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Abstract: Portfolio optimization is a multi-objective optimization problem (MOOP) with risk and
profit, or some form of the two, as competing objectives. Single-objective portfolio optimization
requires a trade-off coefficient to be specified in order to balance the two objectives. Erwin and Engel-
brecht proposed a set-based approach to single-objective portfolio optimization, namely, set-based
particle swarm optimization (SBPSO). SBPSO selects a sub-set of assets that form a search space
for a secondary optimization task to optimize the asset weights. The authors found that SBPSO
was able to identify good solutions to portfolio optimization problems and noted the benefits of
redefining the portfolio optimization problem as a set-based problem. This paper proposes the first
multi-objective optimization (MOO) approach to SBPSO, and its performance is investigated for
multi-objective portfolio optimization. Alongside this investigation, the performance of multi-guide
particle swarm optimization (MGPSO) for multi-objective portfolio optimization is evaluated and
the performance of SBPSO for portfolio optimization is compared against multi-objective algorithms.
It is shown that SBPSO is as competitive as multi-objective algorithms, albeit with multiple runs.
The proposed multi-objective SBPSO, i.e., multi-guide set-based particle swarm optimization (MGS-
BPSO), performs similarly to other multi-objective algorithms while obtaining a more diverse set of
optimal solutions.

Keywords: artificial intelligence; particle swarm optimization; multi-guide particle swarm optimization;
set-based particle swarm optimization; portfolio optimization; multi-objective optimization

1. Introduction

Portfolio optimization is a complex problem not only in the depth of the topics that
it covers, but also in its breadth. It is the process of determining which assets to include
in a portfolio while simultaneously maximizing profit and minimizing risk. To illustrate
the investment process, consider the game of Monopoly. In the game, players purchase
property. When a player lands on another player’s property, that player must then pay the
owner a fee. The more expensive the property purchased is, the higher the fees will be.
Players must, therefore, strategize about which properties to buy. In some cases, a player
might take a risk and purchase an expensive property, but unfortunately, it is hardly ever
visited by other players. In this scenario, the risk does not pay off and possibly jeopardizes
the player’s position in the game. Players must determine what the best possible way to
spend their money would be in order to maximize their profits without going bankrupt.

The real world is much more complex, with many moving parts, but it is similar to
Monopoly in that investing can be a risky venture. However, it is possible that an asset’s
value increases significantly, making it a worthwhile investment. Identifying which asset
or collection of assets—known as a portfolio—would yield an optimal balance between
risk and reward is not an easy task. Moreover, there may exist multiple, but equally good,
portfolios that have different risk and return characteristics, which further complicates
the task. Lastly, when constraints that introduce nonlinearity and non-convexity (such as
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boundary constraints and cardinality constraints) are added, the problem becomes NP-
Hard [1–3]. Thus, approaches such as quadratic programming cannot be efficiently utilized
to obtain solutions.

Meta-heuristics are computationally efficient and are effective approaches to obtaining
good-quality solutions for a variety of portfolio models [3]. Typically, solutions are repre-
sented by fixed-length vectors of floats where the elements in a vector correspond to asset
weights. Unfortunately, the performance of fixed-length vector meta-heuristics deteriorate
for larger portfolio optimization problems [4]. An alternative approach is to redefine the
portfolio problem as a set-based problem where a subset of assets are selected and then the
weights of these assets are optimized. For example, hybridization approaches that integrate
quadratic programming with genetic algorithms (GAs) have been shown to increase perfor-
mance for constrained portfolio optimization problems [5–9]. A new set-based approach,
set-based particle swarm optimization (SBPSO) for portfolio optimization, uses particle
swarm optimization (PSO) to optimize asset weights instead of quadratic programming
and has demonstrated good performance for the portfolio optimization problem [10].

Single-objective portfolio optimization requires a trade-off coefficient to be specified
in order to balance the two objectives, i.e., risk and return. A collection of equally good
but different solutions can then be obtained by solving the single-objective optimization
problem for various trade-off coefficient values. However, a more sophisticated and
appropriate approach would be to use a multi-objective optimization (MOO) algorithm to
identify an equally spread set of non-dominated solutions, e.g., multi-guide particle swarm
optimization (MGPSO). MGPSO is a multi-swarm multi-objective PSO algorithm that uses
a shared archive to store non-dominated solutions found by the swarms [11].

This paper proposes a new approach to multi-objective portfolio optimization, multi-
guide set-based particle swarm optimization (MGSBPSO), that combines elements of SBPSO
with MGPSO. The novelty of the proposed approach is that it can identify multiple but
equally good solutions to the portfolio optimization problem with the scaling benefits of
a set-based approach. Furthermore, the proposed approach identifies subsets of assets to
be included in the portfolio, leading to a reduction in the dimensionality of the problem.
Lastly, MGSBPSO is the first MOO approach to SBPSO.

The performance of MGSBPSO for portfolio optimization is investigated and com-
pared with that of other multi-objective algorithms, namely, MGPSO, non-dominated
sorting genetic algorithm II (NSGA-II) [12], and strength Pareto evolutionary algorithm 2
(SPEA2) [13]. The single-objective SBPSO is also included in the performance comparisons
as a baseline benchmark and to evaluate whether SBPSO is competitive amongst multi-
objective algorithms. NSGA-II and SPEA2 were selected to compare with MGSBPSO, since
these algorithms had been used extensively for portfolio optimization before [14–20]. It
should also be noted that this paper is the first to apply MGPSO to the portfolio optimization
problem.

The main findings of this paper are:

• MGSBPSO is capable of identifying non-dominated solutions to several portfolio
optimization problems of varying dimensionalities.

• The single-objective SBPSO can obtain results (over a number of runs) that are just as
good as those obtained by multi-objective algorithms.

• NSGA-II and SPEA2 obtain good-quality solutions, although they are not as diverse
as the solutions found by SBPSO, MGPSO, and MGSBPSO.

• MGPSO using a tuning-free approach [21] performs similarly to NSGA-II and SPEA2
using tuned control parameter values.

• MGSBPSO scales to larger portfolio problems better than MGPSO, NSGA-II, and SPEA2.

The remainder of this paper is organized as follows: The necessary background for
the portfolio optimization is given in Section 2. Section 3 details the algorithms used in this
paper. Section 4 proposes MGSBPSO for portfolio optimization. The empirical process for
determining the performance of the proposed approach is explained in Section 5, and the
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results are presented in Section 6. Section 7 concludes the paper. Ideas for future work are
given in Section 8.

2. Portfolio Optimization

The objective of an optimization problem is to find a solution such that a given quantity
is optimized, possibly subject to a set of constraints [22]. Portfolio optimization is a problem
in which profit and risk are optimized—either as a single-objective optimization problem
or a multi-objective optimization problem.

This section presents the necessary background on optimization and portfolio op-
timization needed for this paper. Sections 2.1 and 2.2 briefly discuss single- and multi-
objective optimization, respectively. Section 2.3 discusses portfolio optimization.

2.1. Single-Objective Optimization

Formally, a boundary-constrained single-objective optimization problem, f , assuming
minimization, is defined as

minimize f (x), x = (x1, x2, ..., xn)

x ∈ Ω
(1)

where x is an n-dimensional decision vector within the search space, Ω [22]. Each point in
the decision vector corresponds to a decision variable in f . Solutions to f are constrained
to the bounds of Ω.

