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Abstract: Batteries are complex systems involving spatially distributed microscopic mechanisms on
different time scales whose adequate interplay is essential to ensure a desired functioning. Describing
these phenomena yields nonlinearly coupled partial differential equations whose numerical solution
requires considerable effort and computation time, making it an infeasible solution for real-time
applications. Anyway, having information about the internal electrochemical states of the battery
can pave the way for many different advanced monitoring and control strategies with a big potential
for improving efficiency and longevity. For such purposes, in the present paper, a combination
of a low-order representation of the essential dynamics associated to the internal electrochemical
mechanisms based on Dynamic Mode Decomposition for control (DMDc) is proposed to obtain an
improved equivalent circuit model (ECM) representation with continuously updated parameters
and combined with an extended Kalman Filter (EKF). The model-order reduction step extensively
exploits the model structure, yielding a well structured low-order representation without artificial
numerical correlations. The performance of the proposed method is illustrated with numerical
simulations based on a well-established reference model, showing its potential usefulness in real-time
applications requiring knowledge of the internal electrochemical states besides the state-of-charge.

Keywords: complex systems; reduced-order models; process modelling and identification; data-
driven models; lithium-ion batteries; equivalent circuit model; extended kalman filter

1. Introduction

Nowadays, Lithium-ion batteries play a pivotal role in industrial applications both in
mobile and stationary solutions. For all these applications it, is vital to monitor and control
the operational conditions of Li-ion batteries in order to increase their life time, reduce
hazardous situations and provide reliability to the user ([1–3]). The state-of-charge (SOC) is
one of the most important but also delicate parameters to monitor, given that it determines
the effective remaining power that can be supplied with the battery, but it depends on the
concentration distribution of charges in the electrode particles. Given this dependency it is
not directly measurable, and thus is typically estimated from measurable output signals
and known inputs on the basis of some mathematical or numerical model.

While batteries are intensively used in different applications, there are also still a couple
of open questions requiring additional research and development. Li-ions batteries are
complex systems involving spatially distributed microscopic mechanisms with nonlinear
coupling effects on different time scales [4]. There is not a unique model representing
all mechanisms but rather several models have been created, and even new ones are
appearing, in an effort to model, predict and control the internal electrochemical processes
that conform a Li-ion battery. In general, two main groups of models can be distinguished:
electrochemical models based on first-principles (i.e., electrochemical reaction kinetics,
mass and energy balances) and data-driven models.
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The models based on first-principles incorporate the different chemical, electrical and
physical factors into mathematical equations to predict the main internal phenomena as
accurate as possible, see, e.g., [5–13]. These models have been used mainly to improve the
understanding of the underlying mass transport and electrochemical kinetics phenomena
on a quantitative-qualitative level. They have been validated in many independent experi-
mental studies and their potential use in (i) state estimation for monitoring, (ii) optimal
charging, and (iii) state feedback control design have been investigated by different groups
(see, e.g., [14–19]). While these studies on the one side outline the great advantages of hav-
ing explicit information about the internal electrochemical states at hand, on the other side
they involve complex and advanced analytical skills and typically still require a complete
partial differential equation system to be solved online, what can lead to significant real-
time limitations and impose a high computational burden that is undesired in particular
for embedded solutions and becomes untractable when concerning distributed battery
packs and the associated complex battery management systems [20]. The simplest of the
first-principle models is the so-called equivalent circuit model (ECM), (see, e.g., [21,22]),
which can be used in fast simulation scenarios but neglects all internal electrochemical
processes and in consequence has a lower prediction capability, typically showing offsets
in comparison to detailed numerical models.

Because of the above other approaches are being explored in order to find a balance
between a detailed electrochemical representation, simplicity and real-time capability. The
data-driven modeling approaches offer such a balance. Data-driven modeling treats the
battery basically as a black box and through model trainings comes up with a representation
of the behaviour of the battery by using algorithms that process the measured data and
iteratively improve the prediction capability. As a result, minimal or zero knowledge of the
battery internal parameters is needed. Neural networks and deep learning are being used
to form a relation between the input information and the output measurement (see, e.g.,
[23]). Moreover, these approaches are popular because they allow to improve the prediction
by diverse paths of model training. Other approaches, such as support vector machines
and fuzzy logic present attractive low-error representations of essential information due to
their classification and regression methods. The different advantages of first-principles and
data-driven modeling approaches can be found in [24]. What should be highlighted here is
that any method that only considers input–output data, even treating hidden dynamics by
means of lateral variables can not be verified with respect to the internal electrochemical
state predictions, unless it is compared-during training-to detailed first-principle models,
which at this moment are the main source of information about what happens inside the
battery.

