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Abstract: K-Means is a “de facto” standard clustering algorithm due to its simplicity and efficiency.
K-Means, though, strongly depends on the initialization of the centroids (seeding method) and often
gets stuck in a local sub-optimal solution. K-Means, in fact, mainly acts as a local refiner of the
centroids, and it is unable to move centroids all over the data space. Random Swap was defined to
go beyond K-Means, and its modus operandi integrates K-Means in a global strategy of centroids
management, which can often generate a clustering solution close to the global optimum. This
paper proposes an approach which extends both K-Means and Random Swap and improves the
clustering accuracy through an evolutionary technique and careful seeding. Two new algorithms
are proposed: the Population-Based K-Means (PB-KM) and the Population-Based Random Swap
(PB-RS). Both algorithms consist of two steps: first, a population of J candidate solutions is built,
and then the candidate centroids are repeatedly recombined toward a final accurate solution. The
paper motivates the design of PB-KM and PB-RS, outlines their current implementation in Java based
on parallel streams, and demonstrates the achievable clustering accuracy using both synthetic and
real-world datasets.

Keywords: evolutionary techniques; K-Means; Random Swap; seeding methods; Greedy-K-Means++;
measures of clustering quality; Java; parallel streams; lambda expressions; synthetic and real-world
databases; time efficiency

1. Introduction

Clustering is a fundamental machine learning [1] approach for extracting useful infor-
mation from the data of such application domains as pattern recognition, image segmenta-
tion, text analysis, medicine, bioinformatics, and Artificial Intelligence. K-Means [2–4] is a
classical clustering algorithm often used due to its simplicity and efficiency.

The aim of K-Means is to partition N data points X =
{

xi}N
i = 1 , e.g., xi ∈ RD,

in K, with 2 ≤ K ≪ N, subsets (said clusters) by ensuring that points belonging to the
same cluster are similar to one another, and points in different clusters are dissimilar. The
Euclidean distance between data points usually expresses the similarity. Every cluster
is represented by its central point or centroid. K-Means aims to optimize (minimize) the
Sum-of-Squared Errors (SSE) cost, a sort of internal variance (or distortion) in clusters.

Recently, K-Means properties have been studied in depth [5–7]. A crucial aspect is
the procedure which initializes the centroids (seeding method). In fact, the accuracy of a
clustering solution strongly depends on the initial centroids. A basic limitation of K-Means
is the adoption of a local strategy for managing centroids, which determines the algorithm
often blocks in a sub-optimal solution. Random Swap [8,9] and genetic/evolutionary
approaches [10–12] are examples of more sophisticated clustering algorithms that try to
remedy this situation by adopting a global strategy of centroid management. At each
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iteration of Random Swap, a centroid is randomly selected and replaced by a randomly
chosen data point of the dataset. The SSE of the new configuration is then compared to that
of the previous centroids’ configuration and, if it is diminished, the configuration becomes
current for the next iteration. The algorithm can be iterated a maximum number of times.
Random Swap has been demonstrated to approach, in many cases, the obtainment of a
solution close to the optimal one, even with a possible increase in the computational time.

The contribution of this paper is the development of two new clustering algorithms
by extending the K-Means and Random Swap through an evolutionary technique [10,13]
and careful seeding. The two algorithms are Population-Based K-means (PB-KM) and
Population-Based Random Swap (PB-RS). They borrow ideas from the evolutionary algo-
rithms underlying GA-K-Means [10] and Recombinator-K-Means [11,12] and consist of
two steps. In the first step, a population of candidate centroid solutions is initially built, by
executing J times the Lloyd’s K-Means or Random Swap along with the Greedy-K-Means++
(GKM++) [11,12,14] seeding method, which is effective for producing a careful configu-
ration of centroids with a reduced SSE cost. In the second step, PB-KM and PB-RS start
from a configuration of centroids extracted by using GKM++ on the candidate centroids of
the population. Then, they recombine centroids until a satisfying solution minimizes the
SSE cost.

The greater the number of repetitions is during the second step (independent restarts
of PB-KM, the number of swap iterations of PB-RS), the higher the possibility of getting a
combined solution near the best one is.

Regarding reliability and accuracy, PB-KM significantly enhances the classical Lloyd’s
repeated K-Means in globular, spherical, and Gaussian-shaped clusters [5,6]. PB-RS is better
suited for studying general datasets with an irregular distribution of points. A common
issue of PB-KM and PB-RS, though, is the assumption that good clustering follows by
minimizing the SSE cost. Unfortunately, this is not true for some challenging datasets [9]
which can only be approximated through the proposed and similar tools.

To cope with large datasets, PB-KM and PB-RS systematically use parallel comput-
ing. Currently, the two algorithms are developed in Java using lambda expressions and
parallel streams [15,16]. This way, it is possible to exploit today’s multi/many-core ma-
chines transparently.

This paper extends the preliminary paper [17] presented at the Simultech 2023 con-
ference, where the basic idea of PB-KM was introduced. Differences from the conference
paper are indicated in the following.

• A more complete description of the evolutionary approach, which is the basis of the
proposed clustering algorithms, is provided.

• PB-KM now includes a mutation operation in the second step of recombination.
• An original development of PB-RS is presented which, with respect to standard

Random Swap [8,9], is more apt to move directly to a good clustering solution.
• More details about the Java implementations are furnished.
• All previous execution experiments were reworked, and new challenging case studies

were added to the experimental framework, exploiting synthetic (benchmark) and
real-world datasets.

The paper first describes the evolutionary approach of PB-KM and PB-RS, then reports
the experimental results of applying them to several datasets. The simulation results
confirm that the new algorithms can ensure accurate clustering and good execution times.

The paper is structured as follows. Section 2 reviews the related work about the
K-Means and methods for seeding. It also overviews the fundamental aspects of Random
Swap, the evolutionary clustering of GA-K-means and Recombinator-K-Means, which
inspired the algorithms proposed here. The section also describes some external measures
suited to assess the clustering quality. The operations of the PB-KM and PB-RS algorithms
are presented in Section 3. Some implementation issues in Java are discussed in Section 4.
Section 5 reports the chosen experimental setup made up of synthetic datasets and real-
world ones, and the experimental results tied to the practical applications of the developed
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tools. The execution performance of the new algorithms is also demonstrated. Finally,
conclusions are drawn together with an indication of ongoing and future work.

2. Related Work

This section provides a review of the clustering concepts and operation of K-Means [2–4,7],
Genetic K-Means (GA-K-Means) [10], Random Swap [8,9] and the evolutionary Recombina-
tor-K-Means [11,12], which are at the basis of the development of the two algorithms this
paper proposes.

2.1. Lloyd’s K-Means

Algorithm 1 illustrates the operation of classical K-Means. In step 1, the data points
of the dataset to assume as the initial centroids are established by a seeding procedure
(e.g., uniform random, see also Table 1 of basic notations).

