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Abstract: In this work we present a bimodal multitask network for audiovisual biometric recognition.
The proposed network performs the fusion of features extracted from face and speech data through
a weighted sum to jointly optimize the contribution of each modality, aiming for the identification
of a client. The extracted speech features are simultaneously used in a speech recognition task with
random digit sequences. Text prompted verification is performed by fusing the scores obtained
from the matching of bimodal embeddings with the Word Error Rate (WER) metric calculated from
the accuracy of the transcriptions. The score fusion outputs a value that can be compared with a
threshold to accept or reject the identity of a client. Training and evaluation was carried out by using
our proprietary database BIOMEX-DB and VidTIMIT audiovisual database. Our network achieved
an accuracy of 100% and an Equal Error Rate (EER) of 0.44% for identification and verification,
respectively, in the best case. To the best of our knowledge, this is the first system that combines the
mutually related tasks previously described for biometric recognition.

Keywords: multimodal biometrics; text prompted verification; multitask learning; deep feature
fusion; speaker recognition; face recognition

1. Introduction

Biometric recognition is a technology that uses data from the unique physical or
behavioral traits of a person to authenticate his/her identity. One of the most important
advantages over traditional authentication methods such as passwords, ID cards, personal
identification numbers (PIN), etc., is that biometric traits cannot get lost, forgotten, and they
cannot be easily stolen, since they are inherent to a person’s body or behaviour [1,2]. The
most common identity authentication tasks are verification and identification. Verification
refers to a one-to-one comparison of a user claiming his/her identity with a template
belonging to an enrolled client stored in the system. In that case there is a binary output,
i.e., the system either accepts or rejects the identity claim. Identification is a one-to-many
comparison of a client with all templates in the system [3].

In a biometric system, a classifier uses information from traits such as fingerprints,
iris, facial features or speech patterns, among many others. Theses traits must have certain
properties such as universality, distinctiveness, acceptability, easiness to acquire data, etc.
Systems that focus on just one trait are called unimodal and have been the subject of wide
research achieving remarkable results. However, despite the high performance achieved by
these systems they present drawbacks that make them prone to committing mistakes, for
example, decrease performance when working with noisy data, lack of universality, and
spoof attacks, among others. To overcome the limitations of unimodal systems, multimodal
biometrics have become a subject of extensive research. Multimodal systems are based on
multiple biometric traits or multiple representations of the same trait obtained with different
sensors. These systems take advantage of the multiple sources of data to create a more robust
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representation of the identity of an individual. For instance, if a trait fails to contribute with
significant information to the final decision due to noisy samples or lack thereof, the other
traits can still contribute with enough data to output a correct decision [4,5].

In order to create a multimodal system it is necessary to combine/fuse different sources
of information. There are various levels of fusion depending on the stage of the biometric
pipeline where the fusion process takes place. The two stages are: pre-classification and
post-classification [6]. The pre-classification stage refers to data processing before matching
a template stored in the system with data from a user. Information fusion can be done
at sensor or feature level in that case. Post-classification combines information after the
matching process; fusion levels in this stage include decision, rank, and score levels [7].

Another useful approach in multimodal biometric systems is based on Multi-task
learning (MTL) models. MTL refers to the process of learning multiple related tasks while
exploiting similar characteristics across them [8]. It is usually straightforward to develop
multiple classifiers to perform a specific set of tasks, though this requires more computing
resources and introduces the possibility of processing the same data multiple times [9].
MTL aims to increase the performance of a model’s tasks by jointly learning them, i.e., one
task is regularized/improved by the others by enhancing the overall generalization of the
model [10,11]. In our work we take advantage of the fact that identification and speech
recognition share the speech features. Therefore, the model’s parameters related to the
speech input are optimized to improve the performance in both tasks.

In this paper we make the following contributions: a bimodal biometric system
comprised of a multitask network is developed to perform identification and provide the
necessary information to perform text prompted verification. In order to achieve these
objectives we trained the network to jointly learn identification and speech recognition
tasks. Both tasks process the extracted speech features. This circumstance is used to
improve the overall performance of the network via mutual regularization.

The network architecture dedicated to the identification task optimally fuses face and
voice features, resulting in a bimodal embedding that stores the discriminant characteristics of
a client. This embedding is fed into a softmax classifier to establish the identity of the enrolled
client that most likely generated the embedding. A set of bimodal embeddings is stored
to serve as representative templates of each enrolled client. The portion of the architecture
dedicated to the speech recognition task aims to accurately transcribe random digit sequences
uttered by a client. These sequences are intended to eliminate the need to memorize passwords
and are generated by a python function each time a client makes an identity claim.

Text prompted verification is performed with an external binary classifier that com-
bines the cosine similarity between two bimodal embeddings and the WER value of a
transcribed digit sequence.

We combined two similar databases to create a virtual one that contains data with
the required characteristics to train and test our model. Our experiments indicate that it is
feasible to combine information from two databases to train and evaluate a multimodal
model. The results of our work are compared with other approaches using a common
testing criteria to ensure a fair comparison.

The rest of this work is organized as follows: a literature overview is presented in
Section 2. Section 3 presents details of the development and evaluation of the models that
comprise our bimodal multitask network. Section 4 discusses the experimental results of
the developed models. Section 5 presents the conclusions.

