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Abstract: We developed a swarm intelligence-based model to study firm search across innovation
topics. Firm search modeling has primarily been “firm-centric,” emphasizing the firm’s own prior
performance. Fields interested in firm search behavior—strategic management, organization science,
and economics—lack a suitable simulation model to incorporate a more robust set of influences,
such as the influence of competitors. We developed a swarm intelligence-based simulation model
to fill this gap. To demonstrate how to fit the model to real world data, we applied latent Dirichlet
allocation to patent abstracts to derive a topic search space and then provide equations to calibrate
the model’s parameters. We are the first to develop a swarm intelligence-based application to study
firm search and innovation. The model and data methodology can be extended to address a number
of questions related to firm search and competitive dynamics.

Keywords: firm search; innovation; swarm intelligence; evolutionary economics; patent data

1. Introduction

Innovation is a major driver of firms’ financial performance and their ability to sur-
vive and adapt to changes in the business environment. Understanding firms’ search for
innovations is therefore an important topic of inquiry. Prior research studied two broad
antecedents to firm search—performance feedback [1] and competitive dynamics [2]. Al-
though these antecedents have been studied using qualitative arguments and reduced-form
empirical models, many of the most impactful insights into firm search have come from
applying simulation models [3]. However, the field lacks a simulation tool that can incorpo-
rate competitors’ actions. This is an important gap because in many situations, the search
activities of competitors will influence the firm’s own search strategy [4,5]. The current
tools—the NK model and the multiarmed bandit—emphasize the firm’s own performance
feedback but cannot model multi-agent interactions and are therefore, not well suited for
this task. A complementary model is needed that can incorporate a range of competitive
dynamics, and in this paper, we present such a model.

In this paper, we present a model to examine the technological “topics” a firm chooses
to pursue. Our model is based on Reynolds’ classic Boids swarm program [6]. The model
allows us to measure the firm’s position in the topic space and trace its path as it searches
the space over time. The flexible model structure incorporates a variety of information that
can influence what topics the firm searches, such as the firm’s own performance feedback
and information on competitors’ positions and search trajectories.

We also demonstrate how to calibrate the model parameters using patent data. We
take a novel approach to doing so, creating a topic space from patent data by using latent
Dirichlet allocation topic modeling. The demonstration sample consists of 17 years of patent
data and a sample of the firms in the information and communications technology industry
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(ICT) who most frequently patent in 11 of the United States Patent Office technology classes
related to communication technologies. From the “test” sample, results show that the firms’
own performance feedback tends to predominantly inform their search trajectory. However,
there is evidence that firms sometimes “flock” towards the same topic locations. Results
also show that the large firms in our sample tend to differentiate from the leader rather than
follow them. Note that these findings are simply demonstrative—we expect that a rich set of
behaviors will play out in different samples and under different environmental conditions.

The paper is structured as follows. Section 2 briefly reviews the related literature.
Section 3 describes the model framework and data. Section 4 provides some examples
of how to fit the model to a topic landscape defined by patent data and provides some
example results. Section 5 compares our swarm model to the NK and multiarmed bandit
models. Section 6 provides a discussion of our model and directions for future research.
Section 7 concludes. Appendix A provides an appendix with the swarm pseudocode.

2. Background

Research on firm search traces its roots back to the early literature on the behavioral
theory of the firm [7]. Unlike neoclassical economics that tends to treat decision makers as
hyperrational with the ability to search over all possible solutions, the behavioral theory of
the firm postulates that managers have imperfect information and are boundenly rational,
thus willing to make satisfactory rather than optimal decisions [8]. Therefore, when
faced with a problem, firms typically conduct a “local search”—searching for solutions
within the neighborhood of their current knowledge. Building on these concepts, classic
work in evolutionary economics suggests that the firm’s search process will lead it to be
“path-dependent” [9]—i.e., the technological topics the firm searches today will influence
what technological problems it will search and solve in the future [10,11]. (Note that we
incorporate the possibility of path dependence in our model).

Much of the recent search-related literature on innovation and technology strategy
has focused on four questions related to firm search. First, what strategies can firms use to
overcome path dependence and perform distant search effectively [12–18]? Second, how
can firms effectively balance exploration of new and exploitation of current knowledge and
capabilities [19–24]? Third, what can be learned about search by studying individuals or
teams [25–30]? Fourth, how does competition shape search strategies [31–35]? While prior
research has studied all of these questions using qualitative arguments and reduced-form
empirical models, simulation tools have only been applied to the first three.

Scholars examining firm search and innovation trajectories have long relied on sim-
ulation models to illuminate new insights [3] For instance, scholars like Nobel Prize and
Turing winner Herbert Simon, whose work on the decision-making processes within firms
formed the early foundation of the behavioral theory of the firm, suggested that simulation
models were useful tools for studying firm search and decision problems and he helped
pioneer the development and application of such models in his analysis of problem-solving
behavior in organizations [36]. Since then, many of the most influential papers on firm
search and learning have used simulations (e.g., March (1991)) [37].

The most popular model used to study search and organizational learning is the
NK model, originally developed by biologist Stuart Kauffman [38]. The NK model uses
two parameters to create a potentially rugged fitness or performance landscape—with N
capturing the number of elements in the landscape and K capturing the extent to which
the elements are interdependent. The points on the landscape represent a combination
of choices among the N elements and the height of the landscape at a particular point
represents performance. The performance contribution of each component (ci) depends on
K other interdependent components. Therefore, the performance of a position on the NK
landscape is determined by the sum of the component-level performance contributions for
that position. This value is typically normalized by dividing it by N so that performance can
be compared across landscapes with different values for N. The smoothest landscape occurs
when K = 0, where all components are independent and only one optimum is defined. As
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K increases, the landscape becomes more peaked and rugged, with peaks varying in height,
creating multiple local optima. The landscape is most rugged when K = N − 1, i.e., all
components are dependent on all other components. At a peak, changing the value of
one component will not improve performance, instead, the values of multiple components
must change for performance to improve. See Csaszar (2018) for more technical details
about NK landscapes [39].