Table 1. Basic notations.

Symbol Description

N number of data points (vectors) xi in the dataset X
D number of dimensions (coordinates or features) for each data point
K number of clusters/centroids

d(xi, xj) Euclidean distance between data points xi and xj
C1 . . . CK partition clusters
µ1 . . . µK representative centroids of clusters

nc(xi) nearest centroid to data point xi
L the number of currently defined centroids in a seeding method

D(xi) minimal distance of xi to the currently existing centroids
SSE Sum-of-Squared Errors objective function

nMSE normalized mean of SSE, also referred to as distortion
Uni f uniform random seeding method

KM++ K-Means++ seeding method
GKM++ Greedy-K-Means++ seeding method

S number of attempts in GKM++ for identifying the next centroid
CI Cluster Index—an external measure of clustering accuracy

<Cj, Pj>
a solution of a clustering algorithm, i.e., a pair of a centroids vector and corresponding partition labels of clusters
belonging data points

PB− KM proposed Population-Based K-Means clustering algorithm
PB− RS proposed Population-Based Random Swap clustering algorithm

℘ population of J ∗ K centroids in PB-KM/PB-RS algorithms
J number of “best” solutions initially put in the ℘

R1 number of repetitions of K-Means in the 1st step of PB-KM
R2 number of repetitions of K-Means in the 2nd step of PB-KM

T number of iterations of Random Swap in the 1st step of PB-RS, for defining each of the J candidate population
solutions; also the number of iterations of Random Swap in the 2nd step of PB-RS for achieving a careful solution

In step 2, the data points are partitioned according to current centroids. In particular,
each point xi is assigned to the cluster Cj, of which the representative centroid, µj, is nearest
to xi:

µj = nc(xi), j = argmin1≤h≤K(d(xi, µh))

where d(xi, µh) expresses the Euclidean distance between xi and µh data points. In step 3,
centroids get updated as the mean of the clusters’ belonging points:

µ′ j =
1∣∣Cj
∣∣ ∑

xi∈Cj

xi

Steps 2 and 3 are re-executed until a stop condition holds. For example, when the up-
dated centroids {µ′ j}K

j = 1 practically “coincide” (according to a certain numeric tolerance)

with the previous ones {µj}K
j = 1, the K-Means exits for reached convergence, otherwise, the
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stop condition occurs after the maximum number of iterations of steps 2 and 3 is finished.
In any case, the new centroids {µ′ j}K

j = 1 become the current centroids, {µj}K
j = 1.

Algorithm 1. The Lloyd’s K-Means

Input: the dataset X and the number of clusters K.
Output: final centroids and corresponding partitions.
1. Initialization. Use some seeding method (e.g., uniform random) to choose K data in X as initial
centroids.
2. Partitioning. Assign data points of X to clusters according to the nearest centroid rule.
3. Update. Redefine centroids as the mean points of the clusters resulting from step 2.
4. Check termination. If the termination condition does not hold, repeat from 2.

The goal of K-Means is minimizing the SSE cost:

SSE = ∑K
j = 1 ∑xi∈Cj

d
(
xi, µj

)2 with µj = nc(xi)

In the practical case, the normalized mean value of SSE, named nMSE and here also
referred to as the distortion index, can be used (see Table 1):

distortion = nMSE =
SSE

N ∗ D

In general, optimizing the SSE (or the distortion) function cost is very difficult. This
is due to the highly non-convex character of the SSE. In addition, a good clustering of
some datasets does not necessarily follow from the minimization of the SSE (see, e.g., [9]).
Therefore, clustering solutions are usually approximations of the optimal solution.

2.2. The Random Swap Clustering Algorithm

The behavior of K-Means is heavily dependent on its initial seeding. Centroid points
are then subsequently refined locally. The global movement of centroids is, in many cases,
forbidden. For example, the seeding procedure can sometimes associate multiple centroids
with the same big real cluster, which is in turn well-separated from smaller clusters with
no centroid associated with them. Consequently, the big cluster can get wrongly split
into multiple sub-clusters because its centroids cannot move to smaller clusters without
a centroid. This bad situation is favored when the two kinds of clusters are far away
from each other [6]. What could help is the adoption of a global strategy governing the
movement of centroids.

Random Swap [8] is a clustering algorithm based on such a global strategy. It starts
by defining initial centroids via uniform random seeding. After that, it executes a certain
number of swap iterations. At each swap, a centroid is randomly chosen in the vector of
centroids, which is then replaced by a random point selected in the dataset:

cs ← xi , s = uni f _rand(1..K), i = uni f _rand(1..N)

In the case the resultant centroid configuration, preliminarily refined by a few K-Means
iterations (e.g., 5), has an SSE cost lesser than the previous configuration, it is accepted as
the new current solution and the algorithm goes on by starting the next swap iteration.
The previous configuration and associated partitioning are otherwise restored, and the
new swap is launched. The algorithm terminates when the required maximum number of
iterations are executed.
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Given its modus operandi, Random Swap is naturally capable of exploring all the data
space and ending up, in many practical cases [9], with a clustering solution close to the
optimal one, provided an adequate number of iterations are executed.

2.3. Centroids Initialization Methods

As has been pointed out, e.g., in [5–7], initial centroids should be defined in such a
way to not coincide with outliers or noise data points. In addition, centroids should be far
away from one another. This requirement avoids splitting a big real cluster into multiple
smaller clusters. Different seeding methods for the initialization of centroids are defined in
the literature. A few of these methods are described in the following.

Uni f . The uniform random seeding is the default method K-Means and Random
Swap use. Centroids are initialized through a uniform random selection of K distinct points
of the dataset X:

{µj ← xi, i = uni f _rand(1..N)}K
j = 1

Uni f is simple to apply, but it does not guarantee the properties mentioned above of
centroids are fulfilled. Only when centroids are selected near the optimal positions, the
clustering solution delivered by K-Means locates close to the optimal one. Consequently,
using K-Means with Uni f seeding typically requires the algorithm to be repeated a certain
number of times (Repeated K-Means or K-Means with Restarts). The more the independent
repetitions are, the higher the chance of finding a solution near the optimal one is. In any
case, if R are the repetitions of the K-Means, the solution that minimizes the SSE objective
cost is identified as the “best” one among the R runs.

Let, in the following, D(xi) be the minimal distance of point xi from the currently
defined L centroids, 1 ≤ L ≤ K.

Maximin. The first centroid is established by selecting a point in the dataset by uniform
random. Each subsequent centroid is a point xi ∈ X with maximal D(xi) from the currently
defined centroids. The method is continued until all the K centroids are defined. Similarly
to K-Means++ (see below), the method tends to define centroids far away from one another
and with a similar linear computational cost (O(KND)).

