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Abstract: Convolutional neural networks (CNNs) have made impressive achievements in image
classification and object detection. For hardware with limited resources, it is not easy to achieve
CNN inference with a large number of parameters without external storage. Model parallelism is
an effective way to reduce resource usage by distributing CNN inference among several devices.
However, parallelizing a CNN model is not easy, because CNN models have an essentially tightly-
coupled structure. In this work, we propose a novel model parallelism method to decouple the
CNN structure with group convolution and a new channel shuffle procedure. Our method could
eliminate inter-device synchronization while reducing the memory footprint of each device. Using
the proposed model parallelism method, we designed a parallel FPGA accelerator for the classic
CNN model ShuffleNet. This accelerator was further optimized with features such as aggregate read
and kernel vectorization to fully exploit the hardware-level parallelism of the FPGA. We conducted
experiments with ShuffleNet on two FPGA boards, each of which had an Intel Arria 10 GX1150 and
16GB DDR3 memory. The experimental results showed that when using two devices, ShuffleNet
achieved a 1.42× speed increase and reduced its memory footprint by 34%, as compared to its
non-parallel counterpart, while maintaining accuracy.

Keywords: convolution neural network; model parallelism; field programmable gate array; inference
accelerating

1. Introduction

Convolutional neural networks (CNNs) are mainly used in computer vision appli-
cations, such as image classification, video recognition, and face detection [1,2]. Usually,
CNN inference is a resource-consuming task, as intermediate results and weights occupy a
large memory footprint, and various operations require a large amount of computation.
The accuracy of CNN-based algorithms has improved significantly in the last decade due
to the increased data and enhanced network structure.

A typical CNN architecture has multiple convolutional layers and classification lay-
ers. CNNs are computationally intensive, with more than a billion operations per input
image, so GPUs are widely used to accelerate the training and inference tasks of CNNs [3].
However, their power consumption (>100 W) is too high for embedded applications, where
energy efficiency is critical. Therefore, various hardware accelerators based on FPGAs,
SoCs (CPC + FPGA), and ASICs have been proposed [4–6]. FPGA-based hardware accel-
erators have gained momentum due to their high reconfigurability, fast turnaround time
(compared to ASICs), good performance, and better energy efficiency (compared to GPUs),
especially with the availability of high-level synthesis (HLS) tools from FPGA vendors [7].

For CNNs with a large number of parameters, an FPGA card with limited resources
cannot load the entire CNN model into on-chip storage without external storage (DDR),
which greatly limits the computational power of the FPGA. For example, in CNN inference,
when only one FPGA is used, the on-chip memory is often not sufficient to hold all the
model’s data. The model weights have to be stored in DRAM and need to be accessed
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frequently, resulting in a performance bottleneck. When there are enough FPGAs, each
FPGA is responsible for one layer or several features in one layer of the model, so that the
model weights needed for each FPGA are completely loaded into the on-chip memory and
the performance bottleneck in DRAM is eliminated. This model parallelism is attractive
because it can simultaneously optimize the latency, throughput, and memory footprint of
CNN inference.

However, it is not easy to use model parallelism to assign the inference of CNN
models to hardware devices, as CNN models are inherently tightly coupled structures [8].
Therefore, we focused on the CNN structure to explore model parallelism optimization for
distributed CNN inference.

In this paper, we aimed to achieve more efficient model parallelism by decoupling the
CNN structure. The contributions of this paper are summarized as follows:

(1) We decoupled the CNN network structure using group convolution and a new channel
shuffle process to replace the original convolution and channel shuffle techniques.
This loosened the connections between feature maps and provided a high efficiency
and low memory usage for each device.

(2) We designed a parallel FPGA accelerator for the classic CNN model ShuffleNet using
model parallelism. Additionally, this accelerator was optimized with several parallel
strategies in the heterogeneous parallel programming framework OpenCL. This accel-
erator could leverage multiple devices to speed up inferencing and relieve resource
constraints on the individual devices.

