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Abstract: Imbalanced data present a pervasive challenge in many real-world applications of statistical
and machine learning, where the instances of one class significantly outnumber those of the other.
This paper examines the impact of class imbalance on the performance of Gaussian mixture models in
classification tasks and establishes the need for a strategy to reduce the adverse effects of imbalanced
data on the accuracy and reliability of classification outcomes. We explore various strategies to
address this problem, including cost-sensitive learning, threshold adjustments, and sampling-based
techniques. Through extensive experiments on synthetic and real-world datasets, we evaluate the
effectiveness of these methods. Our findings emphasize the need for effective mitigation strategies
for class imbalance in supervised Gaussian mixtures, offering valuable insights for practitioners and
researchers in improving classification outcomes.

Keywords: Gaussian mixture models; supervised learning; classification; probability threshold
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1. Introduction
1.1. Motivation

Gaussian mixture models (GMMs) are probabilistic models widely employed in clus-
tering and density estimation tasks which provide a flexible framework for modeling
complex data distributions [1–3]. These models represent data as a finite mixture of Gaus-
sian distributions with unknown parameters, where the latter are often estimated through
the Expectation-Maximization (EM) algorithm [4,5].

In addition to the aforementioned unsupervised tasks, GMMs also find application in
classification tasks. Supervised Gaussian mixture models (SGMMs) proved to be effective
in this domain due to their ability to represent complex data patterns. However, these
models are sensitive to class imbalance, where the number of samples in one or more
classes significantly differs from the others, leading to biased parameter estimation, dimin-
ished generalization, and reduced accuracy [6,7]. This scenario is especially relevant in
domains such as fraud detection, rare event prediction, disease diagnosis, and many other
classification and pattern recognition problems. Despite these drawbacks, data imbalance
in GMMs has received little attention in the literature [8,9].

1.2. Aim and Organization of the Paper

In this paper, we restrict our attention on evaluating the effect of data imbalance on
SGMMs classification accuracy and comparing various strategies to address this challenge.
Specifically, we assess techniques such as cost-sensitive learning, probability threshold
adjustment, threshold selection through cross-validation, and sampling-based approaches,
such as downsampling, oversampling, and SMOTE.

Through a comprehensive set of experiments on diverse datasets, both synthetic and real
data examples, we systematically evaluate the performance of GMM classifiers with and without
these adjustment strategies. This empirical analysis aims to provide insights into the effectiveness
of these methods in handling data imbalance and improving classification outcomes.
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The remainder of this paper is organized as follows. Section 2 is devoted to the
presentation of probabilistic models for supervised learning in classification with particular
focus on Gaussian mixture models, and the corresponding classification rule that can be
derived. Performance measures for imbalanced data are discussed in Section 4, including
cost-sensitive learning, different threshold adjustments techniques, and sampling-based
approaches. Section 5 presents an extensive investigation through simulation studies on
synthetic data and empirical analyses using real-world datasets. Lastly, the final section
concludes by highlighting the key contributions of this paper.

2. Materials and Methods
2.1. Probabilistic Generative Models for Supervised Learning

In probabilistic classification, a statistical model is employed to predict the class Ck
(where k = 1, . . . , K) for a given observation characterized by a feature vector xi. This
model provides a posterior class probability, denoted as Pr(Ck | xi), for each class, which is
subsequently utilized to determine class membership for novel observations.

Certain modeling techniques directly estimate posterior probabilities by constructing
a discriminant function ηk(xi), that directly maps features xi to each class Ck. These are
known as discriminative models, with a prominent example being the logistic regression
model for binary-class problems.

Alternatively, other approaches aim to model the distribution of both features and classes,
either explicitly or implicitly. Posterior probabilities are then derived using Bayes’ theorem.
Consequently, through the learning of class-specific densities f (xi | Ck) and the prior class
probabilities Pr(Ck) for each class, the posterior class probabilities can be calculated as:

Pr(Ck | xi) =
f (xi | Ck)Pr(Ck)

K

∑
g=1

f (xi | Cg)Pr(Cg)

.

Approaches following this methodology, such as those rooted in finite mixture model-
ing, are referred to as generative models.

Assume a training dataset Dtrain = {(x1, y1), . . . , (xn, yn)} is available, for which both
the feature vectors xi and the true classes yi = {C1, . . . , CK} for each observation are known.
Classification models are fitted using data from such a training set, ultimately yielding
parameter estimates. However, if this same dataset is also employed for tasks like model
fine-tuning (such as hyperparameter estimation) and classifier evaluation, it tends to yield
an overly optimistic evaluation of performance. This phenomenon is termed overfitting,
signifying the potential hazard of tailoring a model too closely to a specific set of data,
which may consequently struggle to generalize well to additional data or predict future
observations accurately. Given these considerations, it is recommended to carry out model
fine-tuning using a validation set, a dedicated dataset typically reserved separately from
the original dataset. Alternatively, one can adopt resampling techniques, such as cross-
validation, which involve repeatedly partitioning the data into training and validation sets.
If enough data are available, a separate subset of the initial dataset could be set aside in
advance as a test set for the final evaluation of the classifier.

2.2. Gaussian Mixtures for Classification

Classification models based on Gaussian mixtures make the assumption that the
density within each class follows a Gaussian mixture distribution:

f (xi | Ck) =
Gk

∑
g=1

πg|k N (xi | µg|k, Σg|k), (1)

where Gk represents the number of components within class k. The πg|k terms denote the

mixing probabilities for class k (πg|k > 0 and ∑Gk
g=1 πg|k = 1), and µg|k along with Σg|k stand

for the mean vectors and covariance matrices for component g within class Ck.
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One earlier proposal is the Mixture Discriminant Analysis (MDA) model [10], where
it is posited that the number of mixture components is known and equal across classes,
with equal full covariance matrix across classes, so Σg|k = Σ for all g = 1, . . . , Gk and
k = 1, . . . , K in Equation (1).

