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Abstract: Image deblurring based on sparse regularization has garnered significant attention, but
there are still certain limitations that need to be addressed. For instance, convex sparse regularization
tends to exhibit biased estimation, which can adversely impact the deblurring performance, while
non-convex sparse regularization poses challenges in terms of solving techniques. Furthermore,
the performance of the traditional iterative algorithm also needs to be improved. In this paper, we
propose an image deblurring method based on convex non-convex (CNC) sparse regularization and
a plug-and-play (PnP) algorithm. The utilization of CNC sparse regularization not only mitigates
estimation bias but also guarantees the overall convexity of the image deblurring model. The
PnP algorithm is an advanced learning-based optimization algorithm that surpasses traditional
optimization algorithms in terms of efficiency and performance by utilizing the state-of-the-art
denoiser to replace the proximal operator. Numerical experiments verify the performance of our
proposed algorithm in image deblurring.

Keywords: image deblurring; plug-and-play algorithm; convex non-convex strategy; sparse
regularization

1. Introduction

Image deblurring is a classic subject of wide interest in the field of computer vision. In
recent years, substantial advancements and notable progress have been achieved in this
domain [1–8]. A blurred image can be mathematically represented as the convolution of an
unknown sharp image with the blur kernel, accompanied by additive noise [9–12]. To be
precise, a blurred image y can be denoted as

y = a ∗ x + ε, (1)

where a is the blur kernel (or the point-spread function), ∗ is the convolution operator, x is
the latent sharp image, and ε is the noise. Furthermore, the matrix representation of (1) can
be expressed as

y = Ax + ε, (2)

where A denotes a convolution matrix and Ax = a ∗ x. If the convolution matrix A satisfies
circular boundary conditions, it can be expressed as A = F−1ΛF, where F and F−1 are
the orthogonal matrices denoting the discrete Fourier transform and its inverse transform,
respectively, and Λ is a diagonal matrix representing the filter in the Fourier domain [13,14].

Image deblurring aims to restore the latent image x from the blurred image y. One
feasible approach is to formulate this task as the following sparse regularization problem

min
x

1
2
‖y− F−1ΛFx‖2

2 + λφ(x), (3)
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where 1
2‖y− F−1ΛFx‖2

2 is the data-fidelity term, φ(x) is the regularization term that incor-
porates prior knowledge of x, and the regularization parameter λ measures the weight of
these two terms. Image deblurring model (3) has garnered significant attention, with the
selection of sparse regularizations and efficient algorithms being crucial factors in ensuring
the efficacy of the model.

Appropriate regularization accurately quantifies the prior information of an image,
thereby enhancing the performance of image deblurring. The `0-norm is commonly utilized
as a regularization term for deblurring due to its ability to induce sparsity [3,12,15,16].
However, the corresponding sparse regularization problem is computationally intractable
because of the discontinuous and non-convex nature of `0-norm [10]. The `1-norm regular-
ization, serving as a convex approximation of the `0-norm, is an appropriate alternative to
replace the `0-norm. Nevertheless, the estimates based on the `1-norm exhibit bias and tend
to underestimate components of larger magnitude. In addition, as noted in [17], blurring
decreases the peak height. Therefore, unlike other image restoration tasks such as denois-
ing, utilizing the `1-norm regularization not only fails to contribute to image deblurring
but also impedes image deblurring, consequently yielding the opposite effect [10,17]. The
non-convex regularization has been proposed for image deblurring, where [18,19] uses
the `p-norm (0 < p < 1) as the regularization term and the `1/`2 regularization is used
in [10]. However, their tendency is to generate a multitude of local sub-optimal solutions,
thereby posing a challenge to the problem-solving process. To address this shortcoming,
CNC sparse regularization is introduced, which overcomes biased estimation through
its non-convexity and enables convex optimization by adjusting the non-convex control
parameter [20–23].