The rest of the paper is organized as follows. Section 2 provides a brief overview of the
ShuffleNet structure, Intel OpenCL, and related works. Section 3 explains the modifications
to the convolutional layer and channel shuffle features. Section 4 describes the optimization
on OpenCL and FPGA hardware and a parallel computing architecture for CNN models.
Section 5 presents the experimental results for ShuffleNet on the Altera FPGA platform and
a comparison with prior works. The paper is concluded in Section 6 with future prospects.

2. Background and Related Works
2.1. ShuffleNet

ShuffleNet is an efficient CNN structure specifically designed for low-end devices such
as mobile devices [9]. In order to significantly reduce the computation cost while maintain-
ing accuracy, this new structure utilizes two operations: pointwise group convolution and
channel shuffle. Experiments on ImageNet classification and MS COCO object detection
illustrated that ShuffleNet has superior performance compared to other structures, e.g.,
presenting a lower top-1 error (7.8%) than the recent MobileNet structure at a computation
performance of 40 MFLOPs [10].

The ShuffleNet used in this paper consisted of one independent convolutional layer
(CL), followed by 16 blocks, ending with a fully connected layer (FC). In addition, there
were three max-pooling layers with a step size of 2 and an average pooling layer. The final
Softmax layer output a vector of 1000 elements, representing 1000 possible image classes.
The ShuffleNet architecture is shown in Table 1.
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Table 1. ShuffleNet architecture.

Layer Output Size KSize Stride Repeat
Output Channels (G Groups)

G = 1 G = 2 G = 3 G = 4 G = 8

Image 224 × 224 3 × 3 3 3 3 3 3
CL 112 × 112 3 × 3 2 1 24 24 24 24 24

MaxPool 56 × 56 2
Stage2 28 × 28 2 1 144 200 240 272 384

28 × 28 1 3 144 200 240 272 384
Stage3 14 × 14 2 1 288 400 480 544 768

14 × 14 1 7 288 400 480 544 768
Stage4 7 × 7 2 1 576 800 960 1088 1536

7 × 7 1 3 576 800 960 1088 1536
GlobalPool 1 × 1 7 × 7

FC 1000 1000 1000 1000 1000

2.2. OpenCL for FPGA

Traditionally, HDL, like VHDL and Verilog, has been used to describe the design of
an FPGA. However, this is a time-consuming and lengthy process that requires in-depth
knowledge of the underlying hardware. To make FPGAs easier to program, FPGA vendors
and the research community have been actively developing HLS tools that take high-
level language design descriptions as an input and generate a synthesizable hardware
implementation for FPGAs [11–13].

OpenCL is an open, cross-platform, high-level parallel programming language that
can be used for GPU and FPGA development. Figure 1 summarizes the development
flow of an OpenCL-based FPGA. In the framework, FPGAs (as OpenCL devices) are
connected to CPUs (as OpenCL hosts) through high-speed PCIe to form heterogeneous
computing systems. An OpenCL code written in a dialect of C/C++ defines multiple
parallel computation units (CUs) in the form of kernel functions, which are compiled and
synthesized to run on the FPGA. On the host side, the C/C++ code runs on the CPU,
providing an application programming interface (API) to communicate with the kernels
implemented on the FPGA. This work used the Altera OpenCL SDK toolset to compile,
implement, and profile the OpenCL code on the FPGA.
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2.3. Related Work

Model parallelism and data parallelism are two common types of parallelism in
distributed deep learning.

Model parallelism attempts to partition the learning model itself among several de-
vices. The main works related to this paper are [14,15]. The authors of [14] designed three
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approaches to explore model parallelism for FCs in CNN training. The authors of [15]
proposed an optimized parallel algorithm using the butterfly reduction communication
strategy for CNN training in distributed GPUs. Both of these studies applied model
parallelism in a fully connected layer, and neither of them considered applying model
parallelism in a convolutional layer.

