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Abstract: Integrating embedded systems into next-generation vehicles is proliferating as they increase
safety, efficiency, and driving comfort. These functionalities are provided by hundreds of electronic
control units (ECUs) that communicate with each other using various protocols that, if not properly
designed, may be vulnerable to local or remote attacks. The paper presents a vehicle-security
operation center for improving automotive security (V-SOC4AS) to enhance the detection, response,
and prevention of cyber-attacks in the automotive context. The goal is to monitor in real-time each
subsystem of intra-vehicle communication, that is controller area network (CAN), local interconnect
network (LIN), FlexRay, media oriented systems transport (MOST), and Ethernet. Therefore, to
achieve this goal, security information and event management (SIEM) was used to monitor and detect
malicious attacks in intra-vehicle and inter-vehicle communications: messages transmitted between
vehicle ECUs; infotainment and telematics systems, which provide passengers with entertainment
capabilities and information about the vehicle system; and vehicular ports, which allow vehicles to
connect to diagnostic devices, upload content of various types. As a result, this allows the automation
and improvement of threat detection and incident response processes. Furthermore, the V-SOC4AS
allows the classification of the received message as malicious and non-malicious and acquisition of
additional information about the type of attack. Thus, this reduces the detection time and provides
more support for response activities. Experimental evaluation was conducted on two state-of-the-art
attacks: denial of service (DoS) and fuzzing. An open-source dataset was used to simulate the
vehicles. V-SOC4AS exploits security information and event management to analyze the packets sent
by a vehicle using a rule-based mechanism. If the payload contains a CAN frame attack, it is notified
to the SOC analysts.

Keywords: automotive security; CAN Protocol; Security Operation Center; V-SOC

1. Introduction

Modern vehicles are composed of electronic control units (ECUs) which are micro-
controllers that deal with various functionalities of a vehicle, including safety-critical
functions such as steering and braking. These ECUs are physically connected to the
vehicle network and communicate with each other using different protocols: controller
area network (CAN), media oriented system transport (MOST), local interconnect network
(LIN), FlexRay, and autonomous Ethernet. The CAN protocol presents several advantages
in comparison to others regarding cost-efficiency and flexibility. This protocol is almost
like a plug-and-play system because an ECU can be connected to the intra-vehicle network
with ease or no special modification of the network [1].

Since the CAN protocol was developed in 1986, the necessity of protection from cyber-
attacks was not implemented at that time. The lack of security mechanisms makes the
protocol vulnerable to confidentiality, integrity, and availability attacks [2]. Miller and
Valasek [3] remotely took control of a Jeep Cherokee exploiting various vulnerabilities in
the vehicle. Palanca et al. [4], with the Arduino Uno Rev 3 and MCP 2551 E/P attached
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to Alfa Romeo Giuletta’s OBD-II port, have created a malfunction in the parking sensor
by fabricating messages and causing a denial of service (DoS) attack. The researchers
of Keen Security Lab [5] found the SSID and password of the Infotainment System in a
Mercedes-Benz model by exploiting the CAN bus using a sniffing attack since the CAN
protocol does not implement any encryption techniques [6].

Consequently, different types of techniques have been proposed in the literature to
remedy the security problems of the CAN protocol. Usually, these techniques involve
authentication and encryption mechanisms or machine learning/deep learning techniques
to develop an intrusion detection system (IDS) model. However, some hardware techniques
require modification of the ECUs to encrypt the CAN payload [7,8]. Stabili et al. [9] provided
an analysis of cryptographical protocol for in-vehicle networks considering the vehicle
life-cycle. The authors have shown that many of the analyzed approaches may appear
advantageous if deployed on a single vehicle but are disadvantageous if deployed at scale.
Some works adopt techniques that consist of identifying malicious CAN payload without
modifying the CAN protocol [10,11]. In the case of the IDSs, Wu et al. [12] defined some
challenges regarding the machine learning techniques which are how to deploy the model
in an in-vehicle system with limited computational power and how to obtain the data to
train the algorithm. Moreover, these methods do not provide information about the attack,
for example, where it manifested or which payload contains it.

This represents only a part of the information and vulnerabilities found inside a
vehicle. Sommer et al. [13] presented a taxonomy to analyze and classify automotive
attacks. In particular, the authors proposed a classification of 162 existing attacks based
on this taxonomy that can be considered for the automotive security development process.
Therefore, in such a scenario, it is necessary to focus not only on attack detection but to
extend the analysis to a wide range of information, for example, the vehicle model, the
ECU that sent the message, and the type of message sent. This information can determine
malicious actions and new types of attacks based on vehicle models and ECUs and, more
importantly, to provide possible response activities.

To achieve this goal, SIEM (security information and event management) and espe-
cially a SOC (security operation center) can be considered responsible for ensuring the
correct identification, analysis, defense, investigation, and reporting of potential security
incidents [14]. Typically, the SOC monitors and analyzes activity on networks, servers,
endpoints, databases, applications, websites, other systems looking for anomalous activi-
ties that could be indicative of a security incident or compromise. The SOC is responsible
for ensuring that potential security incidents are correctly identified, analyzed, defended,
investigated, and reported [14]. It consists of people, processes, technology and activities
and responsibilities fall into three general categories namely (i) preparation, planning,
and prevention; (ii) monitoring, detection, and response; (iii) recovery, refinement, and
compliance.

In this work, the vehicle is considered as a critical asset because it contains components
(such as an OBD-II port, infotainment system, and USB) that can be exploited to conduct
an attack. The idea is to use the SOC architecture to improve the security life cycle in the
automotive context, focusing more on the response phase. Since it is not enough to work on
improving the detection phase because we do not have the information about the attack (for
example, the attacked component, the payload sent, and the ECU model), it is necessary to
activate prevention and response actions. The prevention phase aims to block malicious
activities in a component. On the other hand, the response actions can put the vehicle in
emergency mode. In the literature, the proposed CAN protocol defense mechanisms take
into account the detection (with intrusion detection system (IDS) and prevention phase
(with cryptographic algorithms) [15] but not the response phase. Thus, the SOC architecture
covers all these three phases: Detection implements the set of security controls and analysis
of events that have occurred to detect possible offenses; Response defines both cyber and
physical structured response plans to contain the damage from a cyber offense; Prevention
implements security controls to prevent the possibility of cyber-attacks by using, among
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others, cognitive technologies, and threat intelligence tools. The prevention phase also
allows updating the ECU to fix the vulnerability that causes a specific attack identified in
the detection phase. This update can be done using over-the-air technology to update the
ECU firmware [16,17].

