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Abstract: At present, synthetic biology applications are based on the programming of synthetic
bacteria with custom-designed genetic circuits through the application of a top-down strategy. These
genetic circuits are the programs that implement a certain algorithm, the bacterium being the agent
or shell responsible for the execution of the program in a given environment. In this work, we
study the possibility that instead of programming synthesized bacteria through a custom-designed
genetic circuit, it is the circuit itself which emerges as a result of the evolution simulated through an
evolutionary algorithm. This study is conducted by performing in silico experiments in a community
composed of synthetic bacteria in which one species or strain behaves as pathogenic bacteria against
the rest of the non-pathogenic bacteria that are also part of the bacterial consortium. The goal is the
eradication of the pathogenic strain through the evolutionary programming of the agents or synthetic
bacteria. The results obtained suggest the plausibility of the evolutionary design of the appropriate
genetic circuit resulting from the application of a bottom-up strategy and therefore the experimental
feasibility of the evolutionary programming of synthetic bacteria.

Keywords: evolution of a bacterial consortium; programming synthetic bacteria; bacterial agents;
Gro cell programming language

1. Introduction

Today, the convergence of disciplines as diverse as synthetic biology and computer
science has led to the acceptance of ideas that were disruptive in the near past. One such
insight is the possibility of programming cells to perform specific tasks, creating innovative
solutions to problems in areas ranging from medicine to the environment or industry.
Although synthetic biology has its origins in the 1970s with the birth and development of
genetic engineering and biotechnology, it was not until the year 2000 when this discipline
adopted the current approach. At present, the aim of synthetic biology is the design and
assembly of artificial biological systems. Consequently, the objective is to obtain new
biological components, e.g., proteins, genetic circuits, metabolic networks, etc., taking
into account the subsequent possibility of their integration into a recipient organism [1],
e.g., a bacterium. This view suggests that synthetic biology was influenced from its origins
by the ancient computer hardware and the way in which these early computers were
programmed, e.g., the ENIAC [2]. Occasionally, it has been considered that an organism
could be programmed as if it were an ENIAC computer (Figure 1) by plugging together
these biological components. Therefore, the connection among elements would be the
way of programming a synthetic organism, e.g., a bacterium. In this example, the bacteria
would be playing the role of a desktop computer case housing the biological hardware,
i.e., the program ‘written’ in these biological components or biobricks. As a result of
this approach, it is feasible to program bacteria in silico as if they were a computer [3,4].
Based on this principle, it is possible to go a step further by programming not isolated
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cells, such as bacteria, but rather groups of cells, e.g., the so-called xenobots [5]. These
synthetic biological entities, created from cells of embryos of the species Xenopus laevis,
were programmed using a supercomputer to determine their configurations.
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Figure 1. Synthetic bacterium programming. (A) The programming of a synthetic organism has
been compared on occasions with the programming of the early computers, e.g., ENIAC. (B) The
input data, e.g., a signal received via quorum sensing, is processed (genetic circuit of a plasmid),
producing a signal or output after the expression of one or several genes, e.g., a fluorescent protein,
killer antidote, etc.

Bacteria were by their unique features the first unicellular organisms to be pro-
grammed. Their programming is made possible by the use of highly characterized func-
tional components, in particular parts of DNA coding for proteins and other regulators
that are synthesized and assembled in genetic circuits. These genetic circuits allow the
implementation in bacteria of switches, feedback systems, oscillators [6], etc., as well as
different AND, XOR, and NOT logic gates [7], etc. The customized design and synthesis
of genetic circuits makes it possible to program in synthetic bacteria specific biological
functions [8], for example, the biological production of drugs or therapeutic compounds as
well as biological devices that can detect and respond to specific signals from the body. This
last approach, the application of synthetic biology in therapeutic applications [9], would
make it possible to treat infectious diseases, metabolic disorders, and even cancer.

At present, the application of synthetic biology principles and the use of simulators
has allowed the design of artificial microbial communities in which bacteria exhibit pro-
grammed behaviors [3,4]. In nature, these microbial communities or consortia are a group
of bacteria of different species or the same specie but different strains whose individuals
interact with each other by sharing resources and exhibiting different behaviors [10]. At
present, and in the field of synthetic biology [10], microbial communities composed of
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synthetic bacteria have many advantages over cultures composed of only one kind of
bacteria, as they allow the division of tasks, spatial organization, and higher robustness to
perturbations. Due to these features, microbial consortia are nowadays under study for
their possible applications in many different biotechnological processes.

In this paper, westudied several strategies, and therefore algorithms, oriented to the
control of a synthetic microbial consortium in which different kinds of bacteria coexist
in silico. As stated above, the control of microbial communities is based on an algorithm
that is implemented at the ‘hardware level’ in the related genetic circuit. However, this
hardware, i.e., the genetic circuit, is evolutionarily configured through an evolutionary
algorithm designed ad hoc, which we named BAGA.

In the experiments we performed, the microbial community is composed of interacting
bacteria, including one strain of pathogenic bacteria and the remaining of non-pathogenic
bacteria. We studied through simulation experiments the effectiveness of different strategies
in order to eliminate the pathogenic bacteria from a community formed by different species
or strains of synthetic bacteria. Therefore, the aim of the simulation experiments was to
minimize the number of pathogenic bacteria and maximize the number of non-pathogenic
bacteria that are present in a microbial consortium or community. In this paper, it is shown
that by applying the BAGA evolutionary algorithm, it is possible to find the appropriate
genetic circuit that leads to the eradication or progressive elimination of the number of
pathogenic bacteria in a microbial consortium. Since the number of possible genetic circuits,
i.e., what is known as genotype space, is discrete, the problem to be solved is a combinatorial
optimization problem. In consequence, the problem will be solved using a heuristic method
such as the BAGA evolutionary algorithm.

In the field of synthetic biology, the creation of new programmable organisms under
a bottom-up approach requires heuristic methods coming from the area of combinatorial
optimization. Under this approach, the assembly of different parts of an organism in order
to optimally or quasi-optimally program the living matter requires appropriate heuristic
methods. In this sense, the importance of combinatorial optimization strategies in synthetic
biology was recently highlighted [11]. Thus, for example, the engineering of metabolic
pathways through microbial strains involves the design and sequential or combinatorial
optimization [12] of genetic circuits. In turn, the appropriate regulation of the genetic
circuits obtained in silico also requires the use of combinatorial optimization techniques
that in the form of software [13] allow the study of the genetic circuit regulation with
a computer. In this case, the regulation of a genetic circuit or network is studied either
through the analysis of the parameters that affect the genetic network or through the
expression of its components, i.e., the genes that define the network.

In the last decade, the application of evolutionary algorithms in synthetic biology
optimization, and particularly the so-called genetic algorithms, has received increased
attention from researchers. For instance, by applying genetic algorithms, it is possible
to design oscillator genetic circuits with specific features [14] and even genetic circuits
operating as logic gates [15], e.g., AND, OR, NOT, NAND, etc. However, all these advances
are achieved at the level of computer experiments and therefore in silico. The possibility
of using evolutionary algorithms in the laboratory, i.e., in the wet lab, is so far mainly
focused on directed evolution [16]. That is, the selection process proposed by Darwin is
emulated in the laboratory through several cycles of DNA mutagenesis and selection of
sequences according to a target sequence. The goal is to find a gene sequence yielding to
the expression of proteins with optimized functions, for example, enzymes whose catalytic
properties are the appropriate ones.

2. Materials and Methods
2.1. Microbial Community or Consortium Meta-Model

Nowadays, most of the synthetic bacteria are programmed according to a top-down
strategy. That is, the genetic circuitry is computer-designed to suit the task that the bac-
terium is expected to perform. The programmed expression of the genes through a certain
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model of regulation of the genetic network will result in a certain cellular behavior that
will be displayed by the synthetic bacteria. Once the genetic circuit is designed, it is in-
serted into a plasmid (Figure 1), i.e., into a circular extrachromosomal DNA molecule that
is independent of the chromosomal DNA. To draw an analogy between genetics and a
computer, the plasmid plays the role of the code, either a script or a program in a computer.
Thus, while the synthetic bacterium is the shell or ‘computer’ whose dynamic behavior,
e.g., the control of cell division, is governed by the chromosomal DNA, the expression
of the genes carried by the plasmid plays the role that corresponds to the execution of a
program in a computer. The top-down strategy applied to the design of synthetic bacteria
is actually the classic protocol used by engineers to design the devices or mechanisms of a
car, a microwave oven, or any other machine or device.