K-Means++. This seeding method [18] initializes centroids incrementally and proba-
bilistically, as shown in Algorithm 2.

Algorithm 2. The K-Means++ seeding method.

1. Establish the first centroid through a uniform random selection:
µ1 ← xj, j← uni f _rand(1..N), L← 1

2. For each point xi , define the probability π(xi) of being chosen as the next centroid as:

π(xi) = D(xi)
2

∑N
j = 1 D(xj)

2

Use a random switch based on the newly computed values of {π(xi)}N
i = 1, for choosing a

point x∗ ∈ X, not previously selected, as the next centroid
L← L + 1, µL ← x∗

3. If L < K, repeat from step 2.

K-Means++ is known to be a good seeding method. It tends to distribute the centroids
in the data space more evenly, ensuring that they are located far away from each other.

Greedy K-Means++. This method is a refinement of K-Means++ [11,12,14]. Its operation
is illustrated in Algorithm 3.
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Algorithm 3. The Greedy_K-Means++ (GKM++) seeding method.

µ1 ← xj, j← uni f _rand(1..N) , L← 1
do{
costBest← ∞
candBest←?
repeat S times {

select a point x∗ ∈ X as candidate centroid, using the K-Means++ method
partition X according to {µ1, µ2, . . . , µL, x∗}, that is assign points to clusters according
to the nc(.) function
cost← SSE()
i f (cost < costBest) {

candBest← x∗

costBest← cost
}
}
L← L + 1
µL ← candBest
} while(L < K)

A uniform random choice in the dataset defines the first centroid. From the second
centroid onward, S attempts are executed to ensure the next candidate centroid is not
only distinct and far away from the already chosen points but will also contribute with a
minimal cost increment (the greedy step) in the centroid configuration.

As suggested in [11], in our work too, the adopted value of the parameter S is
⌊2 + logK⌋, which represents a trade-off between careful seeding and the required compu-
tational cost O(KSND).

It is worth noting that, although the improved seeding, GKM++ has a greater com-
putational cost than K-Means++ and, unfortunately, it cannot guarantee that the chosen
centroids hit the optimal positions. However, as an important benefit confirmed experi-
mentally, some centroids (“exemplars”), in different configurations, can be positioned close
to ground truth centroids. All of this can then be exploited to improve the accuracy of a
clustering solution (see later in this paper).

2.4. Evolutionary Algorithm Concepts

Genetic and evolutionary algorithms (GEA) [19] try to mimic the behavior of real-life
individuals of a population by moving through subsequent generations of the population
using selection, survival and disappearing genetic operations. When interpreted in the
context of clustering [10,12,13], individuals are solutions <Cj, Pj> that are cluster centroids
and corresponding data partition labels. The partition label of a data point xi ∈ X can
be denoted as pj

i , that is the index, in the centroids vector, of the nearest centroid nc(xi).
At each new generation, the best solution can be identified that improves at subsequent
generations toward, at the end of the algorithm, the obtainment of the proposed solution,
hopefully close to the optimal one. Despite its flexibility and accuracy, GEA-based clustering
algorithms can be disadvantaged by, in general, an expensive computational time.

2.4.1. GA-K-Means

The genetic algorithm developed by P. Franti in [10], referred to as GA-K-Means,
represents a fundamental influencing work. GA-K-Means starts by defining an initial
population, ℘, with J solutions, each one achieved by choosing K data points (centroids)
from the dataset X by uniform random, and by executing the partitioning step 2 (see
Algorithm 1) of Lloyd’s K-Means.

GA-K-Means depends on an elitist approach. Only an SB subset of the best solutions
(according to the SSE or distortion index) in ℘ is considered for the crossover operations,
which will transform ℘ into the next generation ℘′. In a case, it can happen that SB ≡ ℘;
that is, all the solutions in the population are the best solutions.
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In particular, starting from ℘′ = ∅, for J times, first a pair of solutions < C1, P1 >
and < C2, P2 > (parents) in SB are chosen, then the two solutions are crossed with each
other to define an offspring solution which is added to ℘′: ℘′ = ℘′ ∪ {o f f spring}. The
number of possible solution pairs is SB∗(SB−1)

2 .
The crossing operation is realized by first establishing a solution of 2 ∗ K clusters/

centroids <Cnew, Pnew> where Cnew is C1 ∪ C2, and Pnew is the corresponding optimal
partitioning. Then, the new solution is reduced to K elements by deterministic iterations of
the Pairwise Nearest Neighbor (PNN) technique, that is, by subsequent merging operations.
At each iteration of the PNN, the two clusters in Cnew are identified whose merging would
increase the distortion least. The centroid is then defined for the resultant merged cluster.
Finally, the partitions of the remaining clusters in Cnew are updated accordingly to the
merged cluster, and their centroids are redefined by executing step 3 of Lloyd’s K-Means
(see Algorithm 1). Only a part of the remaining clusters needs to be updated: those
containing points which now have as nearest the centroid of the merged cluster. The
centroids and the partitions must be redefined only for these clusters.

The offspring solution can be affected by a mutation operation to improve the popula-
tion’s genetic variation. As in the Random Swap (see Section 2.2), with a given probability,
a randomly selected centroid in the solution is possibly replaced by a randomly chosen
dataset point.

Finally, Lloyd’s K-Means is executed to refine the offspring solution.
GA-K-Means is characterized by the efficient support of the PNN technique. For

example, the pair of clusters a and b to merge can be found by anticipating the distortion
increase ∆a,b, which would follow the merging operation by using only the centroids
µa, µb of the two originating clusters and the cluster sizes na, nb:

∆a,b =
na ∗ nb
na + nb

∗ d(µa, µb)
2

In addition, the centroid of the new merged cluster can also be computed by using
only the centroids and the cluster sizes:

µmerged =
na ∗ µa + nb ∗ µb

na + nb

2.4.2. Concepts of Recombinator K-Means

Recombinator-K-Means is an evolutionary algorithm [12] that manages a population of
individuals (solutions), which is initially made coincident, to the entire dataset. Subsequent
generations are then established by using a recombination technique always followed by
Lloyd’s K-Means local optimization, until a convergence condition is fulfilled.

At each generation, J centroid configurations (solutions) are first created by repeating
J times Lloyd’s K-Means together with GKM++ seeding applied to the population. The
original dataset X is instead always used to evaluate the SSE cost during the execution of
GKM++ for choosing the candidate centroids and qualifying the cost of a complete centroid
configuration. An adapted version of GKM++, which employs a weighting (priority)
mechanism, is used. Each centroid configuration, as in the Random Swap algorithm (see
Section 2.2), is then refined by a small number of iterations of Lloyd’s K-Means, and
maintained paired with its SSE cost. After that, the population gets modified by retaining
the J best solutions from the previous and newly generated solutions.