A fast and efficient algorithm can enhance the speed and accuracy of deblurring,
which is crucial for ensuring the practical application of an image deblurring model. Im-
age deblurring algorithms can be broadly categorized into two groups. The first group
comprises traditional iterative algorithms such as the iterative shrinkage-thresholding
algorithm (ISTA) [10], alternating direction method of multipliers (ADMM) [18,24], and
half-quadratic splitting (HQS) [2,3,15,16] algorithms. These algorithms work by iteratively
refining a solution until a stopping criterion is met, typically accompanied by theoreti-
cal proof of algorithmic convergence. However, the traditional iterative algorithm often
requires numerous iterations to achieve a satisfactory outcome, resulting in significant
computational costs [25,26]. The second group comprises deep learning algorithms, which
are designed to automatically learn features from the data, rather than relying on hand-
crafted features [4,5,25,27–31]. For example, Tao et al. [28] propose a new Scale-recurrent
Network (SRN-DeblurNet) to deal with two problems in a CNN-based deblurring system.
Based on a new NFRes-block, Mittal et al. [27] propose the NFResnet and NFResnet+.
Zou et al. [30] introduce a dilated convolution model (SDWNet) for image deblurring.
Despite the computational advantages of these neural network-based methods, they are
not without their drawbacks, including excessive network parameters and a lack of inter-
pretability. The current approach known as learning-based optimization or model-based
deep learning combines the strengths of iterative algorithms and deep neural networks to
enhance computational performance while also exhibiting commendable interpretability
and generalization capabilities [32–34]. The PnP algorithm is a learning-based optimiza-
tion framework, which aims to enhance the iterative algorithm by replacing the proximal
operator with a state-of-the-art denoiser. By leveraging a deep neural network denoiser,
the performance of the PnP algorithm can be significantly improved. Moreover, within
the framework of the iterative algorithm, theoretical guarantees for convergence are also
provided. As a result, PnP algorithms have gained widespread adoption in various image
tasks [7,8,35–40].

In this paper, we propose a novel image deblurring model by utilizing CNC sparse
regularization and solving it by a PnP algorithm. In summary, our contributions are as
follows:
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• By incorporating CNC sparse regularization into the image deblurring model, we
obtain a new image deblurring model with non-convex sparse regularization, which
can effectively address the limitations of the `1-norm. Additionally, we establish the
necessary conditions for ensuring the overall convexity of the proposed model.

• After constructing the iterative proximal operator of CNC sparse regularization by
using the forward-backward splitting (FBS) algorithm, we propose an FBS algorithm
for the proposed image deblurring model with CNC sparse regularization (FBS-CNC)
and further derive the corresponding PnP-FBS-CNC algorithm by substituting the
proximal operator with a denoiser.

• The inherent advantages of the proposed algorithm compared with other existing
algorithms are verified through numerical experiments.

The paper is organized as follows. We recall the basic definitions and algorithms in
Section 2. In Section 3, we introduce the CNC sparse regularization problem for image de-
blurring and establish the convexity condition. Section 4 is the pivotal section of this paper,
where we present the FBS and PnP-FBS algorithms based on CNC sparse regularization to
tackle the problem proposed in Section 3. We experimentally evaluate the performance of
the algorithm in Section 5. Section 6 concludes with a summary.

2. Preliminaries

In this section, we offer a concise introduction to some fundamental concepts that
underpin the development of subsequent content.

To begin with, we define the proximal operator and Moreau envelope.

Definition 1. Given a proper, closed, convex function φ, and letting α be a positive scalar parameter,
the following definitions are provided:

(1) The proximal operator of φ is defined as

proxαφ(x) = arg min
v

{
φ(v) +

1
2α
‖x− v‖2

2

}
. (4)

(2) The Moreau envelope of φ is defined as

Mα
φ(x) = min

v

{
φ(v) +

1
2α
‖x− v‖2

2

}
. (5)

It is noteworthy that Mα
φ(x) is differentiable, and its gradient can be computed as

∇Mα
φ(x) =

1
α

(
x− proxαφ(x)

)
, (6)

where proxαφ(x) is defined as (4).
Subsequently, we present the algorithm utilized throughout this paper. In order to

enable flexible application of the algorithm in various situations, we propose the algorithm
for a general sparse regularization problem, rather than limiting it exclusively to the
problem (3).

Consider the sparse regularization problem

min
x

f (x) + λφ(x). (7)

where the data-fidelity term f (x) is differentiable, the regularization term φ(x) is contin-
uous but nonsmooth, and the regularization parameter λ measures the weight of f (x)
and φ(x) .



Algorithms 2023, 16, 574 4 of 13

The basic idea of the FBS algorithm is to perform gradient descent on the smooth part
f (x) and apply the proximal operator to the nonsmooth part λφ(x). More precisely, the
iterative steps of the FBS algorithm are given by{

vk+1 = xk − α∇ f (xk),

xk+1 = proxαλφ(v
k+1).

(8)

The key observation of PnP is that the proximal operator is equivalent to a denoising
operation [35]. By replacing the proximal operator proxαλφ with the denoiser Dσ in (8), we
can obtain the PnP-FBS algorithm.{

vk+1 = xk − α∇ f (xk),

xk+1 = Dσ(vk+1).
(9)

The denoiser Dσ with noise level parameter σ in (9) can be any image denoiser, such as
total variation (TV)[41], block-matching and 3D filter (BM3D)[42], and deep neural network
(DNN) denoisers[7,36].