2.2. Multi-Objective Optimization

A multi-objective optimization problem (MOOP) is the simultaneous optimization
of two or three conflicting objectives [22]. Assuming minimization, multi-objective and
many-objective optimization problems are defined as

minimize f (x) = ( f1(x), f2(x), ..., fm(x))

x ∈ Ω
(2)

where m is the number of objectives.
There may exist multiple equally good solutions to a MOOP. These solutions, which

are vectors in the decision space, balance the multiple objectives and can be seen as a set
of optimal trade-offs to the problem. This set is formally referred to as Pareto-optimal
solutions (POS). The POS are mapped to the objective space (by evaluating the multiple
objectives functions) to the objective space. This new set of solutions in the objective space
are formally referred to as the Pareto-optimal front (POF). The solutions in the POF are
not dominated by any other feasible solution. A decision vector x1 in the objective space
dominates another decision vector x2 in the objective space, expressed as x1 ≺ x2, if and
only if fk(x1) ≤ fk(x2) ∀k ∈ {1, · · · , m} and ∃k ∈ {1, · · · , m} such that fk(x1) < fk(x2),
assuming a minimization problem. Multi-objective optimization algorithms search for a
diverse set of solutions that are as close to the true POF as possible [22].

2.3. Mean-Variance Portfolio Optimization

A portfolio model is a mathematical description of the behavior of a portfolio of assets
given market-related information. The portfolio model is optimized, typically, by adjusting
the weights of the assets in the portfolio. A popular portfolio model is the mean-variance
model, which is formally defined as

minimize λσ̄− (1− λ)R (3)
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where λ is used to balance risk (σ̄) and return (R). The λ coefficient is bound in [0, 1], where
smaller values favor return and larger values favor risk. Risk is calculated as the weighted
covariance between all n assets in the portfolio:

σ̄ =
n

∑
i=1

n

∑
j=1

wiwjσij (4)

where wi and wj are weightings of assets i and j, respectively, and σij is the covariance
between assets i and j. R is calculated using

R =
n

∑
i=1

Riwi (5)

where Ri is the return of asset i.
The mean-variance model is subject to two constraints: (1) The summation of all asset

weights must be equal to one, and (2) the weight of each asset must be non-negative. These
constraints are expressed as

n

∑
i=1

wi = 1, (6)

and
wi ≥ 0. (7)

The mean-variance model (Equation (3)) is optimized by tuning the weights, i.e.,
w, to return the lowest value for a given λ value. A diverse set of optimal portfolios
can be obtained by repeating the optimization process for different λ values. Multi-
objective portfolio optimization, however, is the simultaneous maximization of return
(Equation (5)) and minimization of risk (Equation (4)) by tuning the weights to balance these
conflicting objectives.

3. Optimization Algorithms for Portfolio Optimization

There have been many applications of optimization algorithms to both the single-
objective and multi-objective portfolio optimization problems [3]. This section presents
a subset of meta-heuristics that have been applied to portfolio optimization. Section 3.1
introduces PSO—a popular approach to single-objective portfolio optimization. Set-based
particle swarm optimization, a recently proposed approach to single-objective optimiza-
tion [10], is explained in Section 3.2. Multi-guide particle swarm optimization (this paper is
the first to apply MGPSO to multi-objective portfolio optimization) is discussed in Section
3.3. Sections 3.4 and 3.5 present NSGA-II and SPEA2, respectively, which have previously
been applied to multi-objective portfolio optimization [14–20].

3.1. Particle Swarm Optimization

PSO, which was first proposed in 1995 by Eberhart and Kennedy, is a single-objective
optimization algorithm [23]. The algorithm iteratively updates its collection of particles
(referred to as a swarm) to find solutions to the optimization problem under consideration.
The position of a particle, which is randomly initialized, is a candidate solution to the
problem. In the case of portfolio optimization, the position of a particle represents the
weights used in the calculation of Equation (3). Each particle also has a velocity (initially a
vector of zeros) that guides the particle to more promising areas of the search space. The
position of a particle is updated with their velocity at each time step t to produce a new
candidate solution. The velocity of a particle is influenced by the previous velocity of
the particle and social and cognitive guides. The cognitive guide is a particle’s personal
best-known solution that has been found thus far, and the social guide is the best-known
solution found thus far within a neighborhood (network) of particles. A global network
means that the social guide is the best-known solution found by the entire swarm thus
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far, which is what is used in this paper. This paper also uses an inertia-weighted velocity
update to regulate the trade-off between exploitation and exploration [24]. The velocity
update is defined as

vi(t + 1) = wvi(t) + c1r1,i(t)(yi(t)− xi(t))c2r2,i(t)(ŷi(t)− xi(t)) (8)

where vi is the velocity of particle i; w is the inertia weight; c1 and c2 are acceleration
coefficients that control the influence of the cognitive and social guides, respectively; r1 and
r2 are vectors of random values sampled from a standard uniform distribution in the range
[0, 1]; yi is the cognitive guide of particle i; ŷi is the social guide of particle i. A particle’s
position is updated using

xi(t + 1) = xi(t) + vi(t + 1). (9)

Algorithm 1 contains pseudo-code for PSO.

Algorithm 1: Particle Swarm Optimization
t = 0;
Let f be the objective function;
Create and initialize a swarm, S, of n particles uniformly within a predefined
hypercube of dimension d;

for each particle i = 1, · · · , n do
Let yi represent the personal best position of particle xi, initialized to xi(t);
Let ŷi represent the neighborhood best position of particle xi, initialized to the
best xi in i’s neighborhood;

Initialize vi(t) to 0;
while stopping condition is not true do

for each particle i = 1, · · · , n do
if f (xi(t)) < f (yi(t)) then

yi(t + 1) = xi(t);

for particles î with particle i in their neighborhood do
if f (xi(t)) < f (ŷi(t)) then

ŷi(t + 1) = xi(t);

for each particle i = 1, · · · , n do
Update particle i’s velocity using Equation (8);
Update particle i’s position using Equation (9);

t = t + 1;

3.2. Set-Based Particle Swarm Optimization

PSO was designed to solve continuous-valued optimization problems. However, there
are many real-world optimization problems that do not have continuous-valued decision
variables, e.g., feature selection problems, assignment problems, and scheduling problems.
The set-based PSO (SBPSO) algorithm combines PSO to find solutions to combinatorial
optimization problems where solutions can be represented as sets [25]. SBPSO uses sets to
represent particle positions, which allows for positions (i.e., solutions) of varying sizes.

SBPSO was proposed, and later improved, for portfolio optimization [26]. SBPSO
for portfolio optimization is a two-part search process, where (1) subsets of assets are
selected and (2) the weights of these assets are optimized. The asset weights are optimized
using PSO according to Equation (3). The PSO used for weight optimization runs until it
converges, i.e., when there is no change in the objective function value over three iterations.
The result of this weight optimization stage (summarized in Algorithm 2) is the best
solution found by the PSO. The objective function value of the best solution is assigned
to the corresponding set–particle. In addition, if there are any zero-weighted assets in
the best solution, the corresponding assets in the set–particle are removed. There is a
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special case where a set–particle contains only one asset. In such a case, the objective
function is immediately calculated, since the asset can only ever have a weight of 1.0 given
Equation (6).

