gradients and Hessians. The computer
that was utilized had an Intel Core i7-9700 CPU at 3.00 GHz and 16.0 GB of DDR4 RAM at
2666 MHz on a 64-bit version of Microsoft Windows 11 Home. These implementations were
tested on a suite of test problems, which are detailed below. The Matlab function fmincon was
also tested on each problem for all of the experiments mentioned below. This was done as a
validation step to demonstrate that Algorithm 1 was correctly implemented (and reasonably
competitive with respect to the currently used methods).

To conclude this section, we present the details of the different situations tested for the
product rule and the quotient rule.

3.3.1. Numerical Experiment with the Product Rule

In these numerical experiments, the composite objective function F had the form
F = f1 · f2, where fi : Rn → R, i ∈ {1, 2}. Three different situations were considered:

• f1 and f2 were linear functions;
• f1 was a linear function and f2 was a quadratic function;
• f1 and f2 were quadratic functions.

Recall that a linear function L : Rn → R has the form

L(x) = b>x + c

where b ∈ Rn and c ∈ R . A quadratic function Q : Rn → R has the form

Q(x) =
1
2

x>Ax + b>x + c,

where A ∈ Rn×n is a symmetric matrix. At the beginning of each experiment, the seed
of the random number generator was fixed to 54321 by using the command rng. The
dimension of the space was between 1 and 30, and it was generated with the command
randi. All integers were generated with randi. In each experiment, the coefficients involved
in f1 and f2 were integers between −10 and 10 inclusively. Each component of the starting
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point x0 was an integer between −5 and 5 inclusively. The box constraint was built in the
following way:

`i = x0
i − 1 for all i ∈ {1, . . . , n}, (13)

ui = x0
i + 1 for all i ∈ {1, . . . , n}. (14)

This created a randomly generated test problem of the form of (5). This problem was
solved via Algorithm 1 by using the starting point x0 and by using both versions—the
calculus-based approach and the non-calculus-based approach. Each of the three situations
listed above was repeated 100 times. Each time, all of the parameters were generated again:
the dimension n, the starting point x0, the box constraint [`, u], and the functions f1, f2.

3.3.2. Numerical Experiment with the Quotient Rule: Easy Case

In these experiments, the composite objective function took the form F = f1
f2

, where fi

was either a linear function or a quadratic function for i ∈ {1, 2}. We began by building the
function f2 such that its real roots, if any, were relatively far from the box constraint. To
do so, each component of the starting point x0 was taken to be an integer between 1 and
100 inclusively. The coefficients in f2 are taken to be integers between 1 and 10 inclusively.
When f2 was a quadratic function, note that having all positive entries in the matrix A did
not necessary imply that A was positive semi-definite. The box constraint was built in the
same fashion as in the previous experiment. Thus, the bounds were

`i = x0
i − 1 ≥ 0 for all i ∈ {1, . . . , n},

ui = x0
i + 1 for all i ∈ {1, . . . , n}.

Note that if r ∈ Rn is a root of f2, then r must have at least one negative component.
Since f2(`) > 0 and f2 is an increasing function, there is no root of f2 in the box constraint.
Hence, F is twice continuously differentiable on the box constraint. The following four
situations were tested:

• f1 and f2 were linear functions;
• f1 was a linear function and f2 was a quadratic function;
• f1 was a quadratic function and f2 was a linear function;
• f1 and f2 were quadratic functions.

Each situation was repeated 100 times.

3.3.3. Numerical Experiment with the Quotient Rule: Hard Case

Last, the quotient rule was tested again, but this time, the function f2 was built so that
there was a root of f2 near (but not within) the box constraint. The differences from the
previous quotient experiments were the following. Each component of the starting point
was taken as an integer between −5 and 5 inclusively. Let f2 = f̃2 + c, where c ∈ R . The
coefficients in f̃2 were taken to be between −10 and 10 inclusively. Before generating the
constant c in f2, the minimum value on the box constraint of f̃2, say, f̃2

∗
, was found. Then,

c was set to c = 0.001− f̃2
∗
. Hence, f2 was built such that the minimum value of f2 on the

box constraint was 0.001 and f2(x) ≥ 0.001 for all x in the box constraint.