3. Image Deblurring Model with CNC Sparse Regularization

In this section, we write out the corresponding image deblurring model based on CNC
sparse regularization and further prove the overall convexity of the objective function.

Firstly, we introduce the CNC sparse regularization, which can be formulated as

φb(x) = ‖x‖1 − sb(x), (10)

where sb(x) = minv

{
‖v‖1 +

b2

2 ‖x− v‖2
2

}
is the Moreau envelope of ‖x‖1, and the parame-

ter b controls the non-convexity of φb(x).
By substituting φb(x) for φ(x) in problem (3), we obtain the image deblurring model

with the CNC sparse regularization.

min
x

1
2
‖y− F−1ΛFx‖2

2 + λφb(x). (11)

Although the CNC sparse regularization is non-convex, the overall convexity of the
objective function can be ensured by adjusting the non-convex parameters b. The following
theorem focuses on the convexity condition to determine the circumstances under which
the objective function can maintain its convexity.

Theorem 1. For λ > 0, b > 0, the objective function of the image deblurring model is defined as

T(x) =
1
2
‖y− F−1ΛFx‖2

2 + λφb(x). (12)

When b2 I � 1
λ FTΛTΛF, the objective function is convex; when b2 I ≺ 1

λ FTΛTΛF, the
objective function is strictly convex.
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Proof. Consider the objective function

T(x) =
1
2
‖y− F−1ΛFx‖2

2 + λφb(x)

=
1
2
‖y− F−1ΛFx‖2

2 + λ(‖x‖1 − sb(x))

=
1
2
‖y− F−1ΛFx‖2

2 + λ

{
‖x‖1 −min

v
{‖v‖1 +

b2

2
‖x− v‖2

2}
}

=
1
2
‖y‖2

2 − yT(F−1ΛFx) +
1
2
‖F−1ΛFx‖2

2 + λ‖x‖1

− λ min
v

{
‖v‖1 +

b2

2
‖x‖2

2 − b2vTx +
b2

2
‖v‖2

2

}
=

1
2
‖F−1ΛFx‖2

2 −
λb2

2
‖x‖2

2 +
1
2
‖y‖2

2 − yT(F−1ΛFx)

+ λ‖x‖1 − λ min
v

{
‖v‖1 − b2vTx +

b2

2
‖v‖2

2

}
=

1
2

xT
(

FTΛTΛF− λb2 I
)

x +
1
2
‖y‖2

2 − yT(F−1ΛFx)

+ λ‖x‖1 + λ max
v

{
−‖v‖1 + b2vTx− b2

2
‖v‖2

2

}
. (13)

Since the three terms 1
2‖y‖2

2, −‖v‖1, and − b2

2 ‖v‖2
2 are independent of x, they can be

regarded as constants. The term λ‖x‖1 is convex. The term −yT(F−1ΛFx) is linear, so this
term is convex. The term b2vTx is affine in x and the maximum of the convex functions set
is convex, and therefore the term λ maxv

{
−‖v‖1 + b2vTx− b2

2 ‖v‖2
2

}
is convex.

In summary, the convexity of the objective function (12) depends on the convexity of
the following term

1
2

xT
(

FTΛTΛF− λb2 I
)

x. (14)

The convexity of this term is determined by FTΛTΛF − λb2 I. If FTΛTΛF − λb2 I is
positive semi-definite, i.e. b2 I � 1

λ FTΛTΛF, then the objective function is convex. If
FTΛTΛF − λb2 I is positive definite, i.e. b2 I ≺ 1

λ FTΛTΛF, then the objective function is
strictly convex.

4. Proposed Algorithms

In this section, the iterative form of the proximal operator for CNC sparse regular-
ization is initially. Subsequently, it is incorporated into the FBS algorithm to obtain the
FBS-CNC algorithm. Finally, the PnP-FBS-CNC algorithm is derived by replacing the
proximal operators with denoisers.