The NK performance landscape can be used to represent a variety of complex orga-
nizational problems that have a performance landscape that the simulated managers can
“search.” The more rugged the landscape (higher K), the more challenging the search
process and the greater chance that simple sequential search strategies will result in
low performance [40]. For instance, a simple search strategy in which the manager
changes one component at a time is unlikely to effectively identify a global optimum in a
rugged landscape.

Prior research has applied NK to a number of business problems in which the firm
must search for a solution among many interdependent elements. For instance, researchers
have used NK to examine adaptation to a changing external environment [41,42], the
influence of organizational design on search [43,44], coordination within a multi-business
firm [45], and innovative search within ecosystems [46].

Although the NK model has proven to be a powerful tool, it has several limitations
when applied to the study of a firm’s search for innovations. First, the NK model focuses on
search on the performance landscape without incorporating any other influences. Therefore,
the model has a firm-centric focus. Second, the ability to incorporate information from the
environment is limited. For instance, Levinthal (1997) incorporated environmental change
into the NK model through a reorientation of the entire landscape. There does not appear
to be an easy way to incorporate multiple sets of competitor actions or complex external
dynamics into the model.

Another useful (but less used) formulation to study firm search behavior is the mul-
tiarmed bandit model. The literature on economics, strategy, and computer science uses
the multiarmed bandit model to represent exploration–exploitation problems. The model
allows for the study of how managers allocate resources or make search decisions under
payoff uncertainty [47]. For example, Posen and Levinthal (2012) used the multiarmed
bandit model to examine exploration and exploitation in response to environment change.
Like the NK model, it is difficult to incorporate non-firm centric information in a rich way.
In Posen and Levinthal’s study, they only incorporated environmental information as a
stochastic shock to the payoff values. Overall, NK and Bandit models do not appear to be
easily extended to incorporate the search behaviors of other actors, thereby prompting the
need for a different approach.

Swarm intelligence offers another approach to dynamic search problems. Inspired by
the natural world [48], swarm intelligence systems use a population of independent agents
that can be made to interact with their environment and with each other [49,50]. Swarm
intelligence has found a wide set of applications in the physical and social sciences. One of
the most fruitful areas of application has been the study of optimization problems [51,52].
Particle swarm optimization (PSO) moves ‘particles’ around a search space to discover the
best position (global optimum) [53]. In the standard PSO, particles are guided by simple
formulas that define their velocities and update their positions in the search space. PSO
algorithms have been improved and extended to increase their speed, accuracy, and ability
to tackle more difficult optimization problems [54–57]. See Sengupta, Basak, and Peters
(2018) for a survey of the PSO literature [58].

Prior literature in business and economics has used swarm intelligence, particularly
PSO, to solve business-related optimization problems. For instance, in the field of financial
economics, particle swarm has been used for portfolio optimization [59], efficient fron-
tier estimation [60], interest rate modeling [61], and earnings forecasting [62]. Within the
strategy and organization literature, Coen and Maritan (2011) used a version of swarm to
study resource allocation under uncertainty [63]. Utilizing the SWARM software of Minar,
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Burkhart, and Langton (1996), they developed an agent-based model of resource alloca-
tion, exploring how the firm’s search ability and initial capability endowment influence
performance in a competitive environment.

3. Materials & Methods

In this section, we derive a framework that can incorporate a wide range of
information—behaviors of competitors, the firm’s performance on its own fitness land-
scape, etc.—that can influence what technological topics the firm will search. We take
our inspiration from Reynolds’ (1987) model of swarm behavior of animals such as bees,
fish, and birds because how firms move within a landscape has similarities to the well
understood swarm behavior of these animals. In his Boids model of swarm or flocking
behavior, Reynolds (1987) formulated the algorithm from three key parameters: cohesion,
alignment, and separation. By various combinations of these parameters, one can specify a
desired behavior for the flock of birds or a school of fish. We extend this model to the study
of firm search behavior. In Section 3.1, we present the basic modeling framework that can
be used to run a simulation. In Section 3.2, we introduce a novel approach to deriving a
topic space from patent data as well as describe the data that we use to fit the model.

3.1. Model Development

Let there be i = 1, · · · , m firms and j = 1, · · · , n technological topics (henceforth called
topics). At each given point in time t, we map firm i’s location in the topic space. The
resulting map forms an n-dimensional hypercube image of the topics, with each axis of the
hypercube representing each jth topic. Comparing the firm’s location across time (e.g., t to
t + 1) allows us to represent its migration within the topic space.

In this version of the model, we bounded each axis as continuous variable between
0 and 1 (other lengths could be chosen without loss of generality). Therefore, the firm’s
location on that axis can be thought of as the propensity for the firms’ innovations at time
t to relate to topic j. If a firm has more than one innovation at time t, where the firm lies
in [0,1] on axis j will depend on the average across the innovations. For instance, if five
innovations focus on topic j (=1) and five do not (=0), then the value for j = 0.5. We discuss
how we handle real world patent data in Section 3.2.

We defined firm i’s position at time t using the vector
⇀
x
(i)
t of n topics, where x(i)j,t is the

jth element. For the sake of completeness, we defined F as the set of firms
{

f (1), · · · , f (m)
}

whose positions at time t we defined by the n×m matrix Xt =

{
⇀
x
(1)
t , · · · ,

⇀
x
(m)

t

}
.

