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Abstract: Chest X-rays (CXRs) represent the first tool globally employed to detect cardiopulmonary
pathologies. These acquisitions are highly affected by scattered photons due to the large field of view
required. Scatter in CXRs introduces background in the images, which reduces their contrast. We
developed three deep-learning-based models to estimate and correct scatter contribution to CXRs. We
used a Monte Carlo (MC) ray-tracing model to simulate CXRs from human models obtained from CT
scans using different configurations (depending on the availability of dual-energy acquisitions). The
simulated CXRs contained the separated contribution of direct and scattered X-rays in the detector.
These simulated datasets were then used as the reference for the supervised training of several NNs.
Three NN models (single and dual energy) were trained with the MultiResUNet architecture. The
performance of the NN models was evaluated on CXRs obtained, with an MC code, from chest CT
scans of patients affected by COVID-19. The results show that the NN models were able to estimate
and correct the scatter contribution to CXRs with an error of <5%, being robust to variations in the
simulation setup and improving contrast in soft tissue. The single-energy model was tested on real
CXRs, providing robust estimations of the scatter-corrected CXRs.

Keywords: X-ray image; scatter correction; deep learning; dual energy; Monte Carlo simulations

1. Introduction

Chest X-ray radiography (CXR) is usually the first imaging technique employed to
perform the early diagnosis of cardiopulmonary diseases. Typical pathologies detected
in CXRs include pneumonia, atelectasis, consolidation, pneumothorax, and pleural and
pericardial effusion [1]. Since the COVID-19 pandemic started in 2020, it has also been used
as a tool to detect and assess the evolution of pneumonia caused by this condition [2]. CXR
is used worldwide thanks to the simplicity with which it can be completed, the low cost,
low radiation dose, and its sensitivity [3,4].

Regarding the position and orientation of the patient in relation to the X-ray source,
the desired and most frequently used setup is posteroanterior (PA) projection [5] since
it provides better visualization of the lungs [6]. However, this configuration requires
the patient to be standing erect, which is not possible for critically ill patients, intubated
patients, or some elderly people [6,7]. In these situations, it is more convenient to carry out
anteroposterior (AP) projection, in which the patient can be sitting up in bed or lying in a
supine position. Thus, AP images can also be acquired with a portable X-ray unit outside
the radiology department when, due to the patient’s condition, it is advised not to shift
him/her [6].

X-ray imaging is based on the attenuation that photons suffer when they traverse the
human body so that photons that cross the body and reach the detector without interacting
with the media, i.e., primary photons, form the image [8]. However, some photons interact
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with the media and are not absorbed but scattered. This secondary radiation can also
reach the detector, representing background noise and causing a blurring in the primary
image and considerable loss in the contrast-to-noise ratio (CNR) [9]. This effect is especially
relevant in CXR due to the requirement of large detectors (at least 35 cm wide) to be able to
cover the whole region of interest (ROI) [10]. To overcome this problem, several techniques
have been proposed, which can be split into two types: scatter suppression and scatter
estimation [11]. Scatter suppression methods aim to remove, or at least reduce, the scattered
photons that arrive at the detector, while scatter estimation methods try to obtain only the
signal of the secondary photons and then subtract it from the total projection.

The most widely used scatter correction method is the anti-scatter grid, where a
grid is interposed between the patient and the detector so that scattered photons are
absorbed, while primary photons are allowed to pass [7,12]. This technique is successfully
implemented in clinical practice [10] since many clinical systems incorporate this grid [13],
although it has some disadvantages. First, an anti-scatter grid can also attenuate primary
radiation, leading to noisy images [9,10]. Additionally, it can generate grid line artifacts in
the image [14], and it can increase the radiation exposure between two and five times [5,15].
Finally, in AP acquisitions, it is difficult to accurately align the grid with respect to the
beam, so the use of anti-scatter grids in combination with portable X-ray units used in
intensive care units or with patients who cannot stand up is more time-consuming and
does not guarantee a good result [7,13]. Another method studied to physically remove
scattered X-rays consists of increasing the air gap between the patient and the detector,
which enlarges the probability that secondary photons miss the detector due to large scatter
angles [16,17]. This approach causes a smaller increase in the radiation dose than the
anti-scatter grid, but it can magnify the acquired image [5]. Other alternatives to the use of
an anti-scatter grid are slit scanning, with the drawback of an increase in acquisition time,
or strict collimation, which compromises the adaptability of imaging equipment [10,11,13].

Regarding scatter estimation, there are some experimental methods, such as the beam
stop array (BSA), which acquire a projection of only the scatter radiation (primary photons
are removed), which is then subtracted from the standard projection [18]. However, most
techniques to estimate scatter radiation are software-based [19–21]. In this field, Monte
Carlo (MC) simulations are the gold standard. MC codes reproduce, in a realistic and
very accurate way, the interactions of photons (photoelectric absorption, and Rayleigh
and Compton scattering) on their path through the human body. Therefore, these mod-
els are able to provide precise estimations of scatter [9,13,19]. The major drawback of
MC simulations is the high computational time they require, which makes it difficult to
implement them in real-time clinical practice [9,19]. Model-based methods make use of
simpler physical models, so they are faster than MC at the cost of much lower accuracy [13].
Similarly, kernel-based models approximate the scatter signal using an integral transform
of a scatter source term multiplied by a scatter propagation kernel [11,21]. Nevertheless,
this method depends on each acquisition setup (geometry, image object, or X-ray beam
spectrum), so it is not easy to generalize [19].