The paper presents a new method, vehicle-security operation center for improving
automotive security (V-SOC4AS), to detect attacks and attend to the abovementioned
requirements.

Two different attacks are considered to validate and confirm the research idea: DoS
(denial of service), which consists in preventing legitimate access to services of a target
machine by overwhelming its resources [18], and fuzzing which consists in sending a series
of messages with minor randomized changes [19].

The main contributions of this paper are:

• A novel approach, vehicle-security operation center for automotive security (V-SOC4AS),
to detect, respond, and prevent attacks that can occur in the automotive context. The
V-SOC 4AS was developed not to replace existing solutions such as IDS, but to integrate
them to support the detection, response, and prevention [14]. The goal is to improve
cybersecurity and define new cyber kill chain models. This is possible as the analysis and
monitoring take place in real-time and not offline, thus reducing the detection time and
providing further support for response activities. The first experiment has been done
considering two state-of-the-art attacks (DoS and fuzzing).

• The use of security information and event management (SIEM) to monitor each subsys-
tem for intra-vehicle communication management, namely the controller area network
(CAN), local interconnect network (LIN), FlexRay, and media oriented systems trans-
port (MOST), and Ethernet. Each of them has vulnerabilities and security issues [6,20].
The research goal is to define a solution that can improve and redefine security controls
in the three functional areas: detection, response, and prevention. Specifically, in this
first step, the work focuses on the CAN protocol and the use of IBM QRadar as a SIEM.

• The possibility to identify not only the attack but also the type and the pattern of
attack. This allows work on the threat, attack vector, and risk associated with a given
vehicle component. In the literature, most works use binary classifiers such as IDSs
for detection without defining the attack type. Therefore, V-SOC4AS allows for the
investigation of how different attack types can be identified and how AI models can
be integrated (in the future) to improve the security lifecycle in this context. The
vehicle was simulated using an open-source dataset, specifically the exchange of CAN
messages between an open-source tool and the SIEM recreating the V-SOC4AS. The
proposed method can detect attacks without changing the CAN protocol. Therefore, it
is also applicable to any vehicle that uses the CAN.

The paper is organized as follows: Section 2 outlines related works on identifying
attacks to the CAN; Section 3 briefly describes the CAN protocol; Section 4 presents the
Vehicle-SOC and how to set up the architecture to identify the attacks; Section 5 highlights
the proposed architecture in conjunction with a SIEM to identify two types of attacks and
experimental evaluation; Section 6 sets out the conclusions.

2. Related Work

In the literature, several research works aim to improve the security of the CAN Bus.
Most of these approaches use intrusion detection systems (IDSs) or intrusion prevention
systems (IPSs). An IDS is a software that automates the process of detecting an intrusion
into a network. Unlike an IDS, an IPS is a software that provides the functionality of an
intrusion detection system, with the added feature of attempting to block an intrusion [21].
Barletta et al. proposed a supervised Kohonen Self-Organizing Map (SOM) network to
identify attack messages sent on a CAN [22]. Lee et al. [19] proposed an approach to
analyzing the offset ratio and time interval between request and response messages in the
CAN network.
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Seo et al. [23] proposed a generative adversarial network (GAN)-based intrusion
detection system using a deep-learning model. This model uses a generative model (G) and
a discriminative model (D). The model encoded the CAN message into a one-hot-vector
and then transformed it into a CAN image. To detect if the real-time CAN message is an
attack or not, the authors also used a threshold. IDSs may be limited to detecting specific
attacks; if exposed, an attacker could even use this information to avoid detection. The
authors stated that this GIDS model could solve these problems related to IDSs.

Cho et al. [24] presented an anomaly based IDS that measures and then exploits the
interval of periodic in-vehicle messages for fingerprinting ECUs. Lokman et al. [25] have
suggested an idea to deploy IDS on an in-vehicle network component called gateway.
Moreover, in this case, the risk of an attacker compromising the CAN network and gateway
is greater than compromising the ECU.

Young et al. [26] reported that other IDS techniques exploited the timing when a
message is sent on the CAN bus. Miller and Valasek [3] also introduced how the rate of the
message can be analyzed for the in-vehicle network.

Costantino et al. [15] proposed an intrusion prevention system with challenge-based
mechanisms. EARNEST, the name of the system proposed by the authors, can address
replay and fuzzing attacks. When an ECU sends a message on the CAN bus, EARNEST re-
quires the ECU to solve a challenge. If the ECU answers correctly, the message is forwarded
to the bus, otherwise it is discarded. Fallstrand et al. [27] discussed the applicability of
intrusion and prevention systems. The researchers said that with the anomaly detection
technique, we get false positives and false negatives. In a safety-critical automotive system,
it is important to evaluate the effects of these undesirable cases. The authors also discussed
the importance of the post-detection phase. These schemes use warnings and log events
and facilitate forensic examinations that are important for vehicle safety.

Therefore, the solution of using an IDS on an ECU involves various issues: the ECUs
have limited computational resources, memory, and power so, using a machine learning or
deep learning approach may not be feasible for the above problems [12]. Moreover, IDS and
IPS became less and less adequate regarding the new threats [28]. Aijaz et al. [29] outline
that these systems can be bypassed by zero-day or sophisticated attacks. As a consequence,
to address the challenges posed by IDS and IPS, there is an increasing demand for SOC [28]
because the SOC provides real-time monitoring events that help to understand if the event
sent to the SOC is an attack or not from a security perspective [29] and to interpret the logs
that with the IDS and/or IPS it is not easy because of their size. So, this can be useful for
SOC analysist to identify anomalies or sophisticated attacks in the network by viewing the
aggregated logs. In the literature, several research works use a SOC to detect attacks in a
private or enterprise network such as distributed denial of service (DDoS), phishing, and
SQL injection [30–32].