Priorities are attached to configurations through weights initialized by a uniform
vector. Following each generation, weights get updated and affect the selection of the next
centroid in GKM++.

Processing a generation has the effect of (re)combining centroid points of different
solutions, thus determining new configurations with a smaller cost.

The resultant approach is characterized by the average SSE cost of the population
solutions, which decreases monotonically during the evolution of the generations. In
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addition, the population definitely tends to collapse (up to a numerical tolerance) around a
single solution. This behavior naturally furnishes the termination criterion.

Recombinator-K-Means was implemented by his author in Julia and positively experi-
mented with using synthetic and real-world datasets.

2.5. External Measures of Clustering Accuracy

Besides the SSE or distortion internal cost, the quality of a clustering solution can often
also be assessed by some external measure, like the Adjusted Rand Index (ARI) [20,21],
which compares similarity/dissimilarity between an achieved clustering solution and a
reference solution (ground truth). In this paper, the Cluster Index (CI) proposed in [22]
is used, which was felt to be more sound for capturing the clustering accuracy. CI is best
suited to quantify the clustering accuracy of synthetic datasets equipped with ground truth
(GT) information (centroids and/or partition labels).

CI quantifies the degree to which a clustering solution, C, achieved by a certain
clustering algorithm is close to GT. First (C→ GT), centroids µC

j of C are mapped onto

the centroids µGT
i of GT, which, in general, could also be different in numbers. Every

centroid of C maps on the particular centroid of GT which has minimal distance from it.
As a measure of the dissimilarity in the mapping C→ GT, the number of centroids in GT
(said “orphans”) which were not associated with any centroid of C are counted.

In the second step, GT centroids are mapped onto C centroids (GT→ C) and the
number of orphans determined in C is counted. The CI(C, GT) value is the maximum
number of orphans in the two directions of mapping:

CI(C, GT) = max (#orphans(C→ GT), #orphans(GT→ C))

CI = 0 characterizes a “correct” clustering solution, that is, one where C clusters and
GT clusters are structurally very similar to one another. A CI > 0 indicates the number of
centroids incorrectly determined by the clustering algorithm.

If the dataset comes with partition labels as ground truth [23], the Jaccard distance [9]
between partitions (sets of labels or cluster indexes) belonging to the emerged solution and
the ground truth solution can be exploited for realizing the mapping and determining the
number of orphans in the two mapping directions.

It is worth noting that, normally, real-world datasets come without ground truth
information. However, a “golden” solution determined using an advanced clustering
algorithm can sometimes exist. Also, in these cases (see later in this paper), it becomes
possible to check, with the CI, the accuracy of a solution obtained by applying a given
clustering algorithm.

3. Population-Based Clustering Algorithms
3.1. PB-KM

The proposed Population-Based K-Means (PB-KM) algorithm was inspired by the op-
eration of both Recombinator-K-Means [11,12] and GA-K-Means [10]. The design is based
on a more simple, yet effective, clustering approach. PB-KM is organized into two steps (see
Algorithm 4). The first step is devoted to the initialization of the population. The second
step recombines the centroids of the population toward a final accurate clustering solution.

As in GA-K-Means, an elitist approach is usually used for managing the population.
J solutions achieved via Lloyd’s K-Means seeded by GKM++ are used to initialize the
population, thus containing J ∗K points. Each initial solution is the best one, which emerges
after R1 repetitions of the K-Means. In the case R1 = 1, the population is set as in
Recombinator-K-Means. A value R1 > 1 allows for the population to be preliminarily
established with J “best” solutions, as can happen with GA-K-Means. It is worth noting
that, unlike Recombinator-K-Means, PB-KM rests on the basic GKM++ seeding without
using a weighting mechanism.
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The evolutionary iterations in the second step of PB-KM consist of R2 repetitions of
K-Means, fed by GKM++ seeding applied to the population instead of the dataset. The
clustering result is the emerging best solution among the R2 executions of K-Means. In
other words, the crossover operation coincides with applying the GKM++ seeding followed
by the optimization of K-Means. If the emerged solution has an SSE value less than that of
the current best solution, it becomes the current one and the obtained centroids are replaced
(mutation operation) in the population by the centroid configuration which was selected
by GKM++.

Algorithm 4 describes the two steps of PB-KM which depend on three parameters:
J, R1 and R2. In step 1 the writing run (K-Means, GKM++, X) expresses that K-Means is
executed with the GKM++ seeding method applied to the data points of the dataset X. In
step 2, K-Means is seeded by GKM++ applied to the centroid points of the population ℘.
The SSE cost, though, is always computed on the entire X dataset, partitioned according to
the candidate solution (cand) suggested by K-Means.

Algorithm 4. The PB-KM operation.

1. Setup population
℘← ∅
repeat J times{

costBest←∞, candBest←?
repeat R1 times{

cand←run(K-Means,GKM++,X)
cost←SSE(cand,X)
if (cost<costBest){

costBest←cost
candBest←cand

}
}
℘ = ℘∪ {candBest}

}
2. Recombination

costBest←∞
candBest←?
repeat R2 times{

cand←run(K-Means,GKM++,℘)
cost←SSE(cand,X)
if (cost<costBest){

costBest←cost
candBest←cand
replace in ℘ the GKM++ selected centroids by cand centroids

}
check candBest accuracy by clustering indexes

}

Generally, following GKM++ seeding in step 1, each identified solution has lim-
ited chances of aligning precisely with the optimal solution. However, as discussed in
Section 2.3, it may encompass “exemplars”, i.e., centroids near the optimal ones. These
exemplars tend to aggregate in dense regions surrounding the ground truth centroids. In
step 2, the likelihood of selecting an exemplar by GKM++ in a peak is influenced by the
density of that area. Conversely, when an exemplar is chosen, the probability of selecting a
point in the same peak area or its vicinity as a subsequent centroid is minimal, thanks to
GKM++ ensuring that candidate centroids are far from one another. Consequently, the R2
repetitions in step 2 have a favorable prospect of detecting a solution closely resembling
the optimal one in practical scenarios (as shown later in this paper).
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The parameters J, R1 and R2 depend on the handled dataset and the number of clusters
K. In many cases, a value J = 25 was found to be sufficient in approaching an accurate
solution. For regular datasets, e.g., with spherical clusters regularly located in the data
space, even R1 = 1 can be adopted. A small or moderate value, e.g., R1 = 3, can be used
in more complex datasets. Generally speaking, the greater the value of R2 is, the higher the
chance of hitting a solution close to the optimal one is.