4.1. The Proximal Operator of CNC Sparse Regularization

As demonstrated by (8), the proximal operator of the nonsmooth regularization term
plays a crucial role in solving the sparse regularization problem using the FBS algorithm.
Therefore, we discuss the proximal operator of the CNC sparse regularization, which can
be represented by

proxλφb
(y) = arg min

x

{
λφb(x) +

1
2
‖x− y‖2

2

}
. (15)

According to the definition of φb (10), Equation (15) means solving for x such that the
following problem holds.

min
x

{
λ‖x‖1 − λsb(x) +

1
2
‖x− y‖2

2

}
. (16)
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Obviously, it is impossible to yield a closed-form solution of (16), but we can give an
iterative solution. By Equation (6), we have

∇(−λsb(x)) = −λb2
(

x− prox 1
b2 ‖�‖1

(x)
)

. (17)

By using FBS iteration (8) to solve (16) , we have

xk+1 = proxαλ‖�‖1

[
xk − α∇(−λsb(xk) +

1
2
‖xk − y‖2

2)

]
= proxαλ‖�‖1

[
xk − α

(
xk − y− λb2

(
xk − prox 1

b2 ‖�‖1
(xk)

))]
. (18)

Finally, referring to [21,43], we set the step size α = 1. Then, we obtain the proximal
operator of the CNC sparse regularization as

proxλφb
(y) = proxλ‖�‖1

[
y + λb2

(
xk − prox 1

b2 ‖�‖1
(xk)

)]
. (19)

4.2. FBS-CNC

We present the FBS algorithm to solve the aforementioned model (11). The specific
iterative steps are illustrated below.

1. For the data-fidelity term:

vk+1 = xk − α∇
(

1
2
‖y− F−1ΛFxk‖2

2

)
= xk − α

[
FTΛT(F−1)T

(
F−1ΛFxk − y

)]
= xk − α

(
FTΛTΛFxk − FTΛT Fy

)
. (20)

2. For the regularization term:

xk+1 = proxαλφb
(vk+1)

= proxαλ‖�‖1

[
vk+1 + αλb2

(
xk − prox 1

b2 ‖�‖1
(xk)

)]
. (21)

Finally, after further refinement of the previous two steps, we have developed the
FBS-CNC algorithm for image deblurring, as outlined in Algorithm 1.

Algorithm 1 FBS-CNC for image deblurring

Require: x0, y, F, Λ, α > 0, λ > 0, b > 0.
Ensure: x.

while "stopping criterion is not met" do
vk+1 = xk − α

(
FTΛTΛFxk − FTΛT Fy

)
;

uk+1 = prox 1
b2 ‖�‖1

(
xk
)

;

wk+1 = vk+1 + αλb2
(

xk − uk+1
)

;

xk+1 = proxαλ‖�‖1

(
wk+1

)
.

end while

4.3. PnP-FBS-CNC

The basic idea behind PnP is to replace the proximal operator in the iterative algorithm
with a denoiser. However, the FBS-CNC algorithm in Section 4.2, unlike the existing PnP
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algorithms, incorporates two proximal operators prox 1
b2 ‖�‖1

and proxαλ‖�‖1
, necessitating

the utilization of two distinct denoisers Dσ1 and Dσ2 as replacements, where the parameters
σ1 and σ2 are related to different noise levels. As a consequence, we obtain the following
equation.

xk+1 = Dσ2

[
vk+1 + αλb2

(
xk − Dσ1(xk)

)]
. (22)

After appropriately rearranging (20) and (22), we finally derive the PnP-FBS-CNC
algorithm for image deblurring, as outlined in Algorithm 2.

Algorithm 2 PnP-FBS-CNC for image deblurring

Require: x0, y, F, Λ, α > 0, λ > 0, b > 0.
Ensure: x.

while "stopping criterion is not met" do
vk+1 = xk − α

(
FTΛTΛFxk − FTΛT Fy

)
;

uk+1 = Dσ1

(
xk
)

;

wk+1 = vk+1 + αλb2
(

xk − uk+1
)

;

xk+1 = Dσ2

(
wk+1

)
.

end while

4.4. Computational Complexity and Convergence Analysis

In this subsection, we briefly discuss the computational complexity and convergence
of the proposed PnP-FBS-CNC algorithm.

The main cost of the PnP-FBS-CNC algorithm arises from updating vk+1, uk+1, and
xk+1. The update of vk+1 involves matrix-vector production but can be efficiently imple-
mented using fast Fourier transform (FFT). The computational complexity of this step is
O(n log n), where n is the size of the image. The update of uk+1 and xk+1 is implemented
by denoisers Dσ1 and Dσ2 . Therefore, the computational complexity depends on the type
of denoisers employed. According to the the computational complexity analysis in [44], if
both Dσ1 and Dσ2 are TV denoisers, then the computational complexity of these two steps
is O(n). On the other hand, if Dσ1 and Dσ2 are BM3D denoisers, then the computational
complexity becomes O(n log n). If Dσ1 and Dσ2 are DNN denoisers with identical architec-
ture but different parameters, as indicated by the computational complexity analysis in
[45,46], the computational complexity of these two steps is O(nnlnkn f ), where nl , nk, n f
represent the number of layers, kernel pixels, and features, respectively.