A much more constrained model is the Eigenvalue Decomposition Discriminant Analysis
(EDDA) model [11], which assumes that the density for each class can be characterized
by a single Gaussian component, so Gk = 1 for all k in Equation (1). Furthermore, in this
model, the covariance structure of each class is factorized as:

Σk = λkUk∆kU>
k . (2)

A list of models obtained from the eigen-decomposition in (2), with associated geomet-
ric characteristics, is reported in Table 2.1 of Scrucca et al. [12]. Through this decomposition,
several classification models can be derived. When each component shares the same co-
variance matrix, i.e., Σk = λU∆U>, the corresponding model is equivalent to the classical
Linear Discriminant Analysis (LDA) model. On the other hand, if the component covariance
matrices are unrestricted and differ between components, i.e., Σk = λkUk∆kU>

k , EDDA is
equivalent to the Quadratic Discriminant Analysis (QDA) model. Naïve-Bayes models can
also be obtained by assuming conditional independence of features within each class, so
component covariance matrices are all diagonal, eventually with equal values along the
main diagonal for the case of equal variances among features.

The broadest model encompassed by Equation (1) framework is the MclustDA model [2],
which employs a finite mixture of Gaussian distributions within each class, allowing for
flexibility in the number of components and covariance matrices, with the latter parameterized
using the eigen-decomposition shown in Equation (2). Specifically, each class may exhibit a
distinct Gaussian mixture, and the covariance matrix characteristics can vary across classes.
This enables the model to capture a wide range of data distributions and provides a powerful
tool for classification tasks that involve complex, heterogeneous datasets.

2.3. Model Selection

MclustDA models, and to a lesser extent EDDA models, offer a versatile approach to
classification. As is often the case, the increased flexibility they introduce may lead to an in-
creased risk of overfitting. Therefore, it becomes crucial to apply a model selection criterion
that strikes a balance between the goodness of fit and the parsimony of parameterization.
The Bayesian information criterion [13] (BIC) is a common tool employed for choosing the
“best” model from a set of candidate models. For a given modelM it is defined as

BICM = 2`M(θ̂)− νM log(n),

where `M(θ̂) stands for the maximized log-likelihood of the data sample of size n under model
M, and νM for the number of independent parameters to be estimated. BIC can be seen as a
way to penalize the likelihood based on the number of unknown parameters to be estimated.

In general, BIC favors parsimonious models, aiding to mitigate the risk of overfitting.
Parsimony, in this context, entails favoring simpler models that adequately explain the data
without unnecessary complexity. By penalizing complex models, typically characterized by
a higher number of parameters, the BIC encourages the selection of models that achieve a
balance between goodness of fit and simplicity.

2.4. Classification Rule

In SGMMs, classifying an observation with feature vector xi can be obtained by the
maximum a posteriori (MAP) rule. According to this, the predicted class is the one with
the highest posterior probability given by

Pr(Ck|xi) =
τk f (xi|Ck)

∑K
j=1 τj f (xi|Cj)

,
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where τk is the class prior probability that an observation comes from class Ck (k = 1, . . . , K).
Usually, τk values are estimated based on the sample proportions of observations in class
Ck. It is worth noting that this approach may not be optimal when dealing with imbalanced
classes, as discussed in Section 4.2.

All the models and techniques presented above are implemented in the mclust pack-
age [14,15] for the R software [16], and are fully described in Scrucca et al. [12].

3. Performance Measures for Imbalanced Data

In this Section, we briefly review the main performance measures available in binary
or two-class classification tasks with particular emphasis placed on the imbalanced data
case. For a thorough review see Fernández et al. [7] (Chapter 3).

Performance measures in classification problems with binary-class data are typically
obtained from the so-called confusion matrix. This a two-way table derived from the cross-
tabulation of the model’s predictions and actual classes, as shown in Table 1, where the
positive class is usually the class of interest.

Table 1. Confusion matrix for two-class data.

Actual/Observed

Negative Positive

Predicted

Negative True Negative (TN) False Negative (FN)
Positive False Positive (FP) True Positive (TP)

In the context of imbalanced binary data, the positive class commonly refers to the
minority class. Traditional metrics, such as the accuracy, defined as the proportion of correct
classifications, i.e., Accuracy = (TP + TN)/(TP + FP + FN + TN), tend to be misleading in
such scenarios, as they are heavily influenced by the majority class while neglecting the minority
class. Therefore, alternative measures have gained increased attention and general adoption.

Two measures derived from the field of information retrieval and which are widely
used in machine learning are:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
.

Precision, also known as Positive Predictive Value (PPV), quantifies the proportion of
true positive predictions out of all positive predictions made by the classifier. It provides
insights into the accuracy of positive predictions, but does not take into account false
negatives, which may be critical in certain contexts. Recall, often referred to as True Positive
Rate (TPR), measures the proportion of true positive predictions out of all actual positives
in the dataset. Recall is a relevant metric since it focuses on all actual positives, which is
crucial in scenarios where false negatives have severe consequences.