The computational cost of the two steps of PB-KM is directly derived from the Re-
peated K-Means behavior and the use of GKM++. In particular, the first step has a linear
cost O(J R1[KSND + KNID + ND]), whereby in the squared brackets, there is first the
GKM++ cost, then the K-Means cost (I is the number of iterations for reaching the con-
vergence) and finally the cost for computing the SSE value. The second step has a similar
cost when one considers that the seeding is fed by the population, which has J ∗K points:
O
(

R2
[

JK2SD + KNID + ND
])

.

3.2. PB-RS

The setup population step of PB-RS consists of running J times the parallel version of
Random Swap described in [9], each run continued for T swap iterations (e.g., T = 5000)
and storing in the population ℘ each emerged solution.

Algorithm 5 shows the recombination step of PB-RS. An initial configuration of K
centroids is set up by applying GKM++ to population ℘. The corresponding partition of
dataset points is then built and its SSE cost is defined as the current cost. Then, T swap
iterations are executed. The value of T depends on the dataset and the number of clusters K.

Algorithm 5. The PB-RS recombination step.

cand←GKM++(℘)
partition X data points according to cand
cost←SSE(X)
repeat T times{

save cand
cand’←swap(cand), that is: cs←pj, pj∈ ℘, s←unif_rand(1..K), j←unif_rand( 1..J ∗K)
refine cand’ by a few K-Means iterations (e.g., 5)
new_cost←SSE(cand’, X)
if (new_cost<cost){

accept cand’, cand←cand’
cost←new_cost

}
else{

restore saved cand and its previous partitioning
}

}
check the accuracy of candBest by further clustering indexes.

At each swap iteration, a centroid in the current configuration (cand) is randomly
selected and replaced by a randomly chosen candidate point taken from the population.

It is worth noting that the population remains unaltered during the swap iterations
under PB-RS. The initial selection of centroids via GKM++ triggers mutation and crossover
operations, respectively, represented by swap operation and K-Means refinement.

The cost of the first step of PB-RS can be summarized as O(J(KSND + KND + TNKD
[KNiD + τK + (1− τ)(N + K)])), where for each of the J solutions, first the cost of GKM++
is accounted, then the cost of partitioning the dataset according to the initial centroids is
considered; after that, the cost of the T swap iterations is added. i is the small number of
iterations of K-Means executed at each swap to optimize the new centroid configuration and
τ is the probability of accepting the new centroid configuration. If the new configuration is
rejected, N + K is the cost of restoring the previous centroids and associated partitioning.
The cost of the second step of PB-RS is similar to that of the first step by considering one
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single run of Random Swap (J = 1) and that the single seeding of GKM++ is fed from the
population and costs JK2SD. The number of swap iterations, T, is expected to depend on
the particular adopted dataset.

With respect to the standard Random Swap operation [8,9], PB-RS recombination tends
to move more “directly”, experimentally confirmed, toward a good clustering solution
by avoiding many unproductive iterations. This is because at each swap iteration, only a
candidate centroid in the population, not a point in the whole dataset, is considered for the
replacement of a centroid in the current vector of centroids.

4. JAVA Implementation Notes

The realized Java implementation of PB-KM was designed to tackle the important task
of facilitating the parallel execution of recurring operations. These include the partitioning
and centroids update steps of K-Means (refer to Algorithm 1), the computation of the
SSE cost, and the fundamental operations of GKM++, among others. To achieve this,
parallel streams and lambda expressions [9,15,16,20] were leveraged. A parallel stream
is orchestrated by the fork/join mechanism, allowing for arrays/collections like datasets,
populations, centroid vectors and so forth, to be divided into multiple segments. Separate
threads are then spawned to process these segments independently, and the results are
eventually combined. Lambda expressions serve as functional units specifying operations
on a data stream concisely and efficiently.

While the use of such popular parallelism can be straightforward in practical scenarios,
it necessitates caution from the designer to avoid using shared data in lambda expressions,
as this could introduce subtle data inconsistency issues, rendering the results meaningless.

Supporting classes for PB-KM/PB-RS encompass a foundational environmental G
class, exposing global data (see Table 1), such as N (dataset numerosity), D (number of data
point coordinates or dimensions), K (number of clusters/centroids), S (GKM++ accuracy
degree), J (population size), available seeding methods, methods for loading the dataset
into memory, ground truth information (centroids or partition labels), if there are any,
population and more. The helper DataPoint class enables common operations on data
points like the Euclidean distance and offers some method references (equivalent to lambda
expressions) employed in point stream operations.

To illustrate the Java programming style, Algorithm 6 presents a snippet of the K-
means++/greedy K-means++ methods operating on a source, which can be the entire
dataset or the population. The operations pertain to calculating of the common denominator
(see Algorithm 2) of the probabilities of the data points being chosen as the next centroid.

Algorithm 6. Code fragment of K-Means++/Greedy_K-Means++ operating on a source of data points.

. . .
final int l=L;//turn L into a final variable l
Stream<DataPoint> pStream=

(PARALLEL) ? Arrays.stream(source).parallel(): Arrays.stream(source);
DataPoint ssd=pStream//sum of squared distances

.map(p->{
p.setDist(Double.MAX_VALUE);
for(int k=0; k<l; ++k) {//existing centroids

double d=p.distance(centroids[k]);
if(d<p.getDist()) p.setDist(d);

}
return p; })

.reduce(new DataPoint(), DataPoint::add2Dist, DataPoint::add2DistCombiner);
double denP=ssd.getDist();
//common denominator of points probability
. . .
//random switch
. . .
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Initially, a stream (a view, not a copy of the data) pStream is extracted from the
source of data points. The value of the G’s PARALLEL parameter determines whether
pStream should be operated in parallel. In the following, it is normally assumed that
PARALLEL = true.

The intermediate map() operation on pStream processes the points of the source
in parallel by recording the minimal distance to existing centroids (indexes from 1 . . . L)
into each point p. This is achieved as part of the Function’s lambda expression of the
map() operation. Notably, each point only modifies itself and avoids modifications to any
shared data.

The map() operation yields a new stream operated by the reduce() terminal opera-
tion. The reduce() operation concretely initiates parallel processing, including the map
executions. It instructs the underlying threads to add the squared point distances, utilizing
the method reference add2Dist of the DataPoint class. The partial results from the threads
are ultimately combined by the method reference add2Combiner of DataPoint, adding
them and producing a new DataPoint ssd, of which the distance field contains the desired
calculation (denP).

Following the calculations in Algorithm 6, a random switch based on point probabili-
ties finally selects the next (not yet chosen) centroid.

Parallel streams are also used to implement K-Means (see also [9,15]), particularly
for the concretization of the basic steps 2 and 3 of Algorithm 1. In addition, parallelism is
exploited for computing the SSE cost and in many similar operations.