Algorithm 2: Weight Optimization for Set-Based Portfolio Optimization
Let t represent the current iteration;
Let f be the objective function;
Let Xi represent set–particle i;
Minimize f using Algorithm 1 for tw iterations with assets in Xi;
t = t + tw;
Return the best objective function value and corresponding weights found by
Algorithm 1;

Like PSO, SBPSO also has position and velocity updates. However, these are redefined
for sets. A set–particle’s position, Xi, is Xi ← P(U), where P is the power set of U, and
U is the universe of all elements in regard to a specific problem domain. For portfolio
optimization, U is the set of all assets. The velocity of a set–particle is a set of operations to
add or remove elements to or from a set–particle’s position. These operations are denoted
as (+, e) if an operation is to add an element to the position or (−, e) to remove an element
from the position, where e ∈ U. Formally, the velocity update is

Vi(t + 1) = λc(t)r1 ⊗ (Yi(t)	 Xi(t))

⊕ λc(t)r2 ⊗ (Ŷi(t)	 Xi(t))

⊕ (1− λc(t))r3 ⊗ Ai(t)

(10)

where Vi is the velocity of set–particle i; λc(t) is an exploration balance coefficient equal
to t

nt
, where nt is the maximum number of iterations; r1, r2, and r3 are random values,

each sampled from a standard uniform distribution in the range [0, 2]; X(t) is the position
of set–particle i; Yi(t) is the cognitive guide of set–particle i; Ŷ(t) is the social guide of
set–particle i; Ai(t) is shorthand for U\(Xi(t)∪Yi(t)∪ Ŷi(t)). The positions of set–particles
are updated by using

Xi(t + 1) = Xi(t)� Vi(t + 1). (11)

The operators ⊗, 	, ⊕, and � are defined in Appendix A, and the pseudo-code for
SBPSO is given in Algorithm 3.

To better understand SBPSO for portfolio optimization, consider the following exam-
ple. There are 50 assets in the universe. Initially, a set–particle randomly selects a subset
of assets, say {5, 12, 23, 26, 31}, from the universe. These assets are then used to create a
continuous search space for the inner PSO. Each dimension in the search space of the PSO
represents the weight of an asset. Then, the PSO optimizes the asset weights for a fixed
duration. Table 1 contains example results obtained by the weight optimizer.

Table 1. Example: Assets and their corresponding weights.

Assets 5 12 23 26 31

Weights 0.31 0.16 0.11 0.05 0.37

The combination of the assets and weightings is a candidate portfolio. Continuing
with the example, Figure 1 visualizes the portfolio.
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The combination of the assets and weightings is a candidate portfolio. Continuing 223

with the example, the resulting portfolio is visualized below. 224
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3.3. Multi-guide Particle Swarm Optimization 225

MGPSO is a multi-objective adaptation of PSO proposed by Scheepers et al [14]. The 226

MGPSO utilizes multiple swarms to find solutions to MOOPs and an archive to share 227

non-dominated solutions between the subswarms. 228

For an m-objective optimization problem, the MGPSO uses m subswarms, where each
subswarm optimizes one of the objective functions. Non-dominated solutions found by
the subswarms are added to a shared archive. Similar to the cognitive and social guides,
MGPSO adds an archive guide to the velocity update equation thereby attracting particles
to non-dominated solutions found within the archive. Velocity is updated using

vi(t + 1) = wvi(t) + c1r1(yi(t)− xi(t))

+ λic2r2(ŷi(t)− xi(t))

+ (1− λi)c3r3(âi(t)− xi(t))

(17)

where r3 is a vector of random values sampled from a standard uniform distribution in [0,1]; 229

c3 is the archive acceleration coefficients respectively; âi is the archive guide for particle i 230

and λi is the archive balance coefficient. 231

The archive balance coefficient balances the influence of the archive and that of the 232

social component. Smaller values of λi will exploit the archive guide while proportionally 233

decreasing the influence of the social guide. Similarly, larger values of λi encourage the 234

social guide while discouraging the archive guide. The MGPSO initializes λi for each 235

particle by randomly selecting a value from a uniform distribution in the range [0, 1] [14]. 236

The sampled λi values remain static throughout the duration of the search. Random λi 237

values have been shown to increase convergence to the POF while maintaining diversity in 238

non-dominated solutions [14]. 239

The archive guide is the least crowded non-dominated solution selected from a ran- 240

domly created tournament of archive solutions. Crowding distance, a measure of how 241

close the solutions are to one another, is used to determine the least crowded solution [15]. 242

Scheepers et al. found through empirical analysis that tournament sizes of two and three 243

yielded good results [14]. The least crowded solution will facilitate a more diverse Pareto 244

optimal front, because the MGPSO will focus more on sparsely populated areas of the 245

objective space. Algorithm 4 contains pseudo code for the MGPSO. 246

The original MGPSO was implemented by setting the maximum capacity of the 247

archive to the number of particles within the search space. However, any archive size - even 248

unbounded, can be used. This number does not change over time. Once a non-dominated 249

solution is found, and it is not dominated by any other solution in the archive using the 250

Figure 1. Example: Assets and their corresponding weights as pie chart.

Algorithm 3: Set-Based Particle Swarm Optimization for Portfolio Optimization
t = 0;
Let f be the function described in Algorithm 2;
Create and initialize a swarm, S, of n particles uniformly from the set universe U;
for each particle i = 1, · · · , n do

Let Yi represent the personal best position of particle Xi, initialized to Xi(t);
Let Ŷi represent the neighborhood best position of particle Xi, initialized to the
best Xi in i’s neighborhood;

Initialize Vi(t) to the empty set;

while stopping condition is not true do
for each particle i = 1, · · · , n do

if f (Xi(t)) < f (Yi(t)) then
Yi(t + 1) = Xi(t);

for particles î with particle i in their neighborhood do
if f (Xi(t)) < f (Ŷi(t)) then

Ŷi(t + 1) = Xi(t);

for each particle i = 1, · · · , n do
Update velocity using Equation (10);
Update position using Equation (11);

t = t + 1;
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3.3. Multi-Guide Particle Swarm Optimization

MGPSO is a multi-objective multi-swarm implementation of PSO that uses an archive
to share non-dominated solutions between the swarms [27]. Each of the swarms optimizes
one of the m objectives for an m-objective optimization problem. The archive, which
can be bounded or unbounded, stores non-dominated solutions found by the swarms.
MGPSO adds a third guide to the velocity update function, the archive guide, which
attracts particles to previously found non-dominated solutions. The archive guide is the
winner of a randomly created tournament of archive solutions. The winner is the least
crowded solution in the archive. Crowding distance is used to measure how close the
solutions are to one another [12]. Alongside the introduction of the archive guide is the
archive balance coefficient, i.e., λi. The archive balance coefficient is a value from a uniform
distribution in the range [0, 1] that remains fixed throughout the search. The archive balance
coefficient controls the influence of the archive and social guides, where larger values favor
the social guide and smaller values favor the archive guide.

The proposal of MGPSO also defines an archive management protocol (summarized
in Algorithm 4) according to which a solution is only inserted into the archive if it is not
dominated by any existing solution in the archive [27]. Any pre-existing solutions in the
archive that are dominated by the newly added solution are removed. In the case that a
bounded archive is used and the archive is full, the most crowded solution is removed.