In contrast, the state-of-the-art in vehicle security operation center is scarce. Langer
et al. [33] proposed an automotive cyber defense center aimed at creating a SOC to analyze
and react to incidents. Meyer et al. [34] presented a demo regarding a security infrastructure
that involves the use of a software-defined network (SDN), anomaly detection (AD), and
a cyber defense center. The authors built a prototype upon a Seat Ateca that consisted of
ECUs grouped into five functional domains with one CAN bus per domain. Since this
work is a demo, the researchers presented the showcases but not a real implementation
of a vehicle attack. Furthermore, many of the solutions developed by industries aim
to manage cybersecurity automotive with a V-SOC. For example, Upstream (Available
online: https://upstream.auto/solutions/vehicle-security-operations-center/ (accessed
on 7 February 2023)) has a solution that aggregates and normalizes multiple property data
feeds and has a full and contextual view of the vehicle owing to digital twin profiling of
the connected vehicle environment and powerful AI-powered detection modeling.

In this paper, V-SOC4AS is proposed, which is responsible, starting from the limita-
tions regarding the IDSs (detection phase) and the solutions to improve the response and
prevention phases. The V-SOC4AS aims to identify anomalous and malicious activities

https://upstream.auto/solutions/vehicle-security-operations-center/
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and analyzes them in detail. It is, thus, possible to understand in which vehicle the attack
began, the information about the CAN payload, and which ECU sent the attack message;
moreover, attempt to respond to an attack promptly to safeguard driver safety.

3. Controller Area Network (CAN)

The CAN protocol is a broadcast protocol that connects several electronic control units
(ECUs) in-vehicle network to exchange messages among them. The messages exchanged
are called CAN frames. A CAN frame is composed of the following fields:

• Arbitration field (11 bits CAN 2.0A) establishes the priority of the message, 0-bit is
dominant while 1-bit is recessive. When two or more nodes transmit a data frame at
the same time, if node A has a dominant bit and node B has a recessive bit, node A
wins the arbitration and can send the message on the bus.

• Control field (4 bits): consists of data length control (DLC) and contains the length of
the data payload.

• Data field (64 bits): contains the payload.
• The main issue of the CAN protocol is that it does not implement any security mecha-

nism against cyber-attacks [2].

Threat on CAN Bus

Since the CAN protocol does not implement a security mechanism, an adversary
could conduct various attacks that can damage the confidentiality, integrity, and availability
of the data frames that are exchanged between the ECUs. Moreover, it is possible to
distinguish two types of attacks: passive and active. An attacker carries out a passive
attack by monitoring the bus to obtain information about the data frames. This type of
attack involves the confidentiality of the payload [35]. As a way of example, a researcher of
Tencent Security Keen Lab [5] found a vulnerability in the head unit of a Mercedes-Benz
model that sent the passphrase and SSID (service set identifier) of Wi-Fi on the CAN
bus as plaintext. Therefore, the researchers have been able to capture the data from the
bus to obtain the passphrase and SSID. On the other side, an active attack occurs when
an adversary can inject a data frame on the bus to cause unexpected behavior. Lokman
et al. [25] presented two types of attacks on CAN packets: frequency and payload. The
frequency attack consists of inserting an extra packet or erasing a legitimate packet from
the CAN bus as the time interval for sending a CAN message is fixed and periodic. In
addition, the author also stated that an attacker can send highest priority ID of the CAN
packet in a short cycle. In the CAN packet payload, an attacker can manipulate the data
content of some CAN ID. El-Rewini et al. [20] presented a survey regarding threats on
vehicles and also on the CAN bus. Costantino et al. [15] introduced a different type of
attack that an adversary can do when it has partial control of an ECU. Examples of these
attacks are fuzzing, replay, masquerading, and information gathering. In addition, most of
the attacks that can be conducted on the CAN bus required the injection of messages to
change the behavior of the vehicle [36]. El-Rewini et al. [20] reported several challenges
to protecting the CAN protocol against the DoS, fuzzing, spoofing, and masquerading
attacks that need to be addressed. We selected two types of attacks based on the literature
because the first (DoS) can occupy the bus for long periods denying other ECU to send
messages; instead in the second (fuzzing), an attacker can send malicious payloads causing
anomalous behavior [36]. These two well-analyzed attacks can be summarized as:

• DoS: It consists of injecting a low identifier packet to have a high priority in the bus.
Most of the datasets in the literature that simulate this type of attack set the arbitration
field with the value “0 x 000” as hexadecimal since it is the lowest possible.

• Fuzzing: It consists of recreating CAN messages that have a completely random value
of both arbitration and data field.
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4. V-SOC4AS: Vehicle-SOC for Improving Automotive Security

In information technology (IT), a security operation center (SOC) is a centralized
solution that an organization uses to continuously monitor critical assets to prevent, de-
tect, respond to, and analyze cybersecurity attacks. Usually, a SOC is formed by people,
processes, and technology in order to fulfill the previous goals [14]. The SOC architecture
can be divided into different subsystems. For example, Madani et al. [30] subdivided the
architecture into four subsystems: sensors to collect traffic data; log management to normalize,
classify, prioritize, and collect these data; correlation engine to analyze these events; and
response system to react to security incidents.

Sensors generate events from a critical asset, for example, these events can be a user
typing an incorrect password, or a user log-in secure shell (SSH). When the events are
generated by sensors, these will be aggregated and modified into a standard format to
obtain homogeneous data and saved into a database to perform statistical and forensic anal-
ysis. Usually, these operations are done using security information and event management
(SIEM) that identifies the attack and provides a response to reduce the impact of that com-
promise. Therefore, considering these components and how they communicate with each
other, the V-SOC4AS architecture can be represented in Figure 1. This architecture is suitable
in several general contexts, such as military or civilian vehicles. In our work, the vehicle
is simulated using an open-source tool (ICSim https://github.com/zombieCraig/ICSim
(accessed on 7 February 2023)).
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The V-SOC4AS architecture consists of two main components: SIEM and SOC console.