Algorithm 7 illustrates the function which computes the SSE cost of a given centroid
configuration (current contents of the centroids vector) and its corresponding partitioning
of the dataset points. First, the squared distance to its nearest centroid is stored into each
point. Then, all the squared distances are accumulated in a point s, through a reduce()
operation which receives a neutral point (located in the origin of data points) and a lambda
expression that creates and returns a new point with the sum of the squared distances of
the two parameter points p1 and p2. In Algorithm 7, all the dataset points can be processed
in parallel.

Algorithm 7. Java function which calculates the SSE the cost of a given partitioning.

Stream<DataPoint> pStream=
(PARALLEL) ? Stream.of (dataset).parallel(): Stream.of (dataset);

DataPoint s=pStream
.map(p ->{

int k=p.getCID();//retrieve partition label (centroid index) of p
double d=p.distance(centroids[k]);
p.setDist(d*d);//store locally to p the squared distance of p to its (nearest) centroid
return p;

} )
.reduce(new DataPoint(),

(p1,p2)->{ DataPoint ps=new DataPoint(); ps.setDist(p1.getDist()+p2.getDist());
return ps; }

);
return s.getDist();

The systematic use of the parallelism in PB-KM/PB-RS purposely reduces the time
required, e.g., for computing all the distances between the points and associated centroids
which, in turn, can significantly reduce the program execution time on a multi-core machine.

5. Experimental Framework

For comparison purposes with Recombinator-K-Means, all the synthetic (benchmark)
and real-world datasets used in [11,12], plus others, were chosen to test the behavior of
PB-KM/PB-RS. The datasets are split into four groups.
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The first group (see Table 2) contains some basic benchmark datasets taken from [24],
often used to check the clustering capabilities of algorithms based on K-Means. All the
datasets come with ground truth centroids and will be processed, as in [11,12], by scaling
down the data entries by the overall maximum. A brief description of the datasets is shown
in Table 2.

Table 2. The first group of synthetic datasets [24].

Dataset N D K

A3 7500 2 50
S3 5000 2 15

Dim1024 1024 1024 16
Unbalance 6500 2 8
Birch1/2 100,000 2 100

The A3 dataset comprises 7500 2-d points distributed across 50 spherical clusters.
S3 admits 5000 2-d points divided into 15 Gaussian distributed clusters with limited
overlap. As discussed in [5,6], cluster overlapping is the key factor which can favor
centroid movement during K-Means refinement, and then the obtainment of an accurate
clustering. Dim1024 is an example of a dataset with high-dimensional points. It contains
1024 Gaussian-distributed points in 16 well-separated clusters. Unbalance is made up
of 6500 2-d points split into eight Gaussian clusters, articulated in two neatly separated
groups of clusters containing 2000 and 100 points, respectively. Birch datasets contain
105 2-dimensional points distributed into 100 clusters. In particular, Birch1 places its
clusters on a 10 × 10 grid. Birch2, instead, puts the clusters on a sine curve. Birch1 and
Birch2 have spherical clusters of the same size.

The synthetic datasets presented in Table 2 can be studied using classical Repeated
K-Means and careful seeding. However, in many cases, only an imperfect solution will
emerge from the experiments (see Section 5.1).

The second group of datasets (see Table 3) includes two real-world datasets taken
from the UCI Repository [25]. Musk concerns a molecule identification problem, whether
it is musk or not. Although limited in the number of data points, N, and the number
of clusters, K, the dataset admits a high number, D, of features (coordinates) per point,
which complicates the identification problem. The MiniBooNE dataset, instead, regards
a signals identification problem, whether they are neutrinos or background. In this case,
the challenge is represented by both high values of N and D. The two datasets were also
used in [14]. In particular, the solutions documented in [14] will be assumed in this paper
as “golden” solutions, from which ground truth centroids are inferred and used to qualify
the correctness of the solutions achieved via PB-KM/PB-RS. For comparison purposes with
the results in [14], the two datasets will be processed by first scaling all the data entries via
min–max normalization.

Table 3. The second group of real-world datasets.

Dataset N D K

Musk 6598 166 2
MiniBooNE 130,064 50 2

The third group of datasets (see Table 4) contains three synthetic datasets achieved
from [24] whose good clustering does not necessarily follow from the minimization of the
SSE cost (see also [9]).

Birch3 (see Figure 1) differs from the regular Birch1 and Birch2 because it admits clus-
ters with a random size and randomly located in the data space. Worms_2d (see Figure 2)
is composed of 35 clusters with 2-dimensional data points. Worms_64d is characterized
by 25 clusters with data points with 64 dimensions. The geometrical shapes of the worm
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datasets are determined by starting at a random position and moving in a random direction.
At any moment, the points follow a Gaussian distribution, whereby the variance gradually
increases step-by-step. In addition, movement direction is continually changed according
to an orthogonal direction. In Worms_64d, though, the orthogonal direction gets randomly
re-defined at every step.

Table 4. The third group of synthetic datasets [24].

Dataset N D K

Birch3 100,000 2 100
Worms_2d 105,600 2 35
Worms_64d 105,000 64 25
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Clustering of worm datasets was investigated in [26] using an enhanced and careful
density peak-based algorithm [27]. Birch3 was analyzed, e.g., in [9,11,12]. Such previous
results will be used as a reference to assess the accuracy of the clustering solutions doc-
umented in this paper. To compare with the results in [11,12], the three datasets will be
processed by first scaling down the data entries by the overall maximum.

The fourth group (see Table 5) comprises some challenging real-world datasets, many
of which are without ground truth information. Clustering difficulties arise from the large
number of data points, N, the number of point features, D, and the number of needed
clusters, K.



Algorithms 2023, 16, 572 15 of 25

Table 5. The fourth group of real-world datasets.

Dataset N D K

Bridge 4096 16 256
House 34,112 3 256

Miss America 6480 16 256
Olivetti 400 4096 40

UrbanGB 360,177 2 469

The non-binarized version of the Bridge dataset, the 8 bits per color version of the
House dataset, and the frame 1 vs. 2 version of Miss America dataset, were downloaded
from the [24] repository. They all refer to image data processing.

The image facial recognition problem of the Olivetti dataset, from the AT&T Laborato-
ries Cambridge, handles 40 human subjects, each portrayed in 10 different poses. Every
facial photo is stored by 64× 64 = 4096 pixels.

The UrbanGB is a large dataset consisting of geographical coordinates of car accidents
in Great Britain’s urban areas. The dataset can be downloaded from [28].

The solutions for the Olivetti and UrbanGB reported in [11,12] were used to infer
“ground truth” information about the datasets. In all the cases, though, the SSE cost and its
evolution vs. the real time can be used for comparison purposes.

As in [11,12], the datasets of the fourth group are processed without scaling, except
for the UrbanGB where the first dimension of the data entries are scaled down by a factor
of 1.7.