We defined the velocity of a firm as follows:

⇀
v
(i)
t = wA

⇀
v
(i)
A,t + wC

⇀
v
(i)
C,t + wS

⇀
v
(i)
S,t + wL

⇀
v
(i)
L,t + wP

⇀
v
(i)
P,t (1)

where the weights (wA, wC, wS, wL, wP) sum to 1. A, C, and S stand for alignment, cohesion,
and separation, respectively, which we derived from Reynolds’ (1987) swarm program. L
and P stand for leader following and performance feedback, which we describe below. We
defined these three velocity vectors as follows:

⇀
v
(i)
A,t = avg

(
⇀
v
(j 6=i)
t−1

∣∣∣∣ f (j) ∈ F
)
−⇀

v
(i)
t−1 (2)

⇀
v
(i)
C,t = avg

(
⇀
x
(j 6=i)
t−1

∣∣∣∣ f (j) ∈ F
)
−⇀

x
(i)
t−1 (3)

⇀
v
(i)
S,t = max

{∣∣∣∣⇀x (i)
t −

⇀
x
(i 6=j)
t

∣∣∣∣, ε

}
(4)
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Alignment determines the firm’s propensity to move (or in our case, search) in the
direction of a competitive reference group. When the weight on alignment is high, firms
will shift the direction of their search as the firms within the reference group change their
search direction. A set of firms with high alignment will appear to ‘flock’ together, or in
our applied case, searching the same technologies. When the weight is low, shifts in the
reference group’s behavior have little influence on the focal firm.

Cohesion determines the firm’s propensity to move towards the average position or
center of mass of its competitors. When modeling animal behavior, such as a flock of birds,
cohesion controls how tightly they stay together. In firm search, when a firm has high
cohesion, it searches closer to the search positions of its reference group.

For both alignment and cohesion, the reference groups (F) can be defined flexibly
so as to encompass the competing firms that most likely influence the focal firm’s search.
Therefore, Equations (2) and (3) can be used to model a wide range of competitive imita-
tion strategies.

Separation determines whether firms can take the same position as other firms within
the hypercube. The ε parameter in (4) can be thought of as the minimum separation
threshold between firms on the search space. Setting ε = 0 allows for collocation, while
setting ε to a very small number insures some minimal “separation”.

In addition to the three classic parameters—alignment, cohesion, and separation—we
added two additional ones that capture theoretically interesting firm search behavior. Evo-
lutionary economic models suggest that firms will be influenced by their past performance
and may exhibit path-dependent behavior. To incorporate this element into our model, we
defined the following equation:

⇀
v
(i)
P,t = (1− αP)

⇀
u
(i)
t + αP(

⇀
p
(i)
t −

⇀
x
(i)
t ) (5)

where, for the ith firm,
⇀
u
(i)
t is a uniform random number in [0,1],

⇀
p
(i)
t is the historical

personal best (measured by the fitness function), and 0 ≤ αP ≤ 1 is a weight allowing the
firm to choose between full exploration αP = 0 (which is a totally random move) and full
exploitation αP = 1 (only follow its own personal best).

Organizational theory suggests that a firm may follow specific competitors, such as
the leader in the market [64]. We modeled this possibility as follows:

⇀
v
(i)
L,t = αL(

⇀
g t−1 −

⇀
x
(i)
t−1) (6)

where
⇀
g t−1 is the leader’s position which is chosen from all the personal bests and αL

is a scaler to gauge how a firm decides to follow the industry leader, e.g., a negative αL
indicates that the firm chooses to move away from the leader. In our demonstration, we
defined the leader based on who has the highest performance at time t − 1. The ability to
define

⇀
g t−1 in a variety of ways allows for a simple yet flexible way of modeling a variety

of variations of imitative behavior.
To update a firm’s position, we used the following formula:

⇀
x
(i)
t =

⇀
x
(i)
t−1 +

⇀
v
(i)
t (7)

In Section 4, we describe how to fit this model to data and provide some example
results on a test sample of patent data.

In a simulation of firms’ behaviors, one starts with a randomly chosen landscape

(n-dimensional
⇀
x
(i)
0 ) with a set of chosen parameter values wA, wC, wS, wL, wP, and αP, αL.

These allow one to first calculate Equation (2) through (6) and then Equation (1). Once

the velocity (Equation (1)) is calculated, the next landscape
⇀
x
(i)
1 can be calculated by

Equation (7). The process repeats as many times as one desires. In a long simulation, the
parameters that describe the initial landscape are ultimately irrelevant. For example, if
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wP, wL, αP and αL are high, then the swarm will converge to a single point ultimately. Or
alternatively, if wA and wC are high, then firms move in a group (much like a school of fish).

Note that while the parameter values could change over time, they are not made to do
so. This is because we want to observe the search behavior over time (e.g., so that we can
examine if firms converge or diverge from each other). Most likely, in real situations such as
ours they will be time-varying. However, an empirical concern is whether there is enough
data to solve for time-varying parameters. This issue is discussed in the next section.

In our empirical work here, we used data to solve for the parameter values in order to
examine and explain how firms interact with one another. Using data, we first obtained all

the positions of all the firms, i.e.,
⇀
x
(i)
t for all t = 0, 1, · · · , T. This allowed us to calculate

all the (empirical) velocities by taking the difference of two consecutive landscapes using
Equation (7). In the broadest sense, all the parameters can be solved at once. However,
this might result in a situation in which parameters become uninterpretable. We hence
chose to study the two most relevant velocities (behaviors) in our data—leader following
(Equation (6)) and firm exploration (Equation (5)). Then we combined these partial results
into a grand optimization. Details are explained in the next section.

In solving the parameters, we discovered that in some cases, closed form solutions (of
the parameters) can be derived. This can be easily done via taking derivatives of the fitness
function with respect to the parameters. Details are given in the next section.

A pseudo code is provided for a more clear description of the algorithm in the
Appendix A, swarm(w_a, w_c, w_l, w_p, ntim). In a simulation, the values of these
swarm parameters are pre-determined. The swarm algorithm computes the fitness value,
personal best, and the global best in each iteration. Then the entire history of movements
of the particles (firms) are recorded and studied. In this paper, fitness value, personal best,
and global best (along with firm positions in topic space) are input from data. We then set
ntim=1 and solve for the four parameters in each iteration.

3.2. Data

To examine a firm’s innovative search direction, we need information on its R&D
projects. While this information is not typically publicly available, we can assess the
outcomes of their successful searches by using patent data. Patent data has been a key
source of information on innovation in the strategy and economics literature [65].