2. Literature Overview

Face recognition approaches have relied on the use of a wide variety of feature ex-
traction algorithms such as: Local Binary Pattern (LBP), Histogram of Oriented Gradients
(HOG), Principal Component Analysis (PCA), Gabor filters, and frequency domain analysis,
among many others. These features are used to train Machine Learning models or are
matched with functions that measure their similarity or geometric distance to achieve high
performance [1,12,13]. State of the art approaches have focused on extracting image features
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using Deep Learning Networks to improve recognition performance due to the parameter
optimization at training time. Various architectures trained for image classification have
been adapted to perform face recognition and have obtained outstanding performances.
In Ref. [14] the authors train a Deep Convolutional Neural Network (DCNN) with 5 layers
for face recognition and make a comparison of performance and training time using the
pre-trained architectures AlexNet with 8 layers and GoogleNet with 22 layers. Their results
yield an accuracy of 100% for all networks with the face94 database, though pre-trained
models achieved these results with less training iterations than their proposed DCNN.
They tested their networks with noisy samples and studied how the accuracy decreased
according to a parameter that controlled the noise level. Pratama et al. [15] conducted a
study on the impact of different hyperparameter values on the accuracy of various Residual
Networks trained and tested with a dataset that contains faces in different positions and
orientations. A certain set of hyperparameters allow a particular network to achieve a
99% accuracy. Another popular network is FaceNet; in Ref. [16] a pre-trained model was
fine-tuned with CASIA-Webface database and tested with other databases. In most of
their cases an accuracy higher than 99% was achieved. In Ref. [17] a pre-trained DenseNet
architecture is trained with the Wider Face dataset, obtaining results above 90% in most
cases. Additional reports on face recognition approaches with pre-trained architectures
can be found in Refs. [13,18]. In Ref. [19] LBP and CNN extracted features are fused using
an adaptive weighting function. Pei et al. [20] proposed a set of image transformations to
increase the amount of face images to train a CNN to recognize class attending students in
a picture.

Speaker recognition (voice or speech biometric modality) has been performed with
popular approaches such as Gaussian Mixture Models (GMM) or Hidden Markov Models
(HMM) whose parameters have been tuned with features based on Mel Frequency Cepstral
Coeffients (MFCC). These approaches are combined with Universal Background Models
(UBM) in order to calculate the log likelihood ratio to perform a hypothesis test [21]. A
breakthrough in speaker verification came with the development of the i-vectors approach
presented in Ref. [22]. The i-vector framework has also been combined with other models
to improve verification results, most commonly using HMM and GMM [21,23].

Early work on Deep Learning based speaker recognition proposed the use of bot-
tleneck features extracted from the middle layer of a Deep Neural Network (DNN) [23].
Novoselov et al. [24] created a CNN to extract deep embeddings to perform a text prompted
verification task on Part 3 of the RSR2015 database using a 5 digit password. Their results
show EER values lower than 10%. In recent years, X-vectors have become a widely used
embedding due to the outstanding performance achieved [25]. In this framework, a DNN
is trained to map variable length utterances to fixed length embeddings using a training
scheme based on bank filtered features. X-vectors embeddings achieved EER values as
low as 5.71 when they were evaluated on Speakers in the Wild (SITW) dataset and the
Cantonese portion of NIST SRE 2016. Recent approaches such as Jung et al. [26] and
Muckenhirn et al. [27] focus on processing raw speech data with convolutional layers to
extract discriminant features for speaker recognition. A novel architecture called SincNet
was proposed in Ref. [28]; this architecture is based on the convolutional layer of the same
name. This layer convolves bandpass filters represented in time domain as sinc functions
with raw audio frames. The obtained results exhibited EER values of 0.85 and 0.96 using
the TIMIT and LibriSpeech databases, respectively. Tripathi et al. [29] concatenated features
extracted from a SincNet layer with embeddings generated by a pre-trained X-vectors
system. These new features are fed to a set of fully connected layers, achieving an EER of
3.56 in the VoxCeleb1 database. An interesting study on the effect that different softmax
based loss functions can have on the performance of a SincNet model can be found in
Ref. [30]. The authors present a detailed comparison on TIMIT and LibriSpeech datasets.
Li et al. [9], trained a CNN, a Deep Neural Network (DNN) and two Time-delay Deep Neu-
ral Networks (TDNN) with a multitask setting for speaker verification and anti-spoofing.
The first three models were trained with Crossentropy loss function and one TDNN with a
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modified Triplet loss function employing different cepstral speech features. Their results
compared the performance of all models on both tasks employing the ASVspoof 2017 and
ASVspoof 2019 databases. The models trained with Crossentropy yielded EER values
below 7.5% for speaker verification, less than 14% for anti-spoofing, and a joint verification
of less than 12.7%, while the TDNN with Triplet loss yielded values below 6%, 12.3%, and
10.6% respectively. A detailed overview of Deep Learning on speaker recognition is found
in Ref. [31].

Mandalapu et al. [32] present a comprehensive survey on audiovisual biometric recog-
nition and attack detection. Refs. [6,7,33] are comprehensive reviews on recently published
multimodal biometric systems. Table 1 summarizes the relevant work in chronological
order about multimodal biometric systems whose content was considered important to
our research.

Table 1. Overview table of relevant work related to our proposal in chronological order.

Author Modalities Features Classifier Fusion method Database and
no. of Subjects Performance

Talreja et al., 2017
[34] Iris and face.

Pretrained
VGG-19
extracted
features.

Fully
connected layer

architecture (FCA).
Bilinear

architecture (BLA).

Two-stream
CNN with

FCA or BLA.

CASIA-Webface:
10,575.

ND-Iris-0405:
1355.

WVU-Multimodal:
2263.