• SIEM collects the raw events that will be aggregated, parsed, normalized, and analyzed
to be displayed correctly. It can analyze data from different types of vehicles. Owing to
this component, we can parse these data without adding further physical components
to the car. After the events are parsed and normalized, the rule-based component
allows control over whether the events sent to SIEM correspond to attacks through
custom rules. For example, in the information technology (IT) field, rules could detect if
we have multiple logins failed attempts on a login page and excessive firewall denies.

• SOC Console: the parsed events will be shown on the SOC console component and
monitored by a cybersecurity specialist. If a rule-based mechanism triggers an offense,
it will appear on this component so that the analyst can analyze it and potentially
move on to the response phase. An advantage of the SOC console is that if an attack is
detected, the cybersecurity specialist can check if it is a false positive or a real attack.
Furthermore, the SOC analyst (a person in the organization who has knowledge of
the automotive domain and automotive attack), when monitoring the data flow from
the vehicle, could identify anomalies or attacks that the SIEM has not identified and
subsequently add or modify a rule. In the next subsection, we will show an example
of an event displayed on the SOC console.

https://github.com/zombieCraig/ICSim
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The following is an example of how a V-SOC4AS works (Figure 1). When an ECU
generates a CAN frame, it sends the CAN frame to the telematic control unit (TCU). The
TCU converts the messages into JSON format and sends them to the SIEM. When the SIEM
receives these events, it aggregates and displays them on the SOC console. Simultaneously,
the SIEM, with a rule-based mechanism, checks whether these events can be considered as
attacks or not. Events that are considered attacks will be displayed on the SOC console.

Communication between the vehicle and the SIEM is simulated using an open-source
tool called ICSim. This tool emulates an instrument cluster, creates the data, and sends them
to a virtual channel using the SocketCAN interface. In particular, the instrument cluster
represents the dashboard of a vehicle and includes a speedometer, door lock indicators,
turn signal indicators, and a control panel. The data generated by the instrument cluster
are created by the ICSim. The vcan (virtual can) interface was used to allow communication
between the ICSim and the CAN bus. Ubuntu 20.04 was used to run ICSim.

The TCU is a Python module that captures the messages from the vcan0 and sends
them to the SIEM in a JSON format.

4.1. IBM QRadar SIEM

Starting from the proposed architecture, IBM QRadar SIEM was used in order to
identify attacks in an automotive environment [37]. This choice was based on the following
reasons:

• Good position, “Leader”, in Gartner Magic Quadrant 2022 [38] in comparison to other
SIEMs.

• Possibility to create a custom Log Source different from the IT context. IBM QRadar,
using the Syslog protocol, allows information to be received from systems that are
different from each other, for example, a vehicle and a computer.

• Possibility to use a set of default rules to be customized for the automotive environ-
ment.

• Risk priority modelling that determines the priority level of each offense based on
local and enriched threat context, tactics and techniques observed and learned offense
disposition patterns within the automotive environment.

QRadar consists of a modular three-layer architecture that provides, in real-time, the
security status of the IT infrastructure. These three-layer are [39]:

• Data Collection: Collects data such as events or flows from a specific asset. IBM
QRadar SIEM accepts data from IDS/IPS, firewall, Syslog, and other sources. The data
are parsed and normalized before they are passed to the processing layer. Raw data
are parsed and then normalized to present them in a structured and usable format. In
Figure 1, this task is carried out by the “Data Collection”, “Event aggregation parsing
& normalization”, and “Rule-based Analysis” modules.

• Data processing: In this layer, the data are run through the custom rule engine (CRE),
which generates offenses and alerts, and then are written to the storage. In Figure 1
this task is carried out by the “rule-based” module.

• Data searches: Data collected and processed by QRadar are available to users for
searches, analysis, reporting, and alerts or offense investigations. In Figure 1, this task
is carried out in the SOC console.

IBM QRadar uses the Syslog protocol [40] to receive generic events. For this reason,
in the proposed architecture, the CAN messages are sent using this protocol in JSON
format. When IBM QRadar obtains data from a generic log source (would be the TCU
or other vehicle components in the context of automotive) using the Syslog protocol, it
manipulates them using the three-tier architecture described above. In this work, IBM
QRadar SIEM Community Edition v7.3.3 was used. Specifically, V-SOC4AS combines the
tools found in QRadar to obtain messages from a vehicle, parse them, and check using
rule-based mechanism whether these messages are attacks. An important consideration is
that we send messages to IBM QRadar using a local network and not through the cloud
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environment. Figure 2 shows the Log Source created to receive the messages. It contains
various parameters: ID that is automatically generated; Name is a generic name that can be
defined by the user; Description can be empty; Enabled whether it is to be activated or not;
Log Source Type identifies the type of the event; Protocol Type to set the appropriate format
for different contexts. In this example, Syslog was chosen.
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To properly analyze the data from the vehicle, a plug-in file called device support
module (DSM) supported by QRadar was used. This plug-in collects the raw data and
transforms them into a specific format defined by the SOC analyst so that it can be shown
on log activity. The DSM extracts the value contained in the JSON with a specific key and
creates six properties. An example of a property created by DSM is shown in Figure 3.

Algorithms 2022, 15, x FOR PEER REVIEW 8 of 18 
 

them using the three-tier architecture described above. In this work, IBM QRadar SIEM 
Community Edition v7.3.3 was used. Specifically, V-SOC4AS combines the tools found in 
QRadar to obtain messages from a vehicle, parse them, and check using rule-based mech-
anism whether these messages are attacks. An important consideration is that we send 
messages to IBM QRadar using a local network and not through the cloud environment. 
Figure 2 shows the Log Source created to receive the messages. It contains various param-
eters: ID that is automatically generated; Name is a generic name that can be defined by 
the user; Description can be empty; Enabled whether it is to be activated or not; Log Source 
Type identifies the type of the event; Protocol Type to set the appropriate format for dif-
ferent contexts. In this example, Syslog was chosen. 