Data parallelism refers to the partitioning of data among several devices, which exe-
cute the same model in parallel. One representative work on data parallelism [16] proposed
a local distributed mobile computing system for DNN applications involving the distribu-
tion of both the input and output as well as the weight across devices. However, it focused
mainly on sparse fully connected layers and did not take weight-intensive convolutional
layers into account. Furthermore, it used the biased one-dimensional partition (BODP)
method that requires all devices to synchronize by exchanging data. Another important
data-parallelism-based work [17] tried to split the feature map into 2D grids for convolu-
tional layers. However, this caused overlapping computation and redundant tasks. Most
data parallelism works barely pay attention to the characteristics of CNN structures and
tend to ignore the cost of inter-device synchronization.

This paper focused on the model parallelism of multiple devices. This required not
only reducing the communication between devices, but also optimizing the computing
speed of the devices. The authors of [18] accelerated training and inference using mathe-
matical transformations such as FFTs to reduce the multiplication numbers. The authors
of [19–21] provided deep learning frameworks to efficiently exploit data-level parallelism in
CNNs. The authors of [19] studied the effectiveness of various optimization strategies such
as branch divergence elimination and memory vectorization. These GPU-based parallel
methods can be learned.

Previous works [22–24] have proposed optimization techniques specific to FPGAs.
The authors of [22] exploited layer parallelism and assembled convolutional components
that could be adapted to the different layers of the common CNN. The authors of [23]
provided an FPGA accelerator with a new deep-pipeline OpenCL kernel architecture and
proposed data reuse and task mapping techniques to improve efficiency. The authors of [24]
proposed a systematic design space exploration approach to maximize the OpenCL-based
FPGA accelerator for a given CNN model. These works have one thing in common: they all
made more efficient use of FPGAs by increasing their parallelism. This provided valuable
experience to inform our use of openCL [11] and FPGAs [25] in this study.

This work began with considering the network structure, which is the basis for model
parallelism in CNN inference. Unlike previous works, instead of using data parallelism
in the convolutional layer, this study changed the structure to distribute the input and
output data of the layer as well as the weight data across devices in a partitioned manner,
eliminating the cost of inter-device synchronization while reducing the memory footprint of
each device. Furthermore, we explored optimization strategies with an OpenCL framework
for FPGA hardware to optimize deep learning inference in terms of data transmission and
computational efficiency.

3. Approach

In this section, we describe in detail the decoupling methods for each layer in the CNN
to effectively improve model parallelism.

3.1. Convolution

In general, the convolutional layer (CL) is the most resource-intensive layer in a CNN.
In a CNN model, a CL contains hundreds of convolutional kernels (y). The convolutional
operation aims to generate the output by sliding the convolutional kernel over the input.
Since the convolutional kernel is a three-dimensional (width, height, depth) tensor, the core
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of convolution is a three-dimensional multiplicative accumulation operation. This is shown
in Equation (1).

COUT( fo, y, x) =
Cn

∑
fi=0

K

∑
kY=0

K

∑
kx=0

Wl
(

fo, fi, ky, kx
)
× CIN

(
fi, y + ky, x + kx

)
(1)

where CIN
(

fi, y + ky, x + kx
)

and COUT( fo, y, x) represent the neurons at location (x, y) in
the input feature map fi and the output feature map fo, respectively; and Wl

(
fo, fi, ky, kx

)
represent the weight of the corresponding position (kx, ky) in the nth layer of fo obtained
by convolution with fi.

Previous works have parallelized the convolution layer through data partition. A
common partitioning method for convolutional layers used in research is shown in Figure 2.
Each device processes a portion of data from each input channel and generates the cor-
responding output. When the convolutional kernel is 1 × 1, the partitioning method in
Figure 2 is reasonable. However, when the convolutional kernel exceeds 1 × 1, the data of
each input channel require adjacent input data from neighboring devices, and thus com-
munication between devices occurs. This kind of communication negatively affects model
parallelism. A larger region of input data than the partitioned region itself, as shown by
the red dashed box in Figure 2, has to be allocated to each device, because its computation
depends on the neighboring data. To make matters worse, in this partitioning approach the
kernel weights are not partitioned, and each device needs to keep all the weights, which
has a slight impact on the memory footprint.
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If each device fetches the data of the region in the red dashed box in advance, the
communication between devices can be eliminated. Unfortunately, this approach lacks
universality, since the size of the excess depends on the size of the convolutional kernel.