In this paper, we propose the design of synthetic bacteria by applying a bottom-up
strategy. That is to say, bacteria are evolutionarily programmed either as a colony or as
a bacterial consortium. A bacterial colony is a bacterial population resulting from the
multiplication of a strain or species of bacteria. Likewise, a microbial consortium is a
community of microbes formed by two or more groups of bacterial strains or species.
Therefore, whether it is a colony or a consortium, we start with some features present
in the bacteria that will progressively acquire a particular behavior or cellular response,
i.e., output (Figure 1). In our meta-model, the evolution of bacteria is the result of the
temporal changes that take place in the colony or microbial community.

In the present work, we studied two possible bottom-up scenarios. On the one hand,
we studied the programming of synthetic bacteria through a Darwinian evolutionary
model using an evolutionary algorithm that we termed BAGA. In this case, the mutation
experienced in bacteria leads to random changes in the genetic circuit present in their
plasmid. Depending on the configuration of the resulting genetic circuit, so too will be
the adaptability or fitness of the bacterium. If the fitness value increases, the bacterial
growth rate of a given species will also increase, and consequently the number of bacteria
belonging to that species will grow.

On the other hand, we studied the design of communities of synthetic bacteria consid-
ering in this case that the change in the number of bacteria of each strain or species resulted
from social interactions between bacteria. That is, assuming bacteria of different species,
bacteria of one species interact with bacteria of another species by emitting chemical signals
to the environment. Once the signals are emitted, they will have a positive or negative
effect on other neighboring bacteria depending on their species. If the molecule released
into the environment by an emitting bacterium of a given species has a positive effect on
the receiving bacterium of another species, then the bacterial growth rate of the latter will
increase, thereby increasing the number of bacteria of that species.

Indeed, whether it is Darwinian evolution or the effect of social interactions among
bacterial species, the bottom-up protocol assumes as a guiding principle that evolution,
i.e., the change in the number of synthetic bacteria, will be the result of the bacterial growth
rate or Malthusian parameter adjustment. In other words, evolution is the result of the
change in the value of the parameter of the equation governing the growth or colony size
of a bacterial strain.

2.2. Synthetic Bacteria Programming

Synthetic bacteria are agents programmed in Gro 4.0, a cell programming language [17].
Using Gro, we encoded through the appropriate scripts the main features of the synthetic
bacteria. Once an initial bacterium is first programmed, the bacterium is then divided in
two, and each daughter bacterium receives a copy of the script. Over the course of the
simulation experiment, a bacterial colony is formed, growing with time, running the script
in parallel on each of the bacteria. As a result, it is possible to explore the collective behaviors
of the colony that emerge from the individual cellular specifications in each bacterium.
Specifically, Gro language enables the modeling of different biological events, such as cell
division, chemotaxis, and signal diffusion, among other physiological phenomena [17,18].
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Although an extended version of Gro was published that allows plasmid design and
recombination [19], in the present study, we programmed synthetic bacteria using the
original version [17]. The reason for this choice is because plasmid recombination is a
feature that was not used in our simulation experiments.

In this paper, we assume that physiological and biochemical features of synthetic
bacteria are encoded in plasmid-resident genes, i.e., in circular DNA molecules that replicate
independent of the bacterial chromosome. Therefore, a plasmid is extrachromosomal
DNA that we use in synthetic biology to ‘program’ a bacterium. Unlike the plasmid, the
bacterial chromosome is the DNA containing the genes essential for the survival of the
bacterium, e.g., to control cell division. Although the parameters affecting cell division can
be set with Gro in a simulation experiment, chromosomal DNA is usually not included in
the experiments.

2.3. A Preliminary Experiment for Bottom-Up Design of Synthetic Bacteria: GADY

The present work originates from a simulation experiment carried out some time ago
and recently published as a pre-print [20]. In order to carry out the study in silico of a
microbial community or consortium as simply as possible, we performed a preliminary
experiment that we termed GADY (an acronym for get signal; antidote; die when a killer
gene is expressed; yellow fluorescence). Since the microbial community was the simplest
possible, we assumed a microbial consortium consisting of only two bacterial species:
one pathogenic and the other non-pathogenic. The pathogenicity or not of the bacteria
was only a label since the aim of this study was not the simulation of a disease caused by
bacterial infection. The goal of the experiment was to evaluate an evolutionary algorithm
oriented to the eradication of the pathogenic bacterium present in a microbial consortium.

In this model, only pathogenic bacteria undergo Darwinian natural selection, while
the non-pathogenic strain remains in the consortium without evolutionary changes.

The algorithm makes the assumption that bacteria communicate with each other
by quorum sensing, i.e., a type of communication between bacteria that takes place, for
example, in the bacterial strain E. coli.

At the beginning of the simulation experiment (t = 0), there is a single initial cell or
bacterium that divides into two daughter bacteria (Figure 2C). One of the daughter bacteria
behaves as non-pathogenic, which sends a chemical signal, while the other daughter
bacterium is the pathogenic bacterium that receives the signal (Figure 3). In order to
introduce genetic variability in the microbial community, the experiment was conducted
by programming synthetic pathogenic bacteria with the genetic mechanism of mutation.

As mentioned above, communication between non-pathogenic and pathogenic bacte-
ria occurs in the microbial community through a signaling mechanism known as quorum
sensing. This form of communication, which uses AHL (N-acyl homoserine lactone) as
a signaling molecule, is simulated as follows. The genome of the sender bacteria (non-
pathogenic) includes a plasmid that is composed of a single luxI gene (Figure 3), whereas the
receptor bacteria (pathogenic) host a plasmid consisting of four genes: luxR, killer antidote,
killer, and yfp (Figure 3). LuxI in the sender bacterium is responsible for producing AHL,
releasing this molecule to the environment. AHL enters into the pathogenic bacterium and
binds to luxR, forming a complex. This is followed by the expression of the remaining
genes except for the killer gene, whose expression is inhibited by the killer antidote.

In the case of the yfp gene, its expression results in the synthesis of the yellow flu-
orescent protein, resulting in the emission of yellow fluorescence from the bacteria. The
pathogenic bacterium has the luxR gene capable of detecting the AHL inducer signal,
i.e., the signal that has been emitted by the non-pathogenic bacterium.
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Figure 2. Models of consortia or microbial communities composed of four strains or bacterial species
(B1–B4). Bacterial reproduction occurs in each colony by bipartition; however, some colonies yield
pathogenic daughter bacteria, others yield non-pathogenic daughter bacteria, and there are colonies
in which there are bacteria of both cell lines. Bacteria displayed in ‘green’ are non-pathogenic, while
‘red’ bacteria are pathogenic. (A) Experiments 1 and 2. (B) Experiment 3. (C) GADY experiment.
In this case, the simulation experiment was conducted [20] with a single colony of bacteria of the
same strain and not with a bacterial community. (D) Experiment 4 (for a detailed explanation of the
simulation experiments, see text).
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In this model, the future state of the pathogenic bacterium is governed by transition
rules in which in addition to the chemical signal (AHL inducer signal) emitted by the non-
pathogenic bacterium, i.e., its sister in the neighborhood, the genotype of the pathogenic
bacterium is also taken into account. For example, in agreement with [20], the pathogenic
bacterium dies if it receives the signal s from its non-pathogenic sister, i.e., get_signal(s)
in Gro language, and its genotype is 1 0 1 0 as a result of the expression of the killer gene.
This rule is shown below in Gro language:

p.m = PATHOGEN & p.t > delay & (gene [0] = 1 & get_signal(s) > p.r) & gene [1] = 0 &
gene [2] = 1 & gene [3] = 0 : {die()}

The GADY experiment is based on the assumption that the pathogenic bacterium is
the only one susceptible to undergoing mutations. The ultimate goal of the experiment is
to achieve in silico through an evolutionary algorithm the eradication of the pathogenic
bacteria by Darwinian natural selection, thus the evolution of the pathogenic bacterium
towards a genotype leading to its own eradication by cell suicide. Consequently, the goal of
GADY was to evolve a pathogenic bacterium including only the luxR, killer, and yfp genes.

In the following section, we describe the evolutionary algorithm ruling the evolution
of pathogenic bacteria.