Verification:
Genuine Acceptance

Rate (GAR)
Best FCA 99.65%.
Best BLA 99.99%.

Xin et al., 2018
[35]

Face,
fingerprint

and finger vein.

Principal Component
Analysis (PCA),

Endpoint and
Crosspoint features,
Fine point features.

Fisher vectors.

KNN,
Support Vector
Machine (SVM)

and Bayes Classifiers.

Concatenation
of fisher vectors

with GMM.

Self acquired:
50.

Identification:
Accuracy

50 subjects 88%.
20 subjects 90%.

15 subjects 93.3%.

Olazabal et al.,
2019
[36]

Face and voice.

Histogram
of oriented

gradients (HOG),
LBP and MFCC.

K-nearest
neighbors (KNN)

algorithm.

Discriminant
correlation

analysis
(DCA).

CSUF-SG5:
27.

Verification:
EER 8.04%.

Wu et al., 2019
[37]

Voice
and lip

movement.

MFCC and
spectral analysis.

Gaussian
Mixture Models

(GMM).

Frequency
domain

convolution.

Self acquired:
104.

Verification:
Area under the

curve (AUC) 0.95.

Alay et al.,
2020
[38]

Iris, face,
and finger vein.

CNN extracted
features.

3 VGG-16
networks.

Features
concatenation.

Mean rule.
Product rule.

SDUMLA-HMT:
106.

Identification:
Accuracy

Feature fusion 99.39%.
Mean rule 100%.

Product rule 100%.

Maity et al.,
2020
[39]

Frontal face,
profile face,

and ears.

Two-dimensional
Gabor filters.

Auto-encoders
with Deep

Belief Networks
(DBN).

Weighted sum.

WVU:
402.

HONDA/UCSD:
35.

Identification:
Accuracy

WVU database 99.17%.
HONDA/UCSD 97.14%.

Mehdi et al.,
2020
[40]

Fingerprint,
finger vein,

and face.

CNN extracted
features. Three-stream CNN.

Weighted sum
and

weighted product.

SDUMLA-HMT:
106.

Identification:
Accuracy

Weighted sum 99.73%.
Weighted product 99.70%.

Zhang et al.,
2020
[41]

Face and voice.
Local Binary
Pattern (LBP)
and MFCC.

LBP matching.
GMM. Weighted sum. XJTU:

102.

Verification:
True Acceptance
Rate (TAR) 100%.

False Rejection
Rate (FRR) 0%.

False Acceptance
Rate (FRR) 0%.

Alkeem et al.,
2021
[10]

Electrocardiogram
(ECG), face,

and fingerprint.
Gender identification.

ResNet50 and
CNN extracted

features.

Multitask network
with 2 Resnet50

streams and
1 CNN stream.

Features
concatenation.
Sum, max and
product rules.

Virtual dataset:
58.

Extracted from
ECG-ID, PTB ECG,

Faces95 and
FVC2006 databases.

Identification:
Accuracy

Feature fusion 98.97%.
Sum rule 98.95% .

Product rule 96.55%.
Max rule 89.66%.

Leghari et al.,
2021
[42]

Fingerprint and
online signature.

CNN extracted
features.

Two stream
CNN.

Features
concatenation.

Self acquired:
280.

Identification:
Accuracy

Early fusion 99.1%.
Late fusion 98.35%.

Liu et al.,
2021
[43]

Face and voice. CNN extracted
features, MFCC.

Two-stream
CNN.

Feature
concatenation.

Deep Lip
(virtual database):

150.
Extracted from:

GRID,
LOMBARDIGRID
and TCD-TIMIT

databases.

Verification:
EER

First test 0.84%.
Second test 1.11%.

Luo et al., 2021
[44]

Iris and
periocular area.

CNN extracted
features.

Two-stream
CNN with

residual blocks.

Features fusion
with co-attention

mechanism.

CASIA-
Iris-Thousand:

690.
ND-IRIS-

0405:
267.

Verification:
EER

CASIA 0.13%.
ND-IRIS 0.37%.
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Table 1. Cont.

Author Modalities Features Classifier Fusion method Database and
no. of subjects Performance

Iula et al.,
2022
[45]

Hand geometry
and palmprint.

2D and 3D
templates.

Templates
matching. Weighted sum. Self acquired:

40.

Verification:
EER 0.08%.

Identification:
Accuracy 100%.

Rajasekar et al.,
2022
[46]

Iris and
fingerprint.

Log-Gabor
filters.

Fuzzy
Genetic

algorithm.

Optimized
weighted sum.

CASIA iris
V3 and

FVC2006.

Identification:
Accuracy 99.98%.

Verification:
EER 0.18%.

Vijay et al., 2021
[47]

Ear, iris,
and finger veins.

Random transform,
Daugman’s rubber

sheet model and
Adaptive threshold.

Multi Support
Vector Neural

Network
(Multi-SVNN)

Deep Belief
Network
(DBN).

SDUMLA-
HMT:
106.

AMI ear
database:

100.

Verification:
Accuracy 95.36%.
Sensitivity 95.86%.
Specificity 98.79%

3. Structure of the Proposed Biomodal Multitask Network

The structure of our proposed system is shown in Figure 1. Details of the architecture
are presented in Table 2. In the following subsections we will explain in detail each stage
associated with the development of our network.

Table 2. Multitask network architecture.

