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Abstract: Stereo 3D object detection remains a crucial challenge within the realm of 3D vision. In
the pursuit of enhancing stereo 3D object detection, feature fusion has emerged as a potent strategy.
However, the design of the feature fusion module and the determination of pivotal features in this
fusion process remain critical. This paper proposes a novel feature attention module tailored for stereo
3D object detection. Serving as a pivotal element for feature fusion, this module not only discerns
feature importance but also facilitates informed enhancements based on its conclusions. This study
delved into the various facets aided by the feature attention module. Firstly, a interpretability analysis
was conducted concerning the function of the image segmentation methods. Secondly, we explored
the augmentation of the feature fusion module through a category reweighting strategy. Lastly, we
investigated global feature fusion methods and model compression strategies. The models devised
through our proposed design underwent an effective analysis, yielding commendable performance,
especially in small object detection within the pedestrian category.
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1. Introduction

The advent of cutting-edge technologies like autonomous driving and robotic ap-
plications has ignited a fervent interest among researchers in intelligent object detection
and localization. Networks trained on point cloud and image data aim to predict crucial
object information such as position, size, and rotation angle, typically visualized through
three-dimensional bounding boxes, as depicted in Figure 1. While lidar offers precise
point clouds and is commonly employed for 3D object detection, its limitations in adverse
weather conditions and its high cost have spurred exploration into alternative sensor forms
and harnessing image information.

Figure 1. 3D object detection results.

Image-based methodologies predominantly utilize monocular and binocular cameras,
accomplishing 3D object detection through depth estimations or key point detection. Binoc-
ular vision, relying on the principles of disparity estimation and triangulation, surpasses
monocular images by offering depth information independent of real depth supervision,
thereby enhancing detection accuracy. Its interpretability, stability, and adaptability have
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captivated researchers’ attention. However, inherent errors between the principle-based
point cloud accuracy and real values lead to estimation inaccuracies in positional informa-
tion, creating a performance gap in 3D object detection compared to lidar-based systems.

Closing this gap and optimizing the usability of camera sensors holds significant
importance in advancing 3D vision methodologies. This pursuit carries high research and
application value, particularly in domains like autonomous driving and intelligent robotics.

Yet, binocular vision poses the following practical challenges in 3D object detection:

1. Without the aid of lidar, stereo 3D object detection suffers performance setbacks,
requiring retraining or augmentation with lidar for “new” object categories or forms,
escalating equipment costs. The use of binocular vision as a cost-effective alternative
necessitates addressing accuracy challenges.

2. While 2D segmentation methods from images enhance detection [1,2], their efficacy
dwindles for diverse objects like height limit devices [3], which can assume various
forms (e.g., single pole, multipole, irregular natural obstacles). Exploring alternative
solutions becomes imperative for enhancing detection efficacy.

Additionally, point clouds for depth estimation can suffer from artifacts and deforma-
tions, lacking the precision of lidar. Researchers are diligently seeking improved solutions
for enhancing 3D object detection accuracy based on stereo vision.

This paper focuses on refining 3D object detection through stereo vision, harnessing its
innate correspondence between stereo point clouds and images for seamless feature fusion.
This fusion enhances the interpretability of stereo data, which is pivotal in improving
3D object detection accuracy. The proposed feature attention module quantifies feature
importance, which could aid in the design of feature fusion methodologies. This study delved
into both local and global feature fusion levels, categorizing methodologies into 2D-3D (local)
and 3D (global) approaches. The primary contributions of this work are as follows:

1. Our proposed feature attention module aims to facilitate feature fusion by evaluating the
significance of stereo point cloud and image features across diverse models. This module
effectively analyzes feature weights, offering targeted insights for model enhancements.

2. Utilizing our feature attention module, we scrutinized the relevance of stereo point
cloud and image features within the local area of the PatchNet [4] model. This analysis
sheds light on the impact of image segmentation methods.

3. Employing the feature attention module, we delved into the importance of point
cloud and image features within the local realm of the Pseudo-Lidar FpointNet [5,6]
model. Additionally, we devised a category-based feature reweighting module to
address declining foreground–background segmentation accuracy.

Our study extend the analysis of point cloud and image feature importance across
different layers of the Pseudo-Lidar EPNet [5,7] model. This exploration involves designing
a strategy for optimizing model parameters in layered models within the global fusion
approach. Furthermore, we examined the role of image features in false detections and
missed detections.

2. Related Work
2.1. Stereo-Based 3D Object Detection

The point cloud obtained using methods such as disparity estimation is not as accurate
as the point cloud obtained using lidar. On the one hand, researchers are trying to improve
the effect of disparity estimation to obtain more accurate point cloud data, and on the other
hand, they are improving the detection effect of the model by studying methods that are
more suitable for binocular 3D object detection. In this paper, we will focus on improving
the method for 3D object detection rather than disparity estimation.