A summary of precision and recall can be obtained by computing their harmonic
mean. When both metrics are weighted equally, the F1 score is derived. However, if more
emphasis is placed on recall, the F2 score can be calculated as:

F2 =
Precision× Recall

0.8× Precision + 0.2× Recall
=

5× Precision× Recall
4× Precision + Recall
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Another pair of performance measures particularly relevant in medical diagnostics
are the sensitivity and the specificity, defined as:

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
.

Sensitivity, also referred to as True Positive Rate (TPR), measures the ability of a
classifier to correctly identify positive instances, while Specificity, also known as True
Negative Rate (TNR), indicates the capacity of a classifier to correctly identify negative
instances. Equivalently, False Positive Rate (FPR) and False Negative Rate (FNR) could be
defined as FPR = FP/(TN + FP) and FNR = FN/(TP + FN). In fact, it is easy to see that
FPR = 1− Specificity and FNR = 1− Sensitivity. It must also be noted that Sensitivity is
equivalent to the Recall measure discussed previously.

Finally, Balanced Accuracy calculates the average of sensitivity and specificity, i.e.,

Balanced Accuracy =
Sensitivity + Specificity

2
,

thus providing a comprehensive view of the classifier’s performance across both classes,
and for this reason it is especially relevant in cases of class imbalance.

4. Addressing Imbalanced Data

Imbalanced data pose a significant challenge for classification models and algorithms.
Often, the majority class exerts undue influence over predictions, at the expense of the
minority class. The Imbalance Ratio (IR) quantifies the imbalance between the number of
instances in each class of a dataset. It is defined as the ratio of the number of samples in
the majority class to the number of samples in the minority class. For two-class problems,
the IR is defined as the number of negative class observations divided by the number of
positive class observations:

IR =
∑n

i=1 I(yi = C0)

∑n
i=1 I(yi = C1)

,

where I() is the binary indicator function.
To mitigate data imbalancing, various techniques have been devised to refine the

learning process or the computed predictions. In the following, we briefly review some
techniques that can be applied in SGMM for classification. For a comprehensive discussion
on these techniques see Fernández et al. [7] (Chapters 4 and 5).

4.1. Cost-Sensitive Learning

Cost-sensitive learning is an approach that recognizes the inherent imbalance in the
dataset by assigning different costs to misclassification errors of different classes. It entails
adjusting the learning algorithm’s parameters to penalize misclassifications in the minority
class more heavily than in the majority class. By doing so, the model is incentivized to
focus on accurately predicting the minority class. Cost-sensitive learning requires the
specification of an appropriate cost matrix, obtained by assigning higher misclassification
costs to the minority class.

Table 2a contains a typical cost matrix for a two-class problem. Following convention,
it is assumed that c(0|0) = c(1|1) = 0, i.e., no costs are associated with correct classifi-
cations. Therefore, only two costs necessitate specification: c(0|1), representing the cost
of false negatives, and c(1|0) indicating the cost of false positives. The expected cost of
misclassification (ECM) is then computed as

ECM = c(0|1)p(0|1) + c(1|0)p(1|0),
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where p(j|k) = Pr(Cj|x ∈ Ck) is the conditional probability of assigning an example from
class Ck to class Cj (j 6= k). Note that, if equal costs of misclassification are employed,
i.e., c(0|1) = c(1|0) = 1, then minimizing ECM is equivalent to minimizing the probabil-
ities of misclassification, which corresponds to the MAP classification principle discussed in
Section 2.4.

Table 2. Cost matrix for binary-class data.

(a) Generic case

Actual/Observed

Negative Positive

Predicted

Negative c(0|0) c(0|1)
Positive c(1|0) c(1|1)

(b) Imbalance ratio (IR) case

Actual/Observed

Negative Positive

Predicted

Negative 0 1
Positive IR 0

In general, MAP rule requires to specify the adjusted prior probabilities:

τ∗0 =
c(0|1)τ0

c(0|1)τ0 + c(1|0)τ1
,

τ∗1 =
c(1|0)τ1

c(0|1)τ0 + c(1|0)τ1
.

Notably, if we make the assumption, without loss of generality, that c(0|1) = 1 and
c(1|0) = IR, and using sample proportions to estimate τk (for k = {0, 1}), we obtain:

τ∗0 =
τ0

τ0 + IRτ1
= 0.5,

τ∗1 =
IRτ1

τ0 + IRτ1
= 0.5.

Thus, assigning the cost of misclassification for the minority class proportional to
IR is equivalent to use equal adjusted prior probabilities. The corresponding posterior
probability for applying the MAP rule simplify as

Pr(Ck|xi) =
f (xi|Ck)

f (xi|C0) + f (xi|C1)
for k = {0, 1},

which is equivalent to require f (xi|C1) > f (xi|C0) for classifying an observation to the
minority class C1.

4.2. Probability Threshold Tuning

In the two-class case, MAP rule is equivalent to the use of a probability threshold
ζ = 0.5 for assigning an observation to the minority class. Adjusting the threshold ζ ∈ (0, 1)
may serve as a simple solution in scenarios with different misclassification costs or in
problems with imbalanced data. The classification rule entails assigning an observation
xi to class C1 if Pr(C1|xi) > ζ. However, the widely used default value ζ = 0.5 may
not always yield the best results [17]. Optimal threshold selection can be accomplished,
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for instance, through cross-validation, hence choosing ζCV as the value that maximizes a
cross-validated suitable evaluation metric, such as F2 or balanced accuracy.

Another option is available by noting that, if the IR value is used for adjusting class-
prior probabilities, as discussed in Section 4.1, the corresponding threshold value is simply
obtained as

ζIR =
1

1 + IR
= τ̂1,

where τ̂1 is the sample proportion of cases in the minority class. Therefore, setting the
threshold to match the proportion of the minority class in the training set is equivalent to a
cost-sensitive approach using the cost matrix in Table 2b. Figure 1 depicts the relationship
between IR and the corresponding probability threshold.