 
Figure 2. Log source created to receive the CAN messages. 

To properly analyze the data from the vehicle, a plug-in file called device support 
module (DSM) supported by QRadar was used. This plug-in collects the raw data and trans-
forms them into a specific format defined by the SOC analyst so that it can be shown on log 
activity. The DSM extracts the value contained in the JSON with a specific key and creates 
six properties. An example of a property created by DSM is shown in Figure 3. 

 
Figure 3. An example of property created on QRadar to obtain the value of key “DATA”. 

The other properties created are: 
• Vehicle ID: unique identifier of the vehicle (expressed in the payload with a Univer-

sally Unique Identifier (UUID). It can be used in the response phase when an attack 
is detected. 

• Event ID and Event Category: are used to map an event with Qradar Identifier (QID). 
QID is a numeric representation of a specific event and includes name, description, 
severity, and low-level category. Figure 4 shows the QID, ECU data transfer created 
with these properties. 

• Log Source Time: when the payload arrived at Qradar. 
• ID: CAN ID sent on the bus. 
• DATA: data value in hexadecimal. 

Figure 3. An example of property created on QRadar to obtain the value of key “DATA”.

The other properties created are:

• Vehicle ID: unique identifier of the vehicle (expressed in the payload with a Univer-
sally Unique Identifier (UUID). It can be used in the response phase when an attack
is detected.

• Event ID and Event Category: are used to map an event with Qradar Identifier (QID).
QID is a numeric representation of a specific event and includes name, description,
severity, and low-level category. Figure 4 shows the QID, ECU data transfer created
with these properties.

• Log Source Time: when the payload arrived at Qradar.
• ID: CAN ID sent on the bus.
• DATA: data value in hexadecimal.
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4.2. Communication between Vehicle and SIEM

The first approach is simulating the communication between the vehicles and Qradar.
As described in the previous section, the ICSim generates the CAN messages and sends
them to the vcan0, and a component called TCU transforms these messages into a JSON
format. After this, using the Syslog protocol, the TCU sends the data to IBM Qradar. The
data generated by ICSim are shown in Figure 5.
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When the ICSim generates and sends the messages, TCU remains listening on the
vcan0 channel waiting for new messages. If a new message is received, the component
transforms it into JSON format (Figure 6) and sends it to the SIEM (Figure 7). In addition,
considering Figure 7, we can see that the Source IP is the IP of the vehicle that sent the
CAN message. With this information, if an attack is detected by the SIEM, it is possible to
respond to it by temporarily resetting the ECU, sending a notification to the driver to pull
the vehicle over, or disabling some ECU functionality until the vehicle is shut down.
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5. Experimental Results and Discussion

To validate the proposed architecture, two attacks were considered in the experimental
setting: DoS and fuzzing. In the identification phase, messages from the two different
datasets were sent to Qradar and these two datasets represent the vehicles in real context.
The logs were modified in JSON format and then sent using the Syslog protocol. Figure 9
shows the approach used to send the CAN messages to IBM Qradar. If a message is
identified as an attack, an offense will be raised.
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For the experimental analysis, the JSON sent to IBM Qradar is changed from the one
depicted in Figure 6. Two new attributes are added into the new JSON message:

• UUID_ECU: A unique identifier for each ECU. It can be used to check which ECU is
under attack. For this experiment, two unique identifiers will be used: one for the DoS
attack and another for the Fuzzing.

• vehicleModel: To represent the vehicle model. Two different models were used to
simulate two different vehicles: OpelAstra and RenaultClio.

The attribute UUID will be modified based on the vehicleModel. For the OpelAstra,
the UUID 53cd3082a0 will be used. Instead, for the RenaultClio, the UUID 6fab142fe3 will
be used.

5.1. Dataset

Dupont et al. [41] proposed a dataset for CAN IDSs and in this work, the DoS and
fuzzing attacks were considered to validate the V-SOC4AS solution.

For the DoS dataset considering the OpelAstra vehicle, the authors inject messages
with CAN ID “000” for 10 s to simulate a flood of a 500 Kbps on the CAN bus. The packets
injected are in the form “000\#0000000000000000”. The total number of DoS packets injected
is 40015, the first packet injected is “(1536574995.000091) slcan0 000\#0000000000000000”,
and the last injected packet is “(1536575004.999811) slcan0 000\#0000000000000000”. The
total number of messages are 827555.

For the fuzzing experiment, the “fuzzing_canid.log” dataset was used, which was
comprised of an injection of 10 messages in total, with illegitimate CAN ID values. In this
dataset, the data field is populated with hexadecimal values that are set to “FF”. Table 1
shows the data injected in the Fuzzing dataset. The researchers used the same injected
messages to create another dataset called RenaultClio [41].

Table 1. Fuzzing messages injected by the authors [41].

CAN ID Data Field

111 FFFFFFFFFFFFFFFF

111 FFFFFFFFFFFFFFFF

111 FFFFFFFFFFFFFFFF

222 FFFFFFFFFFFFFFFF

222 FFFFFFFFFFFFFFFF

222 FFFFFFFFFFFFFFFF

333 FFFFFFFFFFFFFFFF

333 FFFFFFFFFFFFFFFF

333 FFFFFFFFFFFFFFFF

444 FFFFFFFFFFFFFFFF

To prove that V-SOC4AS can also be used to identify threats in multiple vehicles,
the fuzzing dataset was divided into two splits. In the first five messages (first split) the
attribute vehicleModel was set to “OpelAstra” and for the last five messages (second split)
the attribute vehicleModel was set to “RenaultClio”. The attribute UUID_ECU was the same
for both splits to simulate the case in which two different vehicles have the same ECU
produced by a specific original equipment manufacturer (OEM).