To deal with the problems of the above partitioning methods, we proposed the re-
placement of this tightly coupled convolutional structure with group convolution in order
to apply model parallelism.

For convolutional neural networks, group convolution is more suitable for model
parallelism than convolutional layers. This is because group convolution first appeared
in AlexNet to solve the problem of insufficient memory. It can increase the diagonal
correlation between convolutional kernels and reduce the training parameters. Previous
research works have indicated that group convolution can make a model less prone to
overfitting, which is similar to the effect of regularization.

As shown in Figure 3, with the group convolution structure, each device acquires a
part of the data of the input channel, while the weights are uniformly distributed on each
device and are applicable to any convolutional kernel size. Assume that there are X feature
maps (channel = X) and the number of group convolutions is M (group = M). The algorithm
aims to divide the channel into M parts. Each group corresponds to X/M channels, which
are connected independently. The size of the convolution kernel also changes from X*W*H
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to X*W*H/M. This change does not affect the dimensionality of the input and output
feature maps, but significantly reduces the computational complexity and the number of
model parameters and greatly reduces the memory occupation resources of each device,
which is beneficial for hardware devices with limited resources.
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However, the disadvantage of using group convolution instead of convolution is very
obvious: since each output channel only uses the input channels within the same group,
there is no information exchange between groups, resulting in a loss of accuracy.

3.2. Inside Shuffle

To alleviate the problems mentioned above, channel shuffle was employed to compen-
sate for the accuracy of the CNN model. Since channel shuffle requires the exchange of data
between groups of channels, it imposed new synchronization points while compensating
for accuracy.

When using model parallelism, some neural networks need synchronization points
because their network structure inherently requires communication to remove data de-
pendencies. For example, the ShuffleNet structure used in this paper comprised 16 blocks,
which meant that 16 synchronization points were needed when distributing the inference
of ShuffleNet.

Is it possible to retain the shuffle feature without adding synchronization points? For
neural networks that need synchronization points, we modified the channel shuffle so
that it did not add new synchronization points. The details of this process are shown in
Algorithm 1.

Algorithm 1. Inside-Shuffle.

Input: data: output from the upper layer
I_input: Store a portion of the data needed for each device, I_input ⊂ data
N: a parameter for internal shuffle of data

Output: result: reordered data is used to provide to the next layer
1.Create local variable I_input
2.Read data from Channel to I_input
3.for i = 0, 1, . . . , Channel/(N * Device_Number) do
4. for j = 0, 1, . . . , N do
5. for k = 0, 1, . . . , input_size do
6. Convert the one-dimensional array I_input into

a three-dimensional array (i, j, k)
7. Transpose(i, j) #Tranpose(·) is used to exchange data
8. Store result to the channel in the original order.
9. end for
10. end for
11.end for
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First, it is necessary to comprehend the implementation of the original channel shuffle
process. Channel shuffle is the “reorganization” of the feature map after group convolution.
The data of each group are divided into n parts and exchanged with each other to ensure
that the information flows between different groups.

Next, we introduce inside shuffle, as depicted in Algorithm 1, wherein each block
uses residual learning, which guarantees the interactivity and protects the integrity of
the information by directly bypassing the input information to the output. Its function is
similar to that of channel shuffle.

In a word, the inside shuffle algorithm divides the data of each group into n parts, and
intra-group exchange is used instead of inter-group exchange, so that no new synchroniza-
tion points are added while the “reorganization” feature is retained.