Recently, deep-learning algorithms have been widely used for several medical imaging
analysis tasks, like object localization [22,23], object classification [24,25], or image segmen-
tation [26,27], while multi-modal learning techniques have been developed to employ both
images and text data to perform diagnosis classification, medical image report retrieval,
and radiology report generation [28,29]. In particular, convolutional neural networks
(CNNs) have succeeded in image processing, outperforming traditional and state-of-the-art
techniques [3,26,30]. Among them, U-Net, first proposed by Ronneberger et al. in 2015 [26]
for biomedical image purposes, and its subsequent variants, such as MultiResUNet, are
the most popular networks [30]. In particular, some works make use of CNNs to estimate
scatter either in CXR or computed tomography (CT). Maier et al. [19] used a U-Net-like
deep CNN to estimate scatter in CT images, training the network with MC simulations. In a
similar way, Lee and Lee [9] used MC simulations to train a CNN for image restoration, i.e.,
the scatter image was estimated and was then subtracted from the CNN input image (the
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scatter image), obtaining, as output, the scatter-corrected image. In that case, they applied
the CNN to CXRs, which are then used to reconstruct the corresponding cone-beam CT
image. Roser et al. [13] also used a U-Net in combination with prior knowledge of the X-ray
scattering, which is approximated by bivariate B-splines so that spline coefficients help to
calculate the scatter image for head and thorax datasets.

Dual-energy X-ray imaging was first proposed by Alvarez and Macovski in 1976 [31].
This technique takes advantage of the dependence of the attenuation coefficient with the
energy of the photon beam and the material properties, i.e., its mass density and atomic
number. In dual-energy X-ray, two projections using two different energy spectra in the
range of 20–200 kV are acquired. They can provide extra information with respect to
common single-energy radiography, allowing for better distinguishing of different ma-
terials [32–34]. In this way, dual-energy X-ray imaging may improve the diagnosis of
oncological, vascular, and osseous pathologies [32,35]. Specifically, in CXR, dual acqui-
sitions are utilized to perform dual-energy subtraction (DES), generating two separate
images: one of the soft tissue and one of the bone. Soft-tissue selective images, in which ribs
and clavicle shadows are removed, have been proven to enhance the detection of nodules
and pulmonary diseases [36,37].

Several studies have made use of dual-energy X-ray absorption images along with
deep-learning methods to enhance medical image analysis. Some examples include image
segmentation of bones to diagnose and quantify osteoporosis [38], or estimation of phase
contrast signal from X-ray images acquired with two energy spectra [39]. Regarding CXRs,
the combination of dual energy and deep learning has been used to obtain two separate
images with bone and soft-tissue components [40]. However, to the best of our knowledge,
the application of dual-energy images to obtain the scatter signal has not yet been examined.

In this work, we present a study of the robustness of three U-Net-like CNNs that
estimate and correct the scatter contribution using either single-energy CXRs or dual-
energy CXRs to perform the network training. All images were simulated with a Monte
Carlo code from actual CT scans of patients affected by COVID-19. The scatter-corrected
CXRs were obtained by subtracting the estimation of the scatter contribution from the
image affected by the scattered rays, which we call an uncorrected-scatter image. Two
different analyses were performed to evaluate the robustness of the models. First, several
metrics were calculated to assess the accuracy of the scatter correction, taking the MC
simulations as ground truth, after the algorithms were applied to images simulated with
various source-to-detector distances (SDD), including the original SDD with which the
training images were simulated. The accuracy of the models with CXRs acquired with the
original SDD was taken as a reference, and it was compared with the values obtained for
other distances. Second, the contrast between the area of the lesion (COVID-19) and the
healthy area of the lung was evaluated on soft-tissue dual-energy subtraction (DES) images
to quantify how scatter removal helps to better identify the affected region. Then, values
of contrast in the ground truth were compared with the ones obtained on the estimated
scatter-corrected images only with the original SDD. Finally, the single-energy neural
network was tested with a cohort of varied real CXRs, and the ratio between the values of
two regions in the lung (with and without ribs) was calculated to determine how the image
contrast improves after applying the scatter correction method.

2. Materials and Methods
2.1. COVID-19 CT Image Database

A total of 100 chest CT scans of COVID-19 patients were taken from the database
COVID-19 Lung CT Lesion Segmentation Challenge—2020 [41], proposed by MICCAI
2020, to carry out the deep-learning training. The database included a mask indicating
the affected region for each patient. CT scans had 512 pixels in the X (lateral) and Z
(anteroposterior) directions, while the number of pixels in the Y direction (craneo–caudal
direction) was different for each patient. Pixel size was set to be equal in the three directions
for each patient, but it changed for different patients. The smallest pixel size was 0.46 mm,
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and its maximum size was 1.05 mm, which left a field of view ranging from 236 mm to
538 mm in X and Z directions.

2.2. Monte Carlo Simulations to Generate Training and Validation Dataset

CT scans were represented in Hounsfield Units (HU). These values were converted
to mass density, following work by Schneider et al. [42]. Additionally, the stretcher was
removed by setting its HU values to be those of air. CXRs were acquired from these CT scans
using a GPU-accelerated, ultrafast MC code developed in-house [43]. The code provided
three projections for each patient: the scatter-free image (only primary photons), the scatter
image (only scattered photons, considering both Rayleigh and Compton interactions), and
the uncorrected-scatter image (both primary and secondary photon contributions). In
all cases, the projections represented the photon energy that reaches the detector when
there is an object (i.e., the patient) divided by the photon energy that would reach the
detector in a simulation on air (see Figure 1). This way, all projections had values between
0 and 1. To be able to perform dual-energy training, images were acquired with two
different X-ray energy spectra corresponding to 60 kVp (low energy) and 130 kVp (high
energy) (Figure 2). The parameters of the simulation setup are gathered in Table 1. A total
of 5 × 109 photons were simulated to obtain the three projections in the following way:
the code-tracked photon path; if it had suffered any scatter interaction, its energy when
arriving at the detector was used to form the scatter image; and if it had not undergone any
interaction, the energy was saved to form the scatter-free image. After all photon histories
were simulated, the uncorrected-scatter image was calculated as the sum of the scatter and
scatter-free projections. Finally, a Gaussian filter was applied to the three images to smooth
them. The simulation of the three projections for each energy spectra took about 10 min on
a GeForce RTX 2080 Ti GPU.