Algorithm 4: Archive Insert Policy
Let A represent the archive;
Let nA represent the archive size;
Let Sk represent subswarm k;
Let c represent the maximum capacity of the archive, e.g., ∑m

k=1 Sk · nsk ;
Let y be the solution to insert into the archive;
if for all solutions xi, · · · , xnA in A, there is no solution that dominates y then

if n + 1 ≤ c then
Insert into A;

else
Delete most crowded solution;
Insert into A;

Remove any solutions in A that are dominated by y;
else

Do not insert into A;

Formally, the velocity update is

vi(t + 1) = wvi(t) + c1r1(yi(t)− xi(t))

+ λic2r2(ŷi(t)− xi(t))

+ (1− λi)c3r3(âi(t)− xi(t))

(12)

where r3 is a vector of random values sampled from a standard uniform distribution in
[0,1]; c3 is the archive acceleration coefficient; âi is the archive guide for particle i. Erwin
and Engelbrecht recently proposed an approach for the MGPSO that randomly samples
control parameter values from theoretically derived stability conditions, yielding similar
performance to that when using tuned parameters [21,27]. Algorithm 5 contains pseudo-
code for MGPSO.
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Algorithm 5: Multi-Guide Particle Swarm Optimization
t = 0;
for each objective k = 1, · · · , m do

Create and initialize a swarm, Sk, of nsk particles uniformly within a
predefined hypercube of dimension d;

Let fk be the objective function;
for each particle i = 1, · · ·, Sk · nsk do

Let Sk · yi represent the personal best position of particle Sk · xi, initialized
to Sk · xi(t);

Let Sk · ŷi represent the neighborhood best position of particle Sk · xi,
initialized to the best Sk · xi in i’s neighborhood;

Initialize Sk · vi(t) to 0;
Initialize Sk · λi ∼ U(0, 1);

while stopping condition is not true do
for each objective k = 1, · · · , m do

for each particle i = 1, · · · , Sk · nsk do
if fk(Sk · xi(t)) < fk(Sk · yi(t)) then

Sk · yi(t + 1) = Sk · xi(t);

for particles î with particle i in their neighborhood do
if fk(Sk · xi(t)) < fk(Sk · ŷi(t)) then

Sk · ŷi(t + 1) = Sk · xi(t);

Update the archive with solution Sk · xi(t) using Algorithm 4;

for each objective k = 1, · · · , m do
for each particle i = 1, · · · , Sk · nsk do

Select a solution, Sk · âi(t), from the archive using tournament selection;
Update particle Sk · i’s velocity using Equation (12);
Update particle Sk · i’s position using Equation (9);

t = t + 1;

3.4. Non-Dominated Sorting Genetic Algorithm II

NSGA-II is a multi-objective GA that ranks and sorts each individual in the population
according to its non-domination level [12]. Furthermore, the crowding distance is used
to break ties between individuals with the same rank. The use of the crowding distance
maintains a diverse population and helps the algorithm explore the search space.

The algorithm uses a single population, Pt, of a fixed size, n. At each iteration, a new
candidate population, Ct, is created by performing crossover (simulated binary crossover)
and mutation (polynomial mutation) operations on Pt. The two populations are combined
to create Qt. Qt is then sorted by Pareto dominance. Non-dominated individuals are
assigned a rank of one and are separated from the population. Individuals that are non-
dominated in the remaining population are assigned a rank of two and are separated from
the population. This process repeats until all individuals in the population have been
assigned a rank. The result is a population separated into multiple fronts, where each front
exhibits more Pareto-optimality than the last.

The population, Pt+1, for the next generation is created by selecting individuals from
the sorted fronts. Elitism is preserved by transferring individuals that ranked first into
the next generation. If the number of individuals in the first front is greater than n, then
the least crowded n individuals (determined by the crowding distance) are selected. If the
number of individuals in the first front is less than n, then the least crowded individuals
from the second front are selected, and then those from the third front, and so on, until
there are n individuals in Pt+1.
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Algorithm 6: Non-Dominated Sorting Genetic Algorithm II
t = 0;
Initialize a random population, Pt, with n individuals
while stopping condition is not true do

Generate offspring population, Ct, using binary tournament selection,
crossover, and mutation

Evaluate all individuals in Pt and Ct
Combine Pt and Ct to create Qt
Sort and rank Qt according by Pareto ranking
Select individuals for the new population
t = t + 1;

3.5. Strength Pareto Evolutionary Algorithm 2

SPEA2 uses an archive, At, to ensure that elitism is maintained across generations.
SPEA2 also uses a fine-grained fitness assignment. The fitness of an individual takes into
account the number of individuals it dominates, the number of solutions it is dominated
by, and its density in relation to other individuals.

Like NSGA-II, SPEA2 uses a single population, Pt, of a fixed size, n. However, Pt is
created by performing crossover (simulated binary crossover) and mutation (polynomial
mutation) operations on At. Individuals in At and Pt are assigned strength values. The
strength value Si of individual i is the number of individuals that i dominates. Each in-
dividual also has what is referred to as a raw fitness value, Ri. Ri is calculated as the
summation of the strength values of the individuals that dominate i. Then, to account
for the scenario where many, if not all, of the individuals are non-dominated, a density
estimator is also added to the fitness calculation. The distance between individual i and
every other individual in Rt is calculated and sorted in increasing order. The k-th individual
in the sorted list is referred to as αk

i . The density of individual i is calculated as

D(i) =
1

αk
i + 2

(13)

Finally, the fitness of individual i is calculated using:

Fi = Ri + Di (14)

All individuals with Fi ≤ 1 are copied over into the archive for the next generation. If
the number of individuals in the archive is not enough, the remaining individuals in Qt are
sorted based on Fi in increasing order. The best individuals are selected from the sorted list
until the archive is full. When there are too many good-quality individuals, i.e., individuals
with Fi ≤ 1, to be inserted into the archive, the individual that has the minimum distance
to another individual is removed. This process is repeated until there are n individuals. In
the case where there are several individuals with the same minimum distance, then the
distances of those individuals to the second, third, etc. closest individuals are considered
until the tie is broken.
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Algorithm 7: Strength Pareto Evolutionary Algorithm 2
t = 0;
Initialize (randomly) an archive, At, with n individuals
while stopping condition is not true do

Generate population, Pt, using binary tournament selection, crossover, and
mutation

Calculate Fi for each individual i in Pt and At
Update archive to produce At+1
t = t + 1;

4. Multi-Objective Set-Based Portfolio Optimization Algorithm

This section proposes a multi-objective set-based algorithm for multi-objective portfo-
lio optimization. Elements from MGPSO are incorporated into SBPSO to enable SBPSO to
solve multiple objectives simultaneously. The proposed approach, referred to as MGSBPSO,
uses multiple swarms, where each swarm optimizes one of the objectives in the asset space.
Thus, there is a swarm for selecting assets that minimize risk and a swarm for selecting
assets that maximize profit. As for MGPSO, non-dominated solutions found by the swarms
are stored in an archive (initially empty) of a fixed size. The archive management process
described in Section 3.3 is also used in the MGSBPSO. However, the crowding distance
of the non-dominated solutions in the archive is calculated with respect to their objective
function values instead of their set-based positions because the set-based positions lack
distance in the traditional sense. Non-dominated solutions are selected from the archive
using tournament selection and are used to guide the particles to non-dominated regions
of the search space. Like the archive management strategy, the crowding distance of the
non-dominated solutions in the tournament is calculated with respect to their objective
function values. Furthermore, the successful modifications identified by Erwin and Engel-
brecht are also included in the MGSBPSO, namely, the removal of zero-weighted assets,
the immediate calculation of the objective function for single-asset portfolios, the decision
to allow the weight optimizer to execute until it converges, only allowing assets to be
removed via the weight determination stage, and the exploration balance coefficient for
improved convergence behavior. Taking these improvements, as well as the archive guide,
into account, the velocity equation is

Vi(t + 1) = λc(t)r1 ⊗ (Yi(t)	 Xi(t))

⊕ λiλc(t)r2 ⊗ (Ŷi(t)	 Xi(t))

⊕ (1− λi)λcr3 ⊗ (Âi(t)	 Xi(t))

⊕ (1− λc(t))r4 ⊗ Ai(t)

(15)

where r1, r2, r3, and r4 are random values, each sampled from a standard uniform distribu-
tion in the range [0, 1]; λc is the linearly increasing exploration balance coefficient; Xi is the
position of particle i; Yi is the best position found by particle i; Ŷi is the best position within
particle i’s neighborhood; Âi is the archive guide for particle i; the influence of the archive
guide is controlled by the archive coefficient λi; Âi is shorthand for U\(X(t)∪Y(t)∪ Ŷ(t)),
where U is the set universe, and ⊗ and ⊕ are the set-based operators defined in Section 3.2.