In accordance with this rationale, a threshold value can also be derived by employing
the adjusted estimates of prior probabilities τ̃k, for k = {0, 1}, proposed by Saerens et al. [18].
This approach essentially employs an EM algorithm to iteratively update the posterior
probabilities, enabling the computation of the adjusted prior probabilities and then setting
ζADJ = τ̃1 (for additional insights, refer to Scrucca et al. [12] (Section 4.6)).

(IR = 99, ζ = 0.01)

(IR = 9, ζ = 0.1)

(IR = 4, ζ = 0.2)
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Figure 1. Relationship between probability threshold and imbalance ratio.

4.3. Sampling Methods

Sampling techniques represent a data level approach for addressing class imbalance by
sampling before applying classification models and algorithms [6]. Undersampling aims to
reduce the number of instances from the majority class by randomly removing instances to
restore balance. Conversely, oversampling involves replicating instances from the minority
class to balance its representation with the majority class.

Beyond these approaches, other methods address class imbalance by generating syn-
thetic samples for the minority class based on the existing data. For instance, SMOTE [19]
generates synthetic samples by interpolating between existing instances of the minority
class. The algorithm selects an observation from the minority class and finds its k-nearest
neighbors in the feature space. Then, a synthetic instance is stochastically generated along
the line segment in feature space that joins the original minority instance and a randomly
chosen instance from among its neighbor. Let xi denote a minority class instance and x′i
represent one of its k-nearest neighbors. The synthetic case xnew is generated as:

xnew = xi + γ(x′i − xi),

where γ is a random value between 0 and 1. This process creates new instances along the line
connecting xi and x′i and is repeated until the desired balance between classes is achieved.

A related technique is ROSE [20], which generates artificial balanced samples accord-
ing to a smoothed bootstrap approach. The ROSE algorithm estimates the underlying
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density distribution of the minority class by fitting a density function, such as a kernel
density estimate, to the observed instances of the minority class. Once the density estimate
is obtained, synthetic examples are generated by sampling from this estimated density
centered at randomly chosen data points. Define the kernel density estimator as

f̂H(x) =
1
n

n

∑
j=1

KH(x− xj),

where H is the (symmetric and positive definite) smoothing matrix, K the kernel function
(a symmetric multivariate density, often taken to be the standard multivariate Gaussian),
and KH(x) = |H|−1/2K(H−1/2x). For a randomly chosen data points xi, ROSE generates a
synthetic instance by sampling from the estimated density, i.e.,

xnew ∼ f̂H(xi).

Thus, by employing density estimation to generate synthetic instances, ROSE aims to
preserve the underlying distribution of the minority class while addressing class imbalance.

For a comprehensive overview of sampling methods for data imbalance see Fernández
et al. [7] (Chapter 5).

5. Results

In this section, we delve into the impact of data imbalance on supervised GMMs. This
exploration is carried out through simulation studies utilizing synthetic data [20], as well
as two empirical analyses employing real-world data examples.

5.1. Simulation Studies

In the first simulated scenario, data have been generated by drawing from a mixture
of bivariate Normal distributions with fixed means and covariance matrices. Following the
notation in Murphy [21], the data generating process (DGP) can be described as follows:

y = {C0, C1} ∼ Cat(τ)

x | (y = Ck) ∼ N (µk, Σk).

According to the above DGP, classes are generated from the categorical distribution
with probabilities τ = (τ0, τ1)

>, where Pr(y = Ck) = τk for k = {0, 1}, and such that
τ0 + τ1 = 1. The majority class follows a bivariate standard Gaussian distribution, so
µ0 = 02 =

[
0
0
]

and Σ0 = I2 =
[

1 0
0 1

]
. Also, the minority class follows a bivariate Gaussian

distribution, but with mean µ1 =
[

1
1

]
and covariance matrix Σ1 =

[ 1 −0.5
−0.5 1

]
. In this

simulation study, we consider samples of n = 5000 observations from the above DGP
with the probability of the minority class τ1 taken to be either 0.1 or 0.01. After fitting
models described in Section 2.2, their evaluation is based on a test set of size m = 50, 000
generated from the same DGP. Results for 100 replications are reported in Tables 3 and 4,
while Figure 2 shows a sample of simulated data with decision boundaries for classification
using different models and methods dealing with class imbalance.
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Figure 2. Decision boundaries for classification of data generated according to the first simulated
scenario corresponding to different models and methods addressing class imbalance.

Table 3. Results for the first simulated scenario with probability of the minority class τ1 = 0.01
for various models and methods addressing class imbalance. Values reported are averages (with
standard errors in parentheses) obtained from simulations.