Figure 1. Simulated chest X-rays for two cases considered (low energy = 60 kVp; high energy = 130 kVp).
The simulation with scatter (left) can be decomposed into a direct component (“without scatter”,
(center)) and the scatter contribution (right).

Table 1. Parameters of the MC simulation.

Parameter Specification

Source-Detector Distance (cm) 180
X-ray Detector Size (cm) 41× 41

X-ray Detector Resolution (pixel) 2050× 2050
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Figure 2. Energy spectra used to acquire the low-energy (60 kVp, red line) and high-energy (130 kVp,
blue line) projections in the Monte Carlo simulation. The two spectra were obtained with Specktr
toolkit [44,45], with 1.6 mm Al inherent filtration of the tube.

2.3. CNN Architecture

An enhanced U-Net-like architecture, named MultiResUNet, was used to train the NN
models of scatter estimation. This evolution of the classical U-Net was first introduced by
Ibtehaz and Rahman in 2019 [30]. It is based on an encoder–decoder model, which, in the
standard U-Net architecture, takes the input image and performs four series of two 3× 3
convolution operations followed by a 2× 2 max pooling (encoder part), which is the size of
the input image downsampled by a factor of 2 in each series. Then, another sequence of two
3× 3 convolutions joins the encoder and the decoder. The decoder first carries out a 2× 2
transposed convolution upsampling the feature map by a factor of 2, which is followed
again by a series of two 3× 3 convolution operations. Finally, a 1× 1 convolution generates
the output image [26]. Furthermore, U-Net architecture adds skip connections between the
encoder and decoder, concatenating the output of the two convolution operations in the
encoder and the output of the upsampling convolution in the decoder. These connections
enable the NN to recover spatial data lost due to pooling procedures.

The MultiResUNet presents two main differences with respect to the standard U-Net.
First, it substitutes the two consecutive 3× 3 convolution operations for three different
3 × 3 convolutions, where the 2nd and the 3rd are intended to be approximately one
5× 5 and one 7× 7 procedure, respectively. Then, they are concatenated, and a 1× 1
convolutional layer (residual connection) is added. The result forms the so-called MultiRes
block. Additionally, the NN does a batch normalization [46] to every convolutional layer.
The second variation is related to the shortcut connections between the encoder and the
decoder. A so-called residual path is computed with 3× 3 convolutions added to 1× 1
convolutional filters for residual connections. Then, the result is concatenated with the
output of the transposed convolution in the decoder stage [30]. The scheme of the network
is presented in Figure 3.

Figure 3. Diagram of the MultiResUNet architecture used in this work to train the neural networks.
The input of the network is the image affected by scatter (i.e., uncorrected-scatter image), and the
output is the fraction of the image of scatter with respect to the uncorrected-scatter image.
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In this work, we used the MultiResUNet architecture with ReLU (Rectified Linear
Unit) [47] as an activation function in every convolution output, including the last one,
which provides the final output of the NN. The initial number of filters was set to 64,
which increased by a factor of 2 in the downsampling steps, and afterward, it decreased
by the same factor in the upsampling processes. In the single-energy model, there was
one input and one output channel: the network took pairs of input–output images, with
the input image being the uncorrected-scatter image and the output the fraction of the
scatter image with respect to the uncorrected-scatter image (scatter ratio), both high-energy
CXRs acquired with the 130 kVp energy spectrum. In the dual-energy workflow, we tested
two different algorithms. On the one hand, a neural network with two input channels,
corresponding to the uncorrected-scatter projections of low and high energy, and one output
channel, representing the same as in the single-energy model (scatter ratio for the high
energy case). From now on, we will refer to this model as a 1-output dual-energy model.
On the other hand, we developed a 2-output dual-energy model, which had two input and
two output channels, i.e., it estimated the scatter ratio of low and high-energy images at
the same time. The single-energy model and the 1-output dual-energy model were also
trained with low-energy images in order to obtain the corresponding scatter-corrected
estimations. Figure 4 shows a scheme of input and output images corresponding to each of
the described models. The use of the scatter ratio as the output of the NNs ensures that the
image has values in the range 0–1, which is the standard range employed for the training
of NNks and allows the use of ReLU as an activation function in the output layer.

Figure 4. Scheme of input and output images corresponding to the 3 neural network models presented
in this work. The NNs differ in the amount of input and output channels used.

The MultiResUNet was trained on Google Colab platform [48,49] on a Tesla T4 GPU,
with 600 epochs using an Adam optimizer (with default parameters) [50], 10 steps per
epoch, batch size of 24, and the mean squared error (MSE) as loss function. The original size
of input and output images was equal to the resolution of the detector, i.e., 2050× 2050. To
avoid memory problems, images were downsized to 128× 128 using bilinear interpolation.
Additionally, images were cropped in the craneo–caudal direction to remove the edges
(air voxels), so finally, the image size was 96× 128. We split the dataset into 70 training
cases and 30 validation cases. As this number of cases is not enough to properly train a
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convolutional neural network, we performed data augmentation, including vertical and
horizontal flips and zoom in up to 50%. These operations still provided realistic images.

The output of the network is multiplied by the uncorrected-scatter image, obtaining
the scatter estimation. Then, the scatter estimation is subtracted from the input image,
obtaining the estimated scatter-corrected image. The software takes 1.5 s to provide the
scatter correction for each case, and multiple cases could be estimated simultaneously.