3.3. Other Layers

Except for the convolutional layer and channel shuffle layer, CNNs contain other
layers, such as BN, DWconv, and Maxpool. Looking closely at the computation of these
layers, it is found that each input feature map is computed with weight parameters to
obtain the output feature map, and the data of other feature maps are not needed during
this period. Unlike convolution layers, the feature maps of these layers do not closely relate
to each other. Therefore, it can be seen that model parallelism can be applied directly to
these layers. Depending on the number of devices, the input feature maps and parameters
are evenly spread out and computed on each device alone.

4. Optimizations

In this study, we developed a parallel FPGA accelerator for ShuffleNet and implemented
it with an OpenCL framework on an FPGA. This section first describes the optimization
strategies with the OpenCL framework for FPGA hardware, then outlines the overall
architecture of the parallel FPGA accelerator.

4.1. Pipelined Computation

OpenCL allows the programmer to invoke the kernel in one of two configurations:
NDRange and single task. For NDRange, the kernel relies on work items to partition the
data, and each work item is independent. For single task, the kernel uses only one work
item, allowing pipelined execution in a kernel loop. This study used single task to invoke
the kernel. NDRange requires the setting of the global_work_size and local_work_size
parameters to ensure that the data are reasonably distributed among the different work
items, but each work item takes a different amount of time to process the data, which
requires a synchronization operation. Single task uses pipelined execution, so there is no
need to synchronize the execution of a single work item in succession.

4.2. Channel Communication

The OpenCL-based FPGA accelerator data flow is as follows. First, the kernel receives
the data in the input buffer; then, it stores the result in the output buffer after computing;
finally, the host side reads the result into memory. The whole process needs to ensure that
the kernel has stored the complete data in the output buffer when the host side reads the
content in the output buffer. For neural networks with several different layers, such as
convolutional layers and pooling layers, the host side and the kernel side need to constantly
exchange data, resulting in a significant amount of communication time. In this case, the
Intel FPGA SDK for the OpenCL channel provided a flexible way to allow data to be
passed from one kernel to another, reducing time-consuming interactions and enabling
a “write once, compute many” programming model. Note that it was necessary to add
#pragma OPENCL EXTENSION cl_intel_channels: enable before running channels to
allow extensions. This was because the default behavior of channels is blocking, and the
cl_intel_channels extension provided a way to access data stored in multiple channels with
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a single instruction. This allowed for the more efficient accessing and processing of data
stored in multiple channels.

4.3. Aggregate Read

Memory access times refers to the number of read and write operations performed
using the global memory during the execution of the kernel programs. If the access to the
global memory is too frequent, it will cause considerable performance loss. Aggregate
access can effectively reduce the number of access occasions. The input data should be
reorganized so that they are read in memory storage order, e.g., a[0], a[1], a[2], a[3] instead
of a[0], a[7], a[1], a[8]. This reduces the number of cache misses and makes good use of the
data locality, thus effectively increasing the speed of memory access. For output data, this
aggregated read technique is also applicable.

4.4. Kernel Vectorization

A possible method to further improve the throughput is kernel vectorization, which
works in an SIMD manner, with the compiler completing the vectorization by memory
aggregation. Before memory aggregation, multiple read operations access the same storage
area, which requires more complex control logic, generates access conflicts, and requires
four accesses to complete the entire fetch operation. After memory aggregation, only
one read operation is required, which is equivalent to turning multiple read operations
into one, improving the efficiency of data reads. Although the compiler automatically
coalesces memory accesses, this is not always accurate. Thus, the programmer is required
to use explicit vectorized access operations as much as possible to achieve better access
performance. Note that the number of vectorizations can only be 2, 4, 8, or 16.