Data on U.S. patents and patent citations come from the U.S. Patent and Trademark
Office (USPTO) and the Patent Network Dataverse [66], for which firm-level identifiers
have been mapped in prior research [67,68]. For each patent, we used the abstract, assigned
technology class, patent assignee, and the patent’s application date. To tie a patent to a year
(our unit of time in our study), we used application dates rather than grant dates because
the application date better approximates the time in which the firm searched the topic.

In our demonstration, we used patent data on the 11 3-digit USPTO patent classes
most closely associated with communications technologies (see Table 1) during the period
1985–2007. The sample timeframe and patent classes have been used extensively in the
prior technology strategy and innovation economics literature, e.g., [69,70]. We selected
communication technologies for several other reasons. First, firms in this industry tend
to patent most innovations. Therefore, patent data likely reflect the search behavior of
these firms. Second, the time between the initial outlays for R&D and patenting is short
compared to other areas like drug discovery, thus using the firm’s patent application dates
is a good proxy for its current search focus. Third, prior work on this industry suggests
that firms might exhibit a variety of search behaviors.
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Table 1. Technology classes in sample.

3-Digit Code Description

340 Communications: electrical

341 Coded data generation or conversion

342 Communications: directive radio wave systems and
devices (e.g., radar, radio navigation)

343 Communications: radio wave antennas

367 Communications, electrical: acoustic wave systems
and devices

370 Multiplex communications

375 Pulse or digital communications

379 Telephonic communications

398 Optical communications

455 Telecommunications

719
Electrical computers and digital processing systems:

interprogram communication or interprocess
communication (ipc)

Source: United States Patent Office.

Much of the prior innovation literature in strategy and economics uses the 3-digit
technology class or the lower level, subclass, to categorize patents [71]. However, using
such levels of classification schemes, while useful in many research settings, may not be
sufficiently nuanced for our purposes. For instance, firms searching for innovations within
multiplex communications (technology class 370) may focus on a variety of topics (space
division multiplexing, code division multiplexing, time division multiplexing, etc.). To best
perform the analysis, a more nuanced measure of “topics” is needed.

We used latent Dirichlet allocation (LDA) to create topics from patent abstracts. LDA is
a commonly used, unsupervised machine learning technique to create topics from text [72].
Most work on LDA uses the researchers’ own inputs to define the number of topics,
however, that can be problematic in this setting for two reasons. One, researchers may
not have the expertise to suggest the appropriate number of topics within a technology
class. Two, creating an algorithm to select topic size may allow for more consistency
across researchers and remove the potential of user-induced measurement bias. Therefore,
we chose the number of topics by maximizing the coherence score, a commonly used
construct in LDA that measures how similar the words on a topic are to each other. In this
sample, we used the CV coherence score [73] to choose topics. Several other commonly
used alternatives—UMass coherence Score, UCI coherence Score, and Word2vec coherence
score—produce similar results.

To create the topic space, for each patent class, we fed all patent abstracts for the entire
sample period in to the LDA model using the LDA program from the Natural Language
Toolkit in Python. Note that all U.S. patents during the entire sample period were used,
not just patents from the firms that we studied. The number of topics that maximizes
the coherence score was chosen, which determines the n-dimensional hypercube. LDA
provides a probability that each patent is associated with a particular topic. For each firm
in each year t, the coordinate in the cube (e.g., position on each axis j) is calculated by
averaging the probabilities across all the firm’s patents. We summarize the process for
obtaining a firm’s position in topic space from patent data in Figure 1.
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To create a tractable sample of firms for demonstration purposes, we included only
public firms that were in the top 20 in terms of patenting in each of the 11 technology
classes. This yielded a total of 32 large firms that are extremely active in the communication
technologies space. Note that such a sample should bias our model findings away from
follow-the-leader and imitative strategies, as these firms are the leaders who will most
likely follow their own feedback.

The resulting sample has 11 separate topic landscapes (one for each technology class).
The number of topics varies from 10 to 47 depending on the technology class. The time
dimension (t) was set to a year, and we calibrated the parameters using the 1991–2007 period.
Note that we started our analysis in 1991 when communication technology patenting had
more density.

4. Results

In this section, we discuss how to fit our model to actual data in order to calibrate
the parameters. We start by illustrating how to fit a partial model that captures specific
behavior—in this case, the firm following its own performance feedback and following the
leader. We then fit the entire model.

Firm’s personal best (path dependency)
We begin by only allowing for the firm’s own feedback to guide its innovation trajec-

tory. In Equation (1) we set wP = 1 and all other weights to 0. Equation (1) then converges
to Equation (5) only. We should note, that in theory there is no limitation on the value of
velocity, yet in our empirical work, the velocity is confined to be the difference between
two consecutive landscapes.

We define data-based (empirical) positions as
⇀
ξ
(i)

t and calculate velocity
⇀
ν
(i)
t

as follows:
⇀
ν
(i)
t =

⇀
ξ
(i)

t −
⇀
ξ
(i)

t−1 (8)
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Our objective function is to minimize the sum of squared errors between
⇀
ν
(i)
t and

⇀
v
(i)
t :

min
α
(i)
P,t

(
⇀
v
(i)
t −

⇀
ν
(i)
t )′(

⇀
v
(i)
t −

⇀
ν
(i)
t ) = min

α
(i)
P,t

∑n
j=1 (v

(i)
j,t − ν

(i)
j,t )

2
(9)

We then solve the coefficient analytically as:

α
(i)
P,t =

∑n
j=1(ν

(i)
j,t − u(i)

j,t )(p(i)j,t − x(i)j,t − u(i)
j,t )

∑n
j=1 (p(i)j,t − x(i)j,t − u(i)

j,t )
2 (10)

where
⇀
p
(i)
t =

{
⇀
x
(i)
τ≤t|max

τ
φ(

⇀
x
(i)
τ )

}
(11)

is the personal best and φ(·) is the fitness (performance) function.
To calculate fitness or performance for firm i, we need some measure of firm perfor-

mance that can be directly tied to its position in the topic landscape. We use a patent-
based measure of performance—forward citations. Forward citations—citations from other
patents the focal patent receives—have been shown to be a good proxy for financial value
of an innovation and are commonly used as a measure in the economics and strategic
management literature [74]. To calculate performance, we take the average number of
forward citations across all the successfully granted patents that the firm applied for in the
technology class in year t. We provide descriptive statistics to summarize results (across
firms and across time) for each technology class in Table 2.