2.4. BAGA Evolutionary Algorithm

The algorithm termed BAGA, an acronym for bacterial agent genetic algorithm, is a
method to perform in silico simulation experiments with synthetic bacterial colonies. This
evolutionary algorithm was proposed by us in order to simulate the evolution of pathogenic
bacteria in the GADY experiment. BAGA is inspired by the experiment described in [21]
and the Gro script described in [22] to simulate evolution. The algorithm was the germ
from which an improved version was later published in [3].

The BAGA algorithm assumes the following assumptions: (i) Darwinian selection
of bacteria takes place according to their fitness, which influences the growth rate of the
bacteria. The higher the fitness, the higher the value of the growth rate. In other words,
evolution by natural selection in bacteria is the result of an adjustment of the level of
protein expression and its effect on the bacterial growth rate or Malthusian parameter (r);
the equation which governs the growth of the bacterial colony is as follows:

y(t) = y0 e rt (1)

where y(t) is the number of bacteria and y0 is the initial size of the bacterial colony (number
of bacteria at t = 0). (ii) The algorithm includes a reporter circuit (Figure 4) with which
the researcher can evaluate the evolution of a bacterial colony. Evaluation is based on
a normalized value of the degree of fluorescence emitted by the bacteria. A reporter
circuit is a genetic circuit where bacterial fluorescence is the result of the expression of a
gene that is expressed after the expression of another gene of interest. In such a case, the
bacterium synthesizes a protein that emits fluorescence. For instance, green fluorescent
protein (gfp) is a protein that emits green fluorescence when the bacterial colony is exposed
to ultraviolet light.

In summary, the evolutionary algorithm is inspired by Darwinian natural selection at
the molecular level whereby the survival of bacteria relies on enzymatic activity. Enzymes
are proteins that act as catalysts for chemical reactions by accelerating the reactions’ rates,
which results from the expression of a gene. In the proposed algorithm, the bacterial
selection is followed by a screening step. Thus, bacterial fitness is expressed by a quan-
titative measure or value of a fluorogenic reporter protein. Hence, the different degree
of fluorescence observed in the bacteria of a colony reflects the fitness of each cell and,
somehow, the colony evolutionary landscape.

In the following, we describe the main steps of the BAGA algorithm (Figure 5):
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(i) Genetic target sequence. In the first step, we set the target sequence. For instance,
suppose the problem is of finding the sequence 110. In this instance, the target
sequence is declared in Gro language as a list: {1,1,0}.

(ii) Bacterial division. The algorithm assumes a bacterial colony growing according to
an exponential or Malthusian growth model. This model does not take into account
whether the culture is in a Petri dish, chemostat, or any other container. Each time
a bacterium divides into two daughter bacteria, one bacterium retains the parental
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genes, while the other daughter bacterium undergoes mutations. For example, in
the GADY experiment (Figure 2), the non-pathogenic daughter bacterium preserves
the parental genes, while the pathogenic daughter bacterium undergoes mutations
in its genes. It is also possible for both cells to undergo mutation. In the present
version of the algorithm, this is an option to set since it affects the evolution of the
bacterial colony.

(iii) Genetic similarity. Once a bacterium divides into two daughter bacteria, the con-
centration of a hypothetical operon activator (protein with positive control over
gene expression) is calculated. An operon is defined in our simulation experiments
as a functional unit of DNA containing one or more genes under the control of a
promoter [23]. The algorithm calculates the Hamming distance between the gene
sequence inherited by the daughter bacterium and the target sequence. Once the
Hamming distance is calculated, its value is translated to a given concentration of
iptg (isopropyl β-D-1-thiogalactopyranoside), i.e., an allolactose emulator that acti-
vates the lactose operon (operon involved in the metabolism of lactose in E. coli and
many other bacteria). The algorithm considers iptg molecules as an activator of a
hypothetical Z operon (Figure 4), referring to this operon as the ‘optimization operon’.

(iv) Fitness. The goodness of the ‘solution’, i.e., the genetic sequence in the daughter
bacterium, is calculated by means of the optimizing operon Z. This operon expresses
a Z gene whose transcription product is a Z protein. The concentration z of product Z,
i.e., the fitness value, is expressed according to the Hill function:

z =
v·[iptg]n

kn + [iptg]n
(2)

whose parameters v, k, and n are set empirically depending on the optimization
problem. Thus, in our case, the optimization problem is to find the target sequence.
Applying this function, we normalize the value of fitness z between 0 and 1.
In the above z function (2), the concentration of iptg was calculated as the difference
between L, i.e., the length of the target gene sequence, and the Hamming distance
H between the target and the genetic sequence in the daughter bacterium (sequence
inserted in the plasmid):

[iptg] = L − H (3)

(v) Reporter protein. As the evolutionary algorithm governs the evolution of the synthetic
bacteria, the bacteria report their fitness. That is, the fitness z of each bacterium is
observed by the researcher thanks to the transcription of fluorescent proteins, e.g.,
gfp, yfp, rfp. The higher the fitness, the better the ‘solution’ and consequently the
more fluorescence the bacterium will emit. That is, Z plays the role of activator for a
reporter operon (Figure 4) that expresses a fluorescent protein, e.g., gfp.

(vi) Malthusian parameter update. The Darwinian selection of the bacteria is simu-
lated as follows. Z not only influences the fluorescence emitted by a bacterium
but also affects the Malthusian parameter or bacterial growth rate (r), according to the
following expression:

r = r0 + α
z
β

(4)

where r0 is the growth rate of bacteria at t = 0, and α, β are two parameters for
adjusting the r values in simulation experiments. Indeed, the higher the value of r,
the larger the e rt term in the exponential Equation (1). As time t goes on, the number
of bacteria y(t) with optimum solutions increase, which is detectable through the
screening of those bacteria emitting fluorescence. For instance, in the GADY model,
the optimum solution is the target sequence representing the genetic circuit of the
plasmid that induces cell suicide of the pathogenic bacteria.
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Once the bacteria converge to the optimal solution or the target genotype is expressed,
the bacterial response or output will then take place. Note that in the GADY model
described in Section 2.3, the bacteria die by cell suicide upon expression of the killer gene.

2.5. Social Interactions Algorithm between Bacterial Agents

The present algorithm was designed with the aim that the number of bacteria of each
strain or species increases or decreases as a consequence of the social interactions between
species. The interaction between bacteria of different species is the result of the release of
chemical signals into the environment. The signal released by an emitting bacterium is
received by the receptor bacteria of different species that are in the neighborhood. In Gro
and by applying the finite element method, it is possible to simulate the communication
between bacteria and therefore their interaction. For this purpose, a signal is defined in
a 2D environment specifying the diffusion (kdi f f ) and degradation (kdeg) rates of a signal
molecule as well as its location on the 2D grid and its concentration at the cxy position. The
concentration is updated according to the following expression [17]:

∆cx,y = − 6 kdi f f cx,y − kdeg cx,y+
kdi f f (0.5 ci+1,y−1 + cx+1,y + 0.5 cx+1,y+1 + cx,y−1+

cx,y+1 + 0.5 cx−1,y−1 + cx−1,y + 0.5 cx−1,y+1)
(5)

On the basis of this algorithm, it is possible to define in the bacteria the ability to
emit and receive signals. All strains of synthetic bacteria are able to produce a signaling
molecule which can have a positive, negative, or neutral effect on the other bacteria in
the consortium. Thus, if the interaction between two bacteria is positive (+), the product
released by the emitter bacterium will promote the growth of the receiver bacterium:

r = r0 + S+
B (6)

where S+
B is the increase in the growth rate or Malthusian parameter in the signal-receiving

bacteria, being (1) the equation governing bacterial colony growth. Conversely, if the
interaction is negative (−), then the product released by the emitter bacterium plays the
role of a toxic substance. In this case, the bacteria receiving the toxic product, i.e., S−B , will
die by suicide. Therefore, when a bacterial colony continuously receives negative signals,
this species will be gradually eradicated from the bacterial community or consortium.

Finally, an interaction is null (0) if the released product by the emitter bacterium has
no effect on other bacteria in the community.

3. Modeling and Simulation of Bacterial Consortia

In this paper, we conducted different experiments simulating a bacterial community or
consortium composed of four different types of synthetic bacteria. The notion of bacterial
community or consortium [24] we used in our model refers to two or more groups of
bacteria interacting symbiotically, i.e., establishing a biological interaction between the
bacterial species. The social interactions among bacteria result in a network which confers
to the consortium a level of complexity beyond a simple colony of bacteria. In addition
to the social interactions between bacteria via quorum sensing, we include in the present
model the simulation of the Darwinian evolution of the bacterial community.