Method Precision/
PPV

Recall/
TPR F2 Sensitivity/

TPR
Specificity/

TNR
Balanced
Accuracy

EDDA 0.0289 (0.0094) 0.0002 (0.0001) 0.0003 (0.0001) 0.0002 (0.0001) 0.9999 (0.0000) 0.5001 (0.0000)
EDDA+costSens 0.0339 (0.0002) 0.8347 (0.0025) 0.1457 (0.0009) 0.8347 (0.0025) 0.7612 (0.0017) 0.7979 (0.0010)
EDDA+adjPriorThreshold 0.0254 (0.0011) 0.9030 (0.0097) 0.1113 (0.0041) 0.9030 (0.0097) 0.5488 (0.0273) 0.7259 (0.0103)
EDDDA+optThreshold 0.0350 (0.0005) 0.8221 (0.0056) 0.1489 (0.0015) 0.8221 (0.0056) 0.7685 (0.0040) 0.7953 (0.0013)
EDDA+downSamp 0.0330 (0.0004) 0.8391 (0.0037) 0.1421 (0.0014) 0.8391 (0.0037) 0.7503 (0.0034) 0.7947 (0.0015)
EDDA+upSamp 0.0335 (0.0003) 0.8491 (0.0027) 0.1446 (0.0011) 0.8491 (0.0027) 0.7535 (0.0023) 0.8013 (0.0010)
EDDA+smote 0.0335 (0.0003) 0.8408 (0.0032) 0.1442 (0.0012) 0.8408 (0.0032) 0.7551 (0.0027) 0.7980 (0.0012)
MCLUSTDA 0.1190 (0.0251) 0.0009 (0.0002) 0.0011 (0.0002) 0.0009 (0.0002) 1.0000 (0.0000) 0.5004 (0.0001)
MCLUSTDA+costSens 0.0335 (0.0003) 0.8416 (0.0032) 0.1443 (0.0011) 0.8416 (0.0032) 0.7553 (0.0025) 0.7985 (0.0012)
MCLUSTDA+adjPriorThreshold 0.0295 (0.0010) 0.8685 (0.0094) 0.1272 (0.0039) 0.8685 (0.0094) 0.6388 (0.0239) 0.7537 (0.0087)
MCLUSTDA+optThreshold 0.0359 (0.0006) 0.8144 (0.0068) 0.1514 (0.0017) 0.8144 (0.0068) 0.7745 (0.0045) 0.7944 (0.0017)
MCLUSTDA+downSamp 0.0326 (0.0004) 0.8472 (0.0039) 0.1409 (0.0014) 0.8472 (0.0039) 0.7446 (0.0037) 0.7959 (0.0016)
MCLUSTDA+upSamp 0.0332 (0.0005) 0.7019 (0.0072) 0.1390 (0.0018) 0.7019 (0.0072) 0.7919 (0.0032) 0.7469 (0.0033)
MCLUSTDA+smote 0.0333 (0.0005) 0.6867 (0.0071) 0.1390 (0.0019) 0.6867 (0.0071) 0.7970 (0.0032) 0.7419 (0.0032)

Table 4. Results for the first simulated scenario with probability of the minority class τ1 = 0.1 for
various models and methods addressing class imbalance. Values reported are averages (with standard
errors in parentheses) obtained from simulations.

Method Precision/
PPV

Recall/
TPR F2 Sensitivity/

TPR
Specificity/

TNR
Balanced
Accuracy

EDDA 0.5539 (0.0024) 0.1478 (0.0030) 0.1726 (0.0033) 0.1478 (0.0030) 0.9866 (0.0003) 0.5672 (0.0013)
EDDA+costSens 0.2782 (0.0006) 0.8508 (0.0009) 0.6026 (0.0005) 0.8508 (0.0009) 0.7551 (0.0008) 0.8029 (0.0003)
EDDA+adjPriorThreshold 0.2748 (0.0009) 0.8566 (0.0014) 0.6015 (0.0005) 0.8566 (0.0014) 0.7488 (0.0014) 0.8027 (0.0003)
EDDDA+optThreshold 0.2781 (0.0018) 0.8498 (0.0030) 0.6008 (0.0007) 0.8498 (0.0030) 0.7534 (0.0029) 0.8016 (0.0003)
EDDA+downSamp 0.2773 (0.0006) 0.8523 (0.0010) 0.6023 (0.0005) 0.8523 (0.0010) 0.7535 (0.0009) 0.8029 (0.0003)
EDDA+upSamp 0.2768 (0.0006) 0.8542 (0.0009) 0.6027 (0.0005) 0.8542 (0.0009) 0.7524 (0.0008) 0.8033 (0.0003)
EDDA+smote 0.2763 (0.0006) 0.8547 (0.0009) 0.6024 (0.0005) 0.8547 (0.0009) 0.7516 (0.0008) 0.8032 (0.0003)
MCLUSTDA 0.5753 (0.0030) 0.1211 (0.0037) 0.1430 (0.0041) 0.1211 (0.0037) 0.9897 (0.0004) 0.5554 (0.0017)
MCLUSTDA+costSens 0.2764 (0.0006) 0.8551 (0.0009) 0.6026 (0.0005) 0.8551 (0.0009) 0.7515 (0.0008) 0.8033 (0.0003)
MCLUSTDA+adjPriorThreshold 0.2740 (0.0008) 0.8588 (0.0013) 0.6017 (0.0005) 0.8588 (0.0013) 0.7473 (0.0013) 0.8031 (0.0003)
MCLUSTDA+optThreshold 0.2782 (0.0017) 0.8506 (0.0029) 0.6013 (0.0006) 0.8506 (0.0029) 0.7534 (0.0028) 0.8020 (0.0003)
MCLUSTDA+downSamp 0.2762 (0.0006) 0.8550 (0.0010) 0.6023 (0.0005) 0.8550 (0.0010) 0.7513 (0.0009) 0.8031 (0.0003)
MCLUSTDA+upSamp 0.2763 (0.0010) 0.8497 (0.0016) 0.6001 (0.0006) 0.8497 (0.0016) 0.7526 (0.0016) 0.8011 (0.0004)
MCLUSTDA+smote 0.2752 (0.0010) 0.8490 (0.0017) 0.5987 (0.0006) 0.8490 (0.0017) 0.7514 (0.0016) 0.8002 (0.0004)

Based on the results of this simulation study, it is clear that addressing class imbalance is
important for both the EDDA model and the more flexible MclustDA model. The unbalanced
distribution of classes significantly impacts the performance of these models, emphasizing
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the need for adjustment strategies. Furthermore, our findings indicate that the specific type
of adjustment employed is only marginally relevant. Across various methods discussed in
Section 4, a substantial enhancement in recall/sensitivity is observed, albeit at the expense of
a slight decline in precision and specificity. This trade-off, while noteworthy, is offset by the
substantial gains achieved in the correct identification of cases from the minority class.