2.4. Evaluation of Scatter Estimation Models on Simulated CXRs

To assess the performance of the trained models, an additional test set of 22 CT images
was taken from the same COVID-19 Lung CT Lesion database, and the three projections
(scatter, scatter-free, and uncorrected scatter) were simulated as explained in Section 2.2.
Four metrics were evaluated to quantify the accuracy of the scatter correction with the
single and dual-energy NN models for the test set: the mean squared error (MSE), the mean
absolute percentage error (MAPE), the structural similarity index (SSIM) and the relative
error (Erel), which are defined as:

MSE =
1

M× N

M

∑
i=1

N

∑
j=1
‖xi,j − yi,j‖2 (1)

MAPE =
1

M× N

M

∑
i=1

N

∑
j=1

(
|xi,j − yi,j|
|xi,j|

)
× 100 (2)

SSIM =
1

M× N

M

∑
i=1

N

∑
j=1

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) × 100 (3)

Erel =
1

M× N

M

∑
i=1

N

∑
j=1

|xi,j − yi,j|(
xi,j + yi,j

) (4)

where M and N are the number of pixels in the X and Y direction, and xi,j and yi,j are the
values of ground truth and estimated images, respectively, for pixel (i, j). In Equation (3),
µx and µy are the average of xi,j and yi,j; σx and σy are the standard deviations of xi,j and yi,j;
σxy is the covariance of xi,j and yi,j; c1 = (K1L)2 and c2 = (K2L)2, where L represents the
range of pixel values and K1 and K2 are small positive constants that keep the denominator
non-zero [51,52]. Metrics were applied to a region of interest (ROI) focused in the lungs.

The 22 CT test cases were simulated with 10 additional source-to-detector distances
different from the one used to train the NN algorithms (SDD = 180 cm, see Table 1), from
100 to 200 cm. Then, the robustness of the models to variations in the SDD was evaluated
with the above-mentioned metrics (Equations (1)–(4)).

To determine the gain when correcting scatter, a comparison of the contrast value in
the lung between the COVID-19-affected region and the non-affected region on soft-tissue
images was performed. Soft-tissue images were calculated by performing dual-energy
subtraction, i.e., subtracting the low-energy CXR from the high-energy CXR. This operation
was carried out for the uncorrected-scatter CXRs, the ground-truth scatter-corrected CXRs
(Figure 5), and the estimated scatter-corrected CXRs with the three NNs. A mask of the
COVID-19 region for each CT was found in the original database, so the COVID-19 region
corresponding to the 2D projection was obtained with the MC simulation (Figure 6a). The
lung mask was calculated with a U-Net CNN previously trained, with batch normalization,
Adam optimizer, binary cross entropy as loss function, and sigmoid as output activation,
and the mask of the healthy-lung region was obtained by subtracting the COVID-19 mask
from the lung mask (Figure 6b).
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Figure 5. Soft-tissue dual-energy subtraction images: (a) Calculated from uncorrected-scatter CXRs
of 60 kVp and 130 kVp. (b) Calculated from ground-truth scatter-corrected images of 60 kVp and
130 kVp. (c) Difference pixel by pixel between the uncorrected-scatter soft-tissue image and the
soft-tissue scatter-corrected image.

Figure 6. (a) Mask of the region affected by COVID-19 (blue) over the CXR. (b) Mask of the healthy
region in the lung (red). The range of values of these images was obtained after the normalization
procedure explained in Section 2.2.

The contrast metric is calculated as follows:

C =
1
F ∑F

k=1 img(k)
1
G ∑G

l=1 img(l)
(5)

where F and G stand for the total number of pixels in the COVID-19 and the healthy-lung
mask, respectively, and img(k) and img(l) represent the values of the given image img in
pixel k (COVID mask) or in pixel l (healthy-lung mask). To evaluate the contrast, each
lung was considered to be a different case for patients who have both lungs affected, so
there were 31 affected lungs in which the contrast was calculated. The accuracy of the NN
models regarding the contrast was quantified by the relative difference with respect to the
ground-truth value:

Di frel = 100×
|Cgt − CNN |

Cgt
(6)

where Cgt is the contrast value in Equation (5) for the scatter-free ground-truth image (from
MC simulation), and CNN is the contrast value for the NN estimation (single or dual-energy
model) of the scatter correction.

Additionally, the percentage contrast improvement factor (PCIF) was computed as:

PCIF = 100× Ccorr

Cuncorr
− 1 (7)

where Ccorr and Cuncorr are the contrast values for the scatter-corrected and uncorrected
image, respectively, calculated from Equation (5).
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2.5. Evaluation of Scatter Correction on True CXRs

A set of 10 real CXRs acquired without an anti-scatter grid were taken from the
MIMIC-CXR database [53,54] to test the single-energy model for high-energy CXRs on true
data. To introduce these images as the input of the neural network, some operations must
be performed. First, the CXR in Dicom format is loaded in a Python environment as a
numpy array. Then, the edges of the images that do not contain information are cropped
so that they are focused on the lung region. The original size of the CXRs selected from
the database is 2544× 3056, so they are rescaled to 96× 128, as previously done with the
simulated images (see Section 2.3). Finally, the values of the pixels in the true images must
be converted to the same scale as in the training, simulated images. The values of the
real CXR represent the logarithm of the initial beam intensity (I0) divided by the intensity
that arrives at the detector (I), while the values depicted in the training images are I/I0,
as explained in Section 2.2. So the transformation of pixel values is made following the
Beer–Lambert law [55]: I = I0 × e−µ×x, where µ is the linear attenuation coefficient of the
material, and x is the path length of the beam through the material; and then adjusting
the scale so that the minimum and maximum values corresponding to bone and lungs are
similar to the simulated images, as well as the ratio between them.

The output of the CNN, i.e., the scatter fraction, is multiplied by the downsized and
scale-transformed CXR, yielding the estimation of the scatter contribution in low resolution.
To obtain the final scatter-corrected CXR, the native resolution is recovered in the image
of scatter by means of bilinear interpolation. Then, the high-resolution scatter image is
subtracted from the high-resolution, scale-transformed CXR, giving the high-resolution
scatter-corrected image.