Table 2. Personal best—summary statistics of α
(i)
P,t.

Patent Class Mean Median Standard Deviation

340 0.985 0.988 0.022

341 0.978 0.987 0.025

342 0.976 0.983 0.025

343 0.984 0.991 0.021

367 0.966 0.980 0.049

370 0.990 0.995 0.013

375 0.990 0.994 0.014

379 0.985 0.993 0.027

398 0.981 0.985 0.021

455 0.991 0.994 0.011

719 0.968 0.981 0.040

Results in Table 2 indicate that firms closely follow their own feedback, with α
(i)
P,t very

close to 1. Note that this result is similar to a partial derivative with respect to the personal
best. That is, holding other behavioral patterns constant, firms always “remember” their
best performing locations in topic space.

Following The Leader
We demonstrate two simple ways to model leader-following behavior.

⇀
v
(i)
L,t = α

(i)
L,t(

⇀
g t−1 −

⇀
x
(i)
t−1)

⇀
v
(i)
L,t = αL,t(

⇀
g t−1 −

⇀
x
(i)
t−1)

(12)
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where in the former each firm has its own leaders (α(i)L,t) and in the latter all firms share the
same leader (αL,t). The objective is slightly modified as wL,t = 1:

min
α
(i)
L,t

(
⇀
v
(i)
t −

⇀
ν
(i)
t )′(

⇀
v
(i)
t −

⇀
ν
(i)
t ) = min

α
(i)
L,t

∑n
j=1 (v

(i)
j,t − ν

(i)
j,t )

2
(13)

The solution is

α
(i)
L,t =

∑n
j=1 ν

(i)
j,t (gj,t − x(i)j,t )

∑n
j=1 (gj,t − x(i)j,t )

2 (14)

The results are summarized in Table 3 (where all firms have the same leader in each
year), Table 4 (where each firm has a different leader), and Table 5 (which provides further
descriptive statistics for when each firm has a different leader).

Table 3. Follow the leader when all firms have the same leader in the same year (e.g., αL,t ).

Patent Class

Year 340 341 342 343 367 370 375 379 398 455 719

1991 −0.040 −0.003 −0.008 −0.028 −0.023 −0.029

1992 −0.027 −0.025 −0.002 −0.045 −0.036 −0.193 −0.033 −0.132 −0.033

1993 −0.007 −0.037 −0.042 −0.022 −0.016 −0.107 −0.111 −0.005 −0.173 −0.061

1994 −0.031 −0.036 −0.131 −0.010 −0.062 −0.379 −0.201 −0.044 −0.207 −0.039

1995 −0.154 −0.221 −0.266 −0.074 −0.004 −0.088 −0.258 −0.306 −0.409 −0.441 −0.106

1996 −0.247 −0.133 −0.292 −0.072 −0.003 −0.347 −0.246 −0.134 −0.297 −0.164 −0.096

1997 −0.120 −0.176 −0.095 −0.038 −0.041 −0.473 −0.076 −0.131 −0.221 −0.249 −0.055

1998 −0.136 −0.113 −0.119 −0.037 −0.021 −0.288 −0.171 −0.277 −0.076 −0.092 −0.033

1999 −0.182 −0.048 −0.065 −0.048 0.000 −0.106 −0.105 −0.195 −0.134 −0.322 −0.106

2000 −0.148 −0.022 −0.014 −0.002 −0.221 −0.238 −0.127 −0.104 −0.378 −0.153

2001 −0.157 −0.081 −0.062 −0.030 −0.180 −0.038 −0.303 −0.099 −0.218 −0.102

2002 −0.093 −0.106 −0.113 −0.056 −0.015 −0.247 −0.108 −0.158 −0.152 −0.057 −0.096

2003 −0.072 −0.075 −0.080 −0.054 −0.010 −0.099 −0.067 −0.146 −0.148 −0.173 −0.068

2004 −0.158 −0.081 −0.025 −0.062 −0.015 −0.261 −0.098 −0.269 −0.069 −0.323 −0.150

2005 −0.095 −0.064 −0.047 −0.053 −0.003 −0.033 −0.100 −0.163 −0.151 −0.310 −0.012

2006 −0.091 −0.042 −0.020 −0.022 −0.008 −0.077 −0.101 −0.114 −0.077 −0.055 −0.010

2007 −0.042 −0.097 −0.076 −0.013 −0.038 −0.114 −0.106 −0.084 −0.057 −0.056 −0.004

Table 4. Follow the leader when all firms have different leaders in the same year (e.g., α
(i)
L,t).

Patent Class

Year 340 341 342 343 367 370 375 379 398 455 719

1991 −0.768 −0.151 −0.131 −0.906 −0.922

1992 −0.936 −0.782 −0.121 −0.432 −0.981 −0.962 −0.963 −0.798 −1.005

1993 −0.951 −0.635 −0.781 −0.215 −0.276 −0.350 −0.742 −0.132 −0.760 −0.998

1994 −0.556 −0.537 −0.796 −0.228 −0.166 −0.712 −0.611 −0.616 −0.798 −0.589

1995 −0.552 −0.466 −0.615 −0.199 −0.396 −0.108 −0.386 −0.471 −0.896 −0.488 −0.574

1996 −0.299 −0.201 −0.428 −0.126 −0.334 −0.238 −0.201 −0.193 −0.416 −0.206 −0.513
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Table 4. Cont.