The following simulation experiments were executed on a Win11 Pro platform, Dell
XPS 8940, Intel i7-10700 (8 physical cores), CPU@2.90 GHz, 32GB RAM and Java 17.

5.1. Clustering the A3 Dataset

For a preliminary study, the A3 dataset was chosen (see Table 2 and Figure 3). The
goal was to compare the performance of classical Repeated K-Means driven by different
seeding methods, to that it was achievable with PB-KM. In particular, A3 was first clustered
via Repeated K-Means (RKM) separately fed by uniform random

(
RKMUnif

)
, K-Means++

(RKMKM++) and Greedy K-Means++
(

RKMGKM++
)

seeding procedure.
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Then, 104 repetitions of K-Means were executed and the following quantities moni-
tored: (a) the minimal value of the SSE cost (SSEmin), (b) the corresponding Cluster Index
(CI) value (see Section 2.5) (CImin (SSE)), (c) the minimal value of the observed CI (CImin)
and the corresponding value of the SSE cost (SSEmin(CI)), (d) the emerging average CI value
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(avg_CI) and (e) the success_rate, that is, the number of runs which ended with a CI = 0,
divided by 104. In addition, the Parallel Execution Time (PET), in sec, needed by Repeated
K-Means to complete its runs was also observed. Table 6 collects all the achieved results.

Table 6. Clustering experimental results on the A3 dataset.

RKMUnif RKMKM++ RKMGKM++

SSEmin 7.44 6.74 6.74
CImin (SSE) 1 0 0

CImin 1 0 0
SSEmin (CI) 7.44 6.74 6.74

avg_CI 6.58 4.17 1.62
success_rate 0% 0.01% 5.8%

PET(s) 103 154 990

The experimental data in Table 6 clearly confirm the superior behavior ensured by
GKM++ seeding, which makes RKM capable of outperforming the scenarios where K-
Means++ (KM++) or the uniform random (Unif) centroids initialization is adopted. The
observed average CI and the success rate are worth being noted. As one case see in Table 6,
it always happens that the minimum CI value occurs at the minimum SSE cost.

The RKMGKM++ results in Table 6 comply with the results reported, e.g., in [9,11].
Table 7 collects the results observed when using PB-KM with the parameter values

J = 25 and R1 = 3 adopted in the first step (see Algorithm 4), and the value R2 = 40
used for the second step. Only the PET was annotated for the first step, which creates the
population of candidate solutions. The second-step results clearly confirm that PB-KM is
able to correctly solve the A3 dataset. In fact, a success_rate of 100% and CI = 0 were
observed. The SSE minimal value coincides with that obtained with RKMGKM++ in Table 6.

Table 7. PB-KM experimental results about the A3 dataset.

PB−KM (J=25, R1=3), R2=40

PET1(s) 6.4
SSEmin 6.74

CImin (SSE) 0
CImin 0

SSEmin (CI) 6.74
avg_CI 0

success_rate 100%
PET2(s) 2.4

Results in Table 7 also show how the execution time of PB-KM outperforms that
achievable by straight Repeated K-Means (see Table 6). The same results of minimal SSE
and CI, and a 100% success_rate were also observed when using R2 = 10. In reality, one
single recombination iteration is sufficient for obtaining the minimal SSE and CI. All of this
was precisely confirmed by using the PB-RS recombination on the same population created
by PB-KM.

The following sections report the experimental results collected by applying PB-
KM/PB-RS to the four groups of selected datasets. A common point of all the experiments
concerns using the GKM++ seeding method both in the first step of the population set-up
and in the second step of recombination.

5.2. First Group of Synthetic Datasets (Table 2)

Table 8 shows the experimental results collected when applying PB-KM to all the
benchmark datasets reported in Table 2 (entries are preliminary scaled down by the overall
maximum). It is worth noting that all these datasets have a success_rate of 0% when
clustered by Repeated K-Means together with uniform random seeding, as also documented
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in [5]. The experimental results confirm that CI = 0 always occurs at the minimum value
of the objective SSE cost.

Table 8. PB-KM results on the synthetic datasets of Table 2.

Dataset min (SSE) CImin (SSE) avg_CI Success_Rate PET1(s) PET2(s)

A3 6.74 0 0 100% 6.4 2.4
S3 18.82 0 0 100% 1.1 0.5

Dim1024 5.39 0 0 100% 9.4 4.0
Unbalance 0.65 0 0 100% 0.6 0.3

Birch1 92.77 0 0 100% 277.3 96.6
Birch2 0.46 0 0 100% 242.2 99.0

The S3, Dim1024 and Unbalance datasets were studied using J = 25 and R1 = 3 for
the first step (three independent repetitions of K-Means are used for defining each solution
of the population), and by R2 = 40 for the second step (see Algorithm 4). Due to the
higher number of clusters K, Birch1 and Birch2 were instead studied by using J = 20 and
R1 = 3 for the first step, and R2 = 40 for the second step. Table 8 reports the Parallel
Elapsed Time (PET) in sec, required by the first and second step of PB-KM.

In reality, PB-KM was capable of detecting the “best” solution, that is, one with a
minimal SSE and CI, just after a few iterations (in some cases after 1 iteration) of the
recombination step. All of this was also confirmed by PB-RS recombination. The results
(e.g., CI = 0) in Table 8 are the same as reported in [9], where Random Swap was used, and
in [11] where the Recombinator-K-Means tool was exploited.

5.3. Second Group of Real-World Datasets (Table 3)

The Musk and MiniBooNE real-world datasets (data entries preliminarily scaled by
min-max normalization), together with the ground truth information inferred from the
solutions reported in [14], were easily clustered using PB-KM with J = 25 and R1 = 3
for the first step, and R2 = 20 for the second step. The results, which coincide with
those reported in [11,12,14], are shown in Table 9. Very few iterations of PB-RS also
confirmed them.

Table 9. PB-KM results on the real-world datasets of Table 3.

Dataset min (SSE) CImin (SSE) avg_CI Success_Rate PET1(s) PET2(s)

Musk 36,373 0 0 100% 0.5 0.1
MiniBooNE 2802 0 0 100% 5.3 0.8

5.4. Third Group of Synthetic Datasets (Table 4)

All the entries of datasets in Table 4 were preliminarily scaled by the overall maximum.
The datasets of this group were processed via PB-RS because it provided the most accurate
results. The initial population of Birch3 was built using J = 20 and T = 5000 swap
iterations of Random Swap always seeded by GKM++, requiring a parallel elapsed time
of PET = 5041 s. The recombination step was carried out using T = 10,000 iterations.
Figure 4 depicts the SSE vs. the real-time PET (s). Figure 5 shows the Cluster Index (recall
Birch3 comes with ground truth centroids, see also Section 2.5) CI vs. real-time PET (s).