The performance of the single-energy model on real data is quantitatively evaluated
by means of the ratio between a region of the lung with and without ribs on it:

Ratio =
1
L ∑L

m=1 img(m)
1
R ∑R

n=1 img(n)
(8)

where L and R stand for the total number of pixels of the rib-free lung region and the
rib lung region, respectively, and img(m) and img(n) represent the values of the given
image img in pixel m (rib-free region) or in pixel n (rib lung region). The comparison of
the ratio obtained in the original CXR (affected by the scatter) and in the estimation of
the scatter-corrected image determines if the NN algorithm provides images with better
contrast between different tissues.

3. Results
3.1. Accuracy of Scatter Correction on Simulated CXRs

An example of high-energy, scatter-corrected estimations of the single-energy model
and the 1-output and 2-output dual-energy models are represented in Figure 7 for one of
the test cases with SDD = 180 cm, as well as the differences between these estimations and
the ground-truth scatter-corrected CXR, which is shown in Figure 1.

The values of MSE, MAPE, SSIM, and the relative error for the test cases with the
original SDD and the ten additional variations are represented with a box plot (Figure 8).
The results of the four metrics show that the scatter correction models provide an ac-
curate estimation of the scatter correction for the original source-to-detector distance
(SDD = 180 cm), highlighted with a red box. For the high-energy images, the average MSE
is in the order of 7.3× 10−6, the MAPE indicates an average precision of 11.2%, 8.6%, and
7.6%, while the relative error presents mean values of 4.8%, 4.0%, and 3.6% for the single,
1-output dual-energy, and 2-output dual-energy models, respectively. Moreover, the av-
erage SSIM is 0.997 for the single-energy algorithm and 0.998 for both dual-energy NNs,
which demonstrates that the outputs of the models have an elevated structural similarity
to ground-truth images.



Algorithms 2023, 16, 565 10 of 19

Figure 7. (a) Scatter-corrected image estimated by the single-energy model. (b) Scatter-corrected
image estimated by the 1-output dual-energy model. (c) Scatter-corrected image estimated by the
2-output dual-energy model. (d) Difference pixel by pixel between the scatter-corrected ground-
truth image (represented in Figure 1) and the scatter-corrected image estimated by the single-energy
model. (e) Difference pixel by pixel between the scatter-corrected ground-truth image (represented in
Figure 1) and the scatter-corrected image estimated by the 1-output dual-energy model. (f) Difference
pixel by pixel between the scatter-corrected ground-truth image (represented in Figure 1) and the
scatter-corrected image estimated by the 2-output dual-energy model.

Regarding the scatter correction of low-energy images, the average MSE in the single-
energy model is 2.2× 10−6, and 1.5× 10−6 for the two dual-energy networks. The MAPE
is 17.1%, 14.0%, and 16.6% for the single-energy, 1-output dual-energy, and 2-output dual-
energy models, respectively, while the relative error has average values of 7.3%, 6.7%,
and 7.0%. The SSIM obtained in the three models is, on average, 0.999. Comparing the
estimations for high-energy and low-energy images, it is observed that the MAPE and the
relative error are higher in the models for low-energy scatter correction estimations, but
good accuracy is still achieved.

In all graphics in Figure 8, it is observed that the mean values of the metrics evaluated
over the test cases remain very similar for the different SDDs in relation to the original
SDD with which the NNs were trained. In the high-energy estimations, the biggest increase
among all the evaluated SDD for the MSE is 22.6% in the single-energy model, 15.5% in the
1-output dual-energy model, and 2.4% in the 2-output dual-energy model. In the MAPE,
the greatest deviation from the mean value corresponding to SDD = 180 cm is 7.3%, 10.7%,
and 3.9%, respectively. In the SSIM, the differences among the various SDD cases are barely
relevant (0.06%, 0.04%, and 0.01%), while the major differences in the relative error are
in the same order that the ones in the MAPE (7.6%, 8.6%, and 2.5% for single, 1-output
and 2-output dual-energy algorithms, respectively). Similar results are obtained in the
low-energy estimations: the major deviations are 3.1%, 14.0%, and 6.3% in MSE; 8.2%,
5.7%, and 9.0% in MAPE; and 4.1%, 4.5%, and 5.7%, for the single-energy, 1-output, and
2-output dual-energy models. Again, variations in SSIM are negligible. In all cases, the
biggest deviations with respect to the original SDD are found either in SDD = 100 cm or
SDD = 200 cm. Furthermore, graphics in Figure 8 show that the range of the maximum and
minimum values of the metrics for the 22 test cases remains much the same in all SDDs in
comparison with the original one.
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Figure 8. Box plot of the MSE, MAPE, SSIM, and relative error for the 22 test cases at different
source-to-detector distances. A blue dashed line represents the median value of the metric for each
SDD. The box extends from the lower to the upper quartile values of the data, while the range (also
referred to as whiskers) shows the rest of the distribution.

Comparing the results of single- and dual-energy models, Figure 8 shows that the
2-output dual-energy algorithm yields higher accuracy in scatter correction considering
the metrics of MAPE, SSIM, and relative error for high-energy CXRs, while in low-energy
images, the best accuracy is obtained with the 1-output dual-energy algorithm. Taking
as reference the case of SDD = 180 cm, in high-energy estimations, the average value
of MAPE yielded by the 2-output dual-energy NN is 13% smaller than the one of the
1-output dual-energy model and 47% smaller with respect to the single-energy algorithm;
the relative error is 33% and 11% better, respectively, while the SSIM is only 0.15% bigger
in the 2-output dual-energy model than in the single-energy model, and 0.04% bigger with
respect to the 1-output dual-energy NN, although a visual difference can be appreciated
in the corresponding graphics. In the low-energy case, the 1-output dual-energy model
outperforms the single-energy and the 2-output dual-energy algorithms in 22% and 19%
in MAPE and a 9% and 4% in the relative error, respectively. The difference in the SSIM
is minimal. Moreover, it is observed in Figure 8 that the model with the best accuracy in
each case also has a lower standard deviation, represented by a smaller size of the box
in the plot (green boxes in the metrics for low-energy estimations, corresponding to the
1-output dual-energy model, and violet boxes for high-energy estimations, corresponding
to the 2-output dual-energy model). The relevance of the differences between the three
algorithms will be further discussed in Section 4.
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3.2. Study of Contrast Improvement after Scatter Correction

Table A1 in the Appendix A shows the contrast between the region affected by
COVID-19 and the healthy-lung area in the soft-tissue DES images. In 24 out of the
31 cases, the scatter-corrected ground-truth DES has higher contrast than the uncorrected
DES, meaning that the scatter correction will help to better identify the lesion. In these
cases, the average contrast improvement in the area of the lesion is 9.5%, with a maximum
value of 20.7% (see Figure 9a).