Note that the essence of PnP lies in the integration of the noise reducer within the itera-
tive optimization algorithm, thereby enabling the convergence of the algorithm to be proven
within the framework of iterative optimization. The strong convexity of the data-fidelity
term in the image deblurring model (11), combined with the convergence conclusions
from reference [35,40], allows us to guarantee that the proposed PnP-FBS-CNC algorithm
converges when the residuals of the denoisers Dσ1 and Dσ2 exhibit contractive behavior.

5. Numerical Experiment

In this section, we experimentally assess the deblurring effect of the proposed PnP-
FBS-CNC algorithm and compare it with other state-of-the-art methods in terms of both
visual effect and numerical metrics. The numerical metrics employed are the CPU time
and the peak signal-to-noise ratio (PSNR) value.

We compare the performance of all the deblurring algorithms on CBSD68 dataset [47],
which contains 68 color images and is widely used for many image tasks. We also utilize
the eight real-world camera shake kernels introduced by Levin et al. [17] as blur kernels.
The blur kernels are shown in Figure 1. Additionally, we incorporate Gaussian noise with
three noise levels ν ∈ {0.01, 0.03, 0.05}. For all noise levels, we specify the hyperparameter
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settings of the PnP-FBS-CNC algorithm. We set uniform parameters with the step size
α = 0.4, regularization parameter λ = 0.1, and non-convexity parameter b = 0.25.

Figure 1. Blur kernels.

As stated in [7], DRUNet utilizes a single model to address various noise levels
and exhibits superior performance compared to other denoisers. Therefore, we select
DRUNet as the denoiser for PnP-FBS-CNC. When evaluating our algorithm, we adopt
a comparative approach rather than relying solely on subjective judgments to assess its
deblurring effect. By comparing it with other methods, we draw conclusions based on
the observed differences. Specifically, three state-of-the-art image deblurring methods are
considered: (1) IRCNN [36], which employs the PnP-HQS algorithm, with IRCNN serving
as the denoiser. (2) DPIR [7], which also employs the PnP-HQS algorithm but incorporates
DRUNet as its denoiser. (3) GS-PnP [13], which is a PnP algorithm with the gradient step
(GS) denoiser. The GS-PnP method distinguishes itself from the previous two methods by
inherently incorporating a denoiser in the gradient step. Further, it is worth noting that
the hyperparameter settings of the above three methods still adhere to their respective
default settings.

We first analyze the numerical results to evaluate the performance of our proposed
algorithm. The average CPU time and PSNR values for deblurring using various methods
are presented in Table 1, effectively demonstrating the deblurring effects of the CBSD68
dataset with various blur kernels and noise levels. According to Table 1, it can be observed
that the CPU time of PnP-FBS-CNC can be comparable with the other three algorithms.
Moreover, PnP-FBS-CNC exhibits the highest average PSNR value irrespective of the chosen
noise level and blur kernel. Simultaneously, we observe that when the noise level is 0.01,
all methods yield significantly higher average PSNR values compared to those obtained at
the other two noise levels. This indicates a positive correlation between decreasing noise
levels and increasing average PSNR values.

Table 1. Average PSNR performance (dB) and CPU time of image deblurring on the CBSD68 dataset.
The best results are highlighted in bold.

ν Method CPU Time Blur kernel
1 2 3 4 5 6 7 8

0.01

IRCNN 24.32 32.68 32.20 31.35 32.17 32.24 32.65 31.46 31.42
DPIR 25.93 33.61 33.18 32.95 33.01 34.03 34.29 33.02 32.70

GS-PnP 26.60 33.47 32.97 32.83 32.79 34.01 34.19 32.88 32.49
PnP-FBS-CNC 24.28 33.98 33.56 33.37 33.45 34.48 34.69 33.38 33.16

0.03

IRCNN 27.58 29.25 28.81 28.84 28.56 29.72 29.61 28.82 28.49
DPIR 28.15 29.31 28.98 29.13 28.68 30.14 30.17 29.25 28.82

GS-PnP 30.57 29.16 28.82 29.13 28.54 30.26 30.15 29.26 28.86
PnP-FBS-CNC 28.07 29.81 29. 49 29.68 29.25 30.67 30.66 29.77 29.37