Layers Filters/Neurons/Units Size Stride Activation Function

Speech processing layers

Convolution 2D 32 7 × 5 2 × 2 ReLU
Batch Normalization - - - -

Convolution 2D 64 7 × 3 2 × 1 ReLU
Batch Normalization - - - -

GRU (×3) 512 (×3) - - Tanh/Sigmoid (×3)
GRU (×7) 512 (×7) - - Tanh/Sigmoid (×7)

Face processing layers

Convolution 2D 32 3 × 3 1 × 1 ReLU
Max Pooling 2D - 2 × 2 1 × 1 -

Batch Normalization - - - -
Convolution 2D 64 5 × 5 1 × 1 ReLU
Max Pooling 2D - 2 × 2 1 × 1 -

Batch Normalization - - - -
Fully connected 512 - - ReLU

Fusion and
output layers

Weighted Sum - - - -
Fully connected 45 - - Softmax
Fully connected 27 - - Softmax

3.1. Feature Extraction

One of the objectives of our proposal is fusing the face and speech data at the feature
level in order to implement the bimodal part of our biometric system. The state of the art
work proposes to create a module within the network architecture that optimally combines
the extracted features of all biometric traits [19,44,48]. This fusion module delivers a unique
feature vector that contains the most important information of the identity of an individual.
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Figure 1. Block diagram of the proposed multitask network.

Figure 1 shows a block diagram of the proposed multitask network. The diagram
indicates two streams of layers that process face and speech data independently. The speech
stream is divided into two paths, represented by the GRU (Gated Recurrent Unit) layers.
The first path processes the feature maps that will be combined with the face features in the
weighted sum module. The second path extracts the temporal information used to perform
the speech recognition task.

The input of the image stream consists of face grayscale images with dimensions of
128 × 128 pixels. We employed 2 convolutional blocks comprised of 32 and 64 filters,
respectively, with the ReLU activation function, a 2D max pooling operation to reduce the
feature map’s dimensions and to extract important information based on a pixel’s location,
and batch normalization as a feature regularizer. The extracted feature maps are fed to a
fully connected layer with ReLU activation and batch normalization; this layer outputs a
vector of length 512.

The input of the speech stream consists of MFCC features, which are widely used
in speaker and speech recognition works [32]. These features are represented as two
dimensional signals with the cepstral coefficients containing the frequency information in
Mel scale located in one dimension, and the time domain in the other. No pooling layers
were included to avoid a loss of temporal information.

The extracted speech feature maps are processed by two different paths of GRU
layers. The first path with 3 layers extracts temporal dependencies from the feature maps
and allows the network to handle maps with different temporal sizes. The last GRU
layer outputs a unique feature vector of size 512 and discards the previous vectors in the
sequence. The second path of 7 GRU layers extracts temporal information with more detail
than the first path. The last layer outputs the complete sequence of processed vectors,
which are fed to the speech recognition output.

3.2. Bimodal Data Fusion

The feature fusion module was implemented using a weighted sum controlled by a
training parameter β. This parameter is updated during the training stage and its value
determines which modality is more representative to the identity of a user. Equation (1)
shows the weighted sum used in the bimodal embedding.

VFS = βVF + (1− β)VS (1)

where VF and VS are the speech and face vectors, respectively, and VFS is the resulting
bimodal embedding. The initial value for β was 0.5.

3.3. Outputs

The output of the weighted sum module is a 512-dimensional bimodal embedding
that represents the biometric identity of a client. To perform the identification task, this
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embedding is fed to the biometric recognition output, which is represented by a fully
connected layer using a configuration commonly known as a softmax classifier. This layer
includes 45 neurons that represent the number of enrolled users in the system. The output
is a normalized probability distribution.

As mentioned in Section 3.1 the set of seven consecutive GRU layers outputs a sequence
of vectors that contain information about the temporal dependencies of the speech features.
This sequence of vectors is fed to a fully connected layer with a softmax activation that
corresponds to the speech recognition output. This layer has 27 neurons that represent
the characters of the alphabet including a space character. The output is a sequence
of probability distributions that indicate the most probable character at each time step.
However, these distributions are not enough to fully transcribe the speech features into
text. The decoding process will be explained in the following subsections.

3.4. Training and Testing Data

One of the main problems that arise when building a multimodal biometric system
is the lack of a database that contains enough data on multiple traits/modalities to train
and test robust models. Publicly available multimodal databases may contain insufficient
data for a particular trait, while private databases may not be accessible. To overcome
these issues many authors resort to building their own multimodal databases that meet the
requirements of their work. A large number of studies on multimodal biometric recognition
are performed using virtual databases, i.e., databases created by combining datasets of
specific traits and pairing their respective subjects [10,39]. Hence, we created a virtual
database by combining BIOMEX-DB and VidTimit databases.

BIOMEX-DB is a multimodal database created by our research group, composed of
speech, video, and electroencephalogram (EEG) biometric data. Speech data was recorded
at a 16 KHz sample rate. The vocabulary is comprised of pronunciations in Spanish
language of 20 random digit sequences. The first 10 sequences have a length of 10 digits,
while the remaining sequences are 5 digits long. A video feed was recorded showing the
faces as the volunteers pronounced their digit sequences. During the pronunciations, EEG
signals were simultaneously acquired with a 14 channels Emotiv wireless headset. This
database contains the biometric data of 51 subjects; 39 of them have information of the
3 modalities while the remaining 12 subjects lack video data. A complete description of
the database can be found in Ref. [49]. VidTimit [50] is a database comprised of video and
audio recordings of 43 subjects reciting 10 sentences from the TIMIT database. Volunteers
have 10 audio recordings and several image frames extracted from their videos. The speech
dataset of BIOMEX-DB has a maximum of 51 subjects, thus we used that amount as the
population of our experiments. In order to complete our virtual database we pooled the
image datasets from BIOMEX-DB and VidTimit. Then we randomly selected 51 subjects
from the pooled set and paired them with the ones of the speech dataset. Our virtual
database had a balanced gender representation: 26 males and 25 females. In the following
subsections we describe the preprocessing of speech and face data.