For the purpose of weight determination, MGPSO with the newly proposed tuning-
free approach is used. Hence, asset weight determination is also a multi-objective optimiza-
tion task. For each set–particle, an MGPSO is instantiated to optimize the corresponding
asset weights with regard to risk and return. Figure 2 illustrates the overall structure of the
swarms in MGSBPSO and their objective.
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MGSBPSO s1 to select as-
sets that minimize risk

MGPSO s1 to
minimize risk

MGPSO s2 to
maximize return

MGSBPSO s2 to select as-
sets that maximize return

MGPSO s1 to
minimize risk

MGPSO s2 to
maximize return

Figure 2. MGSBPSO structure.

Each MGPSO in Figure 2 has its own archive. Specifically, the MGPSO for MGSBPSO
s1 has its own archive and the MGPSO for MGSBPSO s2 has its own archive. There is also
a global archive, the MGSBPSO archive, which is used to store non-dominated solutions
found by either MGPSO. An MGPSO terminates when no non-dominated solutions are
added to their archives over three iterations. The non-dominated solutions in the archive
of an MGPSO are then inserted into the global archive along with the corresponding set
position. Lastly, the best objective function value of the non-dominated solutions in an
MGPSO archive is assigned to the corresponding set–particle with regard to the objective
of the swarm that the set–particle is in. For example, if the set–particle is in the swarm for
minimizing risk, then the best risk value of the non-dominated solutions in the MGPSO
archive is used. Algorithm 8 presents the pseudocode for the multi-objective weight
optimization process and how the MGPSO archives interact with the global archive. The
pseudocode for MGSBPSO is given in Algorithm 9.

The proposed MGSBPSO is expected to perform similarly to the MGPSO for multi-
objective portfolio optimization, since MGSBPSO makes use of MGPSO for asset weight
optimization. It is also expected that the reduction in dimensionality by MGSBPSO will
result in higher-quality solutions than those of MGPSO for larger portfolio problems.

Algorithm 8: Multi-Objective Weight Determination for Set-Based Portfolio
Optimization

Let t represent the current iteration;
Let Sk · Xi represent set–particle i in MGSBPSO swarm k;
Minimize risk and maximize return using MGPSO with assets in Xi until no
solutions are inserted into the MGPSO archive;

t = t + tw;
Insert the non-dominated solutions in the MGPSO archive with assets in Sk · Xi
into the global archive;

if k = 1 then
Return the best risk value and corresponding weights found by the MGPSO;

else
Return the best return value and corresponding weights found by the MGPSO;
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Algorithm 9: Multi-Guide Set-Based Particle Swarm Optimization
t = 0;
for each objective k = 1, · · · , m do

Create and initialize a swarm, Sk, of nsk particles uniformly within a
predefined set universe U;

Let fk be the function described in Algorithm 8; for each particle
i = 1, · · ·, Sk · nsk do

Let Sk ·Yi represent the personal best position of particle Sk · Xi, initialized
to Sk · Xi(t);

Let Sk · Ŷi represent the neighborhood best position of particle Sk · Xi,
initialized to the best Sk · Xi in particle i’s neighborhood;

Initialize Vi(t) to {}, i.e., the empty set;

while stopping condition is not true do
for each objective k = 1, · · · , m do

for each particle i = 1, · · · , Sk · nsk do
if fk(Sk · Xi(t)) < fk(Sk ·Yi(t)) then

Sk ·Yi(t + 1) = Sk · Xi(t);

for particles î with particle i in their neighborhood do
if fk(Sk · Xi(t)) < fk(Sk · Ŷi(t)) then

Sk · Ŷi(t + 1) = Sk · Xi(t);

Update the global archive with solution Sk · Xi(t);

for each objective k = 1, · · · , m do
for each particle i = 1, · · · , Sk · nsk do

Select a solution, Sk · Âi(t), from the global archive using tournament
selection;

Update velocity using Equation (15);
Update position using Equation (11);

t = t + 1;

5. Empirical Process

This section details the empirical process used to assess the performance of the pro-
posed MGSBPSO. The performance of MGSBPSO is compared with that of MGPSO (using
the tuning-free approach), NSGA-II, and SPEA2, where the solution representation is a
fixed-length vector of floats. SBPSO is also included to determine if the algorithms perform
on par or better.

Section 5.1 describes the implementation of the algorithms. The benchmark problems
are discussed in Section 5.2. Section 5.3 describes the constraint-handling technique. The
performance measures used are listed in Section 5.4, and Section 5.5 presents the control
parameter tuning process used.

5.1. Implementation of Algorithms

SBPSO, MGPSO, and MGSBPSO were implemented by using the Computational
Intelligence library (https://github.com/ciren/cilib, accessed on 12 March 2022), and
NSGA-II and SPEA2 were implemented by using the JMetal framework [28].

5.2. Benchmark Problems

The benchmark problems in the OR Library (http://people.brunel.ac.uk/mastjjb/jeb/
orlib/portinfo.html, accessed on 12 March 2022), which are summarized in Table 2, were
used to evaluate the performance of the algorithms. The benchmark problems are based on
weekly price data from March 1992 to September 1997—specifically, the mean and standard
deviation of the return of each asset and the correlation values for all possible pairs of

https://github.com/ciren/cilib
http://people.brunel.ac.uk/mastjjb/jeb/orlib/portinfo.html
http://people.brunel.ac.uk/mastjjb/jeb/orlib/portinfo.html
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assets. Furthermore, the OR Library provides a POF that contains 2000 solutions for each
benchmark problem. Each solution is a pair of risk and return values.

Table 2. Summary of the OR Library datasets for portfolio optimization.

Stock Market Region Number of Assets

Hang Seng Hong Kong 31
DAX 100 Germany 85
FTSE 100 UK 89
S&P 100 USA 98
Nikkei 225 Japan 225

MGPSO, MGSBPSO, NSGA-II, and SPEA2 were tasked with minimizing (Equation (4))
and maximizing the return (Equation (5)) for each benchmark problem. The algorithms
used a population size of 50. In the case of MGPSO and MGSBPSO, 25 particles were
allocated to each swarm. SPEA2, MGPSO, and MGSBPSO used a bounded archive of 50
solutions. The final population or archive (in the case of SPEA2, MGPSO, and MGSBPSO)
was considered as the obtained POF. SBPSO, which was included in the analysis as a
baseline algorithm, optimized Equation (3) for 50 evenly spaced λ values. Thus, a POF of 50
non-dominated solutions was produced.

5.3. Constraint Handling

To satisfy Equation (7), any negative asset weights in a candidate solution were
treated as zero. Candidate solutions were normalized to satisfy Equation (6). For example,
the position (2.34,−3.12, 0.95, 1.84, 5.33) violates both constraints. Using the described
constraint-handling technique, the position then becomes (0.22, 0.0, 0.09, 0.18, 0.51).