In a classical approach, a bacterial consortium is modeled as follows.
In a colony of bacteria, all cells belong to a common bacterial specie or strain i; conse-

quently, in a colony, the number of bacteria Xi can be modeled by the following ordinary
differential equation (ODE):

dX
dt

= kX
(

1− X
K

)
(7)

with k being the growth rate or Malthusian parameter and K the carrying capacity, i.e., the
maximum size of the colony that can sustainably live given limited resources. Obviously,
the solution of the above ODE is the logistic curve.
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Now, when there are several groups of bacteria and they establish social interactions
among themselves, then the dynamic behavior of the resulting community or consortium
will respond to a system of ODEs:

dXi
dt

= kiXi

(
1− Xi

KC

)
+ Xi∑

j 6=i
αijXj (8)

where αij is the parameter modeling the strength of the interaction between species or
strains i and j, and KC is the carrying capacity referred to the whole community. According
to the model (8), the relationship between two bacteria in the consortium αij can be positive,
negative, or neutral. Indeed, in the Expression (8), the term Xi ∑

j 6=i
αijXj represents the

network of interactions among the bacteria of the community.

3.1. Social Interactions Model

In the present paper, one of the aims of the experiments was to simulate a bacterial
consortium with different kinds of relationships defined among bacteria, observing in each
case the evolution of the bacterial community. The novelty of the present paper is that
instead of ODEs, our bacterial consortium model is based on bacterial agents programmed
in Gro language. Therefore, instead of simulating the interaction between i and j bacteria
with (8), we applied the procedure described in Section 2.5.

For simplicity, we limited our simulation experiments to the bacterial network shown
in Table 1.

Table 1. Bacterial network interactions.

B1 B2 B3 B4
B1 + − −
B2 0 + −
B3 − + −
B4 0 0 0

According to Table 1, bacteria B1, B2, B3, and B4 in rows receive the signal (+, −, 0)
emitted by other bacteria in the community (in columns) as follows:

• The bacterium B1 is positively affected by the B2 bacteria that contribute to its growth,
while the products synthesized and released into the medium by the B3 and B4 bacteria
are detrimental to the growth of B1.

• The growth of the B2 bacteria is favored by the product eliminated by the B3 bacteria,
to the detriment of the product synthesized by the B4 strain.

• Bacteria B3 receive a positive effect on their growth from the product released by
bacteria B2, while bacteria of strains B1 and B4 are detrimental to their growth.

• Bacteria B4 are pathogenic, and their growth is not affected by the products released
into the medium by the other bacteria.

3.2. Model of Bacterial Genetic Circuit

Bacterial strains were defined assuming that each class of bacteria may or may not
behave as pathogenic bacterium. In the consortium, B1, B2, and B3 are non-pathogenic
synthetic bacteria, while B4 is the synthetic bacterium that plays the role of pathogenic
bacteria. Consequently, and depending on this trait, there will be differences in the plasmid
genes of the bacteria programmed with the BAGA algorithm. In the simulation model,
non-pathogenic bacteria and pathogenic bacteria have different plasmid types (Figure 6).



Algorithms 2023, 16, 571 12 of 28

Algorithms 2023, 16, x FOR PEER REVIEW 12 of 31 
 

Table 1. Bacterial network interactions. 

 B1 B2 B3 B4 
B1  + − − 
B2 0  + − 
B3 − +  − 
B4 0 0 0  

According to Table 1, bacteria B1, B2, B3, and B4 in rows receive the signal (+, −, 0) 
emitted by other bacteria in the community (in columns) as follows: 
• The bacterium B1 is positively affected by the B2 bacteria that contribute to its 

growth, while the products synthesized and released into the medium by the B3 and 
B4 bacteria are detrimental to the growth of B1. 

• The growth of the B2 bacteria is favored by the product eliminated by the B3 bacteria, 
to the detriment of the product synthesized by the B4 strain.  

• Bacteria B3 receive a positive effect on their growth from the product released by 
bacteria B2, while bacteria of strains B1 and B4 are detrimental to their growth.  

• Bacteria B4 are pathogenic, and their growth is not affected by the products released 
into the medium by the other bacteria. 

3.2. Model of Bacterial Genetic Circuit 
Bacterial strains were defined assuming that each class of bacteria may or may not 

behave as pathogenic bacterium. In the consortium, B1, B2, and B3 are non-pathogenic 
synthetic bacteria, while B4 is the synthetic bacterium that plays the role of pathogenic 
bacteria. Consequently, and depending on this trait, there will be differences in the plasmid 
genes of the bacteria programmed with the BAGA algorithm. In the simulation model, non-
pathogenic bacteria and pathogenic bacteria have different plasmid types (Figure 6).  

 
Figure 6. Experimental genetic circuit of the plasmid. (Left) Non-pathogenic ‘green’ bacterium 
synthesizes different chemical signals or products as a result of the luxI gene and receives the signal 
of other products due to the luxR gene. If the bacteria come into contact with toxic chemical 
products, they die because of the expression of the pro-killer gene. The bacteria emit fluorescence 
as a result of the presence of fluorescent protein, which is sensitized by the xfp gene (e.g., gfp, yfp, 
cfp). (Right) Pathogenic ‘red’ bacterium carrying a plasmid genetic circuit with five genes: luxI to 
yield different products, luxR to synthesize luxR, killer antidote to inhibit the expression of the killer 
gene (preventing its death), and the rfp gene, whose expression gives rise to the emission of red 
fluorescence. 

Non-pathogenic bacteria have five genes. These include the luxI gene for synthesis of 
chemical signals or products and luxR for luxR synthesis, which will form a molecular 
complex with the products of other bacteria, expressing the rest of the genes. They also 
include a pro-killer gene so that when the bacterium receives a toxic product or chemical 
signal BS−  present in the medium, then the bacterium expresses the killer gene causing 

Figure 6. Experimental genetic circuit of the plasmid. (Left) Non-pathogenic ‘green’ bacterium
synthesizes different chemical signals or products as a result of the luxI gene and receives the
signal of other products due to the luxR gene. If the bacteria come into contact with toxic chemical
products, they die because of the expression of the pro-killer gene. The bacteria emit fluorescence
as a result of the presence of fluorescent protein, which is sensitized by the xfp gene (e.g., gfp, yfp,
cfp). (Right) Pathogenic ‘red’ bacterium carrying a plasmid genetic circuit with five genes: luxI
to yield different products, luxR to synthesize luxR, killer antidote to inhibit the expression of the
killer gene (preventing its death), and the rfp gene, whose expression gives rise to the emission of
red fluorescence.

Non-pathogenic bacteria have five genes. These include the luxI gene for synthesis
of chemical signals or products and luxR for luxR synthesis, which will form a molecular
complex with the products of other bacteria, expressing the rest of the genes. They also
include a pro-killer gene so that when the bacterium receives a toxic product or chemical
signal S−B present in the medium, then the bacterium expresses the killer gene causing
bacterial death (cell suicide). In addition, when the xfp gene is expressed, an x protein
(e.g., gfp, yfp, rfp) that emits fluorescence is synthesized by the bacterium. Fluorescence
can be observed in the laboratory (in our case via simulation) through its color, e.g., green,
yellow, red, etc.

Pathogenic bacteria have most of the genes of non-pathogenic bacteria (Figure 6),
except that instead of having a pro-killer gene, they have a killer-antidote gene whose
expression inhibits the expression of the killer gene, thereby preventing the suicide of
the bacterium.

In order to facilitate the observation of the pathogenic and non-pathogenic bacteria in
the community, each kind of bacterium exhibits a different type of fluorescence: bacterium
B1 synthesizes gfp (green fluorescent protein), bacterium B2 synthesizes yfp (yellow fluo-
rescent protein), bacterium B3 synthesizes cfp (cyan fluorescent protein), and bacterium B4
synthesizes rfp (red fluorescent protein).

3.3. Simulation Experiments

In this paper, we designed four classes of bacterial consortia or communities based on
Figure 2 and the community or microbial consortium (CMC) graph (see Appendix A). The
CMC graph displays interactions between bacterial colonies, which were simulated in four
experiments, respectively.