It can be observed in Figure 9a that the three scatter correction methods proposed in
this work are able to provide a very accurate percentage contrast improvement factor if
results are compared with the ground truth (taken from the MC simulation). The single-
energy model yields an average contrast improvement of 7.7%, with a maximum of 17.4%,
while the 1-output dual-energy model gives an average PCIF of 8.6% and a maximum
of 18.7%, and the 2-output dual-energy NN the average PCIF is 9.4% and its maximum
value is 20.5%. These numbers again indicate that the 2-output dual-energy model has
the best performance, although the difference with the other two algorithms is small, and
the three models are acceptable. Figure 9b represents the relative difference between the
ground-truth contrast value and the contrast value estimated by the three NN models,
and it reinforces what was explained for Figure 9a: the relative difference is smaller for
the 2-output dual-energy model, being in the range of 0–4.4%, with a mean value of 1.0%.
For its part, the relative difference for the single-energy results varies from 0.2% to 4.7%,
and the average relative difference is 1.8%; while for the 1-output dual-energy model, the
relative difference is between 0.2% and 4.1%, being on average 1.3%. All these results point
out that the contrast improvement factor associated with the scatter correction is estimated
with very high precision by the three deep-learning-based models.

Figure 9. (a) Graphic representation of the percentage contrast improvement factor for ground-truth
image, single-energy model estimation, 1-output dual-energy model, and 2-output dual-energy
model estimation. (b) Relative difference in the contrast value between ground truth and deep-
learning-based estimations. In both graphics, the red solid line represents the average value, while
the blue dash-dotted line represents the median value.

3.3. Study of Scatter Correction on True CXRs

Figure 10 shows the estimations of the scatter contribution and the scatter-corrected
images of three real CXRs after applying the single-energy algorithm, along with the
corresponding image used as input of the network, i.e., the original CXR (with scatter) with
pixel values transform as explained in Section 2.5. In all cases, the NN model is able to
make a proper estimation of the scattered-rays image and thus provide a scatter-corrected
image comparable to what was expected according to the ground-truth simulation and the
corresponding estimations (see Figures 1 and 7), both qualitative and quantitatively.



Algorithms 2023, 16, 565 13 of 19

Figure 10. Original CXR (with scatter) with pixel value conversion (left); estimation of the scatter-
corrected CXR (center); and estimation of the scatter contribution on real CXR (right) of three of the
real chest X-ray images used to test the single-energy model of scatter correction.

Table 2 shows the ratio between a region of the lung with and without rib in the CXR
before and after the single-energy scatter correction algorithm is applied to the 10 test
images. The ratio increases in every sample when the NN model of scatter correction
is implemented, with an average rise of 15.0% for the selected cohort, with a maximum
increase of 40.2%.

Table 2. Ratio between a region of the lung with and without rib in the original, real CXRs and in the
scatter-corrected CXRs yielded by the single-energy algorithm for the 10 CXRs taken as test set (listed
as C1–C10), and the resulting average value.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Avg

Original 2.71 1.66 1.36 1.11 1.35 1.16 1.71 1.47 1.28 1.59 1.54
Scatter-corrected 3.80 2.02 1.54 1.17 1.49 1.23 2.14 1.68 1.41 1.64 1.81

4. Discussion

In this work, we have implemented and evaluated the performance of three deep-
learning models that estimate and correct the scatter in CXRs. One model is based on
standard single-energy acquisitions, while the other two models assume that two CXRs
with different energies (dual energy) were acquired per patient. The impact of varying the
distance of the X-ray source on the accuracy of the scatter correction with these methods
was studied.

Results in Figure 8 demonstrate that the three deep-learning-based models are able to
accurately estimate and correct scatter contribution to simulated CXRs. Moreover, the three
algorithms keep their accuracy on scatter correction when the source-to-detector distance
(SDD) varies in a range of 100 cm from the SDD used to train the neural networks. Thus,
the results prove that the models are robust to variations on the setup parameters, such as
air gap or SDD, and their application is not limited to a specific configuration.

The highest decrease in accuracy is found in SDD = 100 cm and SDD = 200 cm (the
neural networks were trained with SDD = 180 cm). For SDD = 100 cm, this result could be
expected since it is the case with the largest distance with respect to the reference SDD. The
fact that less accurate metrics are obtained for SDD = 200 cm, which is the second closest
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distance to the one of reference, indicates that the models are more accurate if the images
are well focused on the lungs and the air-background areas are reduced or cropped. In this
case, the lungs become smaller in the image as the SDD increases, which explains the loss
of accuracy.