This motivates to focus on different systematic model simplification and model order
reduction techniques. This has been addressed, e.g., using singular perturbation approaches
[4], numerical approximation using, e.g., finite-differences and averaging [25,26], frequency
domain approaches coupled with low-order state space models [27] and Galerkin projec-
tions [28,29], polynomial projections [30] and others (see, e.g., [31]). A further powerful tool
for low-order model identification has been gaining importance in different application
fields due to its capacity to systematically identify low-dimensional relations of complex
systems in discrete-time setups using snapshots of the states, namely Dynamic Mode De-
composition (DMD) [32,33] and its extensions to include external control inputs, known as
Dynamic Mode Decomposition with control (DMDc) [34]. Having in its core singular value
decomposition and Koopman operator theory [35], DMDc has shown a big potential use in
fields ranging from the analysis of turbulent flows [32,35,36] to shallow water propagation
in channels [37]. Accordingly, it is to be expected that DMDc also provides an excelent
basis for low-order prediction model approximations for batteries, using which one can
determine the essential (i.e., dominant) modes that govern the electrochemical dynamics
and create a reduced order model (ROM) on this basis, which inherits not only the accuracy
of the detailed model but is also simple enough to be used in real-time applications.
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DMDc was recently used for battery model identification [38] with a restriction on the
consideration of input–output and SOC data but without any relation to the electrochemical
dynamics within the cell. In contrast to this, a ROM based on a detailed electrochemical
model and obtained via DMDc was proposed in [39]. In a similar fashion as for the other
model-order reduction techniques commented above, the main advantage relies in the
fact that essential effects of the electrochemistry can still be represented and explicitely
considered, paving the way, e.g., for monitoring and control applications based on the
electrochemical state information. An advantage of DMDc from the application point
of view is that the choice of functions on which the dynamics are projected takes place
automatically on the basis of the data, i.e., the snapshots of the states, obtained either from
measurements or from simulations, while in the other mentioned model-order reduction
techniques the associated analytical effort is considerably higher.

Independent of the method, any prediction model is just an approximation and thus
monitoring and control approaches require some estimator, providing a correction of the
predictions on the basis of measured data. For such purposes, basically two main groups of
approaches can be found: observers based on deterministic system equations [11,14,40–42]
and estimators for stochastic system representations [43].

Within classical methods for the estimator design, the Kalmal filter (KF) is a well known
tool for stochastic linear systems, and the extended Kalman filter (EKF) for non-linear
systems. The EKF uses the nonlinear model for prediction and a local linearisation about the
current estimate to predict the associated error covariance in dependence of measurement
and process noise covariances, to achieve a local minimization of the estimation error
covariance. Kalman Filter methods have already been applied by different groups to
battery models, see, e.g., [22,25,44]. Besides these classical Kalman Filter approaches,
e.g., particle filters (PF) and Adaptative Extended Kalman filter (AEKF) have also been
used to predict the SOC in data-driven models but considering only the experimental
and measurable outputs obtained from physical set-ups, leaving aside the underlying
electrochemical behaviour (see, e.g., [45–47]). The combination of DMDc with Kalman
filtering techniques has also been discussed in several studies (see, e.g., [48–53]), given that
both are very systematic and easily implementable methods providing a high degree of
precission and efficiency.

Having the above mentioned studies as points of departure, the purpose of the present
study is to (i) extend the ROM proposed in [39] to include thermal dynamics, (ii) use
the improved ROM for time-variant adaptation of the parameters of an ECM, and (iii)
combine it with an EKF for estimation of microscopic (i.e., electrochemical) and macroscopic
(i.e., voltage-current, SOC) states. The performance of the proposed estimation scheme is
established by simulation studies with a comparison to a high-fidelity numerical solution
of a detailed electrochemical model [9,54], in order to show the approximation quality
achieved with the DMDc based ROM in combination with the EKF.

The paper is organized as follows: First, in Section 2, the methodology is presented
with a review of the mathematical equations of the single particle electrode model. This is
followed by a derivation of the numerical model obtained by the solution through a finite
difference scheme. Then DMDc is recalled and applied to the battery model to derive the
ROM. In continuation, an ECM and its improvement by an adaptation scheme based on
the ROM is presented. Section 3 includes simulation studies to show the performance of
the proposed approach. Conclusions and an outlook are presented in Section 4 and Section
5, respectively.

2. Methodology and Models

For the present work, the model developed in [54] considernig a DUAL Li-ion battery
with LiC6 for the negative electrode, Li2Mn2O4 for the positive electrode, and LiPF6 as
electrolyte is considered.
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2.1. The Single Particle Model Revisited

The porous electrode theory for DUAL configuration, based on the work of Doyle and
Newman, was chosen because it is general enough to be adapted to other batteries. To
simplify the electron transport, the single particle model is used to provide an average inter-
action between the surface of the active material spheres and the electrolyte. Additionally,
the simplified model still provides a deep understanding of the electrochemical interactions
that occur on each electrode, in the electrolyte and the solid electrolyte interphase (SEI).
The theory divides the Li-ion battery into: Solid phase (concerning the electrodes), electrolyte
phase, and reaction rate (concerning the interaction of the input current, the current of the
phases, temperature and the potential at the surface of the electrodes according to the
Buttler-Vollmer kinetics [55]). Figure 1 shows a scheme of the DUAL configuration of the
model.