5.2. DoS Attack

Since CAN does not have inherent authentication mechanisms, an attacker can send
high-priority messages (for example, “000”) to manipulate the bus. To detect this attack, a
rule was created in QRadar that checks if the CAN ID of a specific event contains all zeros.
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When true, the rule raises an offense. Figure 10 shows the DoS rule. The first row is used to
filter out the other events not related to DoS. For example, messages with QIDs belonging
to ECU data transfer (see Figure 4) are filtered for further analysis using this rule. The
second row indicates a regular expression (Regex), a string of text that allows searching a
pattern in the text. If the CAN ID has all zeros, an offense is generated.

Algorithms 2022, 15, x FOR PEER REVIEW 12 of 18 
 

longing to ECU data transfer (see Figure 4) are filtered for further analysis using this 
rule. The second row indicates a regular expression (Regex), a string of text that allows 
searching a pattern in the text. If the CAN ID has all zeros, an offense is generated. 

 
Figure 10. DoS rule in QRadar. 

To test the DoS rule, the dataset “dosattack.log” contained in the OpelAstra dataset was 
used. The messages were transformed into JSON format with additional fields: UUID_ECU 
and vehicleModel. Figure 11 shows some of the messages that were sent to IBM QRadar. 

 
Figure 11. Example of JSON messages that correspond to DoS attack. 

To generate an offense, IBM QRadar uses a component called Rule Wizard. Figure 12 
shows the actions chosen to raise the offense regarding the DoS attack. “Dispatch New 
Event” defines the field used to generate the offense such as the Event Name and Event 
Description. The SIEM offers the possibility of sending an e-mail when an attack occurs or 
adding the event in a Reference to save the results, and execute custom actions. These ac-
tions could be used for the response phase, for example, to send an email to alert the driv-
er if an attack occurs. By choosing the action “Add to a Reference Set” and “Add to a Ref-
erence Data”, the values regarding the attack will be saved to understand where the attack 
occurs and what payload has been sent by the attacker. The role of the “Reference Set” is 
to save the CAN ID(s) that are sent as an attack on the bus. Therefore, it is possible to re-
solve the problem by fixing the ECU source code. In IBM QRadar SIEM, the Reference 
Set is a collection of unique values. The role of the “Reference Data” is to save the vehi-
cle model and the ECU ID. 

The reference data are important for two reasons. First, since V-SOC can analyze 
multiple vehicles, it is possible to determine based on the vehicle model, if the attacker is 
attacking multiple vehicles or if the attack has already been identified in other vehicles. 
If the attack has been identified in other vehicles, we have the knowledge about the at-
tack and, hence know, how to thwart it. Second, with the ECU ID we know where the at-
tack began and if other vehicles are mounted with the same ECU. With this information, 
the developers can fix the ECU source code and extend the fix not only to the attacked 
vehicle but also to others using the same ECU. In this way, it is possible to prevent an 
adversary from attacking other similar vehicles and ECUs. 

The SIEM allows the addition of information about the severity, credibility, and rel-
evance of the attack. The severity responds to the question: “How high is the potential 
damage to the destination?”; the credibility responds to the question: “How valid is the 
information from that source?”; and the relevance responds to the question: “How im-
portant is the destination?”. This information can be used to understand the threat level 
and required response time. For example, the fuzzing attack has a severity level higher 
than the DoS attack because it could activate anomalous behavior in the vehicle. For this 
reason, the fuzzing attack has a higher priority than the DoS attack. The generation of 
these three values depends on the organization; it comes with the experience of the SOC 

Figure 10. DoS rule in QRadar.

To test the DoS rule, the dataset “dosattack.log” contained in the OpelAstra dataset was
used. The messages were transformed into JSON format with additional fields: UUID_ECU
and vehicleModel. Figure 11 shows some of the messages that were sent to IBM QRadar.

Algorithms 2022, 15, x FOR PEER REVIEW 12 of 18 
 

longing to ECU data transfer (see Figure 4) are filtered for further analysis using this 
rule. The second row indicates a regular expression (Regex), a string of text that allows 
searching a pattern in the text. If the CAN ID has all zeros, an offense is generated. 

 
Figure 10. DoS rule in QRadar. 

To test the DoS rule, the dataset “dosattack.log” contained in the OpelAstra dataset was 
used. The messages were transformed into JSON format with additional fields: UUID_ECU 
and vehicleModel. Figure 11 shows some of the messages that were sent to IBM QRadar. 

 
Figure 11. Example of JSON messages that correspond to DoS attack. 

To generate an offense, IBM QRadar uses a component called Rule Wizard. Figure 12 
shows the actions chosen to raise the offense regarding the DoS attack. “Dispatch New 
Event” defines the field used to generate the offense such as the Event Name and Event 
Description. The SIEM offers the possibility of sending an e-mail when an attack occurs or 
adding the event in a Reference to save the results, and execute custom actions. These ac-
tions could be used for the response phase, for example, to send an email to alert the driv-
er if an attack occurs. By choosing the action “Add to a Reference Set” and “Add to a Ref-
erence Data”, the values regarding the attack will be saved to understand where the attack 
occurs and what payload has been sent by the attacker. The role of the “Reference Set” is 
to save the CAN ID(s) that are sent as an attack on the bus. Therefore, it is possible to re-
solve the problem by fixing the ECU source code. In IBM QRadar SIEM, the Reference 
Set is a collection of unique values. The role of the “Reference Data” is to save the vehi-
cle model and the ECU ID. 

The reference data are important for two reasons. First, since V-SOC can analyze 
multiple vehicles, it is possible to determine based on the vehicle model, if the attacker is 
attacking multiple vehicles or if the attack has already been identified in other vehicles. 
If the attack has been identified in other vehicles, we have the knowledge about the at-
tack and, hence know, how to thwart it. Second, with the ECU ID we know where the at-
tack began and if other vehicles are mounted with the same ECU. With this information, 
the developers can fix the ECU source code and extend the fix not only to the attacked 
vehicle but also to others using the same ECU. In this way, it is possible to prevent an 
adversary from attacking other similar vehicles and ECUs. 