The aim of the simulation experiments was to study how the number of bacteria
of each bacterial strain, i.e., B1, B2, B3, and B4, varies either due to social interactions
(Section 2.5) or as a result of Darwinian evolution (Section 2.4). It is important to emphasize
that whether a bacterium is pathogenic or not is only a tag, and therefore, neither the
infection nor the possible resulting disease were simulated. Simulation experiments were
conducted by setting initially (t = 0) a consortium with a colony size of 50 bacteria for B1,
B2, B3, and B4 strains. Consequently, the initial community size was 200 bacteria.

In agreement with the CMC graph, the consortium in the first two experiments
(Experiments 1 and 2, Figure 2A) is governed exclusively by the social interactions defined
in Table 1, with B1, B2, and B3 being non-pathogenic bacteria and B4 being the pathogenic



Algorithms 2023, 16, 571 13 of 28

bacteria. Therefore in both experiments, the genetic circuits of the plasmids depicted in
Figure 6 do not play a role during the experiments in silico.

3.3.1. Experiment 1

In the first simulation experiment—Experiment 1—the bacterial community has been
defined assuming that none of the bacteria undergo mutations, and therefore no bacteria
evolve according to the BAGA evolutionary algorithm (Section 2.4). In consequence, the
changes experienced by the Malthusian parameter r in Bi bacteria are the result of the effects
of the positive interactions (6) with other Bj agents. Consequently, the increase (colony
size) experienced by bacteria is only due to the social interactions between i and j bacteria
(Figure 7).
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nodes stand for the bacterial strains, and the arcs represent social interactions through the release Figure 7. Graph depicting the social interactions in the bacterial community in Experiment 1.
The nodes stand for the bacterial strains, and the arcs represent social interactions through the
release and reception of chemical signals (+ signal: arcs with arrow termination, − signal: arcs with
circular termination).

The bacterial growth rate r0, i.e., the Malthusian parameter at t = 0, was set to 0.045 and
0.5 for non-pathogenic (B1, B2, B3) and pathogenic (B4) bacteria, respectively. In addition,
k4 was equal to 0.2, regulating in the bacterial colony the effect of a negative interaction
S−B . The chemical signals emitted by each bacterium were set with the same parameter
values, and the concentration of the chemical signals

[
S+

B
]

and
[
S−B

]
was updated with

time according to the algorithm (5) described in [17].

3.3.2. Experiment 2

A second experiment, Experiment 2, was conducted with a similar bacterial commu-
nity (Figure 2A) to the preceding one but including in the simulation the presence of an
antibiotic in the medium (Figure 8). The initial (t = 0) bacterial growth rate (r0) or Malthu-
sian parameter was 0.045 and 0.2 for non-pathogenic and pathogenic bacteria, respectively.
Likewise, in the case of negative social interactions, k4 was equal to 0.2.
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Figure 8. Graph depicting social interactions in the bacterial community of Experiment 2. The nodes
stand for the bacterial strains, and the arcs represent social interactions through the release and
reception of chemical signals (+ signal: arcs with arrow termination, − signal: arcs with circular
termination). Node A represents the antibiotic with a lower effect on non-pathogenic bacteria B1, B2,
and B3 than on pathogenic bacteria B4.
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The antibiotic was taken up by all types of synthetic bacteria, especially by the
pathogenic bacterium B4. Therefore, in the present simulation experiment, it is expected
that the number of pathogenic bacteria will progressively decrease with respect to the
number of non-pathogenic bacteria.

In contrast with the above experiments, in Experiments 3 and 4, the number of bacteria
of each species is influenced by selection pressure, evolving the community by Darwinian
natural selection. In this case, the genotypes of the pathogenic and non-pathogenic bacteria
represented in Figures 9 and 10 play a fundamental role according to their fitness during
the evolution of the bacterial community. The mutations experienced in the plasmid genes
depicted in Figure 6 are the source of variability on which the natural selection mechanism
selects or does not select a synthetic bacterium.
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3.3.3. Experiment 3

The following experiment–Experiment 3—is again based on the bacterial interactions
(Table 1) among the four strains or bacterial species, but one of the strains of the consortium
is also subject to Darwinian natural selection (Figure 2B). Thus, pathogenic bacteria B4
undergo mutations (Figure 11), evolving B4 according to the experiment GADY (Figure 2C)
described in Section 2.3. Consequently, in this experiment, the bacterial community evolves
as a result of social interactions (B1, B2, B3, B4) as well as Darwinian evolution (B4) through
the BAGA evolutionary algorithm.
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Figure 11. Graph depicting the bacterial community in Experiment 3. The nodes stand for the
bacterial strains, and the arcs represent social interactions through the release and reception of
chemical signals (+ signal: arcs with arrow termination, − signal: arcs with circular termination).
Note how the size of the colonies of non-pathogenic bacteria B1, B2, and B3 depends on their social
interactions, while the size of the colony of pathogenic bacteria B4 depends on its adaptability or
fitness: B4 is the only colony that exhibits mutations and therefore evolves through the BAGA
evolutionary algorithm (green line).

The initial (t = 0) bacterial growth rate was r0 = 0.045 for pathogenic bacteria B4 and
0.03 for non-pathogenic bacteria B1, B2, B3.

Mutation is the source of variability in the pathogenic B4 bacteria, presenting the
synthetic bacteria the genotypes shown in Figure 9. Therefore, the Malthusian parameter
(r) of bacteria B4 was updated according to the Expression (4), selecting α = 2 and β = 10 as
parameter values (see Appendix A). In constrast, for non-pathogenic bacteria, the value
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of the growth rate is updated according to their social interactions (6) because B1, B2, and
B3 bacteria do not undergo mutations and therefore do not evolve by natural selection
(see Appendix A). The target genotype is 11011 for the pathogenic B4 bacterium (Figure 9),
with 1 being the presence and 0 the absence of a given gene. In B4, the fitness value is
higher as the genome of the mutant bacterium is closer to the desired genotype, i.e., the
genotype that leads to the elimination or suicide of the bacterial pathogenic agent. Now,
since the colony of species B4 divides according to the GADY model, this means that the
chemical substance produced and released into the environment by the non-pathogenic
cell line will affect the bacteria of the pathogenic line through state transition rules. This
means that a pathogenic bacterium B4 dies if two conditions are satisfied: the pathogenic
bacterium (1) receives a chemical signal from a non-pathogenic sister bacterium in its
vicinity and (2) presents a genotype, i.e., a genetic circuit, which is appropriate (11011),
thus, the genotype in which the killer gene is expressed and will induce the suicide of the
pathogenic bacterium. For instance:

p.m = PATHOGEN & p.t > delay & (gene [0] = 1 & gene [1] = 1 & get_signal(product_4)
> p.r) & gene [2] = 0 & gene [3] = 1 & gene [4] = 1 : {yfp: = 100*volume, die()}

In this experiment, in order to make it easier to visualize during simulation, non-
pathogenic bacteria B1, B2, and B3 produced gfp, emitting green fluorescence. In contrast,
pathogenic bacteria B4 expressed the red fluorescent proteins (rfp). Therefore, in the
bacterial community or consortium, pathogenic and non-pathogenic bacteria were easily
detected by emitting red or green fluorescence, respectively.

3.3.4. Experiment 4

We conclude this section by describing the last of the experiments, Experiment 4. The
aim of this experiment was to simulate a bacterial community in which the interactions
among bacteria as well as the evolutionary potential of the bacteria give rise to a bacterial
community with a complexity as close as possible to a real bacterial consortium. This is a
completely different experiment from the previous ones, since the social interactions are
quite different from the previous ones defined in Table 1.