Figure 1. DUAL cell sandwich battery, cross-sectional view. The current collectors are located at the
extremes of the cell, inspired by [54].

The model equation for the different components are briefly summarized in the
following (cp. [54]).

Solid phase

The lithium concentration in the electrode is governed by

∂Cs(r, x, t)
∂t

=
1
r2

∂

∂r

(
Dsr2 ∂Cs(r, x, t)

∂r

)
, t > 0, r ∈ (0, Rs), x ∈ (0, L) (1a)

with initial condition Cs(·, ·, 0) = C0
s and boundary conditions

∂Cs(r, x, t)
∂r

= 0, t > 0, r = 0, x ∈ (0, L) (1b)

Ds
∂Cs(r, x, t)

∂r
= −jn(x, t), t > 0, r = Rs, x ∈ (0, L), (1c)

where Cs(r, x, t) is the lithium concentration in either of the electrodes, r is the radius in
spherical coordinates of the electrode-sphere particle with maximum value Rs, Ds is the
diffusion coefficient, and jn(x, t) is the pore-wall flux. Note that (1a) corresponds to a
spherical diffusion equation under the assumption of angular homogeneity regarding the
azimuthal and longitudinal directions.

The potential of the electrode is governed by

∂Φs(x, t)
∂x

= − I(t)− ie(x, t)
σ

, t > 0, x ∈ (0, L) (2a)
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with boundary conditions

∂Φs(x, t)
∂x

= 0, t > 0, x ∈ {δ−, δ− + δs} (2b)

∂Φs(x, t)
∂x

= − I(t)
σ

, t > 0, x ∈ {0, L}, (2c)

where Φs(x, t) is the electrode’s potential, I(t) is the input current density , ie(x, t) is the
electrolyte current and σ is the conductivity of the electrode.

Electrolyte phase

The lithium concentration in the electrolyte satisfies

∂Ce(x, t)
∂t

= ∂
∂x

(
De

∂Ce(x,t)
∂x

)
+ t0

e (x)
F

∂ie(x,t)
∂x + ie(x,t)

F
∂t0

e (x)
∂x , t > 0, x ∈ (0, L) (3a)

with initial condition Ce(·, 0) = C0
e and boundary conditions

∂Ce(x, t)
∂x

= 0, t > 0, x = 0, L, (3b)

where ie(x, t) is the electrolyte current, F is Faraday’s constant, ε is the volume fraction for
each electrode, Ce(x, t), De and t0

e are the lithium concentration, diffusion coefficient and
the transference number of the electrolyte, respectively.

The electrolyte current in turn is governed by

∂ie(x, t)
∂x

=


Fa−s jn(x, t) x ∈ [0, δ−]

0 x ∈ [δ−, δ− + δs]

−Fa+s jn(x, t) x ∈ [δ− + δs, L]

, t ≥ 0 (3c)

with the specific interfacial area of the single sphere-particle

a±s =
3(1− ε)

R±s
. (3d)

The potential of the electrolyte satisfies

∂Φe(x, t)
∂x

= − ie(x, t)
κ

+
RT
F

(
1− t0

e (x)
)∂lnCe(x, t)

∂x
, t ≥ 0, x ∈ (0, L) (4a)

with the boundary condition

Φe(x, t) = 0x = 0, (4b)

where R is the universal gas constant, T the cell temperature, and κ the ionic conductivity
of the electrolyte.

Reaction rate

The reaction rate equations basically are described by the Buttler-Vollmer kinetics [55]
which can be written in the form

Fjn(x, t) = 2io(x, t) sinh
[

αF
RT

η(x, t)
]

(5a)
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with

η(x, t) = Φs(x, t)−Φe(x, t)−UOCP(Cs)− FR f jn(x, t) (5b)

io(x, t) = re f f F
(

Cmax
s − Csur f

s

)α
(Csur f

s Ce)
α, (5c)

where io(x, t) is the exchange current density (by insertion of electrodes), α is the transport
coefficient from the negative and positive electrodes, η is known as the overpotential and
depends of the Open Circuit Potential UOCP, electrode and electrolyte potential and the
ohmic drop produced by the union of the electrode and the current collector where R f
is the film resistance, re f f is the rate constant of the anodic and cathodic directions of the
reaction, Cmax

s represents the maximum concentration of lithium at either electrode, and
Csur f

s is the concentration at the surface of the electrode-sphere particle.
Note that the pore-wall flux can be averaged as:

< jn >=

−
I(t)

Fa+s δ+
for the positive electrode

I(t)
Fa−s δ− for the negative electrode

(6)

and the output voltage can be found solving (5a) for each potential of the electrode surface
and the relationship

V(t) = Φ+
s,sur f (t)−Φ−s,sur f (t). (7)

Energy balance

The power transferred through the battery produces internal heat that is interchanged
with the environment. As the thickness of the electrodes is small, temperature gradients
that are perpendicular to them can be omitted. This results in the following simplified
model for the thermal dynamics

ρavgCp
dT(t)

dt
= I(t)V(t) + h0(Tamb − T(t)), t > 0, T(0) = T0, (8)

where ρavg is the average mass per unit area, Cp is the heat capacity, h0 is the heat transfer
coefficient and Tamb is the external or environmental temperature.