3.4.1. Speech Data Preprocessing

The BIOMEX-DB speech dataset is organized with time labels that allow segmentation
of each digit utterance. In that way it is possible to create new random sequences with
a variable number of digits or to rearrange the order within the existing sequences. A
common strategy to increase the amount of speech data is to add different types of noise [51].
We added background noise taken from the MUSAN database [52] to our speech samples
at several signal to noise ratio (SNR) values. The decibel values used in our experiments
were 0, 5, 10 and 15 dB. Then, the speech data was normalized in amplitude within the
range [−1, 1]. As mentioned in Section 3.1, the speech input of our network consists of
MFCC features organized as two dimensional signals. These features attempt to model the
human vocal tract using a frequency logarithmic scale. MFCC are calculated by applying a
Mel scaled filterbank to the periodogram of the power spectrum of the speech signal. Then,
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the discrete cosine transform (DCT) is calculated with the filterbank energies to decorrelate
the features. In many speech applications only 13 features are kept, although more features
can be kept according to the obtained results. Additionally, the first and second derivatives
can be calculated to increase the performance of the system. A detailed description on
the calculation of MFCC can be found in Ref. [53]. In this work, MFCC were calculated
by segmenting the signal into 25 ms frames with an overlap of 15 ms between them. We
observed that 26 features yielded the best results during the evaluation stage. The first and
second derivatives were added. The total size of the speech features is 78.

3.4.2. Face Data Preprocessing

Raw images obtained from BIOMEX-DB and VidTimit databases were pre-processed
to extract the region of interest (ROI) with the corresponding face in grayscale and sized
128 × 128 pixels. This process was carried out using the scikit-image face detector based on
Local Binary Pattern [54]. Data augmentation was incorporated to the image set obtained
from the previous procedure. Wang et al. [20,55] describe different types of image transfor-
mations for data augmentation to train deep learning models for face recognition. However,
some transformations require complex algorithms that rely on deep and machine learning
models to perform them. Therefore, we decided to carry out geometric and photometric
transformations that could be done with software libraries. In this work we included
the following transformations: image rotation, horizontal flipping, brightness changes,
and combining the aforementioned transformations. They were implemented using the
IMGAUG library [56].

3.5. Network Training

The total population we considered for our experiments comprised 51 individuals,
which were divided into 2 sets: 45 target clients and 6 impostors. Consequently, the
biometric output layer of the network is composed of 45 fully connected neurons, as
described in Table 2. After we applied the data augmentation to the voice and image
datasets, we split the target clients’ data as follows: 65% for training, 5% for validation,
and 30% for testing. Each target client had 100 voice samples and 150 face images. The
impostors’ data was used exclusively to test the text-prompted verification task with each
impostor made up of 100 voice samples and 150 face images.

Keras libraries with Tensorflow backend was used to train and test the network.
We used the Adam optimizer with a 0.0001 learning rate and a training process with
1000 epochs. Data batches were created by randomly pairing MFCC features extracted from
sequences of spoken digits with face images at each epoch, using a Python generator to
ensure large variability. Training and validation batches were composed of 16 and 8 pairs,
respectively. We configured a Keras callback that saved the parameter values only if they
decreased the validation loss value in each epoch.

Joint Loss Function

Since our network is designed to perform two different tasks simultaneously, we
defined a joint loss function that allows the network to learn each task. This function
was defined as the sum of the Sparse Categorical Crossentropy (SCC) and Connectionist
Temporal Classification (CTC) loss functions. SCC is a commonly used loss function in
supervised multi-class classification [30]; it helps to reduce the error of the identification task
during the training stage. CTC loss function was proposed to solve temporal classification
problems, it allows to reduce the error when labelling sequences where the alignment
between the input sequences and the target labels is unknown [57]. CTC aimed to reduce the
error of the speech recognition task. The joint loss function has two parameters that scale the
values of SCC and CTC. This scaling results in mutual regularization and may accelerate the
convergence of the network [10]. The joint loss function is shown in Equations (2) and (3).

Ljoint = α1LSCC + α2LCTC (2)
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Ljoint = α1

(
−

C

∑
i=1

yilog(P(yi = i|xFSi))

)
+

α2

− ∑
π∈B(xS ,y)

P(π|xS)

 (3)

The first term corresponds to SCC function where yi represents the true label assigned
to target client i, C is the total number of target clients in our population, and P(yi = i|xFSi)
is the normalized probability distribution predicted with the softmax classifier of the
biometric output given the bimodal input data xFS belonging to target client i.

In CTC loss, π represents all possible character sequences given an input of MFCC
features xS, B is the search space of our speech recognition task, and y is the target sequence.
Equation (4) describes the conditional probability P(π|xS) that a character lt is predicted in
the label sequence y at time t given the MFCC features xS, across all time steps.

P(π|xS) =
T

∏
t=1

P(lt, t|xS) (4)

The probability P(lt, t|xS) is calculated for each time step with the softmax function
of the speech recognition output. The CTC loss function maps MFCC speech features to
character sequences following the procedure proposed in Ref. [58]. In order to produce a
refined transcription from the CTC characters sequence we employed the greedy decoder
implemented in Keras. A linguistic model to decode the character sequences was not
required since the vocabulary of BIOMEX-DB comprises random digit pronunciations [59].