The SIEM allows the addition of information about the severity, credibility, and rel-
evance of the attack. The severity responds to the question: “How high is the potential 
damage to the destination?”; the credibility responds to the question: “How valid is the 
information from that source?”; and the relevance responds to the question: “How im-
portant is the destination?”. This information can be used to understand the threat level 
and required response time. For example, the fuzzing attack has a severity level higher 
than the DoS attack because it could activate anomalous behavior in the vehicle. For this 
reason, the fuzzing attack has a higher priority than the DoS attack. The generation of 
these three values depends on the organization; it comes with the experience of the SOC 

Figure 11. Example of JSON messages that correspond to DoS attack.

To generate an offense, IBM QRadar uses a component called Rule Wizard. Figure 12
shows the actions chosen to raise the offense regarding the DoS attack. “Dispatch New
Event” defines the field used to generate the offense such as the Event Name and Event
Description. The SIEM offers the possibility of sending an e-mail when an attack occurs
or adding the event in a Reference to save the results, and execute custom actions. These
actions could be used for the response phase, for example, to send an email to alert the
driver if an attack occurs. By choosing the action “Add to a Reference Set” and “Add to a
Reference Data”, the values regarding the attack will be saved to understand where the
attack occurs and what payload has been sent by the attacker. The role of the “Reference
Set” is to save the CAN ID(s) that are sent as an attack on the bus. Therefore, it is possible
to resolve the problem by fixing the ECU source code. In IBM QRadar SIEM, the Reference
Set is a collection of unique values. The role of the “Reference Data” is to save the vehicle
model and the ECU ID.

The reference data are important for two reasons. First, since V-SOC can analyze
multiple vehicles, it is possible to determine based on the vehicle model, if the attacker is
attacking multiple vehicles or if the attack has already been identified in other vehicles. If
the attack has been identified in other vehicles, we have the knowledge about the attack
and, hence know, how to thwart it. Second, with the ECU ID we know where the attack
began and if other vehicles are mounted with the same ECU. With this information, the
developers can fix the ECU source code and extend the fix not only to the attacked vehicle
but also to others using the same ECU. In this way, it is possible to prevent an adversary
from attacking other similar vehicles and ECUs.
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The SIEM allows the addition of information about the severity, credibility, and
relevance of the attack. The severity responds to the question: “How high is the potential
damage to the destination?”; the credibility responds to the question: “How valid is
the information from that source?”; and the relevance responds to the question: “How
important is the destination?”. This information can be used to understand the threat level
and required response time. For example, the fuzzing attack has a severity level higher
than the DoS attack because it could activate anomalous behavior in the vehicle. For this
reason, the fuzzing attack has a higher priority than the DoS attack. The generation of these
three values depends on the organization; it comes with the experience of the SOC analyst,
the common vulnerability scoring system (CVSS), or other parameters. In this paper, the
generation of these values was considered as general as possible. For example, considering
Figure 12 in the case of the DoS attack, the severity is five because this attack could flood
the network. However, it could be non-destructive to the behavior of the vehicle. The
credibility is set at value eight because it was considered that the attacker had direct access
to the bus. Finally, the relevance is set at value six because this depends on the network
that is being protected. For example, the powertrain will have more impact in case of an
attack than the window management system because it involves acceleration, transmission,
and other critical components. In this context, it was considered as general as possible.

When a payload with CAN ID 000 is sent to IBM QRadar, an offense is generated.
Figure 13 shows the total number of DoS messages identified by the SIEM (red rectangle).
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Figure 12 shows that the reference set saves the unique CAN_ID detected as the DoS
attack. Instead, the reference data, in particular reference map of sets, is used to save
the vehicleModel (as a key) and the UUID_ECU (as a value). To clarify, the reference set
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does not contain all CAN IDs because the set is an abstract data type that can store only
unique values.

5.3. Fuzzing Attack

In this attack, an attacker sends a random ID and a CAN data frame. The following
approach was considered to detect the fuzzing attack with SIEM: each ECU has its identifier
determined at the design phase and consequently, the SOC analyst could create the database
with ECU identifiers. For this reason, a reference set was created on QRadar by putting
CAN IDs without attacks. Usually, a reference set contains all unique values that can also
be used to store business data such as IP address, and username. The reference set contains
the unique CAN IDs for the OpelAstra and RenaultClio dataset.

These IDs have been taken from “full_data_capture.log” present in the OpelAstra and
RenaultClio dataset that contains 2690069 packets captured with a total of 85 unique CAN
IDs for the first dataset, and 386567 packets captured with 55 unique CAN IDs for the
second dataset [41]. In Figure 14, the JSON messages regarding the Fuzzing attack were
created in this way:

• The first five messages are used for the OpelAstra vehicle. The last five for the
RenaultClio vehicle. The UUID related to the OpelAstra will not be changed, while a
new one is generated for the RenaultClio.

• The UUID_ECU is the same for both vehicles. In this way, it is possible to simulate
two vehicles that mount the same ECU and are attacked at the same time.
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Figure 15 shows the rule created to identify the fuzzing attacks. The first row works
similar to the DoS rule. The second row is used to avoid being recognized as an event of
DoS attack. In the third row, if the ID of the current payload sent to QRadar does not exist
in the table, the offense will be raised.

Algorithms 2022, 15, x FOR PEER REVIEW 14 of 18 
 

These IDs have been taken from “full_data_capture.log” present in the OpelAstra 
and RenaultClio dataset that contains 2690069 packets captured with a total of 85 unique 
CAN IDs for the first dataset, and 386567 packets captured with 55 unique CAN IDs for 
the second dataset [41]. In Figure 14, the JSON messages regarding the Fuzzing attack 
were created in this way: 
• The first five messages are used for the OpelAstra vehicle. The last five for the Re-

naultClio vehicle. The UUID related to the OpelAstra will not be changed, while a 
new one is generated for the RenaultClio. 