2.2. Numerical Model

The model consists of a combination of partial differential equations, ordinary dif-
ferential equations (in the spatial coordinates) and the central nonlinear Buttler-Vollmer
kinetics as a coupling relation. For the solution of this system of equations in the following
the method of finite-differences is employed, going along standards in the related literature
(see, e.g., [25,26,56]).

For this purpose the spatial variables are discretized by introducing xi = i∆x, rj = j∆r
with i = 1, . . . , n, j = 1, . . . , m, with n, m ∈ N and the discretization steps ∆x, ∆r > 0.

Electrolyte current

First of all, notice that equation (3c) can be solved analytically. Before and after the
separator the current is the same, no additional boundaries conditions are needed:

ie(x, t) =


I(t)
δ−

x 0 ≤ x ≤ δ−

I(t) δs < x < δ+

I(t)− I(t)
δ+

(x− δ− − δs) δ+ ≤ x ≤ L.

(9)
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Electrolyte concentration

Introducing the short-hand notation Ce,i(t) = Ce(xi, t), and the vector

Ce(t) =
[
Ce,1(t) · · · Ce,n(t)

]T ,

equation (3a) can be approximated as:

Ċe(t) = ACe Ce(t) + bCe I(t) (10)

where the matrix ACe and the vector bCe are defined in Appendix A.

Electrolyte potential

In the same fashion, introducing Φe,i(t) = Φe(xi, t) and

Φe(t) =
[
Φe,1(t) · · · Φe,n(t)

]T ,

Equation (4a) can be approximated by using central differences as:

AΦe Φe(t) = bΦe I(t) + CΦe ln(Ce(t)) (11)

where the matrices AΦe , CΦe and the vector bΦe defined in Appendix A.

Electrode concentration

For the case of the solid phase, the concentration is approximated by considering
a spatial homogeneity with respect to the x-direction. With the creation of the vector
C∓s (x, t) =

[
C∓s (r1, x, t) · · · C∓s (rm, x, t)

]
, Equation (1a) can be expressed as:

Ċ∓s (x,t) = A∓Cs
C∓s (x, t) + b∓Cs

I(t) (12)

where the matrix A∓Cs
and the vector b∓Cs

are given in Appendix A.

Output voltage

The open circuit potential of each material is assumed to be known. Mathematical
approximations for different materials can be found, e.g., in [6]. Considering (6) and the
boundary condition (4b), the only unknown in (5a) is the surface potential which can be
solved to obtain:

Φ∓s,sur f (t) =
RT
αF

asinh
[

Fj∓n (t)
2i∓o (t)

]
+ U∓OCP(C

∓
s (t)) + FR∓f j∓n (t) + Φ+

e (t) (13)

so that the terminal output in (7) can be computed.

Electrode potentials

Finally, (2a) can be analytically integrated to obtain the potentials across the electrodes
by making use of the boundary conditions (2b) and (2c):

Φ∓s (x, t) = Φ∓s,sur f −
I(t)
σ∓

x∓ ±
I(t)

2σ∓δ∓
x2
∓, 0 ≤ x∓ ≤ δ∓. (14)

Here, the electrodes are considered as separated items, i.e., the equation starts at x− = 0, or
x+ = δ− + δs artificially set to zero, respectively.

State of charge

By considering the saturation point in the concentration of Li-ions in each electrode
and the concentration’s profile over time, it is possible to estimate the SOC of each electrode
independently.
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Regarding the SOC, two types can be determined from the model:

• Surface SOC, regarding only the surface of the particle:

SOC∓sur f (t) =
C∓s,sur f

C∓s,max
(15)

• Bulk SOC, which contemplates the spatial profiles of the whole spheres:

SOC∓bulk(t) =
3

δ(Rs)3

∫ δ

0

∫ Rs

0
r2 C∓s (x, r, t)

C∓s,max
drdx (16)

2.3. Dynamic Mode Decomposition with Control

By providing the specific parameters to the numerical model, a simulation can be
conducted. All the data are collected then into the so-called snapshots [32–34]. DMDc uses
these snapshots together with the external signals (current and temperature) to approximate
the input–output dynamics. For this purpose, consider the vector xk, conformed by stacking
of all the electrochemical states defined in the mathematical equation of Section 2.1:

xk =
[
Ce Φe C−s Φ−s C+

s Φ+
s
]T . (17)

DMDc characterizes the relationship between the actual state xk, the future state xk+1 and
the external input uk considering a linear discrete time dynamical system of the form

xk+1=Axk + Buk, (18)

where xk ∈ Rn, uk ∈ Rq, A ∈ Rnxn, B ∈ Rnxq and k ∈ [1, M]. The goal is to find an
approximation to A and B via regression over the snapshots. For this purpose two sets of
matrices are build:

X =

 | | · · · |
x1 x2 · · · xM−1
| | · · · |

, X ′ =

 | | · · · |
x2 x3 · · · xM
| | · · · |

, ∈ Rn×(M−1) (19)

and from the external signal the matrix

Υ =

 | | · · · |
u1 u2 · · · uM−1
| | · · · |

, ∈ Rq×(M−1) (20)

is obtained. Equation (18) implies

X ′ ≈ AX + BΥ =
[
A B

][X
Υ

]
=: [A, B]Ω, (21)

with the solution given by

[A, B] = X ′Ω† (22)

where Ω†∈ R(M−1)×(n+q) denotes the pseudo-inverse. The eigenvectors of A are the so-
called DMD modes.

Reduced order modelling

Following [34], the singular value decomposition (svd) of Ω and X ′ are used to
approximate G with a reduced order r̃

Ω ≈ ŨΣ̃Ṽ∗. (23)
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The svd presents a suitable way to find the solution that minimizes the Frobenius norm of
the approximation error matrix X ′ − [A, B]ŨΣ̃Ṽ∗. The matrix [A, B] can then be approxi-
mated as [

ÃB̃
]
=
[

X ′Ṽ Σ̃
−1Ũ∗1 X ′Ṽ Σ̃

−1Ũ∗2
]

(24)

where G ∈ Rnx(n+q), Ũ1 ∈ Rnxr̃ and Ũ2 ∈ Rqxr̃.
The left singular vectors of the output matrix X ′ in turn, which are summarized in the

matrix Û, are used to find the reduced-order subspace of order r̂ using the svd of X ′

X ′ ≈ ÛΣ̂V̂∗, x = Û x̄ (25)

where x̄ denotes the reduced-order state of dimension r̂. In the following, the ROM matrices
are accordingly denoted with a bar:

Ā = Û∗ ÃÛ = Û∗X ′Ṽ Σ̃
−1Ũ∗1Û ∈ Rr̂xr̂ (26)

B̄ = Û∗B̃ = Û∗X ′Ṽ Σ̃
−1Ũ∗2 ∈ Rr̂xq (27)

and the resulting reduced-order model is given by

x̄k+1 = Āx̄k + B̄uk. (28)

Furthermore, the dominant dynamic modes of A can be found by solving the eigenvalues
of the ROM’s matrix Ā as:

ĀW = WΛ (29)

If all eigenvalues are within the unit circle an input–output stable system dynamics is
obtained.

2.4. Application to the Pseudo Single Particle Model

According to the model presented in Sections 2.1 and 2.2 each electrochemical state of
X can be analyzed independently from the others, and thus the resulting reduced matrices
Ā and B̄ can be expressed as decoupled block matrices. This means that for the complete
regression of the original data, the reduced order model (28) is composed by:

x̄k =
[
C̄e Φ̄e C̄−s Φ̄

−
s C̄+

s Φ̄
+
s

]T
, uk =

[
Ik Tk

]T (30a)

Ā =



ĀCe

ĀΦe 0
ĀC−s

ĀΦ−s
0 ĀC+

s
ĀΦ+

s


, B̄ =



B̄Ce

B̄Φe

B̄C−s
B̄Φ−s
B̄C+

s
B̄Φ+

s


, (30b)
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where Ik and Tk are now the discrete vectors of input current and cell temperature respec-
tively. To retrieve the original states, the back-transformation xk = Û x̄k is used where the
transformation matrix Û is given by

Û =



ÛCe

ÛΦe 0
ÛC−s

ÛΦ−s
0 ÛC+

s
ÛΦ+

s


. (31)

2.5. Improved Equivalent Circuit Model

From the numerical model, optimized parameters can be computed to create an ECM.
Figure 2 shows the considered circuit. On the other hand, from the ROM, a continuous
parameter estimation (CPE) or adaptation can be performed in order to improve the
accuracy of the ECM.

R
I

R

U

C

OCP

P

P

out
p

O

+

V

-

Figure 2. First Order RC Equivalent Circuit Model

In the simplest way, ECM uses Coulomb Counting CC

dSOC
dt

(t) =
I(t)

Qmax
, t > 0, SOC(0)=SOC0, (32)

with Qmax denoting the maximum charge possible, and SOC0 being an estimate of the
initial SOC, to keep track of the SOC of the battery, or as in our model, of each electrode.
Leaving aside the separated nature of two electrodes of different material and all related
electrochemical processes and taking into account the inability of directly measuring the
concentration distribution on the electrode surface, on the long run this approach requires
a correction term as typically obtained from some state estimation technique.

Using the concentration of Li-ions obtained from the ROM, the ECM can be improved.
As not all the data of x̄k is needed and just some part of it, the variable zk is defined in the
following for the reduced model extraction. In addition, the voltage Up of the capacitor Cp
is converted to a discrete form.

z[k] =
[

z1,[k]
z2,[k]

]
=

[
C̄−s
C̄+

s

]
. (33)

The variable ξ represents the states of the improved ECM model, i.e.