According to the mean values of MAPE and relative error shown in Section 3.1, the
results obtained with the dual-energy NN models are more accurate than the ones provided
by the single-energy model. In the estimations of the scatter-corrected high-energy CXRs,
the p-value between the metrics yielded by the 2-output dual-energy and the single-energy
models is p = 4.2 × 10−13 for the MAPE, and p = 0.01 for the relative error, i.e., in
both metrics the p-value is below the classic threshold of 0.05 [56,57], indicating that the
difference is statistically significant. In the low-energy estimations, the p-value between
the 1-output dual-energy and the single-energy algorithms is p = 0.05 for the MAPE and
p = 0.28 for the relative error, so the difference is significant only in the first metric. As
explained in Section 3.1, the difference in the SSIM is minor. Regarding the MSE, there is
not a substantial difference between the three models due to the fact that this is the metric
employed as a loss function in the training of the algorithms, so it is minimized in both cases.
In the comparison between the two proposed models of scatter correction, it is also observed
in Figure 8 that there is less deviation in the values of MAPE and relative error applying
the dual-energy model. In the high-energy case, the standard deviation in MAPE is 4.9%,
3.4%, and 2.6% for single-energy, 1-output, and 2-output dual-energy models, respectively,
and the deviation in the relative error is 1.8% for the single-energy network, 1.4% for
the 1-output dual-energy algorithm, and 1.1% for the 2-output-dual-energy algorithm.
In the low-energy case, the standard deviation in MAPE is 6.0%, 4.1%, and 6.3% for the
single-energy, 1-output, and 2-output dual-energy models, and the corresponding values
in the relative error are 2.0%, 1.5%, and 2.2%, respectively. All these results point to the
superior performance of the dual-energy models for scatter correction of CXRs, being more
accurate in the 1-output model for low-energy acquisitions and the 2-output model for
high-energy images.

The application of the single-energy model to real CXRs acquired without an anti-
scatter grid suggests that the algorithm can be easily adapted to be used with true data
acquired with different setups since, in this case, the information of the parameters with
which the projections were taken was not available in the anonymized Dicom headers used.
Furthermore, the accuracy of the model applied to these images could not be quantitatively
determined as there was no access to ground-truth, scatter-free CXRs. However, Figure 10
shows that the estimations are robust, even for radiography with artifacts such as wires, as
it happens in the third case of this Figure. This is a key aspect, as the application of these
models can be especially useful for critically ill patients with whom it is more difficult to
utilize an anti-scatter grid (as explained in Section 1). In addition, the values of the ratio
between the regions of the lung with and without ribs (Table 2) point out that the scatter
correction improves the contrast between different tissues.

The two dual-energy models could not be verified against real data since we currently
do not have access to CXRs acquired with two different X-ray kilovoltages. Nevertheless,
it is expected that good estimations of scatter-corrected images can be obtained in actual
images, in light of the results shown in Sections 3.1 and 3.3. Moreover, the superior accuracy
shown by the 1-output and 2-output dual-energy models when evaluating the MAPE and
the relative error, which has been previously discussed in this Section and in Section 3.1,
would be worth studying in future research with real CXRs acquired without an anti-scatter
grid with two different energy spectra. This way, it could be determined if dual-energy
approaches truly provide better scatter correction, and the gain in DES images after scatter
correction could also be tested.

Lee and Lee [9] performed a similar study on CXR scatter correction using CNNs and
Monte Carlo simulations to generate training cases. They evaluated the SSIM, among other
metrics, obtaining an average value of 0.992. This is in the same order as the 0.997 value
yielded by the models herein proposed, with ours 0.5% better. As stated by these authors [9],
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the application of deep learning to scatter correction of CXR has only recently started, so
there are not many studies with which results can be compared. Some literature on scatter
correction (or estimation) on cone-beam CT images can be found. Roser et al. [13] presented
a scatter estimation method based on a deep-learning approach, helped by bivariate B-
spline approximation. For thorax CT, the MAPE ranges approximately from 3% to 20% for
the five-fold cross-validations, while our models obtain average values of 11.2% and 8.6%.
Additionally, the SSIM for the thorax CT study is between 0.96 and 0.99. Although CT and
CXR have some obvious differences, and they are not exactly comparable, it can be noticed
that our models present a similar precision.

The models displayed in this paper still have some limitations that would need further
study. First, we uniquely employed simulated images for the training and validation, as
well as for the test cases in Section 3.1. Thus, when these NNs are applied to real CXRs,
the accuracy of the scatter correction depends on the precision of the Monte Carlo codes.
Despite the fact that MC simulations are the gold standard in the field and provide very
realistic images, some works for scatter estimation in CT showed that the accuracy of
deep-learning models could decrease when applying to real images NNs trained only with
simulated images [19]. For CXRs, more studies are needed to determine the accuracy of
neural networks in this situation. Since having a sufficient amount of cases to train only
with real data is complex in this field, it would be convenient to obtain images that are as
realistic as possible. For this purpose, if at least some real cases are available, the use of
generative adversarial networks (GANs) [58] in combination with MC simulations could
achieve this goal and thus improve the accuracy of the models applied to real data.

It is important to note that the input–output pairs of images of the neural network
are exclusively uncorrected-scatter–scatter ratio images. That is to say, the models are not
trained to distinguish if the input image is affected by scatter, so if a scatter-free projection
is given to the network, it will still yield some scatter estimation. The subtraction of this
estimated image from a scatter-free input image would entail some loss of information
in the final result. Therefore, these models cannot be applied to acquisitions taken with
an anti-scatter grid or any other scatter suppression technique, and neither can be used
to check the effectiveness in scatter removal of those hardware-based scatter suppression
methods. A neural network that identifies if the input image is affected by scattered rays is
currently being implemented, but it is beyond the scope of this work.

As explained in Section 2.3, an ROI focus primarily on the lungs was selected in the
training, validation, and test images (see Figure 1). This way, the edges of the images that
could cause the appearance of artifacts in the scatter estimation and the scatter-corrected
images are removed. This allows us to obtain very accurate results, but it must be taken
into account before putting the models into practice. An input image with a large number
of empty regions could compromise the robustness of the models, just as suggested by the
results obtained for images simulated SDD = 200 cm.

Although the number of training and validation cases might seem small, the variety
in the patient sizes within the dataset (explained in Section 2.1), along with the data
augmentation described in Section 2.3, guarantees the accuracy of the models for images
with different amounts of scatter ratio.

The fact that the contrast C (Section 3.2) and the ratio between lung regions with
and without rib (Section 3.3) improve after the application of the presented deep-learning
models implies that the detection and diagnosis of COVID-19 will be enhanced after scatter
correction since it will help physicians to better differentiate infected areas of the lung. This
deep-learning-based tool can be easily implemented in the software used by physicians so
they can obtain scatter-corrected chest X-rays in a couple of seconds.