In terms of thresholding strategies, our study demonstrates that cost-sensitive learning
and optimal threshold value selected through cross-validation exhibit the most promising
performance when evaluated using metrics such as the F2 score and balanced accuracy. This
highlights the important role of thresholding in optimizing the models’ predictive power,
particularly in scenarios with imbalanced class distributions. Among the sampling-based
adjustments explored, the examined strategies demonstrate nearly comparable effective-
ness. However, it is clear that downsampling stands out as the most straightforward and
computationally efficient option in terms of implementation and computational speed.

The second simulated dataset is also generated from a mixture according to the
following DGP:

y = {C0, C1} ∼ Cat(τ)

x | (y = C0) ∼ N (010, I10)

x | (y = C1) ∼ N (010, I10) ∩ ‖x‖ > 4∩ x1 ≤ 0.

In this case, the majority class follows a 10-variate standard Gaussian distribution,
while the rare class can be seen as a depleted semi-hypersphere filled with the prevalent
class. Samples of n = 5000 observations are generated as training set from the above DGP
with the probability of the minority class τ1 taken to be either 0.1 or 0.01. After fitting
models described in Section 2.2, their evaluation is based on a test set of size m = 50, 000.
Results from 100 replications are shown in Tables 5 and 6.

Table 5. Results for the second simulated scenario with probability of the minority class τ1 = 0.01
for various models and methods addressing class imbalance. Values reported are averages (with
standard errors in parentheses) obtained from simulations.

Method Precision/
PPV

Recall/
TPR F2 Sensitivity/

TPR
Specificity/

TNR
Balanced
Accuracy

EDDA 0.8096 (0.0040) 0.3336 (0.0042) 0.3774 (0.0044) 0.3336 (0.0042) 0.9992 (0.0000) 0.6664 (0.0021)
EDDA+costSens 0.0912 (0.0014) 0.9103 (0.0054) 0.3242 (0.0040) 0.9103 (0.0054) 0.9050 (0.0022) 0.9077 (0.0033)
EDDA+adjPriorThreshold 0.0856 (0.0013) 0.9192 (0.0072) 0.3105 (0.0035) 0.9192 (0.0072) 0.8988 (0.0015) 0.9090 (0.0034)
EDDDA+optThreshold 0.0968 (0.0021) 0.8988 (0.0071) 0.3340 (0.0048) 0.8988 (0.0071) 0.9101 (0.0025) 0.9045 (0.0035)
EDDA+downSamp 0.0617 (0.0020) 0.8914 (0.0122) 0.2386 (0.0066) 0.8914 (0.0122) 0.8488 (0.0046) 0.8701 (0.0075)
EDDA+upSamp 0.0835 (0.0008) 0.8007 (0.0045) 0.2940 (0.0020) 0.8007 (0.0045) 0.9102 (0.0010) 0.8555 (0.0021)
EDDA+smote 0.0653 (0.0013) 0.6305 (0.0094) 0.2297 (0.0040) 0.6305 (0.0094) 0.9062 (0.0017) 0.7684 (0.0048)
MCLUSTDA 0.8470 (0.0038) 0.3046 (0.0027) 0.3491 (0.0028) 0.3046 (0.0027) 0.9994 (0.0000) 0.6520 (0.0013)
MCLUSTDA+costSens 0.0861 (0.0006) 0.9055 (0.0023) 0.3116 (0.0015) 0.9055 (0.0023) 0.9022 (0.0008) 0.9038 (0.0010)
MCLUSTDA+adjPriorThreshold 0.0717 (0.0012) 0.9374 (0.0035) 0.2725 (0.0034) 0.9374 (0.0035) 0.8727 (0.0026) 0.9051 (0.0010)
MCLUSTDA+optThreshold 0.0925 (0.0021) 0.8923 (0.0053) 0.3220 (0.0039) 0.8923 (0.0053) 0.9067 (0.0021) 0.8995 (0.0017)
MCLUSTDA+downSamp 0.0557 (0.0011) 0.9292 (0.0047) 0.2231 (0.0033) 0.9292 (0.0047) 0.8343 (0.0034) 0.8817 (0.0022)
MCLUSTDA+upSamp 0.0451 (0.0017) 0.1121 (0.0081) 0.0815 (0.0049) 0.1121 (0.0081) 0.9783 (0.0012) 0.5452 (0.0036)
MCLUSTDA+smote 0.0471 (0.0017) 0.0845 (0.0047) 0.0703 (0.0033) 0.0845 (0.0047) 0.9828 (0.0007) 0.5337 (0.0021)

Table 6. Results for the second simulated scenario with probability of the minority class τ1 = 0.1
for various models and methods addressing class imbalance. Values reported are averages (with
standard errors in parentheses) obtained from simulations.