ξ[k] =

ξ1,[k]
ξ2,[k]
ξ3,[k]

 =

[
Up
z[k]

]
, (34)
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where in discrete time, e.g., using a simple Euler discretization with step ∆t the voltage Up
is approximated by:

Up[k] =
RpCp − ∆t

RpCp
·Up[k−1] +

∆t
Cp
· I[k−1]. (35)

The tracking of the internal potential will use the improved ECM approach creating the
following discrete-time system:

ξ[k] = Adξ[k−1] + Bdu[k−1] (36a)

V = h(ξ, u) = ξ1 + U+
OCP(SOC+)−U−OCP(SOC−) + Rou1 (36b)

with

Ad =


RpCp−∆t

RpCp
0 0

0 ĀC−s
0

0 0 ĀC+
s

, Bd =


∆t
Cp

0
B̄C−s
B̄C+

s

 (36c)

SOC+
[k] = ÛC+

s
(n, : ) · ĀC+

s
· ξ3,[k] · (C+

s,max)
−1 (36d)

SOC−
[k] = ÛC−s

(n, : ) · ĀC−s
· ξ2,[k] · (C−s,max)

−1. (36e)

In the system conformed by (36b) until (36e), ξ1,[k] is the RC sub-network voltage in
discrete time, ξ2,[k] is the reduced state of the negative electrode concentration with the
dimension r̂1, and ξ3,[k] is the reduced state of the concentration of Lithium in the positive
electrode with dimension r̂2. The input u[k] is composed by the current and temperature.
In (36d)–(36e) the original surface concentration of each electrode is recovered by using the
state transformation Ûi from (31). Note that the concentration profile over the complete
electrode can be recovered, but as for the output voltage only the surface concentration is
required, only the nth columns of the state transformation matrices are used.

2.6. State Estimation

For the estimation process, a discrete version of the EKF with non-linear output
function is considered [43,57]. This basically consists of the following steps:

(1) Prediction:

ξ̂[k] = Ad ξ̂[k−1] + Bdu[k−1], ξ̂[0] = ξ̂0 (37a)

ŷ[k] = ξ̂1,[k] + U+
OCP(SOC+

[k])−U−OCP(SOC−
[k]) + Ro · u1,[k] (37b)

P̂[k] = AdP[k−1]A
T
d + Q P[0] = P0 (37c)

(2) Kalman gain determination:

L[k] = P̂[k]H
T
[k]R

−1, H [k] =
∂h(ξ, u)

∂ξ
|ξ̂[k] ,u[k]

(37d)

(3) Correction (innovation):

ξ̂[k] = ξ̂[k] + L[k](y[k] − ŷ[k]) (37e)

As the functions U∓OCP(SOC∓[k]) are known, the partial derivatives of h(ξ, u) are
easily calculated and can be used for the computation of the dynamic gain L[k]. R and Q
are the covariance matrices of the measurement and process noise, respectively. For the
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initial values of the reduced stated of the concentration, the state transformation Ûi from
(31) is used

ξ̂2,[0] = (ÛC−s
)† · SOC−0 · 1(C

−
s,max) (38)

ξ̂3,[0] = (ÛC+
s
)† · SOC+

0 · 1(C
+
s,max) (39)

where 1 represents a vector of ones of dimension n.

3. Evaluation Study

In this section the proposed method is evaluated using a comparison against a val-
idated high-fidelity numerical model to identify (i) accuracy of the ROM and the ECM
with continuous parameter estimation/adaptation (CPE) regarding the microscopic electro-
chemical states as well as the macroscopic electrical ones, and (ii) effectiveness with respect
to computation times and memory requirements.

3.1. Numerical Evaluation

As commented in Section 2.3 the DMDc approach is repeated six times, one for each
of the main variables of the electrochemical model using a time discretization step of
∆t = 0.5s. More detail on the choice of training data can be found in [39]. Note that
for the training scenarios with different charging and discharging scenarios and different
temperatures were combined. The dimensions of the original system and the identified
ROM are summarized in Table 1. The obtained dynamics matrix Ā has all eigenvalues
within the unit circle, so that the identified system dynamics is input–output stable.

Table 1. DMDc approximation orders used for the model with parameters given in Appendix B.

Numerical Model ROM

C−s 60 9

C+
s 60 6

Φ−s 60 2

Φ+
s 60 2

Ce 130 4

Φe 130 9

total 500 32

To test the accuracy and efficiency of the ROM with the improved ECMwith continuous
parameter adaptation (CPE), and the combination with the EKF, as well as comparing these
approaches against a simple constant parameter ECM with CC, a simulation was carried
out for a 70 minutes discharge and charge process with the following C current rates: 1

3 C,
1
2 C, 1C, 1.5C, −1.5C, −1C, − 1

2 C, − 1
3 C with the external temperature being set to 30 °C. An

initial error of 5% was considered for the values of the SOC of both electrodes at t = 0. The
values of the parameters for the numerical model simulation are provided in Appendix B.