Tao et al. [11] proposed an audiovisual approach for speech recognition and speech
detection tasks. Their joint loss function was the sum of Crossentropy and CTC functions
and experimented with different coefficient values to scale them. According to their results,
their proposed network converged faster when both tasks had the same weight value.
Following this work we experimented with different values for α1 and α2. During the
experiments we observed that if α2 had a value greater than α1, then the network yielded
better recognition results in comparison to those cases where both coefficients had the same
value, or α1 had a value greater than α2. The chosen values for α1 and α2 were 0.3 and
0.7, respectively.

4. Experimental Evaluation

Once the training stage was completed, we established the experimental conditions to
evaluate the identification and text prompted verification tasks. We developed five different
multitask networks with the architecture and training conditions described in previous
sections. For each iteration the subjects that integrated the target clients and impostors sets
were randomly chosen. After evaluating the identification and text prompted tasks of each
network, we calculated the average and standard deviations of the corresponding metrics.
The identification and text prompted verification results are organized according to the SNR
value or image transformation associated to a speech signal and face image, respectively.

4.1. Identification Evaluation

Performance in the identification mode of our proposed network is evaluated accord-
ing to the accuracy metric shown in Equation (5).

accuracy =
TP
N

, (5)

where TP are the true positive cases correctly classified, i.e., the number of instances where
the prediction and the correct label are equal, and N is the number of total instances [60].
Our identification task is done in closed-set modality so only true positive cases are counted
to calculate the accuracy.
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4.2. Speech Recognition Evaluation

The performance metric used to measure the accuracy of the transcriptions is the Word
Error Rate (WER) defined in Equation (6).

WER =
S + I + D

N
, (6)

where S stands for substitution, i.e., a word is replaced by another, I are the insertions of
words, i.e., a word that was not pronounced was added to the transcription, D is a deletion,
i.e., a word was left out of the transcription, and N is the number of words in the reference
label. After evaluating the speech recognition task, we observed that transcriptions with a
WER of less than 10% (0.1) had a few misspellings and the text was still understandable.
Based on this observation we decided that a WER value less than 0.1 may be considered as
a correct pronunciation, otherwise it is incorrect. The results of this task are presented in
Section 5.

4.3. Text Prompted Verification

Text prompted verification was done with an external binary classifier following the
next procedure: a client provides samples of speech and face data; with these samples
the network produces a bimodal embedding and a transcription of the speech data; the
bimodal embedding is matched with a previously stored template to generate a verification
score; the WER value is calculated from the transcription; and, finally, the verification score
and WER are fed to the binary classifier, which decides whether to accept or reject the
identity claim. This framework reinforces the security because the identity verification is
based on the characteristics of two biometric traits and whether a client correctly uttered a
digit sequence that acts as a randomly generated password or not. This way the system
makes it difficult for an impostor to use prerecorded audio to falsely authenticate his/her
identity [32].

4.3.1. Bimodal Embeddings Matching

We followed the d-vector verification framework to carry out the embeddings match-
ing [31]. This approach requires that each target client has a representative template that
can be matched with an embedding that was generated during an identity claim. Matching
a template with an embedding allows us to establish how similar they are and whether
the client that made the identity claim is the same person as the target client who owns the
template or not. In order to generate the template of a target client we picked 25 pairs of
speech and face data; these pairs represented the combinations of 5 SNR values and the
5 image transformations. The pairs were fed to the multitask network and the resulting
bimodal embeddings were averaged to obtain the template.

The verification score is obtained using the cosine similarity defined in Equation (7) as
the matching function:

Scos(T, E) = cos(θTE) =
T · E

‖ T ‖‖ E ‖ , (7)

where T is a template belonging to a target client and E is the embedding produced by a
client during an identity claim.

4.3.2. Binary Classifier

The cosine similarity scores and the WER values are combined using a perceptron that
will work as the binary classifier. Since we are combining two sources of information it is
possible to distinguish four cases: a target client that correctly uttered a digit sequence, a
target client that incorrectly uttered a digit sequence, an impostor that correctly uttered
a digit sequence, and an impostor that incorrectly uttered a digit sequence. However,
verification is a binary classification problem and it is necessary to reduce the previous
cases to two classes. That condition is achieved by assigning the case of a target client
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pronouncing a correct utterance in the accepted class and the remaining cases in the
rejected one.

A new dataset to train and test the binary classifier composed of cosine similarity
scores and WER values was generated. Both scores were calculated using the test data split
of each target client and all samples of the impostors set. The calculation of WER values
corresponding to incorrect utterances was done by introducing substitutions, insertions,
and deletions to the spoken sequences. In this manner we simulate the realistic situation in
which a client makes a mistake when uttering the prompted digit sequence. The similarity
scores and WER values were randomly paired until we obtained 2550 samples; half of
them belonged to the accepted class and the other half to the rejected one. Each class was
divided into three sets according to the following percentages: 65% for training, 5% for
validation, and 30% for testing. Training was carried out in 20 epochs using Stochastic
Gradient Descent (SGD) with a learning rate of 0.001 and binary crossentropy as a loss
function. A sigmoid activation function in the perceptron allowed the system to provide an
output score in the range [0, 1].