5.4. Performance Measures

Results for each benchmark were collected over 30 independent runs, where each run
lasted 5000 iterations (or 250,000 objective function evaluations). After each independent
run, the generational distance (GD), inverted generational distance (IGD), and hypervolume
(HV) scores were calculated for each algorithm. GD, IGD, and HV are Pareto-optimality
measures used to assess the quality of the obtained POFs and are further explained in
Appendix B. The mean and standard deviation of these scores (over the 30 independent
runs) were tabulated. One-tailed Mann–Whitney U tests with a level of significance of
95% were used to test for any meaningful statistically significant differences between
two algorithms. The results of the statistical significance tests were used to rank the
algorithms. If an algorithm was statistically significantly better than another algorithm,
this was considered a win. Conversely, if an algorithm was statistically significantly
worse than another algorithm, this was considered a loss. If there were no statistically
significant differences in performance between an algorithm and another algorithm, this
was considered a draw. A rank was assigned to each algorithm based on the number
of wins.

5.5. Control Parameter Tuning

The control parameters of NSGA-II and SPEA2 were optimized for each benchmark
problem so that the algorithms could be compared fairly. To do so, parameter sets were
generated using sequences of Sobol pseudo-random numbers that spanned the parameter
space of each algorithm [29]. The parameter spaces for NSGA-II and SPEA2 were the same.
The crossover probability (ρc) and mutation probability (ρm) were generated in the range
[0.00, 1.00], and the crossover distribution index (ιc) and mutation distribution index (ιc)
were generated in the range [1, 50]. For NSGA-II and SPEA2, 128 parameter sets were
evaluated. The parameter sets were then ranked according to their GD, IGD, and HV scores.
The best overall parameter set for each benchmark was selected. Tables 3 and 4 list the
optimal control parameter values for NSGA-II and SPEA2, respectively.
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Table 3. Optimal control parameter values for the non-dominated sorting genetic Algorithm 2.

Problem ρc ιc ρm ιm

Hang Seng 0.3984 1.0 0.8203 46.0
DAX 100 0.4843 41.0 0.5468 44.0
FTSE 100 0.3437 35.0 0.5937 32.0
S&P 100 0.3437 35.0 0.5937 32.0
Nikkei 225 0.4531 17.0 0.8906 42.0

Table 4. Optimal control parameter values for the strength pareto evolutionary Algorithm 2.

Problem ρc ιc ρm ιm

Hang Seng 0.5859 4.0 0.2578 5.0
DAX 100 0.0078 33.0 0.5234 19.0
FTSE 100 0.4843 41.0 0.546 44.0
S&P 100 0.4843 41.0 0.546 44.0
Nikkei 225 0.4531 17.0 0.890 42.0

SBPSO and MGSBPSO did not require control parameter tuning because these algo-
rithms used an exploration balance coefficient. MGPSO used the tuning-free approach.
Likewise, the MGPSO weight optimizer for MGSBPSO also used the tuning-free approach.
The PSO weight optimizer for SBPSO used the recommended parameters (w = 0.729844 and
c1 = c2 = 1.496180 [30]) due to the variability of set–particles and the problems created.

6. Results

This section discusses the results of SBPSO, MGPSO, NSGA-II, SPEA2, and MGSBPSO
for each benchmark problem. Section 6.1 examines the Hang Seng results. The DAX 100
and FTSE 100 results are discussed in Sections 6.2 and 6.3, respectively. Section 6.4 discusses
the S&P 100 results, and the Nikkei 225 results are discussed in Section 6.5.

6.1. Hang Seng

Table 5 shows that for the Hang Seng benchmark problem (the smallest benchmark
problem), all of the algorithms performed similarly. SBPSO found solutions that were close
to POF and diverse. Its multi-objective adaptation obtained a slightly higher GD score,
but so did all of the multi-objective algorithms. On average, NSGA-II obtained portfolios
with more return, but also more risk. The proposed MGSBPSO had the lowest average
risk value, while MGPSO had a higher average risk value and worse return. Table 6 shows
that SPEA2 was the highest-ranked algorithm, while MGSBPSO ranked last. However, the
differences between the values obtained by the algorithms are small. Furthermore, Figure 3
shows that all algorithms were able to approximate the true POF.

Table 5. Hang Seng results for each performance measure.

R σ̄ GD IGD HV

SBPSO x̄ 0.007607 0.001897 0.000218 0.000212 0.781949
σ 0.000003 0.000000 0.000045 0.000002 0.026784

MGPSO x̄ 0.007261 0.001967 0.000723 0.000218 1.192743
σ 0.000705 0.000407 0.000262 0.000025 0.002658

NSGA-II x̄ 0.007859 0.002171 0.000824 0.000200 1.195125
σ 0.000103 0.000063 0.000064 0.000006 0.000737

SPEA2 x̄ 0.007395 0.001921 0.000659 0.000173 1.194271
σ 0.000099 0.000046 0.000042 0.000003 0.000345

MGSBPSO x̄ 0.007382 0.001814 0.000761 0.000252 1.190891
σ 0.000552 0.000326 0.000077 0.000029 0.001930
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Table 6. Hang Seng rankings for each performance measure.

GD IGD HV Overall

SBPSO

Wins 4 1 0 5
Losses 0 2 4 6
Draws 0 1 0 1

Difference 4 −1 −4 −1
Rank 1 3 5 4

MGPSO

Wins 2 1 2 5
Losses 1 2 2 5
Draws 1 1 0 2

Difference 1 −1 0 0
Rank 2 3 3 3

NSGA−II

Wins 0 3 4 7
Losses 4 1 0 5
Draws 0 0 0 0

Difference −4 2 4 2
Rank 4 2 1 2

SPEA2

Wins 2 4 3 9
Losses 1 0 1 2
Draws 1 0 0 1

Difference 1 4 2 7
Rank 2 1 2 1

MGSBPSO

Wins 1 0 1 2
Losses 3 4 3 10
Draws 0 0 0 0

Difference −2 −4 −2 −8
Rank 3 4 4 5

(a) True POF (b) SBPSO (c) MGPSO

(d) NSGA-II (e) SPEA2 (f) MGSBPSO

Figure 3. Obtained Pareto-optimal fronts for Hang Seng.

6.2. DAX 100

The second benchmark problem included 54 more assets than the previous benchmark
problem—a notable increase. The single-objective SBPSO performed well, with the lowest
average risk value and second highest average return value (refer to Table 7. MGSBPSO
also performed well, with average values close to those of SPEA2. The standard deviations
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of the results for SPEA2 were smaller than those of MGSBPSO, which could explain the
large difference in rankings in Table 8. SPEA2 ranked first, while MGSBPSO ranked last.
NSGA-II ranked second, MGPSO ranked third, and SBPSO ranked fourth. However, Figure
4d,e show that NSGA-II and SPEA2 (respectively) were only able to approximate a part of
the true POF shown in Figure 4a. The PSO algorithms were able to approximate the true
POF well, particularly SBPSO and MGSBPSO.

Table 7. DAX 100 results for each performance measure.

R σ̄ GD IGD HV

SBPSO x̄ 0.007607 0.001897 0.000218 0.000212 0.781949
σ 0.000003 0.000000 0.000045 0.000002 0.026784

MGPSO x̄ 0.007261 0.001967 0.000723 0.000218 1.192743
σ 0.000705 0.000407 0.000262 0.000025 0.002658

NSGA-II x̄ 0.007859 0.002171 0.000824 0.000200 1.195125
σ 0.000103 0.000063 0.000064 0.000006 0.000737

SPEA2 x̄ 0.007395 0.001921 0.000659 0.000173 1.194271
σ 0.000099 0.000046 0.000042 0.000003 0.000345

MGSBPSO x̄ 0.007382 0.001814 0.000761 0.000252 1.190891
σ 0.000552 0.000326 0.000077 0.000029 0.001930

Table 8. DAX 100 rankings for each performance measure.