The effectiveness of the ROM based on the considered DMDc identification procedure
outlined above is evaluated first. Figure 3 shows the approximated profiles according to (28)
for the concentrations of the electrodes (left column, top and center) and the electrolyte (left
column, bottom), with the associated approximation errors (right column) in comparison to
the high-fidelity numerical model. It can be clearly seen that the approximations are quite
convincing inspite of the considerable order reduction according to Table 1. This illustrates
clearly the strong approximation potential of the DMDc approach and its usefullness for
the prediction of cell internal electrochemical states.
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Figure 3. ROM approximation of concentration profiles (left column) for negative electrode (top), pos-
itive electrode (center) and electroylte (bottom), with the associated approximation error evolutions
over time (right column).

Figure 4 shows the error between the ROM, Coulomb counting (CC) and EKF and
the numerical model for the surface SOC for both electrodes, which is derived from the
Li-ion concentration. It can be seen that in comparison to an ECM with constant optimized
parameters and simple CC, the ROM achieves a better prediction, which is further improved
by the EKF, achieving a convergence over the simulation time, compensating the initial
error.

Subsequently, Figure 5 shows the error of the output voltage V for the simulated
discharge/charge process for the ECM with CC, ECM with continous parameter adaptation
(CPE) based on the ROM and the ROM with the EKF, showing that the inclusion of the ECM
by using the SOC predicted by the ROM according to (36) already achieves an improvement
in comparison to the constant parameter ECM with CC, and that this is further improved
significantly by coupling the ROM with the EKF. Figure 6 shows the associated output
voltage. In both figures the superiority of the ROM-based approaches can be clearly seen in
comparison to the ECM with CC using constant parameters and no correction terms, while
a considerable additional further improvement is achieved with the ROM coupled to the
EKF.
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Figure 4. Error for the Surface SOC of electrodes. SOC∓NM(t0) = [0.8, 0.2], SOC∓R (t0) = [0.75, 0.25], T
= 30 °C and simulation time = 70 min.
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To have a one shot view of the performance of the ROM and its combination with the
EKF, Tables 2 and 3 show the root mean square error (RMSE) obtained in the simulations.

Table 2. RMSE of the internal electrochemical states obtained by the DMDc based ROM with the
EKF.

C−s C+
s Φ−s Φ+

s Ce Φe

RMSE 2.8 × 10−3 2.7 × 10−3 1.8 × 10−8 2.3 × 10−6 5.8 × 10−4 5.4 × 10−2

Table 3. RMSE for the macroscopic output states for the ROM without and with the EKF.

SOC−S SOC+
S V(t)

ROM 5.0 × 10−2 5.0 × 10−2 2.3 × 10−2

ROM+EKF 1.9 × 10−2 2.8 × 10−2 2.9 × 10−3

3.2. Discussion

As can be seen from the numerical evaluation study, the proposed approach is able
to reconstruct microscopic electrochemical states (concentration and potential profiles)
together with macroscopic electrical states (SOC, output voltage) in an efficient way, i.e.,
with low computational requirements and enabling potential real-time applications.

It should be noted that the data used for the identification of the ROM considered the
cell temperature as an external signal, so the resulted model is capable to tackle changes on
temperature making a good agreement for testing scenarios besides the standard 25°C. The
ECM and CC with optimized parameters could not consider this effect, leading to a faster
increasing discrepance to the actual states if the external temperature was shows deviations
from the standard temperature.

The average root square error of the ROM is promising supporting the helpful use
of the DMDc for complex systems that present a low-dimensional behaviour between
sampling times. The RMSE for the concentration is less than 3×10−3 (lets recall that the
SOC depends of the concentration on the solid phase) and for the terminal voltage is less
than 100 µV. In contrast, the standard equivalent circuit model (ECM) has a RMSE of
around 40 mV for the terminal voltage. Additionally , the dimension of the ROM is only
about 7% of the numerical model.

The processing time of the numerical model for the discharge/charge simulation study
was of 75.9 s while the ROM only needed 1.6 s, i.e., around only 2% of the original time,
enabling its potential future implementation in real-time applications.

It should be highlighted once more, that the ROM proceeds from equation free data,
implying the resulted ROM depends only from the data produced during the numerical
simulation of training data scenarios. Accordingly, different simulations would come
up with slightly to considerably different truncation factors, dimensions and values for
the ROM. Thus, it is important to define a priori what phenomena would be required to
be reflected in the ROM and create an appropriate test scenario in terms of current and
temperature.