Patent Class

Year 340 341 342 343 367 370 375 379 398 455 719

1997 −0.131 −0.223 −0.135 −0.062 −0.417 −0.357 −0.009 −0.184 −0.270 −0.220 −0.300

1998 −0.380 −0.141 −0.153 −0.086 −0.685 −0.490 −0.190 −0.246 −0.125 −0.612 −0.325

1999 −0.381 −0.120 −0.100 −0.169 0.183 −0.259 −0.134 −0.284 −0.311 −0.782 −0.458

2000 −0.417 −0.228 −0.059 −0.030 −0.406 −0.198 −0.195 −0.187 −0.911 −0.473

2001 −0.440 −0.244 −0.194 −0.088 −0.246 −0.056 −0.218 −0.131 −0.440 −0.333

2002 −0.201 −0.197 −0.179 −0.117 −0.813 −0.406 −0.106 −0.177 −0.178 −0.260 −0.235

2003 −0.092 −0.114 −0.105 −0.101 −0.543 −0.289 −0.086 −0.134 −0.187 −0.206 −0.203

2004 −0.204 −0.124 −0.027 −0.085 −0.393 −0.289 −0.136 −0.288 −0.096 −0.260 −0.325

2005 −0.162 −0.098 −0.072 −0.087 −0.002 −0.180 −0.154 −0.299 −0.202 −0.353 −0.116

2006 −0.263 −0.095 −0.039 −0.071 −0.494 −0.402 −0.193 −0.342 −0.195 −0.340 −0.205

2007 −0.226 −0.149 −0.149 −0.086 −0.412 −0.553 −0.240 −0.433 −0.227 −0.378 −0.063

Table 5. Further descriptive statistics for follow the leader when all firms have different leaders in
the same year.

Patent Class Percent
Negative (%) Mean Median Standard

Deviation

340 61.38 −0.2933 −0.2479 0.418

341 87.50 −0.1855 −0.1103 0.2017

342 79.29 −0.1816 −0.055 0.2743

343 68.12 −0.1056 −0.0977 0.1494

367 78.57 −0.4259 −0.492 0.4637

370 72.38 −0.3112 −0.259 0.3651

375 72.97 −0.2078 −0.0885 0.292

379 83.49 −0.2859 −0.169 0.3121

398 89.31 −0.2558 −0.1223 0.324

455 72.81 −0.4056 −0.3285 0.4699

719 90.76 −0.3692 −0.2411 0.3649

Table 3 indicates that firms do not follow an industry leader (with all αL,t exhibiting
negative values), rather, firms tend to move away from or “differentiate” from the leader.
We observe some variations among different classes and different years. Firms in technology
classes 370, 375, 379, and 398 exhibit greater tendency to move away from their industry
leaders than in other classes. From the mid-1990s to the early 2000s, tendencies to move
away from industry leaders were stronger than in other years.

α
(i)
L,t is different for each firm. The above table summarizes all firms over all years.

Table 4 tells a similar story to Table 3, yet the magnitudes are stronger. In Table 4, we
allow each firm to have a different coefficient toward its leader. Then we take an average
across all firms in the same class/year. The results are now at several times of those in
Table 4. Properties of the distribution are provided in the next table (Table 5).

A distribution is provided in Table 5 by patent class. Table 5 sheds some light on the
details of α

(i)
L,t. While averages (Table 4) are all negative, Table 5 indicates that a certain

percentage within each class still is positive. Take 340 as an example, nearly 40% of firms in
this class have a positive α

(i)
L,t.
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Full Model
In this section, we calibrate the full model. Because firms can take the same position

in topic space—e.g., firms can search for similar innovations—we can omit the separation
equation, and hence set wS = 0. We let the other four forces that drive the swarm remain.
Without loss of generality, we can set α

(i)
P,t = 1 to simplify the problem. In sum, we will

solve for α
(i)
L,t, wA, wC, wL, and wP in the simultaneous equation system. The pseudo code

of the estimation is given in Figure 2 below:

Algorithms 2023, 16, 72 12 of 20 
 

 
Figure 2. Pseudo code of the estimation. 

Note that in the above pseudo code, the positions (i.e., topics) are input and velocities 
are calculated off consecutive positions. The personal best (pbst), and global best (gbst) 
are also input. In a simulation, ntim (number of iterations) is set and all movements are 
recorded (including the fitness value). In our study, since we already have all of the posi-
tions, we solve for the parameters w_a, w_c, w_l, w_p by reading in the personal best and 
global best, and setting ntim = 1. 

As mentioned earlier (Section 3.1), the weights that determine the velocity (see Equa-
tion (1)) are generally fixed over time because the objective is to observe how the swarm 
behaves in the long run. However, in our case, we have data on firm behavior each year, 
hence, our interest is to examine if the observed behavior varies over time. In other words, 
do the parameters change as the firms respond to changes in their environment. We show 
the yearly weights across the four parameters in Table 6. The results indicate that the 
firm’s own personal best and to a lesser extent, alignment, influence search behavior the 
most. The other two factors, cohesion and following the leader, receive minimal weight in 
most years.  

Table 6. Full model weights by year. 

Year WC WA WL WP 
1991 0.057 0.632 0.091 0.220 
1992 0.076 0.503 0.103 0.318 
1993 0.048 0.406 0.198 0.348 
1994 0.047 0.448 0.289 0.216 
1995 0.095 0.389 0.236 0.280 
1996 0.108 0.163 0.239 0.490 
1997 0.005 0.049 0.178 0.768 
1998 0.023 0.114 0.078 0.785 
1999 0.120 0.123 0.129 0.629 
2000 0.162 0.364 0.128 0.345 
2001 0.152 0.251 0.101 0.496 
2002 0.118 0.251 0.094 0.537 
2003 0.111 0.404 0.035 0.450 
2004 0.209 0.240 0.059 0.492 
2005 0.102 0.419 0.033 0.446 
2006 0.038 0.571 0.042 0.349 
2007 0.132 0.593 0.015 0.259 

C = cohesion, A = alignment, L = following the leader, P = performance feedback. 