4.5. Overall Architecture

Based on the above optimization strategies, an overall architecture could be designed.
In the process of inference, interactions between the kernels of each layer were transmitted
through channels, data were read by aggregation, and kernels were vectorized. In this
design, the data transfer process overlapped with the parallel execution of the kernels on
the FPGA, which avoided the impact on the FPGA computational performance. The overall
architecture of design is shown in Figure 4. The overall architecture was composed of one
CPU, two FPGAs, and DDR3 memory. The CPU played the role of synchronizing the data
in the middle of the multi-FPGA devices during CNN inference.
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The proposed FPGA internal design is shown in Figure 5, including the design of
each module and the data flow control. MemRD was used to obtain the image data and
weights from the host side. MemWR was used to write the computation results from the
kernel side to the host side. Block represents the computation unit corresponding to the
CNN. Each Block computation ended with residual learning, which needed to be written
back to the host side via MemWR for synchronization. In addition, the on-chip memory
was implemented using M20K memory blocks, each with a 20K bits capacity. Only when
the memory depth was greater than the maximum depth of one M20K block was another
M20K block added.
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5. Experiment
5.1. Experimental Setup

The FPGA chips selected for this experiment were two Intel Arria10 GX1150 FPGAs
embedded in an Inspur F10A board. The software environment was Intel FPGA SDK for
OpenCL pro19.1 with a BSP provided by the Wave FPGA development team, using an
Intel® Xeon® Gold6128 CPU as the OpenCL host and DMA for data transmission between
devices. The board support package (BSP) was a layer between the motherboard hardware
and the driver in the operating system. It provided a functional package for the upper
layer drivers to access the hardware device registers and make them work better on the
hardware motherboard.

We selected two datasets (MNIST and CIFAR-10) to verify the accuracy and perfor-
mance of the inside shuffle algorithm. These two datasets comprised 10,000 images for
testing, and the rest of the images were used for training. On this basis, we used the
ShuffleNet model to verify the effectiveness of the model parallelism, evaluating it in terms
of resource utilization, speed-up ratio, and energy consumption.

5.2. Accuracy

In this study, we first evaluated the accuracy loss of the inside shuffle algorithm
to verify that it fell within acceptable limits. We chose the lightweight neural network
ShuffleNet and ensured that the training and test sets used in each version were the same
for the fairness of the experiment. The resulting data are shown in Table 2. For both the
MNIST and CIFAR-10 datasets, the top-1 accuracy of the inside shuffle algorithm was
slightly higher than the original shuffle algorithm whether the group was equal to 2 or 3.
Overall, the top-1 accuracy of each version remained basically the same.
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Table 2. Accuracy of experimental results.

CNN Model Channel Shuffle Group
Top-1 Accuracy

MNIST CIFAR-10

ShuffleNet

Original Shuffle 2 98.90% 84.44%
Inside Shuffle 2 99.00% 84.75%

Original Shuffle 3 98.70% 83.52%
Inside Shuffle 3 98.83% 84.11%

Compared with original shuffle, inside shuffle eliminated the synchronization points
caused by the model parallelism while maintaining the original shuffle characteristics.
This not only allowed the exchanging of data, but also further exposed the high degree of
parallelism.

According to the results of the two datasets, based on the understanding of the original
shuffle algorithm, the inside shuffle algorithm did not have much impact on the accuracy,
which verified the effectiveness of inside shuffle optimization.

5.3. Performance

This section presents the evaluation of the performance of the model in terms of time
and energy consumption. Table 3 shows the experimental results for both versions of
ShuffleNet.

Table 3. Experimental results.

Device Version
Optimizations

Number Time (ms) Power (W)
Channel Others

Inspur F10A
ShuffleNet

X X 1 1045.198 23.5
X

√
1 329.869 23.4

X
√

2 228.358 20.5

I-ShuffleNet
√ √

1 186.635 23.5√ √
2 130.521 21.1

In Table 3, ShuffleNet is the original model, while I-ShuffleNet is the model with the
inside shuffle algorithm. The optimizations are divided into channel and others. Note that
others represents three optimization methods: pipelined computation, aggregate read, and
kernel vectorization. Number is the number of FPGA devices. Time is the average inference
time in milliseconds for many experiments, and Power is the average power consumption
in watts for each device during inference.

The power consumption of the FPGA includes not only the FPGA chip, but also the
power consumption of the off-chip memory and other devices on the board.