4. Conclusions

An approach for effective estimation of the cell internal electrochemical states of a
Li-ion battery based on DMDc was proposed. A systematic way of deriving the ROM
was outlined starting with the single particle battery model, its numerical approximation
using finite differences and the application of DMDc on each electrochemical state sep-
arately, given that this possibility is enabled by the system structure. In comparison to
previous applications of DMDc for batteries the present study enables the consideration of
electrochemical states and thermal dynamics. Based on the ROM an improved ECM was
proposed for which the SOC is determined using the ROM instead of classical Coulomb
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counting (CC). The proposed ECM model was coupled with an EKF to enhance the model
predictions by adequately combining them with output data from the battery. The ap-
proach was evaluated in numerical simulations for a validated high-fidelity model showing
a high precision in the estimation of the microscopic electrochemical states as well as the
macroscopic electrical states (SOC, output voltage), while keeping the numerical effort very
low and thus enabling its potential implementation in real-time applications for monitoring
and control purposes.

5. Future Work

The proposed DMDc modelling approach looks promising to achieve high prediction
accuracy for the estimation of internal electrochemical states and thus in particular the
associated SOC, overcoming the burden of computational complexity inherent to the
numerical solution of detailed electrochemical models. As this paves the way for advanced
feedback and optimal control design, different state-feedback control approaches should be
studied and evaluated in particular for the governer design problem, optimal charging and
cell balancing.

Further investigation is required to determine the inherent stability properties as-
sociated to the nonlinear interconnection introduced by the thermal dynamics and the
approximation possiblities using DMDc and extended DMDc. Furthermore, the associated
implications for state estimator and control design should be further analyzed.
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Appendix A. Matrices for the Finite-Difference Approximation

Using central differences and incorporating the boundary conditions one obtains the
following matrices and vectors used in Section 2.2.

ACe =
De

(∆x)2


−1 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0

. . .
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −1

, bCe =
t0
e
F


1

δ−
. . .
0

. . .
− 1

δ+



AΦe =



1 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0
−1 0 1 0 · · · 0 0 0 0

. . .
0 0 0 0 · · · −1 0 1 0
0 0 0 0 · · · 0 −1 0 1



bΦe = −
2∆x

κ


0 0 0 · · · 0 0 0
0 1

δ−
0 · · · 0 0 0

... 0
...

0 0 0 · · · 0 − 1
δ+

0

xT − 2∆x
κ



0
...
1
...
L

δ+



CΦe =
RT(1− t0

e )

F



0 0 0 0 · · · 0 0 0 0
−1 1 0 0 · · · 0 0 0 0
−1 0 1 0 · · · 0 0 0 0

. . .
0 0 0 0 · · · −1 0 1 0
0 0 0 0 · · · 0 −1 0 1



AC∓s
=

D∓s
(∆r)2


−1 1 0 · · · 0 0 0 0
1 −2 1 · · · 0 0 0 0

. . .
0 0 0 · · · 0 1 −2 1
0 0 0 · · · 0 0 1 −1



+
D∓s

R∓s ∆r



−1 1 0 0 · · · 0 0 0 0
−1 0 1 0 · · · 0 0 0 0
0 −1 0 1 · · · 0 0 0 0

. . .
0 0 0 0 · · · 0 −1 0 1
0 0 0 0 · · · 0 0 −1 1



b∓Cs
= ∓

(
∆r + Rs∓

∆rRs∓a∓s Fδ∓

)0
...
1
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Appendix B. Modell Parameters

The parameters used in the simulation studies are listed in Table A1.

Table A1. Model parameters used in the simulation study.

Parameter Value Description

D−s [cm2/s] 3.9× 10−9 Diffusion coefficient negative electrode

D+
s [cm2/s] 1.0× 10−9 Diffusion coefficient positive electrode

De [cm2/s] 9.0× 10−7 Diffusion coefficient electrolyte

C−s,max [mol/dm3] 24.49 Maximum concentration of negative electrode

C+
s,max [mol/dm3] 22.86 Maximum concentration of positive electrode

Ce,max [mol/dm3] 20 Maximum concentration of electrolyte

R−s [µm] 12.15 Radius of negative electrode particle

R+
s [µm] 8.50 Radius of positive electrode particle

ε 0.185 Volume fraction

δ− [S/cm] 1 Conductivity negative electrode

δ+ [S/cm] 0.038 Conductivity positive electrode

κ [S/cm] 2.8 × 10−4 Ionic conductivity of electrolyte

α 0.5 Reaction rate

t0
e 0.2 Transfer number of electrolyte

σ−[µm] 100 Length of negative electrode

σ+[µm] 174 Length of positive electrode

σs[µm] 52 Length of electrolyte

R−f [Ω] 1000 Film resistance negative electrode

R+
f [Ω] 1200 Film resistance positive electrode

r−e f f 0.0122 Rate constant anodic direct.

r+e f f 0.0058 Rate constant cathodic direct.

T [K] 298.15 Temperature

F [A· /mol] 96,485.3 Faraday’s constant

R [J/mol · K] 8.314 Gas constant

1C [mA· h/cm2] 5.76 C rate current

ρavg [Mg/m2] 1.459 Average mass per unit area

Cp [J/Kg · K] 2000 Heat capacity

h0 [W/m2· K] 60 Heat transfer coefficient
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