4. Results

In this section, the data profiles for each of the three experiments are presented. We
begin by presenting the data profiles for the product rule. The following nine data profiles
(three data profiles per situation) were obtained (Figures 1–3). In the following figures, the
x-axis represents the independent variable α, as defined in Section 3.2. The y-axis represents
the percentage of problems solved. For a given tolerance parameter τ, the robustness of
an algorithm was obtained by looking at the value of its curve at the greatest value of
α in the figures. For example, fmincon solved 100% of the problems for all three values
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of τ in Figure 1. For a given percentage of problems solved, the curve with the smallest
value of α represented the most efficient algorithm, as it used fewer function evaluations
to solve a certain percentage of the problems. For example, when τ = 1 in Figure 1, the
fmincon algorithm was the most efficient and the most robust of all three algorithms.
Roughly speaking, if a curve is on top of all other curves in a data profile, then it was the
most efficient and the most robust algorithm on this set of problems for a given value of
τ. Testing different values of τ provides information about the level of accuracy that an
algorithm can achieve. Small values of τ provide information about the capabilities of an
algorithm for finding accurate minimizers, and large values of τ provide information about
the capabilities of an algorithm for finding rough approximations of the minimizers.
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Figure 1. Data profiles when F = f1 · f2 and when f1, f2 are linear functions.
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Figure 2. Data profiles when F = f1 · f2, f1 is a quadratic function, and f2 is a linear function.
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Figure 3. Data profiles when F = f1 · f2 and when f1, f2 are quadratic functions.

Next, we present the data profiles for the quotient rule as described in Section 3.3.2.
The following 12 data profiles were obtained (Figures 4–7).
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Figure 4. Data profiles when F =
f1
f2

and when f1, f2 are linear functions.
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Figure 5. Data profiles when F =
f1
f2

, f1 is a linear function, and f2 is a quadratic function.
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Figure 6. Data profiles when F =
f1
f2

, f1 is a quadratic function, and f2 is a linear function.
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Figure 7. Data profiles when F =
f1
f2

and when f1, f2 are quadratic functions.

Last, we present the data profiles for the quotient rule as described in Section 3.3.3.
The following 12 data profiles were obtained (Figures 8–11).
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Figure 8. Data profiles when F =
f1
f2

and when f1, f2 are linear functions.
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Figure 9. Data profiles when F =
f1
f2

, f1 is a linear function, and f2 is a quadratic function.
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Figure 10. Data profiles when F =
f1
f2

, f1 is a quadratic function, and f2 is a linear function.
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Figure 11. Data profiles when F =
f1
f2

and when f1, f2 are quadratic functions.

5. Discussion

In this section, the data profiles presented in Section 4 are analyzed. First, the data
profiles related to the product rule are scrutinized.
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5.1. Numerical Experiment with the Product Rule

Figure 1 agrees with the theory: The calculus-based approach provided the exact same
results as the non-calculus-based approach. Indeed, when both f1 and f2 are linear, the
theory states that both approaches will build models with an exact gradient and an exact
Hessian. As such, both methods should behave identically.

Figures 2 and 3 show that the calculus-based approach was slightly more efficient and
robust. Note that the calculus-based approach built the model functions mk with an exact
gradient gk and an exact Hessian Hk. This was not the case with the non-calculus-based
approach when F was a cubic function or quartic function. However, the accuracy of
the approximate gradients and Hessians in the models mk was sufficiently good that a
significant difference from the exact models built with the calculus-based approach was
not made. We also observe that Algorithm 1 was more robust than fmincon for these two
situations, which supported that our algorithm is competitive with currently used solvers.

Although there were no drastic differences between the calculus-based approach and
the non-calculus-based approach, we conclude that the calculus-based approach was better
or at least as good as the non-calculus-based approach in these three situations.