In this work, we focused on COVID-19 since a large number of databases related
to this disease have been gathered in recent years as a consequence of the worldwide
pandemic. However, the same analysis could be performed for any other pulmonary
affection, such as pneumonia, tumors, atelectasis, and pneumothorax. It is highly expected
that the scatter correction will also entail a contrast improvement in areas affected by any of
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these lesions and, therefore, facilitate its identification. Furthermore, similar deep-learning-
based models could be applied to other types of medical imaging modalities affected by
background noise, in which contrast can be improved, therefore enhancing image quality
and diagnostic accuracy.

It should be taken into account that an overestimation in the contrast value could
result in a loss of important information for medical diagnosis in the final scatter-corrected
image. Results in Table A1 show that the contrast is overestimated in 7 out of 31 cases in
the single-energy model, in 14 cases in the 1-output dual-energy model, and 11 cases in the
2-output dual-energy model. Nevertheless, the difference with the ground-truth value is,
on average, just 1.11% for the single-energy method, 1.48% for the 1-output dual-energy
network, and 1.01% for the 2-output dual-energy model. Thus, the overestimation is not
significant and will not jeopardize the image information.

This work has been focused on the dataset generation, comparison of different inputs
and outputs, and evaluation of the performance from the point of view of robustness.
We have not performed extensive optimization of the hyperparameters of the NNs as we
have used hyperparameters similar to the ones of the reference work of the MultiResUNet
architecture [30].

5. Conclusions

In this work, we presented three deep-learning-based methods to estimate the scatter
contribution in CXRs and obtain scatter-corrected projections: a single-energy model, with
one input and one output image; a 1-output dual-energy model, in which a projection
acquired with a different energy spectrum is set as an additional input channel, but the
output has only one channel; and a 2-output dual-energy model, in which the scatter
estimation is provided for the two energies introduced in the two input channels. The three
models were robust to variations in the SDD, obtaining a high precision for distances in a
range between 100 and 200 cm and proving that a similar accuracy with respect to images
with the original SDD of the training data (SDD = 180 cm) can be maintained. Moreover,
the contrast values between the lung region affected by COVID-19 and the healthy region
in soft-tissue images (obtained by means of dual-energy subtraction) demonstrated that
scatter correction in CXRs provides better contrast to the area of the lesion, yielding a PCIF
of up to 20.5%.

In both studies (accuracy in scatter correction for several SDD and contrast value
in COVID-19 region), the dual-energy algorithms provide results with better accuracy.
The analysis of the p-value demonstrates that the difference in accuracy between the
single-energy and dual-energy models can be statistically significant, especially in the
scatter-corrected estimations of high-energy CXRs with the 2-output method. The single-
energy algorithm is accurate enough for scatter correction of CXRs, so it might not be worth
acquiring an extra CXR just for this purpose. However, dual-energy models are proven to
be a useful tool for scatter correction on soft-tissue DES CXRs.

The single-energy model was tested with a cohort of real CXRs acquired without an
anti-scatter grid, yielding robust, qualitative estimations of the scatter correction, even for
images with artifacts. Further studies with real phantoms and patients should be performed
to quantitatively determine the precision of the three models with real data and analyze
whether the difference between the performance of the single- and dual-energy algorithms
is relevant.
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Appendix A

Table A1. Contrast value (Equation (5)) between the COVID-19-affected region and the healthy lung
for the soft-tissue test images in the uncorrected image, the scatter-corrected ground-truth image and
the scatter-corrected images estimated by the single-energy and dual-energy models. For patients
with both lungs affected, each lung has been considered to be a different case.

Patient Ground Truth
Uncorrected Image

Ground Truth
Scatter-Corrected

Image

Scatter-Corrected
with Single Energy

Scatter-Corrected
with 1-Output
Dual Energy

Scatter-Corrected
with 2-Output
Dual Energy

Case 1 1.216 1.385 1.352 1.374 1.380
Case 2 1.165 1.282 1.268 1.285 1.278
Case 3 1.032 1.101 1.072 1.080 1.095
Case 4 1.292 1.430 1.419 1.404 1.455
Case 5 1.187 1.299 1.289 1.293 1.299
Case 6 1.047 1.018 1.045 1.048 1.014
Case 7 1.147 1.239 1.235 1.231 1.255
Case 8 1.297 1.448 1.453 1.439 1.434
Case 9 1.096 1.301 1.244 1.252 1.284

Case 10 1.301 1.553 1.499 1.531 1.526
Case 11 1.154 1.201 1.195 1.198 1.190
Case 12 1.045 1.159 1.104 1.145 1.149
Case 13 0.795 0.645 0.648 0.684 0.627
Case 14 1.209 1.454 1.403 1.434 1.436
Case 15 1.305 1.575 1.532 1.549 1.573
Case 16 1.128 1.176 1.170 1.198 1.184
Case 17 0.960 0.931 0.922 0.953 0.928
Case 18 1.104 1.202 1.173 1.205 1.213
Case 19 1.037 1.035 1.052 1.045 1.040
Case 20 0.879 0.890 0.864 0.861 0.913
Case 21 1.110 1.115 1.113 1.103 1.114
Case 22 1.021 1.056 1.054 1.063 1.058
Case 23 0.945 0.987 0.967 0.972 1.001
Case 24 1.098 1.165 1.148 1.163 1.162
Case 25 1.209 1.324 1.327 1.333 1.325
Case 26 1.183 1.279 1.293 1.287 1.291
Case 27 0.962 0.886 0.898 0.899 0.851
Case 28 0.841 0.719 0.719 0.723 0.717
Case 29 0.872 0.816 0.795 0.817 0.791
Case 30 0.908 0.912 0.876 0.875 0.872
Case 31 1.316 1.532 1.529 1.562 1.544
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