0.05

IRCNN 30.24 26.92 26.67 27.16 26.29 28.22 28.00 27.14 26.75
DPIR 31.52 27.45 27.26 27.67 26.91 28.55 28.27 27.71 27.23

GS-PnP 32.67 27.38 27.21 27.63 26.92 28.63 28.36 27.74 27.33
PnP-FBS-CNC 31.19 28.03 27.76 28.22 27.51 29.12 28.95 28.24 27.84
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We next assess the deblurring performance of these methods in terms of visual aspects.
As indicated in Table 1, the optimal PSNR numerical performance is achieved when
the noise level is 0.01. Therefore, we select the images with this noise level to examine
the deblurring visual effect. Additionally, considering the extensive number of images
available, we selectively choose three groups of images as exemplars to observe their
respective deblurring effects. Meanwhile, we select different blur kernels for each of these
three groups of images: kernel 1 with size 19× 19, kernel 3 with size 15× 15, and kernel
5 with size 13× 13. The corresponding visual comparison results for each method are
illustrated in Figures 2–4. After examining these images, it can be concluded that the
quality of the images produced by IRCNN is comparatively inferior to those obtained by
other methods. This distinction can be readily observed by comparing the water region
of each image in Figure 2 and the blue sky region of each image in Figures 3 and 4. We
observe that the PnP-FBS-CNC method yields an image that is more closely aligned with
the clean image and exhibits superior clarity in processing fine textures. The PSNR value
displayed in the image indicates that PnP-FBS-CNC outperforms other methods in terms
of deblurring performance.

In conclusion, the above performance demonstrates the superiority of the proposed
algorithm for image deblurring, thereby strongly validating its effectiveness.

Figure 2. Image deblurring results of different methods with blur kernel 1. Two local images in the
red box are enlarged.
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Figure 3. Image deblurring results of different methods with blur kernel 3. Two local images in the
red box are enlarged.
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Figure 4. Image deblurring results of different methods with blur kernel 5. Two local images in the
red box are enlarged.

6. Conclusions

In this paper, we present the PnP-FBS-CNC algorithm for image deblurring. The
incorporation of the CNC sparse regularization term significantly enhances the deblurring
effect. Meanwhile, the PnP algorithm showcases its superiority as a powerful framework
for addressing the sparse optimization problem. Furthermore, these advantages of our
proposed algorithm are visually confirmed through experimental results.

Author Contributions: Conceptualization, Y.W. and Y.X.; methodology, Y.W.; software, Y.X.; valida-
tion, Y.W. and Y.X.; investigation, Y.W. and Y.X.; resources, T.L.; data curation, T.L.; writing—original
draft preparation, Y.W.; writing—review and editing, J.Z.; supervision, J.Z.; project administration,
T.Z. and J.Z.; funding acquisition, T.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant No. 62373066 and the Undergraduate Training Program of Yangtze University for Innovation
and Entrepreneurship under Grant No. Yz2022288.

Data Availability Statement: The CBSD68 dataset is available at https://github.com/clausmichele/
CBSD68-dataset (accessed on 1 August 2023). The code and data for the proposed method in this
paper are available upon request from the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

https://github.com/clausmichele/CBSD68-dataset
https://github.com/clausmichele/CBSD68-dataset


Algorithms 2023, 16, 574 12 of 13

References
1. Zhang, K.; Ren, W.; Luo, W.; Lai, W.S.; Stenger, B.; Yang, M.H.; Li, H. Deep image deblurring: A survey. Int. J. Comput. Vis. 2022,

130, 2103–2130.
2. Eboli, T.; Sun, J.; Ponce, J. End-to-end interpretable learning of non-blind image deblurring. In Proceedings of the Computer

Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Part XVII 16; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 314–331.

3. Yan, Y.; Ren, W.; Guo, Y.; Wang, R.; Cao, X. Image deblurring via extreme channels prior. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4003–4011.

4. Vasu, S.; Maligireddy, V.R.; Rajagopalan, A. Non-blind deblurring: Handling kernel uncertainty with CNNs. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3272–3281.

5. Liu, Y.; Sheng, Z.; Shen, H.L. Guided Image Deblurring by Deep Multi-Modal Image Fusion. IEEE Access 2022, 10, 130708–130718.
6. Zhang, M.; Young, G.S.; Tie, Y.; Gu, X.; Xu, X. A new framework of designing iterative techniques for image deblurring. Pattern

Recognit. 2022, 124, 108463.
7. Zhang, K.; Li, Y.; Zuo, W.; Zhang, L.; Van Gool, L.; Timofte, R. Plug-and-play image restoration with deep denoiser prior. IEEE

Trans. Pattern Anal. Mach. Intell. 2021, 44, 6360–6376.
8. Gavaskar, R.G.; Athalye, C.D.; Chaudhury, K.N. On plug-and-play regularization using linear denoisers. IEEE Trans. Image

Process. 2021, 30, 4802–4813.
9. Gupta, A.; Joshi, N.; Lawrence Zitnick, C.; Cohen, M.; Curless, B. Single image deblurring using motion density functions. In

Proceedings of the Computer Vision—ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece,
5–11 September 2010; Part I 11; Springer: Berlin/Heidelberg, Germany, 2010; pp. 171–184.