5.2. Numerical Experiment with the Quotient Rule: The Easy Case

We now analyze Figures 4–7. The performance of both approaches was almost identi-
cal. The calculus-based approach provided slightly better results. Compared to fmincon,
Algorithm 1 was competitive and even outperformed fmincon when the numerator of
F was a linear function (Figure 4). We note that having no roots of f2 near the box con-
straint implies that the value of the composite objective function F does not drastically
change on the box constraint. In other words, the Lipschitz constant of F on the box
constraint is not a huge number. This helped obtain an accurate gradient gk when using
the non-calculus-based approach. As such, in these four situations, the accuracy of the
approximate gradients and Hessians computed with the non-calculus-based approach was
similar to this computed with the calculus-based approach. Hence, the performance of the
non-calculus-based approach was almost as good as that of the calculus-based approach.

5.3. Numerical Experiment with the Quotient Rule: The Hard Case

The most interesting results were obtained when the composite objective function F
had the form F = f1

f2
, and f2 had a real root near the box constraint [`, u]. Figures 8–11 clearly

show that the calculus-based approach was significantly more efficient and robust than the
non-calculus-based approach for these four situations. Note that the composite objective
function F was twice continuously differentiable on the box constraint, but F was not twice
continuously-differentiable on the expanded box constraint (6). The composite objective
function F was also not twice continuously differentiable on `+ ∆s max1n ≤ xu + ∆s max1n.
Using the non-calculus-based approach, it could be the case that gk or Hk was undefined if
one of the sample points landed exactly on a real root of f2. This was very unlikely and it
did not happen during the experiment. When using a calculus-based approach, this issue
cannot occur, as f1 and f2 are twice continuously differentiable everywhere. This is clearly
an advantage of the calculus-based approach. If a sample point is near a root of f2, the
value of F at this point can be a very large number. This could make the accuracy of gk and
Hk very poor when using the non-calculus-based approach.

Note that the Lipschitz constants of ∇F and ∇2F on the box constraint were very
large numbers. Hence, the error bounds associated with the approximate gradient gk and
the approximate Hessian Hk were very large numbers (see [59]). This tells us that it is
possible to obtain very bad approximations for gk and Hk when using the non-calculus-
based approach.

To see how the non-calculus-based approach can fail to provide accurate approxima-
tions of the gradient and Hessian, we present Example 2.
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Example 2. Let

F =
f1

f2
=

10x + 10
−10x2 + 10x + 20.0001

.

Suppose that xk = −1. The derivative of F at xk is F′(xk) = 105, and the second-order
derivative of F at xk = −1 is F′′(x) = −6× 1010. Table 2 provides the value and the relative error
associated with the approximations gk and Hk obtained by using the non-calculus-based approach
and S = T = h for different values of h. The relative error of the approximation technique is denoted
by RE(·) in the following table.

Table 2. An example where the non-calculus-based approach provides inaccurate approximations.

h gk RE(gk) Hk RE(Hk)

5× 10−1 1.1× 100 9.9× 10−1 −1.2× 100 1.0× 100

1× 10−1 5.1× 100 9.9× 10−1 −3.3× 101 1.0× 100

1× 10−2 5.0× 101 9.9× 10−1 −3.3× 103 1.0× 100

1× 10−3 4.9× 102 9.9× 10−1 −3.3× 105 1.0× 100

1× 10−4 4.8× 103 9.5× 10−1 −3.1× 107 9.9× 10−1

1× 10−5 3.5× 104 6.4× 10−1 −2.1× 109 9.6× 10−1

1× 10−6 9.1× 104 8.6× 10−2 −2.8× 1010 5.1× 10−1

1× 10−7 9.9× 104 1.6× 10−3 −5.4× 1010 8.4× 10−2

1× 10−8 9.9× 104 1.7× 10−5 −5.9× 1010 8.9× 10−3

1× 10−9 1.0× 105 3.3× 10−7 −5.9× 1010 1.1× 10−3

1× 10−10 1.0× 105 1.8× 10−9 −5.9× 1010 8.9× 10−5

1× 10−11 1.0× 105 0 −6.0× 1010 2.9× 10−6

1× 10−12 −1.0× 105 2.0× 100 1.7× 1013 2.9× 102

Several modifications to Algorithm 1 were tested to see if it was possible to improve the
performance of the non-calculus-based approach. None of those modifications resulted in a signifi-
cant increase in performance for all four situations, which made the non-calculus-based approach
competitive with the calculus-based approach.