Method Precision/
PPV

Recall/
TPR F2 Sensitivity/

TPR
Specificity/

TNR
Balanced
Accuracy

EDDA 0.8554 (0.0009) 0.6067 (0.0013) 0.6441 (0.0011) 0.6067 (0.0013) 0.9886 (0.0001) 0.7976 (0.0006)
EDDA+costSens 0.5292 (0.0009) 0.9469 (0.0009) 0.8177 (0.0005) 0.9469 (0.0009) 0.9064 (0.0003) 0.9266 (0.0004)
EDDA+adjPriorThreshold 0.5230 (0.0012) 0.9511 (0.0008) 0.8172 (0.0005) 0.9511 (0.0008) 0.9036 (0.0004) 0.9274 (0.0003)
EDDDA+optThreshold 0.4904 (0.0024) 0.9701 (0.0013) 0.8107 (0.0008) 0.9701 (0.0013) 0.8874 (0.0012) 0.9288 (0.0003)
EDDA+downSamp 0.5255 (0.0013) 0.9609 (0.0012) 0.8241 (0.0006) 0.9609 (0.0012) 0.9035 (0.0006) 0.9322 (0.0005)
EDDA+upSamp 0.5221 (0.0009) 0.9498 (0.0009) 0.8160 (0.0005) 0.9498 (0.0009) 0.9034 (0.0004) 0.9266 (0.0003)
EDDA+smote 0.5039 (0.0009) 0.9231 (0.0015) 0.7913 (0.0009) 0.9231 (0.0015) 0.8990 (0.0004) 0.9110 (0.0006)
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Table 6. Cont.

Method Precision/
PPV

Recall/
TPR F2 Sensitivity/

TPR
Specificity/

TNR
Balanced
Accuracy

MCLUSTDA 0.8550 (0.0009) 0.6119 (0.0022) 0.6487 (0.0019) 0.6119 (0.0022) 0.9885 (0.0001) 0.8002 (0.0011)
MCLUSTDA+costSens 0.5110 (0.0016) 0.9596 (0.0014) 0.8159 (0.0005) 0.9596 (0.0014) 0.8978 (0.0008) 0.9287 (0.0004)
MCLUSTDA+adjPriorThreshold 0.5134 (0.0015) 0.9589 (0.0012) 0.8168 (0.0006) 0.9589 (0.0012) 0.8989 (0.0006) 0.9289 (0.0004)
MCLUSTDA+optThreshold 0.4979 (0.0036) 0.9679 (0.0017) 0.8129 (0.0013) 0.9679 (0.0017) 0.8903 (0.0017) 0.9291 (0.0004)
MCLUSTDA+downSamp 0.5043 (0.0016) 0.9576 (0.0016) 0.8113 (0.0007) 0.9576 (0.0016) 0.8952 (0.0008) 0.9264 (0.0005)
MCLUSTDA+upSamp 0.5136 (0.0015) 0.8717 (0.0028) 0.7648 (0.0019) 0.8717 (0.0028) 0.9082 (0.0005) 0.8900 (0.0013)
MCLUSTDA+smote 0.4946 (0.0013) 0.8108 (0.0027) 0.7187 (0.0019) 0.8108 (0.0027) 0.9079 (0.0005) 0.8593 (0.0013)

In this simulation study, much like in the previous case, it is evident that addressing
class imbalance is important for both the EDDA and MclustDA models. Class imbalance
exerts a notable influence on model performance, reaffirming the need for the implementa-
tion of effective strategies to address this issue. In this simulated scenario, the relevance
of the chosen adjustment becomes more apparent, particularly when dealing with a small
prior probability for the minority class. Specifically, threshold adjustment emerges as the su-
perior approach in comparison to sampling-based techniques to deal with class imbalance
effectively, particularly in scenarios with severely imbalanced class distributions.

Looking deeply at the results, notable improvement in sensitivity is evident, a crucial
aspect in correctly identifying the minority class, while simultaneously maintaining a
substantial level of specificity. This striking balance ultimately leads to an enhanced
measure of balanced accuracy, demonstrating the efficacy of the investigated adjustments.
However, it is essential to note that both thresholding and sampling-based adjustments
come at a cost: a significant decrease in precision coupled with an increase in recall. This
trade-off, while substantial, necessitates a careful consideration of the specific priorities
and objectives of the classification task.

5.2. Wine Quality Data

We consider the wine quality data [22] available from the UCI Machine Learning Data
Repository [23]. The dataset contains data on 4898 white variants of the Portuguese “Vinho
Verde” wine. For each wine, the results from 11 physicochemical tests are available, such
as fixed, volatile, and citric acidity, residual sugar, chlorides, free and total sulfur dioxide,
density, pH, sulphates, and alcohol. Moreover, the quality of each wine was assessed based
on sensory data, with scores ranging from 0 to 10. For the present analysis, wines have
been classified into two groups: those of High quality (with a score of at least 8) and those
classified as MedLow quality (with a score less than 8). Notably, only 3.67% of the wines
achieved the distinction of high quality, leading to a clear imbalance between the classes.

The dataset was partitioned into a training set, which comprised approximately 2/3 of
the wines, and a test set that encompassed the remaining 1/3 of total observations. Given
that the proportion of the minority class is 0.0367, the imbalance ratio in the training set is
equal to IR = 26.22.

Figure 3 illustrates the results derived from applying the models presented in Section 2.2,
along with the remedies discussed in Section 4, to the test set. Without any adjustment for
correcting class imbalance both the EDDA model and the MclustDA model have a quite low
TPR, which leads to low values for recall and sensitivity. The precision and specificity are
higher, but this does not compensate for the deficiency in detecting the minority class. Overall,
both F2 and Balanced Accuracy are smaller for the unadjusted models that use the initial
partition of the data.