In this bacterial community (Figure 2D), we apply the GADY model to the four
bacterial strains but with the particularity that the objective is still the eradication of the
B4 bacterium. That is, although in each colony one bacterial cell line is pathogenic after
each cell division or cell bipartition, the goal remains the elimination of the B4 strain in
the course of the evolution of the bacterial consortium. Accordingly, natural selection
acts on a consortium of bacteria that are all pathogenic. Now, while B4 may exhibit one
of the genotypes in Figure 9, pathogenic bacteria B1, B2, and B3 behave as if they are
non-pathogenic, with their genotype space as shown in Figure 10. The positive social
interactions between the pathogenic bacteria appearing in colonies B1, B2, and B3 take
effect through the Malthusian parameter (6) as in previous experiments. However, and
according to Figure 12, the negative social interactions take effect through transition rules.
In other words, for negative social interactions, synthetic bacteria behave as in Experiment
3, as a finit—state machine as it occurs in the GADY protocol. The following is an example
(Figure 10) of the transition rule for the present experiment, where the bacterium emits
green fluorescence and dies:

p.m = PATHOGEN & p.t > delay & get_signal(product_3) > p.r | get_signal(product_1)
> p.r & (gene [0] = 1 & gene [1] = 1 & get_signal(product_2) > p.r) & gene [2] = 1 & gene [3]
= 0 & gene [4] = 1 : {yfp: = 100*volume, die()}

In this experiment, and in order to be able to distinguish one bacterial species from
another, the synthetic bacteria B1, B2, B3, and B4 express in their genome the fluorescent
proteins gfp, yfp, cfp, and rfp, respectively.
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Figure 12. Graph depicting the bacterial community in Experiment 4. The nodes stand for the
bacterial strains. In this bacterial consortium, B1, B2, B3, and B4 undergo mutations and evolve
according to the BAGA algorithm. Therefore, the four bacterial colonies of the consortium are
regulated by the GADY model: non-pathogenic bacteria emit a chemical signal that affects their
pathogenic sister bacteria depending on the genotype of the sister bacterium (green lines), which
is modeled with state transition rules. In the community, B1, B2, and B3 exhibit positive social
interactions (blue arcs with arrow termination).

Note how in the course of evolution (Figure 13), the pathogenic bacteria B1, B2, and
B3 acquire resistance to the products or toxic chemical signals released by other bacteria,
with the pathogenic strain B4 gradually becoming eradicated.
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Figure 13. (Left) Pathogenic bacterium B1, B2, and B3 (‘green’ bacterium), with the mutated genotype
which allows the acquisiton of resistance to the products or toxic chemical signals released by other
bacteria. Note that since the pro-killer gene is not present, the killer gene will not be expressed,
surviving the bacterium. (Right) Pathogenic bacterium B4 (‘red’ bacterium), with the mutated
genotype without the killer-antidote gene; therefore, the killer gene will be expressed, resulting in the
killing of the bacterium.

4. Results

The results obtained in the simulation experiments sufficiently capture the biological
elements and principles that explain the evolution of a microbial community or consortium
composed of bacterial colonies of different species. One of these elements is the model we
adopted of the bacterial genetic circuit which includes the genes that allow communication
between bacteria by the known mechanism of quorum sensing. When in the bacterial
consortium environment there is no selection pressure, then the bacteria evolve through
social interactions. When social interactions are positive, then an increase in the growth
rate or Malthusian parameter occurs, increasing the number of bacteria and in consequence
the size of the colony. Otherwise, if the social interactions are negative, then the death of the
bacteria is promoted, decreasing the size of the colony. Now, if the environment imposes a
Darwinian selection pressure on any of the colonies of the consortium, then these bacterial
colonies will evolve according to the BAGA evolutionary agorithm. In this scenario, the
model of bipartition or cell division is the GADY model, in which the future of the lineage
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of pathogenic bacterial cells is governed by state transition rules. In a transition rule, it
is not only the reception of a particular chemical signal taken into consideration but also
the genotype of the bacterium that receives the signal. The fact that some bacteria play the
role of pathogens, while others do not, is a prerequisite that facilitated the present study by
narrowing it down to the elimination of pathogenic microorganisms, i.e., to a methodology
which is commonly known as bioremediation.

In summary, the bacterial community or consortium meta-model presented in this
paper brings together the elements and principles with which it is possible to design and
simulate bacterial communities with the desired complexity.

In the first experiment (Experiment 1), we simulated a bacterial network formed by
four types of bacteria, B1, B2, B3, and B4, where B4 was pathogenic and the remaining B1,
B2, and B3 were non-pathogenic, and we observed how B4 had a detrimental influence
on the rest of the synthetic bacteria (Figure 14). For this reason, and despite starting the
simulation (t = 0) with the same number of bacteria of each species, towards the end of
the experiment, a significant decrease in the number of non-pathogenic bacteria (B1, B2,
and B3) was observed with respect to the pathogenic bacteria B4. This is due to the fact
that pathogenic bacteria synthesize a product or chemical signal that is released into the
medium which kills the rest of the non-pathogenic bacteria when they come into contact
with this product. In addition, B1 and B3 bacteria release chemical signals to the medium
that lead to a negative interaction (Table 1) between these agents.
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The results obtained in this experiment also depend on the mortality rate, the effect 
of this rate being evident when the bacterial agents come into contact with some of the 
products eliminated by other bacteria with which the interaction is negative. In the 
experiment, we considered that the microbial death rate was the same in both non-
pathogenic and pathogenic bacteria. However, the growth rate we set in the bacterial 
agents was higher in the pathogenic bacteria than in the non-pathogenic bacteria. 

Figure 14. Bacterial community of Experiment 1 composed of pathogenic bacteria B4 expressing rfp
(red) and non-pathogenic B1 (green), B2 (yellow), and B3 (cyan) bacteria emitting fluorescence as a
consequence of the synthesis of gfp, yfp, and cfp proteins, respectively. Bacterial consortium after
(left) 1.02 time units and (right) 5.68 time units. Note the AHL inhibition halo as well as the chemical
signals or products released into the environment (light-pink color) around the bacteria comprising
the consortium.

The results obtained in this experiment also depend on the mortality rate, the effect of
this rate being evident when the bacterial agents come into contact with some of the prod-
ucts eliminated by other bacteria with which the interaction is negative. In the experiment,
we considered that the microbial death rate was the same in both non-pathogenic and
pathogenic bacteria. However, the growth rate we set in the bacterial agents was higher in
the pathogenic bacteria than in the non-pathogenic bacteria.

The second experiment in silico (Experiment 2) includes the effect of an antibiotic
in the medium in order to mitigate the negative effect of the pathogenic bacteria on the
non-pathogenic bacteria. Figure 15 shows a decrease in the number of pathogenic bacteria
and a subsequent increase in the number of the other bacterial types in the consortium,
i.e., the non-pathogenic bacteria. Despite the effect of the antibiotic on the pathogenic
bacteria B4, the antibiotic also affects the other cell types (B1, B2, and B3) because the
antibiotic is not specific to pathogenic bacteria. However, the results obtained show that
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the decrease in the number of pathogenic B4 bacteria favors the growth of the number of
non-pathogenic B1, B2, and B3 bacteria.
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through the effect of an antibiotic present in the medium, which also killed the non-
pathogenic synthetic bacteria, this goal was achieved through mutations of the plasmid 
genes in the pathogenic bacterium, thus due to the evolution of the B4 pathogen driven 
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Figure 15. Bacterial community of Experiment 2 composed of pathogenic bacteria B4 expressing rfp
(red) and non-pathogenic B1 (green), B2 (yellow), and B3 (cyan) bacteria emitting fluorescence as a
consequence of the synthesis of gfp, yfp, and cfp proteins, respectively. Effect of the antibiotic on the
bacterial consortium after (left) 1.36 time units and (right) 6.54 time units. Note the AHL inhibition
halo and the products or chemical signals released into the environment (light-pink color) around the
bacterial consortium.

In Experiment 3, the results obtained show that the eradication of the pathogenic strain
B4 was successfully achieved (Figure 16). However, instead of killing the B4 agent through
the effect of an antibiotic present in the medium, which also killed the non-pathogenic
synthetic bacteria, this goal was achieved through mutations of the plasmid genes in the
pathogenic bacterium, thus due to the evolution of the B4 pathogen driven by the BAGA
evolutionary algorithm. The pathogen evolved to a genotype which led to its elimination
through cell suicide. The target genotype for the pathogenic bacterium to commit suicide
was genotype 11011, i.e., the plasmid, which includes the luxR gene, lacks the killer-antidote
gene and includes the killer and fluorescent protein genes.
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Figure 16. Bacterial community of Experiment 3: Green bacteria (gfp) are non-pathogenic bacterial
types (B1, B2, B3), while pathogenic bacteria emit red fluorescence (rfp). Effect of the pathogenic
bacteria evolution to its own detriment after (left) 2.75 time units and (right) 13.15 time units. Note
the AHL inhibition halo and the products or chemical signals released into the environment (light-
pink/yellow color) around the bacterial consortium.