• The UUID_ECU is the same for both vehicles. In this way, it is possible to simulate 
two vehicles that mount the same ECU and are attacked at the same time. 

 
Figure 14. The JSON messages created to test the Fuzzing rule. 

Figure 15 shows the rule created to identify the fuzzing attacks. The first row works 
similar to the DoS rule. The second row is used to avoid being recognized as an event of 
DoS attack. In the third row, if the ID of the current payload sent to QRadar does not exist 
in the table, the offense will be raised. 

 
Figure 15. Fuzzing rule in QRadar. 

The actions chosen for the fuzzing attack are shown in Figure 16. The severity value 
was set to eight because in this case, this attack can impair the behavior of the vehicle by 
sending random identifiers. Credibility and relevance are the same as the DoS attack. 

Figure 17a shows the generated offense when the five fuzzing messages are sent and 
analyzed by the SIEM. This offense corresponds to the OpelAstra (green rectangle corre-
sponds to the UUID). Instead, Figure 17b shows the offense generated for the RenaultClio. 

The reference set contains the CAN_IDs detected by the SIEM as a fuzzing attack. In 
addition, the reference map of set contains the vehicleModel as a key and the UUID_ECU 
as a value. In this approach, using the reference map of set, if the attack occurs in multiple 
vehicles, the information of where the attack happened and whether multiple vehicles 
are involved are available. For example, with the UUID of the ECU, the SOC analyst 
could control if other vehicles mount the same ECU and proceed to implement security 
measures before the attack is carried out in these vehicles. 

Figure 15. Fuzzing rule in QRadar.

The actions chosen for the fuzzing attack are shown in Figure 16. The severity value
was set to eight because in this case, this attack can impair the behavior of the vehicle by
sending random identifiers. Credibility and relevance are the same as the DoS attack.



Algorithms 2023, 16, 112 15 of 19Algorithms 2022, 15, x FOR PEER REVIEW 15 of 18 
 

 
Figure 16. The actions chosen for the fuzzing attack. 

 
(a) 

 
(b) 

Figure 17. Generated offenses when a fuzzing attack is detected. (a) Shows the offense regarding 
the vehicle model OpelAstra with five identified attacks (red rectangle). In (b) the figure refers to 
the RenaultClio with five identified attacks. 

The metrics accuracy, precision, recall, and F1-score are used to evaluate the SIEM’s 
detection performance [22]. For the DoS attack, the number of injected messages ana-
lyzed was 40.015. As we see in Section 5.2 Figure 13, with the created rule, the SIEM suc-

Figure 16. The actions chosen for the fuzzing attack.

Figure 17a shows the generated offense when the five fuzzing messages are sent and
analyzed by the SIEM. This offense corresponds to the OpelAstra (green rectangle corre-
sponds to the UUID). Instead, Figure 17b shows the offense generated for the RenaultClio.
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The reference set contains the CAN_IDs detected by the SIEM as a fuzzing attack. In
addition, the reference map of set contains the vehicleModel as a key and the UUID_ECU
as a value. In this approach, using the reference map of set, if the attack occurs in multiple
vehicles, the information of where the attack happened and whether multiple vehicles are
involved are available. For example, with the UUID of the ECU, the SOC analyst could
control if other vehicles mount the same ECU and proceed to implement security measures
before the attack is carried out in these vehicles.

The metrics accuracy, precision, recall, and F1-score are used to evaluate the SIEM’s
detection performance [22]. For the DoS attack, the number of injected messages analyzed
was 40.015. As we see in Section 5.2 Figure 13, with the created rule, the SIEM successfully
analyzes all the messages. In this case, the SIEM obtained 100% accuracy, precision, recall,
and F1-score because all 40.015 messages were recognized correctly (see Section 5.1 for the
dataset details).

Considering the fuzzing attacks, Section 5.3 Figure 17a,b show that SIEM was able
to detect all 10 CAN ID attacks for both vehicle datasets. In addition, IBM QRadar SIEM
reaches 100% accuracy, precision, recall, and F1-score. Table 2 summarizes the results
obtained with IBM QRadar SIEM. The results show that the SIEM, while using a rule-based
system, can identify attacks that might occur on the CAN bus.

Table 2. Evaluation results obtained with IBM QRadar SIEM using a rule-based method.

Attack Accuracy (%) Precision (%) Recall (%) F1-Score (%)

DoS 100 100 100 100

Fuzzing 100 100 100 100

Finally, with the proposed architecture, it is possible to prevent and respond to the
attack with the vehicle IP. In addition, the ECU_UUID and the vehicleModel parameters
add greater detail to identify the vulnerability that caused the attack

6. Conclusions

Automotive security is critical to ensure driver safety and comfort in an interconnected
vehicle. However, as vehicle connectivity becomes commonplace, new security risks
emerge because communication protocols, such as the CAN network, are still insecure and
vulnerable to attacks.

Therefore, in this work, a vehicle-SOC for improving automotive security (V-SOC4AS)
was proposed. The V-SOC4AS aims to work alongside current systems of IDSs and IPSs
to improve attack detection but, more importantly, to define a response phase in the
automotive context.

In this work, two types of attacks, DoS and fuzzing, were analyzed to validate the
proposed approach and to detect these attacks, two rules were developed in IBM QRadar
SIEM. An advantage of the V-SOC4AS is that, with the UUID_ECU and vehicleModel
parameters discussed in Section 5, it is possible to figure out which vehicles are attacked
and the specific ECU that is vulnerable. In this way, it is possible to identify and fix the
vulnerability that caused the attack and update vehicles of the same model, and those that
mount the same ECU model. This can be helpful to prevent an attack that can occur on
other vehicles. An additional advantage of the architecture presented in the paper is that
through the vehicle IP on the SOC console, a proper response could be delivered according
to the different strategies presented in Section 4.2.

Finally, it is possible to generalize the presented approach not only to identify and
detect attacks but also to analyze the entire vehicle and not just the CAN protocol, as the
SIEM is customizable with different information to be compatible with other protocols.
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