10. Krishnan, D.; Tay, T.; Fergus, R. Blind deconvolution using a normalized sparsity measure. In Proceedings of the CVPR 2011,
Providence, RI, USA, 20–25 June 2011; pp. 233–240.

11. Xu, L.; Tao, X.; Jia, J. Inverse kernels for fast spatial deconvolution. In Proceedings of the Computer Vision—ECCV 2014:
13th European Conference, Zurich, Switzerland, 6–12 September 2014; Part V 13; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 33–48.

12. Pan, J.; Sun, D.; Pfister, H.; Yang, M.H. Blind image deblurring using dark channel prior. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1628–1636.

13. Hurault, S.; Leclaire, A.; Papadakis, N. Gradient Step Denoiser for convergent Plug-and-Play. In Proceedings of the International
Conference on Learning Representations (ICLR’22), Virtual Event, 25–29 April 2022.

14. Fermanian, R.; Pendu, M.L.; Guillemot, C. Learned gradient of a regularizer for plug-and-play gradient descent. arXiv 2022,
arXiv:2204.13940.

15. Xu, L.; Zheng, S.; Jia, J. Unnatural L0 Sparse Representation for Natural Image Deblurring. In Proceedings of the 2013 IEEE
Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1107–1114.

16. Pan, J.; Hu, Z.; Su, Z.; Yang, M.H. Deblurring Text Images via L0-Regularized Intensity and Gradient Prior. In Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp.
2901–2908.

17. Levin, A.; Weiss, Y.; Durand, F.; Freeman, W.T. Understanding and evaluating blind deconvolution algorithms. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1964–1971.

18. Danielyan, A.; Katkovnik, V.; Egiazarian, K. BM3D frames and variational image deblurring. IEEE Trans. Image Process. 2011,
21, 1715–1728.

19. Ye, Z.; Ou, X.; Huang, J.; Chen, Y. Infrared Image Deblurring Based on Lp-Pseudo-Norm and High-Order Overlapping Group
Sparsity Regularization. Algorithms 2022, 15, 327. https://doi.org/10.3390/a15090327.

20. Selesnick, I. Sparse regularization via convex analysis. IEEE Trans. Signal Process. 2017, 65, 4481–4494.
21. Selesnick, I.; Lanza, A.; Morigi, S.; Sgallari, F. Non-convex total variation regularization for convex denoising of signals. J. Math.

Imaging Vis. 2020, 62, 825–841.
22. Lanza, A.; Morigi, S.; Selesnick, I.W.; Sgallari, F. Convex Non-Convex Variational Models. In Handbook of Mathematical Models and

Algorithms in Computer Vision and Imaging: Mathematical Imaging and Vision; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–57.
23. Lanza, A.; Morigi, S.; Selesnick, I.W.; Sgallari, F. Sparsity-inducing nonconvex nonseparable regularization for convex image

processing. SIAM J. Imaging Sci. 2019, 12, 1099–1134.
24. Teodoro, A.M.; Bioucas-Dias, J.M.; Figueiredo, M.A. Image restoration and reconstruction using variable splitting and class-

adapted image priors. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA,
25–28 September 2016; pp. 3518–3522.

25. Kupyn, O.; Budzan, V.; Mykhailych, M.; Mishkin, D.; Matas, J. Deblurgan: Blind motion deblurring using conditional adversarial
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22
June 2018; pp. 8183–8192.

26. Li, Y.; Tofighi, M.; Monga, V.; Eldar, Y.C. An algorithm unrolling approach to deep image deblurring. In Proceedings of the
ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17
May 2019; pp. 7675–7679.

https://doi.org/10.3390/a15090327


Algorithms 2023, 16, 574 13 of 13

27. Mittal, T.; Agrawal, P.; Pahwa, E.; Makwana, A. NFResNet: Multi-scale and U-shaped Networks for Deblurring. arXiv 2022,
arXiv:2212.05909.

28. Tao, X.; Gao, H.; Shen, X.; Wang, J.; Jia, J. Scale-recurrent network for deep image deblurring. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8174–8182.