GD IGD HV Overall

SBPSO

Wins 4 1 0 5
Losses 0 2 4 6
Draws 0 1 0 1
Difference 4 −1 −4 −1
Rank 1 3 5 4

MGPSO

Wins 2 1 2 5
Losses 1 2 2 5
Draws 1 1 0 2
Difference 1 −1 0 0
Rank 2 3 3 3

NSGA−II

Wins 0 3 4 7
Losses 4 1 0 5
Draws 0 0 0 0
Difference −4 2 4 2
Rank 4 2 1 2

SPEA2

Wins 2 4 3 9
Losses 1 0 1 2
Draws 1 0 0 1
Difference 1 4 2 7
Rank 2 1 2 1

MGSBPSO

Wins 1 0 1 2
Losses 3 4 3 10
Draws 0 0 0 0
Difference −2 −4 −2 −8
Rank 3 4 4 5
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(a) True POF (b) SBPSO (c) MGPSO

(d) NSGA-II (e) SPEA2 (f) MGSBPSO

Figure 4. Obtained Pareto-optimal fronts for DAX 100.

6.3. FTSE 100

FTSE 100 is a similar-sized benchmark problem to DAX 100; however, the outcomes of
the results obtained by the algorithms differ. For example, Table 9 shows that SBPSO, MG-
PSO, and MGSBPSO (which had previously obtained more risk-averse solutions) obtained,
on average, solutions that were more profitable and risky than those of NSGA-II and SPEA2.
Likewise, Table 10 shows that SBPSO, MGPSO, and MGSBPSO ranked higher than NSGA-II
and SPEA2. Figure 5 shows that SBPSO and MGSBPSO were able to approximate the true
POF better than the other algorithms. NSGA-II and SPEA2 partially approximated (as
indicated by the shorter lines) and were unable to find a range of non-dominated solutions.
MGPSO, on the other hand, found a variety of non-dominated solutions, but as seen with
the multiple arcs branching out, not all independent runs were able to approximate the
true POF.

Table 9. FTSE 100 results for each performance measure.

R σ̄ GD IGD HV

SBPSO x̄ 0.006683 0.000785 0.000247 0.000235 0.741994
σ 0.000007 0.000001 0.000038 0.000007 0.049170

MGPSO x̄ 0.005239 0.000570 0.001111 0.000258 1.189333
σ 0.000508 0.000097 0.000606 0.000127 0.003496

NSGA-II x̄ 0.004446 0.000282 0.000469 0.000548 1.180821
σ 0.000130 0.000014 0.000047 0.000037 0.001294

SPEA2 x̄ 0.004403 0.000287 0.000506 0.000469 1.181466
σ 0.000127 0.000015 0.000055 0.000050 0.001235

MGSBPSO x̄ 0.005079 0.000438 0.001003 0.000241 1.186224
σ 0.000249 0.000048 0.000076 0.000026 0.001914
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Table 10. FTSE 100 rankings for each performance measure.

GD IGD HV Overall

SBPSO

Wins 4 2 0 6
Losses 0 1 4 5
Draws 0 1 0 1
Difference 4 1 −4 1
Rank 1 2 5 2

MGPSO

Wins 1 4 4 9
Losses 3 0 0 3
Draws 0 0 0 0
Difference −2 4 4 6
Rank 4 1 1 1

NSGA−II

Wins 3 0 1 4
Losses 1 4 3 8
Draws 0 0 0 0
Difference 2 −4 −2 −4
Rank 2 4 4 5

SPEA2

Wins 2 1 2 5
Losses 2 3 2 7
Draws 0 0 0 0
Difference 0 −2 0 −2
Rank 3 3 3 4

MGSBPSO

Wins 0 2 3 5
Losses 4 1 1 6
Draws 0 1 0 1
Difference −4 1 2 −1
Rank 5 2 2 3

(a) True POF (b) SBPSO (c) MGPSO

(d) NSGA-II (e) SPEA2 (f) MGSBPSO

Figure 5. Pareto-optimal fronts obtained for FTSE 100.

6.4. S&P 100

Table 11 shows that, for the S&P 100 benchmark problem, NSGA-II, SPEA2, MGPSO,
and MGSBPSO obtained similar averages for return and risk. SBPSO, on the other hand,
obtained solutions with more return and risk. NSGA-II and SPEA2 were the most risk-
averse algorithms with lower return values. The low return and risk values of NSGA-II and
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SPEA2 make sense, as Figure 6 shows that these algorithms were (only) able to approximate
the lower part of the true POF. SBPSO ranked first, as shown in Table 12, but with the
worst HV ranking. MGPSO and MGSBPSO ranked second and third, respectively, while
the multi-objective GAs, SPEA2, and NSGA-II ranked fourth and last, respectively. Lastly,
Figure 6c shows that MGSBPSO was able to approximate the upper part of the true POF
the best out of the multi-objective algorithms. MGSBPSO reached the stopping condition in
110 s, and MGPSO reached it in 160 s. SPEA2 and NSGA-II, on the other hand, were faster
and reached the stopping condition in approximately 80 s. Note that the difference in time
could be due to the different programming libraries used to implement the algorithms (see
Section 5.1).

Table 11. S&P 100 results for each performance measure.

R σ̄ GD IGD HV

SBPSO x̄ 0.007716 0.001248 0.000275 0.000247 0.875057
σ 0.000006 0.000001 0.000044 0.000003 0.044175

MGPSO x̄ 0.004993 0.000579 0.001344 0.000276 1.195282
σ 0.000359 0.000150 0.000235 0.000037 0.001887

NSGA-II x̄ 0.004521 0.000254 0.000626 0.000594 1.188502
σ 0.000130 0.000015 0.000036 0.000033 0.001069

SPEA2 x̄ 0.004352 0.000243 0.000580 0.000541 1.187435
σ 0.000170 0.000019 0.000045 0.000052 0.001274

MGSBPSO x̄ 0.004819 0.000388 0.001263 0.000330 1.190151
σ 0.000195 0.000053 0.000099 0.000038 0.001808

Table 12. S&P 100 rankings for each performance measure.

GD IGD HV Overall

SBPSO

Wins 4 4 0 8
Losses 0 0 4 4
Draws 0 0 0 0
Difference 4 4 −4 4
Rank 1 1 5 1

MGPSO

Wins 0 3 4 7
Losses 3 1 0 4
Draws 1 0 0 1
Difference −3 2 4 3
Rank 4 2 1 2

NSGA−II

Wins 2 0 2 4
Losses 2 4 2 8
Draws 0 0 0 0
Difference 0 −4 0 −4
Rank 3 5 3 5

SPEA2

Wins 3 1 1 5
Losses 1 3 3 7
Draws 0 0 0 0
Difference 2 −2 −2 −2
Rank 2 4 4 4

MGSBPSO

Wins 0 2 3 5
Losses 3 2 1 6
Draws 1 0 0 1
Difference −3 0 2 −1
Rank 4 3 2 3
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(a) True POF (b) SBPSO (c) MGPSO

(d) NSGA-II (e) SPEA2 (f) MGSBPSO

Figure 6. Pareto-optimal fronts obtained for S&P 100.