Figure 2. Pseudo code of the estimation.

Note that in the above pseudo code, the positions (i.e., topics) are input and velocities
are calculated off consecutive positions. The personal best (pbst), and global best (gbst)
are also input. In a simulation, ntim (number of iterations) is set and all movements
are recorded (including the fitness value). In our study, since we already have all of the
positions, we solve for the parameters w_a, w_c, w_l, w_p by reading in the personal
best and global best, and setting ntim=1.

As mentioned earlier (Section 3.1), the weights that determine the velocity (see
Equation (1)) are generally fixed over time because the objective is to observe how the
swarm behaves in the long run. However, in our case, we have data on firm behavior each
year, hence, our interest is to examine if the observed behavior varies over time. In other
words, do the parameters change as the firms respond to changes in their environment. We
show the yearly weights across the four parameters in Table 6. The results indicate that the
firm’s own personal best and to a lesser extent, alignment, influence search behavior the
most. The other two factors, cohesion and following the leader, receive minimal weight in
most years.

Table 6. Full model weights by year.

Year WC WA WL WP

1991 0.057 0.632 0.091 0.220

1992 0.076 0.503 0.103 0.318

1993 0.048 0.406 0.198 0.348

1994 0.047 0.448 0.289 0.216

1995 0.095 0.389 0.236 0.280

1996 0.108 0.163 0.239 0.490
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Table 6. Cont.

Year WC WA WL WP

1997 0.005 0.049 0.178 0.768

1998 0.023 0.114 0.078 0.785

1999 0.120 0.123 0.129 0.629

2000 0.162 0.364 0.128 0.345

2001 0.152 0.251 0.101 0.496

2002 0.118 0.251 0.094 0.537

2003 0.111 0.404 0.035 0.450

2004 0.209 0.240 0.059 0.492

2005 0.102 0.419 0.033 0.446

2006 0.038 0.571 0.042 0.349

2007 0.132 0.593 0.015 0.259
C = cohesion, A = alignment, L = following the leader, P = performance feedback.

5. Model Comparison

The proposed swarm-based search model differs from the two complementary models
(i.e., NK and multiarmed bandit) in multiple ways. First, the best application differs across
the models. NK is ideally suited to examine complexity, which is a useful way to represent
knowledge recombination or the interdependencies between elements in an organizational
design problem. Researchers use multiarmed bandit models to model the exploration–
exploitation problem. Neither of these models ideally fits the objective of modeling a firm’s
search across innovation topics.

Second, the models differ in how they utilize performance feedback. In NK, the
N and K parameters create a potentially rugged performance or fitness landscape that
provides information to the firm as it searches. The multiarmed bandit model reveals
information on payoffs as the agent makes commitments to search a particular dimension
(e.g., pulls a particular lever). In our current version of the swarm search model, feedback
is defined by empirically estimated performance based on observed outcomes. The firm’s
best performance is allowed to influence the direction of search. The NK and multiarmed
bandit allow for more complex feedback; for instance, the agent searching a landscape may
be allowed to view performance of other locations.

Third, the models differ in how the general environment and the action of competitors
(or other agents) influence search behavior. Neither NK nor bandit models are optimized
for competitive dynamics. Environmental change typically comes into these models in
a simple way, by exogenously shocking payoffs. The swarm search model can capture a
richer set of competitive behaviors.

Overall, these models appear optimized for different tasks and therefore are comple-
mentary. Table 7 summarizes the key differences in these models as applied to firm search.

Table 7. Comparison across models on various dimensions important to firm search.

Swarm Search NK Multiarmed Bandit

Example model
application:

Search across
innovation topics

Organizational
complexity;

Recombination of
knowledge elements

Tradeoffs between
exploration and

exploitation

Example model
application:

Number of firms: Can handle many firms A representative firm A representative firm Number of firms:
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Table 7. Cont.

Swarm Search NK Multiarmed Bandit

Performance feedback:
Simple feedback based

on estimated
performance

N and K parameters
define fitness landscape

and the resulting
interdependences
between elements

Performance of
different ‘arms’ can

have different payoffs
drawn from a

probability distribution

Performance feedback:

Environmental
feedback and

competitive dynamics:

Can incorporate a
variety of information
from other competitors

No competitive
dynamics.

Environmental
feedback through
altering the fitness

landscape

No competitive
dynamics.

Environmental
feedback through

stochastic shocks to
payoff distributions

Environmental
feedback and

competitive dynamics:

To understand the differences in application, compare this paper with a study by Ganco
(2017) [75], which uses the NK model to generate predictions regarding the performance–
knowledge recombination relationship and then tests these predictions empirically using
patent data in US Patent Class 360. Specifically, Ganco (2017) models forward citations of
patents (a measure of patent performance) as a function of N (empirically measured as
the number of patent subclasses cited by the focal patent) and K (interdependence of the
subclasses inferred from prior patents’ recombination of subclasses). The results suggest
that performance of a patent has an inverse U-shaped relationship with the complexity
of the knowledge being recombined. Note that the focus of Ganco (2017) is on how the
performance of an innovation is affected by the way in which the focal firm recombines
prior knowledge. This focus differs from ours—we focus on the factors that influence what
technologies the firm will search.

6. Discussion

In the current model specification, we allow for firms to follow their own feedback
(wP), follow the leader (wL), move to the current location of their competitors (cohesion,
wC), or move in the direction of where competitors are headed (alignment, wA). We also
define separation per the original Boids program (wS). Below we discuss each of these
factors and how they might be augmented for future research.

Firm Feedback/Path Dependency
We take a simple approach to modeling the firm’s own feedback, using only a pa-

rameter that captures of how the firm’s best performing location influences its movement
through topic space. Anchoring on best performance has a parallel in the literature on NK
modeling where the firm searches for the highest peak on the performance landscape. Fu-
ture work could embellish this equation to capture the complexities of how the firm’s own
search history influences its future search behavior. For instance, the firm’s prior search
trajectory (rather than its best performance), represented by prior (lagged) positions in
search space, could be included to model search inertia. In addition, variables that capture
prior changes in performance on the performance landscape (e.g., lagged values along
the gradient) could be added to incorporate more complex information on performance
feedback into the model. Uncertainty, like in the bandit model, could be added by including
feedback noise.