On Inspur F10A, compared to ShuffleNet, I-ShuffleNet reduced the inference time by
almost two-fold for the same number of devices. This was due to the introduction of the
channel, which reduced the number of data interactions between the FPGA and the CPU.
When there was only one device, the channel achieved the highest time reduction. In
the case of a single device, the number of interactions was only two: one write and one
write out. In the case of multiple devices, due to the ShuffleNet network structure, data
synchronization was required after each block was calculated, so the number of interactions
was equal to the number of blocks, i.e., 16. This is why the degree of time reduction was
not very large.

As presented in Figure 6, the time comparison showed that the model parallelism had
a good acceleration effect when using two FPGAs. The running time required for each
layer basically demonstrated a linearly proportional reduction, achieving a speed-up ratio
of 1.9×. However, in the I-ShuffleNet version, the model with two devices was 1.42× faster
than the model with one device. Because model parallelism requires synchronization time,
it is not linearly proportional.
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The resources used for the entire network inference process are shown in Table 4. The
largest change due to the number of devices was in the use of RAMs. The number of
RAMs required ranged from 1707 to 1265, with a 34% reduction in memory utilization. This
reduction in memory utilization opens up the possibility of implementing neural network
inference using devices with lower amounts of resources.

Table 4. Comparison of resource utilization.

Number of FPGA Devices ALUTs FFs RAMs DSPs

1 139,651 (16%) 224,468 (13%) 1707 (63%) 137 (9%)
2 148,715 (17%) 249,448 (15%) 1265 (47%) 143 (9%)

This paper demonstrated the experimental effect of CNN model parallelism when
using two FPGAs. Of course, this method could be used to add more devices and act
on multiple devices. However, it is not the case that more devices bring better results.
In terms of the speed-up ratio, an increase in the number of devices was able to reduce
the network layer computation time in a nearly linear proportion, but the time for device
synchronization could not be reduced. Thus, as the number of devices increases, the
key to the speed-up ratio will change from the network computation time to the device
synchronization time, which will make the speed-up ratio reach a bottleneck. The same is
true for accuracy. An increase in the number of devices will lead to excessively detailed
data exchange within the channel, which may achieve the opposite effect. It is expected
that the experimental results are most appropriate when the number of devices is 3–4.

6. Conclusions

For hardware with limited resources, model parallelism for multiple devices is often
employed. However, due to the structural characteristics of tightly coupled CNNs, it
is difficult to use model parallelism methods to achieve a high degree of parallelism in
multi-device inference.

In this paper, we proposed an effective decoupling method using group convolution
and a new channel shuffle algorithm to replace the original convolution and channel shuffle
approaches, aiming to achieve data and model separation while eliminating inter-device
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synchronization costs. As the number of devices increased, the computation time decreased
in an approximately linear proportion.

Using the proposed model parallelism method, we designed a parallel FPGA acceler-
ator for ShuffleNet. We realized FPGA acceleration by pipelined computation, a channel
mechanism, aggregate read, and kernel vectorization. Benefiting from these approaches,
the experimental results showed that our paralleled ShuffleNet FPGA accelerator exhibited
a high degree of model parallelism while maintaining accuracy. When using two FPGAs, it
achieved a 1.42× higher speed and a power consumption of about 20 W, as well as a 34%
memory footprint reduction.

In subsequent research, we will study the direct communication between FPGAs to
reduce the communications delay and further optimize the model parallelism of FPGA
accelerators.
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Abbreviations
The following abbreviations were used in this manuscript:

CPU Central processing unit
FPGA Field-programmable gate array
GPU Graphics processing unit
DDR2 Double data rate 2
ASCI Application-specific integrated circuit
HLS High-level synthesis
DRAM Dynamic random-access memory
MFLOPs Million floating-point operations per second
FC Fully connected layer
CL Convolutional layer
HDL Hardware description language
VHDL Very-high-speed integrated circuit hardware description language
SDK Software development kit
DMA Direct memory access
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