Cost-sensitive predictions, as discussed in Section 4.1, employ the imbalance ratio
mentioned above for both EDDA and MclustDA models. Recall that this is equivalent to
use the proportion of the minority class as the classification threshold. Instead, optimal
threshold for the EDDA model estimated by cross-validation is ζCV = 0.08, while using the
adjusted prior probabilities, as discussed in Section 4.2, it is recalibrated as ζADJ = 0.299.
At the same time, for the MclustDA model the optimal threshold is estimated by cross-
validation as ζCV = 0.01, while the adjusted threshold is estimated as ζADJ = 0.0501. As
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shown in Figure 3, both the F2 score and balanced accuracy exhibit higher values when
either the threshold-based approaches or the sampling-based approaches are employed to
address class imbalance. While MclustDA models exhibit slightly better results compared
to EDDA models, the variation among different methods for addressing imbalance is
negligible. Therefore, the choice of the most effective approach to accommodate class
imbalance should be guided by other considerations.

Precision/PPV Recall F2 Sensitivity/TPR Specificity/TNR BalancedAccuracy

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

MCLUSTDA+smote
MCLUSTDA+upSamp

MCLUSTDA+downSamp
MCLUSTDA+optThreshold

MCLUSTDA+adjPriorThreshold
MCLUSTDA+costSens

MCLUSTDA
EDDA+smote

EDDA+upSamp
EDDA+downSamp

EDDDA+optThreshold
EDDA+adjPriorThreshold

EDDA+costSens
EDDA

Figure 3. Performance outcomes for various models and methods addressing class imbalance on the
wine quality dataset.

5.3. Hypothyroid Data

In this second data analysis example, we consider the hypothyroid dataset [24] avail-
able from the UCI Machine Learning Data Repository [23]. The dataset comprises infor-
mation on 2012 patients, with 122 diagnosed as suffering from hypothyroidism. Age of
patients and measures related to functioning of the thyroid gland, such as TSH, T3, TT4,
T4U, and FTI, are used as features for classification.

Approximately 2/3 of the patients were randomly allocated to the training set, leaving
the remaining 668 patients for the test set. The minority class proportion in the training
set is equal to 0.0565, resulting in an imbalance ratio of IR = 16.68. In contrast, the test set
exhibits a slightly higher proportion of the minority class at 0.0689.

In Figure 4, the results obtained from fitting the models outlined in Section 2.2 and
addressing data imbalance as discussed in Section 4 on the test set are presented. The
EDDA model, devoid of any threshold-based or sample-based adjustments, exhibits the
lowest sensitivity/recall (around 50%), resulting in both a less than satisfactory F2 score
and balanced accuracy. In contrast, the MclustDA model, even without any correction
for class imbalance, demonstrates noteworthy performance. Fine-tuning the threshold,
particularly using ζCV = 0.01 selected by cross-validation, or employing a sampling-based
approach in the EDDA model, enhances the classification of the minority class. In the case
of the MclustDA model, various adjustments result in marginal improvements, except for
upsampling and SMOTE, which, conversely, lead to diminished performance compared to
the unadjusted MclustDA model. This latter observation underlines that sampling-based
approaches do not necessarily enhance classification accuracy.
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Precision/PPV Recall F2 Sensitivity/TPR Specificity/TNR BalancedAccuracy

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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EDDDA+optThreshold
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Figure 4. Performance outcomes for various models and methods addressing class imbalance on the
hypothyroid dataset.

6. Conclusions

Class imbalance can pose a significant challenge in many classification problems.
In this paper, we investigated the effect of imbalanced data on supervised Gaussian mixture
models (SGMMs) in classification problems. It has been established that this imbalance
significantly hampers the performance of SGMMs, emphasizing the need for effective
mitigation strategies.

This study specifically focuses on imbalanced two-class data, where the minority class
is of primary importance, within the framework of Gaussian mixtures. The investigation
centers on two prominent SGMMs, namely EDDA and MclustDA models. Additionally,
a range of approaches to tackle class imbalance were presented, including threshold-based
methods and sampling-based techniques.

The empirical results provide substantial insights into the necessity of addressing class
imbalance for both the EDDA and MclustDA models. Notably, both threshold-based and
sampling-based approaches exhibit marked improvements in classification accuracy for the
minority class. Among these strategies, threshold-based adjustments, particularly those
derived from cost-sensitive learning, stand out as highly recommended. This is due to their
ability to enhance performance without necessitating model re-estimation, avoiding the
loss of valuable training data, as in downsampling, or the artificial creation of data, as in
oversampling techniques.

Table 7 offers a concise overview of various techniques explored in this paper for
handling imbalanced data. Several crucial aspects deemed relevant in practical applications
are considered, and a raw qualitative assessment is provided.

The contributions of this paper collectively serve as a valuable resource for practition-
ers and researchers, offering effective strategies to enhance the performance of supervised
Gaussian mixtures in scenarios characterized by class imbalance.

Table 7. Summary of specific techniques for handling imbalanced two-class data in supervised
GMMs (higher number of ? indicates better rating; — indicates not applicable).

Techniques Accuracy Computational
Speed

Ease of
Implementation

Hyperparameter
Tuning Scalability Parallelization

costSens ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? —
adjPriorThreshold ? ?? ? ?? ? ? ? ?
optThreshold ? ? ? ? ?? ? ?? ??
downSamp ? ? ? ? ? ? ? ? ? — ? ? ? —
upSamp ?? ?? ? ? ? — ?? —
smote ?? ?? ?? ?? ? —
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