To ensure a proper number of candidate centroids for the Worms_2d/Worms_64d
datasets which have K = 35 and K = 25 clusters, respectively, a population with J = 40
solutions and T = 5000 swap iterations was preliminarily created with PB-RS, requiring
PET = 4485 sec for Worms_2d, and a population of J = 40 solutions and R1 = 3 with
PB-KM, requiring PET = 5156 sec for Worms_64.

Notably, a CI = 12 was estimated in [9] by using standard Parallel Random Swap
executed for 105 iterations, requiring a PET = 7341 sec. Figure 5 suggests a final value of
CI = 11, after a significantly smaller time.
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Figure 4. SSE cost vs. time for the Birch3 dataset.

The PB-RS recombination step lasts after T = 104 iterations for Worms_2d. Figures 6
and 7 show the measured SSE vs. time and the CI vs. time for Worms_2d, respectively.
Since the worm datasets come with partition labels as ground truth, the CI is, in reality, a
Generalized CI [23] based on the Jaccard distance among the partitions (see also [9])).
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Figure 6 confirms that for a dataset like Worms_2d, the minimization of the SSE cost
does imply the most accurate solution to be achieved (here assessed according to the Cluster
Index CI). In fact, for lower values of the SSE (see Figure 6), the CI increases. The average
value CI = 7.6 in Figure 7 complies with a similar result documented in [26].

As discussed in [9], the Worms_64d, despite the higher dimensionality w.r.t. Worms_2d,
is more amenable to clustering and can be correctly solved via Random Swap. This was
confirmed using PB-RS with a recombination step of T = 1000 swap iterations (fewer
iterations could have been used as well).
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Figures 8 and 9 show the SSE vs. time and the CI vs. time for Worms_64d, respec-
tively. As shown in Figure 9, the ultimate value of CI is 0, which starts occurring at the
minimum SSE (see Figure 8), thus witnessing the obtainment of a solution with correctly
structured clusters.

5.5. Fourth Group of Real-World Datasets (Table 5)

The challenging real-world datasets in Table 5, which have many clusters, were
clustered by PB-RS by preparing a population of J = 5 solutions each emerging after
T = 5000 iterations of Random Swap. PB-RS was chosen because it provided better
experimental results (in terms of accuracy and time efficiency) w.r.t. PB-KM.

The dataset entries were used without scaling, except for the UrbanGB. In the
UrbanGB, instead, the first dimension of the data entries is preliminarily scaled down
by a factor of 1.7. The recombination step lasts after T = 5× 104 iterations. However, it
can be terminated when the current cost differs from the previous one of a quantity less
than a given numerical threshold (e.g., 10−4).
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Figure 9. (Generalized) Centroid Index (CI) vs. time for the Worms_64d dataset.

Figures 10–16 report the performance curves (the SSE cost vs. time and, when possible,
the CI vs. time) observed for the Bridge, House, MissAmerica, Olivetti and UrbanGB [28]
datasets. Since Olivetti and UrbanGB are provided with ground truth information (both
centroid and partition labels), Figures 14 and 16 portray the observed centroid index CI vs.
time, respectively, for Olivetti and UrbanGB.

From Figure 14, it emerges that the clustering algorithm could not recognize 7 faces
out of 40. Similarly, the results in Figure 16 indicate that, in the best case, 143 of 469 cases
were not correctly handled in the UrbanGB dataset.

The shown experimental results agree with those reported in [11,12].
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Figure 14. CI vs. time for the Olivetti dataset.
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5.6. Time Efficiency of PB-KM

The computational efficiency of the developed tools was assessed, in a case, using
the PB-KM recombination step on the Worms_64d dataset (see Table 4), via the GKM++
seeding method, with J = 40 and R2 = 200 repetitions, separately in parallel (the
parameter PARALLEL set to true) and sequential (PARALLEL = false) modes. The total
elapsed time tET (in msec) for the serial (tETS) and parallel (tETP) case needed by PB-KM
recombination to complete were measured, together with the total number of executed
K-Means iterations (respectively tITS, tITP), as reported in Table 10.

Table 10. The sequential and parallel execution of PB-KM recombination on Worms64d. (8 physi-
cal cores).

Worms_64d PB-KM, 2nd Step, J=40, R2=100

tETS (ms) 4,405,325
tITS 15,049

tETP (ms) 650,622
tITP 14,887

From the data in Table 10, the average elapsed time per iteration was computed as
avETS

it = tETS

tITS = 292.73 and avETP
it = tETP

tITP = 43.70, and the speedup was estimated as

speedup = avETS
it/avETP

it =
292.73
43.70

= 6.7

6. Conclusions

This paper proposes two evolutionary-based clustering algorithms: Population-Based
K-Means (PB-KM) and Population-Based Random Swap (PB-RS). The two algorithms
were inspired by the Recombinator-K-Means [11,12] and the Genetic Algorithm of P.
Franti [10], plus the use of the careful seeding ensured by the Greedy K-Means++ (GKM++)
method [11,14].

However, PB-KM and PB-RS are based on a simpler, yet effective, approach which
rests on two steps. In the first step, a population of J candidate “best” centroid solutions is
created. The second step recombines the population’s centroids toward obtaining a careful
solution. This is achieved in PB-KM through a number of independent repetitions of Lloyd’s
K-Means [2–4], and in PB-RS by a certain number of iterations of Random Swap [8,9]. In
both cases the starting point is a centroid configuration achieved by applying GKM++ to
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the population. Refinement of the initial solution is then controlled by partitioning the
points of the dataset and moving toward minimizing the Sum of Squared Errors (SSE) cost.

A key factor of PB-KM and PB-RS concerns their implementation in Java, which is
based on parallel streams [9,15,16], which enables the exploitation of the parallel computing
potential of modern multi/many-core machines.

The paper documents the reliable and efficient clustering capabilities of PB-KM and
PB-RS by applying them to a collection of challenging benchmark and real-world datasets.

Ongoing and future work aims to address the following points.
First, it aims to experiment with the two developed algorithms for clustering sets [20,29]

and more in general categorical and text-based datasets.
Second, it aims to port the implementations on top of the efficient Theatre actor

system [30], which allows for better control and exploitation of the parallel resources of a
multi/many-core machine.

Third, the aim is to adapt PB-KM by replacing Lloyd’s K-Means with the Hartigan and
Wong variation of K-Means [31,32]. The idea is to experiment with an incremental technique
which constrains the switching of a data point from its source cluster to a destination cluster
also on the basis of its Silhouette coefficient [33]. The goal is to favor the definition of
well-separated clusters.

The fourth aim is to compare the two developed algorithms to affinity propagation
clustering [34] algorithms, e.g., for studying the seismic consequences caused by earth-
quakes [35]. In addition, the influence of the method about point distributions in the
hypersphere [36] on our described clustering work deserves particular attention.
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