4.3.3. Verification Evaluation

A common performance measure for verification is the Equal Error Rate (EER), which
is defined as the case when the false acceptance rate (FAR) and the false rejection rate (FRR)
are of equal value [61]. FAR is the likelihood that the biometric system will incorrectly
accept an identity claimed by an unauthorized client; FRR is the likelihood that the system
will incorrectly reject an identity claimed by an authorized client. The lower the EER value,
the higher the accuracy of the biometric system.

5. Results and Discussion
5.1. Identification Results

Table 3 presents the results of the identification evaluation. The results show an
average accuracy above 90% for almost all cases except for those involving a combination
of image transformations. It can be seen that noisy speech samples do not have a great
impact on the accuracy since the accuracy does not change significantly at different decibel
values. It is also noted that the image transformations had a significant impact on the
identification performance because of the difference of accuracy values between them.

Table 3. Bimodal multitask network identification results in terms of accuracy (%).

Image
Transformations No

Transformation Brightness Horizontal
Flip Rotation

Combination
of TransformationsSignal to

Noise Ratio (dB)

Noiseless 99.93 ± 0.13 100 99.66 ± 0.26 92.66 ± 1.98 88.79 ± 2.02
0 100 99.73 ± 0.32 99.79 ± 0.16 94.66 ± 1.67 88.59 ± 1.79
5 100 99.79 ± 0.26 99.86 ± 0.16 94.46 ± 1.96 87.86 ± 2.39
10 99.93 ± 0.13 100 99.73 ± 0.25 95.06 ± 0.97 87.53 ± 1.4
15 99.93 ± 0.13 99.86 ± 0.26 99.93 ± 0.13 93.46 ± 0.85 89.53 ± 1.93

5.2. Speech Recognition Results

The obtained results corresponding to speech recognition performance are presented
in Table 4. It can be seen that the average WER values did not exceed 5% even in noisy
conditions and the standard deviation values were below 1%. This suggests that speech
recognition performance is not significantly affected by noise.

5.3. Text Prompted Verification Results

The text prompted verification results are shown in Table 5. Average EER values were
below 4%. It can be noticed that the noise level in speech signals does not considerably
affect the system performance, however similarly to the identification evaluation, image
transformations involving rotation and combinations yielded the worst results.
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Table 4. Speech recognition results in terms of WER (%).

SNR (dB) WER (%)

Noiseless 0.9 ± 0.55
0 4.9 ± 0.63
5 2.75 ± 0.62
10 1.79 ± 0.55
15 1.45 ± 0.56

Table 5. Text prompted verification results in terms of EER (%)

Image
Transformations No

Transformation Brightness Horizontal
Flip Rotation Combination

of TransformationsSignal to
Noise Ratio (dB)

Noiseless 0.74 ± 0.65 0.97 ± 0.95 1.34 ± 1.09 3.44 ± 0.71 3.27 ± 1.46
0 0.93 ± 0.98 0.97 ± 0.57 1.82 ± 2.02 3.31 ± 0.97 3.06 ± 0.96
5 0.83 ± 0.98 0.97 ± 0.7 1.74 ± 1.43 2.53 ± 0.66 3.32 ± 1.66
10 1.01 ± 0.68 1.18 ± 0.47 2.06 ± 2.11 2.67 ± 0.44 3.57 ± 1.35
15 0.44 ± 0.55 0.97 ± 0.58 1.55 ± 1.54 2.87 ± 0.84 3.82 ± 1.44

5.4. Comparison of Results with Other Approaches

We compared the best results obtained by our proposed network in identification
and verification modes with other systems using well known face and speaker recognition
approaches. The considered unimodal systems were implemented, trained, and evaluated
with our virtual database following similar conditions for a fair comparison. The results are
presented as the average and standard deviation of the performance indicators obtained
from a collection of five experiments in each case.

The face recognition systems considered in the comparison were: a reduced ResNet
model with 4 residual blocks [62], which we called Face ResNet, Eigenfaces, and Fisher-
faces. The last two approaches are based on Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA), respectively; they are used for feature extraction and
dimension reduction. These methods were implemented using the OpenCV library with
the parameter values presented in Ref. [63]. The implemented speaker recognition systems
were: a SincNet architecture described in Ref. [28] and x-vectors [25].

5.4.1. Identification

The face recognition identification results are presented in Table 6. In the first three
conditions our network yielded better results than the other approaches, although there
is a slight difference of accuracy values between the models in some cases. The last two
conditions showed a performance gap between the deep learning models and th statistical
approaches; the multitask network and Face ResNet gave competitive results close or above
90% while Eigenfaces and Fisherfaces presented a considerable performance drop. This
indicates that statistical models have difficulties recognizing faces that present variations
during the acquisition process. The standard deviation values obtained from Fisherfaces are
considerably greater than those obtained from deep learning approaches and Eigenfaces.
Regarding speaker identification, the best results of our approach obtained a 100% accuracy
in most cases with almost no dispersion. Although SincNet delivers competitive results
comparable to our proposed system, its performance is greatly affected by noisy speech
samples. Moreover, x-vectors yielded the lowest values, which were slightly greater than
90% and presented a performance drop comparable to SincNet when dealing with noisy
speech samples.
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Table 6. Comparison of results for the identification task in terms of accuracy (%).