We observed that numerical errors occurred at h = 10−11 for the approximate gradient gk and
at h = 10−12 for the approximate Hessian Hk. Note that in this experiment, the sampling radius
was ∆s = 2h. Assuming that numerical errors do not occur, the theory guarantees that the relative
error will be of order ∆2

s for gk and of order ∆s for Hk when ∆s is sufficiently small. However, in
this experiment, numerical errors occurred before attaining the expected accuracy for gk and Hk.
Therefore, in this experiment, gk and Hk were extremely inaccurate.

6. Conclusions

When dealing with a composite objective function, the numerical results obtained in
Section 4 clearly suggest that a calculus-based approach should be used. In particular, in all
cases tested, the calculus-based approach was better or as good as the non-calculus-based
approach. Since a calculus-based approach is not more difficult to implement than a non-
calculus-based approach, the former approach seems to be the best approach to implement
and use whenever a composite objective function is optimized.

When the composite objective function was a quotient (F = f1
f2

) and there was a real
root of f2 near the box constraint, the calculus-based approach greatly outperformed the
other methods. In this case, the sampling radius needed to be very small to obtain a
relatively accurate gradient and Hessian when using the non-calculus-based approach.
In some situations, numerical errors may occur before obtaining the accuracy required
for convergence. In general, based on the results obtained, it seems reasonable to think
that a calculus-based approach will outperform a non-calculus-based approach when the
Lipschitz constant of the gradient and\or Hessian of F on the box constraint are large
numbers. By increasing the range of numbers allowed to generate the functions f1 and f2
when using the product rule in the experiment described in Section 3.3.1, it is relatively
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easy to create a test set of problems in which the differences in performance between the
calculus-based approach and the non-calculus-based approach are more pronounced than
the results presented in this paper (Figures 1–3), which are in favor of the calculus-based
approach. However, the gain in performance is not as drastic as the results obtained with
the quotient rule in our third experiment (Figures 8–11). Further investigation is needed to
determine situations in which the calculus-based approach significantly outperforms the
non-calculus-based approach when using the product rule.

We remark that our implementation of Algorithm 1 is simple. This is intentional, as
the goal is to compare the calculus-based approach with the non-calculus-based approach.
Nonetheless, we remark that, recently, Nocedal et al. found that a DFTR algorithm that
used quadratic models built from a forward-finite-difference gradient and a forward-finite-
difference Hessian can be surprisingly competitive with state-of-the-art derivative-free
algorithms [64]. From our perspective, now that the calculus-based approach has been
established as the superior method within a model-based derivative-free algorithm, the
next logical step is to use this knowledge to improve current state-of-the-art software
(e.g., [65]). Applying a calculus-based approach to real-world optimization problems is,
then, the obvious direction of future research.

Another direction to explore is inspired by model-based methods for high-dimensional
blackbox optimization [66]. In [66], the authors used subspace decomposition to reduce
a high-dimensional blackbox optimization problem into a sequence of low-dimensional
blackbox optimization problems. At each iteration, the subspace was rotated, requiring
new models to be frequently constructed. An examination of whether calculus rules could
be adapted to help in this situation would be an interesting direction for future research.

This further links to a direction of future research based on underdetermined gradi-
ent/Hessian approximations. An underdetermined approximation does not contain accurate
information about all entries of a gradient/Hessian, but uses fewer function evaluations
than the determined case. It would be valuable to explore if calculus-based approaches
could be merged with underdetermined approximations to create more accuracy with a
minimal increase in function evaluations.
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