29. Liang, C.H.; Chen, Y.A.; Liu, Y.C.; Hsu, W.H. Raw image deblurring. IEEE Trans. Multimed. 2020, 24, 61–72.
30. Zou, W.; Jiang, M.; Zhang, Y.; Chen, L.; Lu, Z.; Wu, Y. Sdwnet: A straight dilated network with wavelet transformation for

image deblurring. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17
October 2021; pp. 1895–1904.

31. Tomosada, H.; Kudo, T.; Fujisawa, T.; Ikehara, M. GAN-based image deblurring using DCT loss with customized datasets. IEEE
Access 2021, 9, 135224–135233.

32. Chen, T.; Chen, X.; Chen, W.; Wang, Z.; Heaton, H.; Liu, J.; Yin, W. Learning to optimize: A primer and a benchmark. J. Mach.
Learn. Res. 2022, 23, 8562–8620.

33. Mukherjee, S.; Hauptmann, A.; Öktem, O.; Pereyra, M.; Schönlieb, C.B. Learned Reconstruction Methods with Convergence
Guarantees: A survey of concepts and applications. IEEE Signal Process. Mag. 2023, 40, 164–182. https://doi.org/10.1109/MSP.
2022.3207451.

34. Shlezinger, N.; Whang, J.; Eldar, Y.C.; Dimakis, A.G. Model-Based Deep Learning. Proc. IEEE 2023, 111, 465–499. https:
//doi.org/10.1109/JPROC.2023.3247480.

35. Ryu, E.; Liu, J.; Wang, S.; Chen, X.; Wang, Z.; Yin, W. Plug-and-play methods provably converge with properly trained denoisers.
In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 5546–5557.

36. Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning deep CNN denoiser prior for image restoration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3929–3938.

37. Nair, P.; Chaudhury, K.N. On the Construction of Averaged Deep Denoisers for Image Regularization. arXiv 2022,
arXiv:2207.07321.

38. Kamilov, U.S.; Bouman, C.A.; Buzzard, G.T.; Wohlberg, B. Plug-and-play methods for integrating physical and learned models in
computational imaging: Theory, algorithms, and applications. IEEE Signal Process. Mag. 2023, 40, 85–97.

39. Li, J.; Li, J.; Xie, Z.; Zou, J. Plug-and-play ADMM for MRI reconstruction with convex nonconvex sparse regularization. IEEE
Access 2021, 9, 148315–148324.

40. Xu, Y.; Qu, M.; Liu, L.; Liu, G.; Zou, J. Plug-and-play algorithms for convex non-convex regularization: Convergence analysis and
applications. Math. Methods Appl. Sci. 2023 . https://doi.org/10.1002/mma.9710.

41. Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992,
60, 259–268.

42. Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE
Trans. Image Process. 2007, 16, 2080–2095.

43. Selesnick, I. Total variation denoising via the Moreau envelope. IEEE Signal Process. Lett. 2017, 24, 216–220.
44. Perelli, A.; Lexa, M.; Can, A.; Davies, M.E. Compressive computed tomography reconstruction through denoising approximate

message passing. SIAM J. Imaging Sci. 2020, 13, 1860–1897.
45. Zhao, X.L.; Xu, W.H.; Jiang, T.X.; Wang, Y.; Ng, M.K. Deep plug-and-play prior for low-rank tensor completion. Neurocomputing

2020, 400, 137–149. https://doi.org/https://doi.org/10.1016/j.neucom.2020.03.018.
46. Liu, T.; Yin, Q.; Yang, J.; Wang, Y.; An, W. Combining Deep Denoiser and Low-rank Priors for Infrared Small Target Detection.

Pattern Recognit. 2023, 135, 109184. https://doi.org/https://doi.org/10.1016/j.patcog.2022.109184.
47. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A Database of Human Segmented Natural Images and its Application to Evaluating

Segmentation Algorithms and Measuring Ecological Statistics. In Proceedings of the 8th International Conference on Computer
Vision, Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 416–423.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/MSP.2022.3207451
https://doi.org/10.1109/MSP.2022.3207451
https://doi.org/10.1109/JPROC.2023.3247480
https://doi.org/10.1109/JPROC.2023.3247480
https://doi.org/10.1002/mma.9710
https://doi.org/https://doi.org/10.1016/j.neucom.2020.03.018
https://doi.org/https://doi.org/10.1016/j.patcog.2022.109184

	Introduction
	Preliminaries
	Image Deblurring Model with CNC Sparse Regularization
	Proposed Algorithms
	The Proximal Operator of CNC Sparse Regularization
	FBS-CNC
	PnP-FBS-CNC
	Computational Complexity and Convergence Analysis

	Numerical Experiment
	Conclusions
	References