In this experiment, in order to make easier the observation of the three types of non-
pathogenic bacteria B1, B2, and B3, these only produce gfp, emitting green fluorescence.
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However, and throughout the evolution of pathogenic B4 bacteria, there are periods of
time when, after bacterial division, a pathogenic bacterium divides into two daughters, and
different kinds of fluorescence are observed (Figure 16). It is interesting to note that those
bacteria that emit cyan are the pathogenic bacteria defined in the initial population (t = 0).
Furthermore, the bacteria emitting yellow fluorescence are the pathogens that are mutating,
and the bacteria emitting red are the pathogenic descendants of the initial bacteria emitting
cyan. Thus, these bacteria emit their fluorescence transiently after the cellular division of a
pathogenic bacterium.

In Experiment 4, the last experiment, we simulated a bacterial community in which all
bacterial species or strains evolve (Figure 17): non-pathogenic bacteria evolve by acquiring
resistance to the products or chemical signals released into the environment by the other
bacteria, and pathogenic bacteria evolve as described in the GADY experiment. In non-
pathogenic bacteria, the desired or target genotype, i.e., that which endows the bacteria
with resistance to these products, is the genotype that does not express the pro-killer gene,
and consequently the killer gene is inhibited when the bacterial agents come into contact
with the chemical signals or ‘toxic’ products. Otherwise, the presence of the pro-killer gene
would lead to their death by cell suicide.
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Figure 17. Bacterial community of Experiment 4 composed of pathogenic bacteria: B4 expressing rfp
(red) and B1 (green), B2 (yellow), and B3 (cyan) bacteria emitting fluorescence as a consequence of
the synthesis of gfp, yfp, and cfp proteins, respectively. Effect of the bacterial community evolution
to the detriment of pathogenic bacteria after (left) 1.5 time units and (right) 4.06 time units. Note the
AHL inhibition halo and the product released into the environment (light-pink color) around the
bacterial consortium.

As shown in Figure 17, in this experiment, each bacterium synthesizes a different
fluorescent protein resulting from the expression of its corresponding xfp gene, with rfp
synthesis and red fluorescence emission in the pathogenic bacterium B4. We observed
oscillations of the fluorescent protein, and therefore changes in the intensity of the emitted
fluorescence, resulting from the mutations of the synthetic bacteria. At the end of the
simulation, it is observed that the pathogenic bacteria B4 decreases in number, increasing
the number of non-pathogenic bacteria as they are resistant to those neighboring bacteria
with which they have negative interactions. It is interesting to note that in the present
experiment, and because of the evolutionary dynamics of the bacterial community, non-
pathogenic bacteria may acquire a genotype with which to obtain resistance to the toxic
products released by neighboring bacteria.

Figure 18A shows how in the absence of an evolutionary algorithm governing the
bacterial community or consortium, the number of pathogenic bacteria increases progres-
sively. In this scenario, the size of the consortium colonies changes, i.e., bacterial colonies
evolve, due only to social interactions between bacteria. In consequence, the pathogenic
strain becomes numerically dominant over non-pathogenic bacteria in the consortium.
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However, the presence of antibiotics in the medium (Figure 18B) is able to slow down
their growth, and the size of the colony of pathogenic bacteria reaches a similar size to
the non-pathogenic bacterial colonies. It is evident that this effect is due to the fact that
the presence of antibiotics in the environment implies, from a Darwinian point of view, a
selection pressure on bacterial colonies.
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Figure 18. Number of bacteria over time in the absence of an evolutionary algorithm governing the
bacterial community or consortium: (A) without antibiotics (Experiment 1) and (B) with antibiotics in
the environment (Experiment 2). Pathogenic B4 bacteria emitting red fluorescence and non-pathogenic
bacteria emitting green (B1 bacteria), yellow (B2 bacteria), and cyan (B3 bacteria) fluorescence.

Nevertheless, it is remarkable to note (Figure 19) how random changes in the genome,
i.e., mutations, and the consequent effect of mutations on the fitness value of synthetic
bacteria leads to the elimination of the pathogenic bacteria. In other words, in this sce-
nario, Darwin’s selection mechanism comes into play, completely changing the microbial
consortium environment.



Algorithms 2023, 16, 571 22 of 28

Algorithms 2023, 16, x FOR PEER REVIEW 24 of 31 
 

pathogenic bacteria emitting green (B1 bacteria), yellow (B2 bacteria), and cyan (B3 bacteria) 
fluorescence. 

Nevertheless, it is remarkable to note (Figure 19) how random changes in the 
genome, i.e., mutations, and the consequent effect of mutations on the fitness value of 
synthetic bacteria leads to the elimination of the pathogenic bacteria. In other words, in 
this scenario, Darwin’s selection mechanism comes into play, completely changing the 
microbial consortium environment. 

 
Figure 19. Number of bacteria over time (A) when only pathogenic bacteria B4 undergo 
evolutionary changes driven by the BAGA algorithm (Experiment 3) and (B) in an environment 
where both pathogenic (B4) and non-pathogenic bacteria (B1, B2, B3) undergo Darwinian evolution 
(Experiment 4) ruled by the BAGA algorithm. Pathogenic B4 bacteria emitting red fluorescence and 
non-pathogenic bacteria emitting green (B1 bacteria), yellow (B2 bacteria), and cyan (B3 bacteria) 
fluorescence. 
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i.e., when pathogenic bacteria evolve according to the GADY protocol, then the results are 
very similar to those obtained when the pathogenic bacteria are killed by the use of 
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pathogenic and non-pathogenic bacteria, undergo evolutionary changes based on the 
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Figure 19. Number of bacteria over time (A) when only pathogenic bacteria B4 undergo evolutionary
changes driven by the BAGA algorithm (Experiment 3) and (B) in an environment where both
pathogenic (B4) and non-pathogenic bacteria (B1, B2, B3) undergo Darwinian evolution (Experiment
4) ruled by the BAGA algorithm. Pathogenic B4 bacteria emitting red fluorescence and non-pathogenic
bacteria emitting green (B1 bacteria), yellow (B2 bacteria), and cyan (B3 bacteria) fluorescence.

As shown in Figure 19A, when only pathogenic bacteria are suitable for evolution, i.e.,
when pathogenic bacteria evolve according to the GADY protocol, then the results are very
similar to those obtained when the pathogenic bacteria are killed by the use of antibiotics.
However, when all the bacteria in the community or consortium, i.e., pathogenic and
non-pathogenic bacteria, undergo evolutionary changes based on the GADY model, then
pathogenic bacteria are successfully eliminated or eradicated by cell suicide (Figure 19B).

5. Discussion

In this paper, we proposed the design of different experimental protocols to simulate
the evolution in silico of a community or consortium composed of synthetic bacteria. In this
study, we modeled a synthetic bacterium as a ‘shell’ which includes by default the dynamic
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behavior of an E. coli-like bacterium, i.e., its growth, cell division, etc., and which can be pro-
grammed by hosting a script representing a plasmid’s genetic circuit. The species or strains
of bacteria were programmed with different bioremediation algorithms based on synthetic
biology and computational principles and rules. Since bacteria inherit from the cells from
which they originate the program hosted in the parental bacteria, a bacterial colony, or as in
our case a bacterial community, represents a form of parallel computation where each syn-
thetic bacterium emulates the core of a computer processor. The parallelism requirement is
satisfied with the Gro cellular programming language and its simulator. In this paper, this
simulator was the most appropriate way to solve a combinatorial optimization problem:
given a bacterial community or consortium, the objective of the experiments was to evaluate
different algorithms with which to achieve the minimization of a pathogenic bacterial strain
and the maximization of its non-pathogenic neighbors. However, in nature, algorithms
emerge from the genetic circuits that govern the behavior or state of each individual and
from the social interactions between these individuals.

In summary, the main goal of our work was to simulate a community or consortium of
bacteria in which the number of bacteria of each species or strain is the result of (i) the social
interactions among bacterial agents or (ii) the Darwinian evolution of bacteria. According
to this objective, we presented four scenarios, and therefore algorithms, with the aim
of eliminating the bacterial agent which played the role of a pathogenic bacterium in
the simulations.

However, the motivation of this work was to introduce a methodology with which
it is possible to study the evolution of a community of agents governed either by the
interactions between agents or by the Darwinian evolution of these agents, or even by both
factors. It is evident that this situation may be of interest in many areas other than biology,
such as sociology, economics, etc.