Follow The Leader
We offer two simple approaches to modeling leader-following behavior. Firms can

follow a global leader or a local leader, defined by a function or the firm’s choosing. By
modifying how to specify the leader(s), future work can fit the model to a wide range of
behaviors proposed by strategy management and organizational theory literature. Compet-
ing theories on imitation, differentiation, and the general influence of a firm’s peers can be
tested or simulated using this framework.
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Note that leader-following behavior does not appear to be prominent in our demon-
stration sample. This is not surprising given that these are the ‘leading’ firms in terms
of patenting during out sample period. However, smaller firms and less technologically
sophisticated firms may display a range of interesting behaviors. Prior literature suggests
that such firms may follow cues of the leaders, which would appear as following the leader
in our model. Other work suggests that firms might steer away from more technologically
sophisticated leaders. Future work could use our model to shed light on these behaviors.

Cohesion
In a typical swarm model of animal behavior, cohesion represents how closely the

focal actor stays to the center mass of the group. By adjusting cohesion, more concentrated
(higher cohesion) or more diffuse (lower cohesion) swarming behaviors can be simulated.
Applied to firm search, the current specification for cohesion represents the extent to which
firms cluster in similar areas in topic space. To simulate a wide range of imitative behavior
proposed in the sociology, organizational theory, or strategy literature, this equation can
be adjusted by changing the set of firms in the reference group. The cohesion equation
can also be extended to incorporate other information, such as multiple reference groups
or performance-weighted reference groups, which can allow the research to closely map
extant theories.

Alignment
In a typical swarm model of bird behavior, alignment represents how agents move

towards the heading of their reference agents. We use this specification of alignment
to examine how firms adjust their search towards the direction their reference group is
heading. By including information of competitors’ “direction” we can study how the
expected search behavior of competitors influences the focal firm. As with cohesion, by
adjusting the reference group, we can study a wide range of behaviors of interest to strategy
and organizational theory scholars.

Separation
Separation plays a role in the typical artificial life programs by keeping the agent from

colliding with other agents—e.g., birds do not typically run into other birds in the same flock.
In our model, there is no reason why firms cannot search the same “topics.” Thus, we omit
separation for theoretical and computational simplicity. However, separation could play a
useful role in innovation simulations. For instance, if the “space” was altered to be unique
patents rather than innovation topics, then firm k’s position in such space might prohibit
firm i’s ability to legally assume the same location (e.g., a patent provides the owner the
ability to attempt to preclude another from copying the innovation). When studying such
cases, separation could be a theoretically interesting addition to the modeling framework.

Caution In Interpreting Model Parameters
We urge caution in interpreting the estimated parameters of the models as causal. For

instance, the theorical foundation for following the leader, alignment, and cohesion is that
the firm imitates others. However, separating “imitation” from the firm’s response to similar
environmental cues (often called ecological effects) or because they have similar individual
characteristics (often called correlated effects) is exceptionally difficult [76]. Identification
can be obscured by the fact that the researcher cannot tell if the firm is responding to the
action of competitors, or instead responding to the same latent environmental factors as all
other firms in the reference group or if all firms in the reference group have similar latent
properties that cause them to search in a similar manner as the focal firm.

7. Conclusions

Simulation models have been successfully applied to the study of firm search. Leading
simulation models, like the NK model and the multiarmed bandit, have illuminated how the
firm’s own performance feedback influences search, but these models ignore the influence
of competitors. This is particularly problematic in settings in which competitive dynamics
may play an important role. To address this need, we developed a model based on the
Boids algorithm, which we applied to the study of firms’ search for innovations. The model
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can incorporate a rich set of information on competitor behavior, as well as information on
the firm’s own performance. We demonstrate how to fit the model to patent data and offer
a novel approach to developing a “topic space” applying LDA to patent abstracts.

Results from fitting the model to the test data show that either performance feedback
or alignment with competitors tend to drive firms’ search trajectories. Consistent with prior
literature, firms take cues from their past search performance. At times, firms also flock
together (high alignment), which may suggest that there is a competitive influence or rather,
that all firms are responding to the same environmental cues. We expect a combination of
both in this sample. Future research can develop ways to tease apart competitive influence
from ecological effects.

The results based on this test data do not support leader-following behavior, though
this is not surprising given that the firms in our sample are large “industry leaders,” and
likely differentiated to some extent. Future research can apply the model to different
contexts and different types of firms.

We make two contributions to the literature on firm search. First, leading simulation
models do not incorporate competitor behavior into their models, which has limited the
field’s ability to use simulations to address questions in which competitive dynamics
are salient. The model posed here addresses this issue and provides the field a tool to
complement the NK and bandit models. Future research can apply this model to examine a
wide range of search questions.

Second, our approach to creating topic landscapes from patent data using LDA has
promising applications not only in the study search, but in other areas of the strategy
and innovation literatures in which patents are typically used. Our process allows re-
searchers to uncover more nuanced similarities between patents than what can be done
using the USPTO patent classification system or by drawing inference based only on the
commonly used characteristics of the patents (e.g., backwards citations). The more nuanced
measures of topics can help scholars to better measure commonly used constructs like
knowledge relatedness.

As a final thought, it is worth noting that swarm intelligence models and evolutionary-
based algorithms developed for natural science, computer science, and engineering appli-
cations may have useful applications in the strategy and managerial science literature. For
instance, PSO applications have developed rapidly in the past decade, and many could
have useful applications to strategy problems like search modeling. We refer you to the
recent PSO references in Section 2 (e.g., Zhan et al., 2008; Michaloglu and Tsitas, 2021) as
starting point for further inquiry.
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