6.5. Nikkei 225

The last and largest benchmark problem to discuss is Nikkei 225. Nikkei 225 contained
255 assets, which was more than twice that of the last benchmark problem and a significant
increase in dimensionality. Table 13 shows that all of the algorithms obtained similar values,
with the exceptions (as in the previous results) of MGPSO and MGSBPSO, which obtained
higher GD values, and SBPSO, which obtained a lower HV value. The rankings for this
problem are given in Table 14 and show that SPEA2 was the best-performing algorithm
overall. SBPSO and NSGA-II tied for second place, while MGSBPSO and MGPSO ranked
third and last, respectively. Once again, visual analysis of the obtained POFs (shown in
Figure 7) provides useful context for the results. Figure 7d,e show that NSGA-II and SPEA2,
respectively, were able to approximate the lower part of the true POF, with SPEA2 perform-
ing slightly better than NSGA-II. The POF obtained by MGPSO is wide and scattered, which
makes sense as to why MGPSO ranked last. On the other hand, SBPSO and MGSBPSO were
able to approximate the true POF better than all of the other algorithms. There were some
breaks in the POF obtained by SBPSO, while the POF obtained by MGSBPSO was fully
connected, but slightly thicker. Nonetheless, both SBPSO and MGSBPSO performed better
than the other algorithms in approximating the true POF. MGSBPSO, NSGA-II, and SPEA2
reached the stopping condition in approximately 400 s, while MGPSO took 650 s to reach the
stopping condition.

Table 13. Nikkei 225 results for each performance measure.

R σ̄ GD IGD HV

SBPSO x̄ 0.003310 0.000794 0.000260 0.000223 0.916014
σ 0.000007 0.000001 0.000060 0.000005 0.047097

MGPSO x̄ 0.002193 0.000650 0.001631 0.000294 1.190877
σ 0.000338 0.000122 0.000393 0.000051 0.003675

NSGA-II x̄ 0.002146 0.000444 0.000579 0.000226 1.190051
σ 0.000069 0.000010 0.000047 0.000015 0.001352

SPEA2 x̄ 0.002002 0.000445 0.000562 0.000161 1.193376
σ 0.000052 0.000010 0.000047 0.000006 0.000557

MGSBPSO x̄ 0.002437 0.000633 0.001242 0.000242 1.191968
σ 0.000272 0.000113 0.000114 0.000030 0.003169
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Table 14. Nikkei 225 rankings for each performance measure.

GD IGD HV Overall

SBPSO

Wins 4 2 0 6
Losses 0 1 4 5
Draws 0 1 0 1
Difference 4 1 −4 1
Rank 1 2 5 2

MGPSO

Wins 0 0 1 1
Losses 4 4 1 9
Draws 0 0 2 2
Difference −4 −4 0 −8
Rank 4 4 3 4

NSGA−II

Wins 2 2 1 5
Losses 1 1 2 4
Draws 1 1 1 3
Difference 1 1 −1 1
Rank 2 2 4 2

SPEA2

Wins 2 4 4 10
Losses 1 0 0 1
Draws 1 0 0 1
Difference 1 4 4 9
Rank 2 1 1 1

MGSBPSO

Wins 1 1 2 4
Losses 3 3 1 7
Draws 0 0 1 1
Difference −2 −2 1 −3
Rank 3 3 2 3

(a) True POF (b) SBPSO (c) MGPSO

(d) NSGA-II (e) SPEA2 (f) MGSBPSO

Figure 7. Pareto-optimal obtained fronts for Nikkei 225.

7. Conclusions

This paper proposed the multi-guide set-based particle swarm optimization (MGS-
BPSO) algorithm, a multi-objective adaptation of the set-based particle swarm optimization
(SBPSO) algorithm that incorporates elements from multi-guide particle swarm optimiza-
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tion (MGPSO). MGSBPSO uses two set-based swarms, where the first selects assets that
minimize risk, and the second swarm selects assets that maximize return. For the purpose
of optimizing the asset weights, MGPSO, which samples’ control parameter values that
satisfy theoretically derived stability criteria, was used. The performance of MGSBPSO was
compared with that of MGPSO, NSGA-II, SPEA2, and the single-objective SBPSO across
five portfolio optimization benchmark problems.

The results showed that all algorithms, in general, were able to approximate the true
Pareto-optimal front (POF). NSGA-II and SPEA2 generally ranked quite high in comparison
with the other algorithms. However, visual analysis of the POF obtained by NSGA-II and
SPEA2 shows that these algorithms were only able to approximate part of the true POF.
SBPSO, MGPSO, and MGSBPSO were able to approximate the full true POF for each
benchmark problem, with the exception of MGPSO, for the last (and largest) benchmark
problem. MGPSO, as well as MGSBPSO and SBPSO, did not scale to the largest portfolio
problem, which redefined portfolio optimization as a set-based optimization problem.
SBPSO optimized the mean-variance portfolio model of Equation (3) for a given risk–return
tradeoff value. By optimizing for multiple tradeoff values, SBPSO obtained a variety of
solutions with differing risk and return characteristics. Thus, an advantage of MGSBPSO
over its single-objective counterpart is that MGSBPSO does not require multiple runs to
obtain a diverse set of optimal solutions, as risk (minimized) and return (maximized) are
optimized independently of each other. It should also be noted that MGPSO without
control parameter tuning performed similar to or better than NSGA-II and SPEA2 with
tuned parameters.

Overall, the results show that the benefits of redefining the portfolio optimization
problem as a set-based problem are also applicable to multi-objective portfolio optimization.

8. Future Work

Future work should focus on improving the performance of MGSBPSO for portfolio
optimization. A part of this work could investigate the effects of different swarm sizes on
the performance of MGSBPSO. Another opportunity for future work is to investigate the
performance of MGSBPSO for traditional multi-objective combinatorial problems, such as
multi-objective knapsack problems.
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Abbreviations
The following abbreviations are used in this manuscript:

PSO Particle Swarm Optimization
SBPSO Set-Based Particle Swarm Optimization
MGPSO Multi-Guide Particle Swarm Optimization
MGSBPSO Multi-Guide Set-Based Particle Swarm Optimization
NSGA II Non-Dominated Sorting Genetic Algorithm II
SPEA2 Strength Pareto Evolutionary Algorithm 2
MOO Multi-Objective Optimization
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MOOP Multi-Objective Optimization Problem
POF Pareto-Optimal Front
POS Pareto-Optimal Solutions
GD Generational Distance
IGD Inverted Generational Distance
HV Hypervolume

Appendix A. Set Operators

V1 ⊕V2 is the union of two velocities:

⊕ : P({+,−}×U)2 → P({+,−}×U)

V1 ⊕V2 = V1 ∪V2
(A1)

X1 	 X2 is the set of operations required to convert X2 into X1:

	 : P(U)2 → P({+,−}×U)

X1 	 X2 = ({+} × (X1\X2)) ∪ ({−} × (X2\X1))
(A2)

η ⊗V1 is the multiplication of a velocity by a scalar:

η ⊗ : [0, 1]×P({+,−}×U)→ P({+,−}×U)

η ⊗V = B ⊆ V
(A3)

where B is a set of bη × |V|c elements randomly selected from V.
X � V is the application of the velocity function V to the position X:

X � V : P(U)×P({+,−}×U)→ P(U)

X � V = V(X)
(A4)

Appendix B. Pareto-Optimality Measures

GD measures the average Euclidean distance of the solutions in the obtained POF, Q,
to the nearest solutions in the true POF, Qtrue[31]:

GD =

√
∑
|Q|
i=1 di

2

|Q|
(A5)

where di is the Euclidean distance between the i’th solution in the obtained POF and the
nearest solution in Qtrue. Lower values indicate solutions closer to Qtrue.

IGD, similarly to GD, measures the average Euclidean distance of the solutions in
Qtrue to the nearest solutions in Q [32]:

IGD =

√
∑
|Qtrue |
i=1 di

2

|Qtrue|
(A6)

As with GD, lower values indicate better performance.
HV measures the volume of the objective space dominated by the obtained POF given

a reference point [33]:

HV = volume(∪Vk) ∀qk ∈ Q (A7)

where, for each solution qk ∈ Q, Vk is the hypercube constructed between qk and the
reference point.
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