Recognition
Model

Image Transformations

No
Transformation Brightness Horizontal

Flip Rotation Combined
Transformations

BiMultNet
(Face modality) 100 100 99.33 ± 0.13 95.06 ± 0.97 89.53 ± 1.93

Face ResNet 98.22 ± 1.21 84.79 ± 2.5 96.06 ± 0.99 98.39 ± 1.25 98.19 ± 1.04
Eigenfaces 99.93 ± 0.13 96.53 ± 1.81 99.33 ± 0.13 79.53 ± 4.87 43.06 ± 3.86
Fisherfaces 97.12 ± 4.26 94.93 ± 8.96 94.59 ± 7.15 50.26 ± 20.03 44.79 ± 18.9

Signal to noise ratio (dB)

Noiseless 0 5 10 15

BiMultNet
(Speech modality) 100 100 100 100 99.93 ± 0.13

SincNet 98.22 ± 1.21 84.79 ± 2.5 96.06 ± 0.99 98.39 ± 1.25 98.19 ± 1.04
X-vectors 94.04 ± 1 82.24 ± 0.64 91.15 ± 1.06 92.95 ± 0.71 93.68 ± 0.89

5.4.2. Verification

We compared the results of our text prompted verification task with those delivered by
the same approaches described in the identification case. Table 7 presents the comparison
of verification results. Regarding the face modality, our bimodal network delivered the best
results in all cases with EER values close to or below 3%. Face ResNet delivered results
comparable to our proposal while statistical models had considerably greater EER values
in each transformation case in comparison to the deep learning models. Standard deviation
remained at low values for both deep learning networks and Eigenfaces despite its poor
performance. Fisherfaces obtained the worst values in this regard, which is consistent with
the results obtained in the identification case. In the speaker verification case our model also
achieved the best EER values, equal to or below to 1%. These values are significantly lower
in comparison to those obtained by SincNet and X-vectors. Contrary to the identification
results, the verification performances of SincNet and X-vectors were more affected by noise,
regardless of its SNR value.

Table 7. Comparison of the verification results in terms of EER (%).

Recognition
MODEL

Image Transformations

No
Transformation Brightness Horizontal

Flip Rotation Combined
Transformations

BiMultNet
(Face modality) 0.44 ± 0.55 0.97 ± 0.57 1.34 ± 1.09 2.53 ± 0.66 3.06 ± 0.96

Face ResNet 1.02 ± 0.27 2.19 ± 0.89 1.4 ± 0.32 4.46 ± 0.66 6.08 ± 1.38
Eigenfaces 4.44 ± 0.96 18.61 ± 4.45 4.82 ± 2.07 32.41 ± 2.88 46.56 ± 1.84
Fisherfaces 8.67 ± 6.1 11.05 ± 11.21 13.06 ± 7.84 36.54 ± 5.41 39.58 ± 7.25

Signal to noise ratio (dB)

Noiseless 0 5 10 15

BiMultNet
(Speech modality) 0.74 ± 0.65 0.93 ± 0.98 0.83 ± 0.98 1.01 ± 0.68 0.44 ± 0.55

SincNet 3 ± 0.62 14.97 ± 1.18 7.15 ± 1.36 4.27 ± 0.88 3.28 ± 0.7
X-vectors 2.22 ± 0.39 5.8 ± 0.75 3.16 ± 0.55 2.5 ± 0.37 2.27 ± 0.4

The Detection Error Tradeoff (DET) plots shown in Figure 2 present a visual com-
parison of the verification performance delivered by the considered biometric systems
presented in this work. The curves were plot by pooling the verification scores of all data
augmentation conditions generated by the best iteration of each system. The EER of each
biometric system was calculated from their corresponding scores, obtaining the follow-
ing values: BiMultNet 1.92%, Face ResNet 2.79%, Eigenfaces 25.84%, Fisherfaces 19.73%,
Sincnet 7.24%, and Xvectors 2.9%. These results indicate that our proposed bimodal text
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prompted verification framework provided better results compared to unimodal biometric
systems, regardless of the conditions presented by speech and facial data.

Figure 2. DET curves of the biometric systems.

6. Conclusions

In this paper we proposed a novel multitask network to carry out bimodal biometric
recognition using face and speech modalities. The proposed network was trained using
a virtual database created with our locally developed BIOMEX-DB database and comple-
mented with face data obtained from VidTimit. We incremented the data by adding noise
to the speech signals at different SNR values and by performing different transformations
on the face images. The data augmentation framework allowed us to establish several
performance evaluation conditions.

The identification task was carried out using a fusion module that combined the
feature vectors of face and speech modalities through a weighted sum providing a bimodal
embedding. The values of the weights were optimized during the training stage. Text
prompted verification was carried out by fusing the scores obtained from the matching
of two bimodal embeddings with cosine similarity function and the WER metric with a
perceptron. The score generated by it contains information of the biometric identity of
a client and whether he/she correctly uttered a digit sequence prompted by the system.
The text prompted modality prevents the use of prerecorded speech to gain access to the
biometric system.

The obtained results indicate an EER of 0.44% and an accuracy of 100% for verifica-
tion and identification, respectively, in the best case. Our studies provide evidence that
noisy speech samples did not have a significant impact on performance; however, image
conditions demonstrated to have an important effect on recognition results. We compared
the best results of our model with popular unimodal approaches trained with the same
data and evaluated under the same conditions. The results indicated a better performance
by the proposed bimodal approach in terms of accuracy and EER in almost all conditions
despite the observed effect that image conditions had on the results. To the best of our
knowledge, this is the first system that combines the mutually related tasks previously
described for biometric recognition.

The described work can be improved by doing additional experiments with an in-
creased number of enrolled clients, evaluating the impact in recognition performance. The
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possibility of adding or removing target clients as needed should also be explored. Alterna-
tives of liveness detection could also be included to increase the security of the system.
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