From a biological perspective, the modeling and simulation of a bacterial colony is
a classical issue that was addressed by applying different simulation techniques, such as
cellular automata [25], multi-agent systems [26], or artificial life techniques [27]. However,
the current challenge is the simulation of the formation and growth of the so-called biofilm,
i.e., a microbial ecosystem organized on a surface. This interest arises because biofilms are
responsible for the development of some infectious diseases, antibiotic resistance, etc. In
our model, a biofilm would be composed of one or several species or strains of bacteria,
resembling the consortium or bacterial community simulated in this paper. In a similar
way to the formation and growth of a bacterial colony, the formation of a biofilm can also
be addressed by different modeling techniques, e.g., cellular automata [28]. However, the
differential equations approach [29,30] is the most common method used to simulate the
growth of biofilms.

Therefore, we believe that by including in our meta-model the phenomena involved
in the formation of a biofilm, we could successfully simulate its formation as well as the
changes it undergoes over time.

Whether in a consortium or in a biofilm, cell-to-cell communication between bacteria
represents today a subject of study of great interest. Nowadays, it is thought that cell-to-cell
communication based on molecular-level mechanisms is the origin of the social intelligence
found in bacteria. In addition to quorum sensing, other forms of communication such
as chemotactic signaling or plasmid exchange [31] explain how bacteria self-organize in
highly structured communities. These bacterial communities are a form of organization
that allows microorganisms to acquire an identity, the recognition of other colonies, etc.

Our work includes an evolutionary algorithm that we named BAGA and that is based
on the communication mechanism between bacteria known as quorum sensing. In the
future, the design of evolutionary algorithms with other forms of communication between
bacteria different from quorum sensing will result in simulations with which it will be
possible to study in silico relevant issues, for instance, the development of biofilms, the
design of cellular patterns with practical purposes [32], etc.
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Many of the ideas described in this paper will be in the future the basis for the use of
microbial communities in biotechnology.

Today, synthetic biology under the influence of ideas coming from the fields of engi-
neering and computer science [33–36] has developed the tools to enable the implementation
in a real laboratory—the wet lab—of many proposals modeled and simulated in silico, as is
the case of this work. These bacteria will be responsible for executing in vivo sophisticated
algorithms designed to solve crucial problems such as the biodegradation of environmental
pollutants [37], the design of probiotics [38], or even the design of microbial agents capable
of inducing the regression of a cancerous tumor [39].

The present work was limited to the design of a meta-model and its in silico simu-
lation. However, the possibility that in the future, other research groups will adopt our
meta-model for its implementation in real bacteria in the wet lab is not remote. Living
microorganisms such as bacteria used in synthetic biology are fully functional with bio-
logical sensing, production, and containment devices. Bacteria include sensors, regulators,
memory circuits, and switch-off triggers [36]. That is, bacteria have many advantages by
interacting directly with the human body: they are programmable to perform specific tasks,
respond to environmental stimuli, and are more effective in the treatment of complex and
multifactorial diseases [40]. For example, there are already real synthetic bacteria capable of
breaking down the excess phenylalanine responsible for phenylketonuria [1], an inherited
disease that over time can lead to serious health problems. In [1], other examples are also
described of treatments known as bactotherapy, i.e., treatments based on the administration
to the patient of synthetic bacteria like those we studied in silico in this work.

At present, and in a similar way to is happening with generative artificial intelligence,
synthetic biology has opened an ethical debate about genetic modifications and the use
of synthetic organisms for therapeutic purposes. It is now urgent to study at a social
and philosophical level the potential risks of the design and creation of new life forms,
evaluating their possible risks and benefits [41]. One of these potential risks could be the
possibility of synthetic bacteria escaping human control and becoming integrated in nature,
competing with and even eliminating their wild counterparts. Indeed, as synthetic bacteria
share physiological principles of non-synthetic bacteria, a colony of synthetic bacteria
could increase in size according to the exponential or Malthusian model. That is, in certain
environments and due to their greater adaptability or fitness [42], the Malthusian parameter
or growth rate would increase, growing exponentially the number of synthetic bacteria.
However, the possibility of designing synthetic bacteria carrying a killer gene [43,44] that
induces cell suicide, as we designed in the present paper, opens the possibility of reducing
or avoiding these potential risks inherent to the design and application of synthetic bacteria.

In this regard, in the post-COVID-19 era, there is a growing concern about this issue,
as reported in a recent article [45]. Let us hope that the advances in synthetic biology will
be for the good of all, helping to solve many of the problems facing humankind in the
21st century.
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Appendix A

In this Appendix, we provide some details on how we drew up each microbial com-
munity the corresponding community or microbial consortium (CMC) graph, explaining
how this graph is translated into the calculations allowing the updating of the number of
bacteria in each colony according to their relationships with other colonies in the consor-
tium. Figures 7, 8, 11 and 12 show in a CMC graph the relationships between the colonies
that constitute the bacterial community or consortium. The graphs show the colonies with
nodes and the interactions between nodes with arcs. Figure A1 represents four different
classes of node–arc junctions, which are the ones we used in the four models of bacterial
communities simulated in silico in this paper.
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Figure A1. Node–arc junctions used to represent the relationships between bacterial colonies in a
community or consortium (for an explanation, see text).

The evolution of the microbial consortium, i.e., the update of the number of bacteria
in each colony, is simulated based on the graph representing the inter-colony relationships
in the consortium.

In the experiments in which the microbial community is such that only social inter-
actions between colonies are established (Experiments 1 and 2, Figures 7 and 8), the state
or number of bacteria in a colony Bi is the result of its interaction with another colony Bj,
using in such a case the nodes–arcs A and B in Figure A1.

If a colony Bi receives a chemical signal or product S+
B released into the environment

by a colony Bj and this signal has positive effects on the bacteria Bi (Figure A1A), then the
number of bacteria in the colony Bi is updated according to

r = r0 +
[
S+

B
]

where r0 is the growth rate of bacteria at t = 0, r is the Malthusian parameter, and
[
S+

B
]

is the concentration of the chemical signal. However, when colony Bi receives a chemical
signal from colony Bj with ‘toxic’ or detrimental effects, i.e., receives S−B , then the number
of bacteria Bi decreases according to the equation

DR = k4
[
S−B

]
where DR is the rate of microbial death (related to the bacterial colony) and k4 is a cell death
rate, the value of which was 0.2 in the simulation experiments.

An example in Gro language is shown below. In this example, bacterial colony B1
emits a positive signal sB1 to the environment of the bacterial consortium and receives
from colony B2 a positive chemical signal sB2 and from B3 a toxic signal or product sB3
(Figure A2).
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Figure A2. Gro language script illustrating a microbial consortium in which the colony of bacteria B1
is associated with colonies B2 and B3.

However, when a colony Bi evolves under the Darwinian selection mechanism through
the BAGA algorithm and the rest of the colonies Bj evolve by social interactions as explained
above, then Bi is updated as follows. In agreement with Figure 2C, the lineage of pathogenic
‘red’ bacteria is updated according to the expression (4):

r = r0 + α
z
β

the meaning of which is explained above.
Let us now assume the scenario of a microbial community in which the bacterial

colony B4 evolves according to the GADY model (Figure 2C), while the rest of the non-
pathogenic bacteria B1, B2, and B3 evolve according to the previous model, i.e., through
social interactions between colonies. An example of a script in Gro language is shown
below (Figure A3), in which after the cell division of a bacterium, the non-pathogenic
daughter bacteria release a chemical signal sB4 that is received by the pathogenic sister
bacteria of the pathogenic lineage. Once this signal or product is received, the future state
of the pathogenic daughter bacteria lineage is set according to their genotype, as shown in
the two transition rules at the end of the script (Figure A3).
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In this case, and depending on the symbol Bi, the state transition rule that is applied
to the pathogenic bacteria lineage of the colony Bi will be different. That is, if the colony Bi
is the symbol of Figure A1C, then the chemical signal received by the pathogenic bacterial
lineage, e.g., the product sB4, will produce a positive effect on the pathogenic bacteria:

p.m = PATHOGEN & p.t > delay & (gene [0] = 1 & gene [1] = 1 & get_signal(sB4) > p.r) &
gene [2] = 0 & gene [3] = 0 & gene [4] = 1 : {yfp: = 100*volume}
Now, if colony Bi is depicted by the symbol in Figure A1D, then the chemical signal

that is received in the pathogenic bacteria lineage, e.g., product sB4, will yield a negative
effect on such bacteria:

p.m = PATHOGEN & p.t > delay & (gene [0] = 1 & gene [1] = 1 & get_signal(sB4) >
p.r) & gene [2] = 0 & gene [3] = 1 & gene [4] = 1 : {die()}
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