One idea for stereo 3D object detection is to obtain the position information corre-
sponding to the image through disparity estimation and coordinate conversion and then
finishing the 3D object detection. Chen et al. [8] referred to the method of the Faster R-CNN
model [9] and designed a dual stream model based on RGB-D information, which extracts
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features from image and depth information, respectively, and completes the detection task
after concatenation. Similarly, Xu et al. [10] used a two-step fusion method, concatenated
the depth estimation feature map and the original image feature to complete the first feature
fusion using a 2D proposal network, and then, based on the original input and the point
cloud feature at the corresponding positions, completed the second feature fusion, thereby
achieving 3D object detection. Wang et al. [5] first proposed the pseudo-lidar method,
using networks such as DispNet [11] and PSMNet [12] for disparity estimation, and using
models such as AVOD [13] for detection. On this basis, You et al. [14] improved the model’s
architecture and loss function to improve the model’s detection performance on distant
objects. Cheap but sparse lidar sensors and depth propagation algorithms were used to
reduce the bias of depth estimation, further improving the detection effect of the model.
Ma et al. [4] compared the detection effects of three-channel form data and point cloud
form data. They found that the representation form of the data was not the decisive factor
in the detection effect; rather, the decisive factor was the coordinate conversion process
from the image to the three-dimensional space. When three channel features are processed
together with 2D convolution, the model can achieve the same detection effect as point-by-
point convolutional networks such as PointNet [15] and PointNet++ [16]. From this, the
authors concluded that coordinate transformation rather than point cloud representation is
the key to detection. The authors proposed the PatchNet model, which extracts features
using 2D convolution, foreground and background segmentation masks, and feature maxi-
mum pooling masks to better filter useful information, and achieved excellent detection
results. Garg et al. [17] researched the impact of discrete disparity distributions on object
detection and the problem of depth inconsistency that easily occurs at object boundaries
and proposed a disparity estimation method based on Wasserstein distance, which outputs
arbitrary discrete values during the disparity or depth estimation process. To improve
the accuracy and detection performance of the point cloud, Guo et al. [18] applied the
distillation model to stereo 3D object detection, using the features extracted by lidar in 3D
object detection as learning objects, and learned their feature representation and detection
results to improve detection accuracy. D. Pon et al. [1] proposed a frame-associated object-
centered stereo matching 2D detection algorithm that only performs disparity estimation
on the object of interest. Sun et al. [2] observed the disparity estimation accuracy problem
in low-texture areas or non-Lambertian surfaces and found that foreground objects occupy
less space than background objects; they performed 2D object detection and segmentation
on the images, and performed instance-level disparity estimation and 3D object detection
guided by class-specific object shape priors. Xu et al. [19] proposed an adaptive scaling
method that adjusts the size of the 2D instance bounding box to a unified resolution based
on 2D object detection and adjusts the camera parameters accordingly to better detect
objects at different distances and obtain high-quality disparity estimations.

Another idea is to perform stereo 3D object detection based on images. Qin et al. [20]
proposed the TLNet model, based on the triangulation principle, which constructs object-
level correspondence through 3D anchor boxes and regions of interest. At the same time, a
channel reweighting strategy weakens the impact of noise. Similarly, Li et al. [21] extended
Faster R-CNN [9] and used the idea of anchor boxes to perform 3D object detection. They
used anchor points to associate the bounding boxes on the left and right images and
proposed the Stereo R-CNN model. Coarse 3D bounding boxes are predicted via anchor
points and key points and refined via photometric alignment.

2.2. Feature Fusion Strategy for 3D Object Detection

Researchers have studied the problem of improving the 3D object detection perfor-
mance of multi-view or multi-modal information, and there are three main methods for
information fusion: (1) early fusion, where the fusion of data occurs before feature ex-
traction; (2) late fusion, where fusion is performed after extracting features from data of
different modalities or perspectives; (3) deep fusion, where features of different scales
are merged in the process of extracting features from image and point cloud data. Many
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researchers studied the important role of image information in point cloud-based detection
methods. For example, F-PointNet [6], proposed by R. Qi et al., first performs 2D detection
on the image and then uses the Frustum PointNet model based on the 2D detection results
to perform regression of the 3D object box.

Chen et al. [22] studied the problem where the model partially relies on manually
inputted features when generating 3D candidate boxes. They combined the top view and
front view of visual and lidar information, applied 2D convolution to generate 3D candidate
boxes, and proposed the MV3D model. The corresponding experiments were conducted
using three kinds of fusion methods. Ku et al. [13] were inspired by the MV3D model
and found that BEV and image views are sufficient to interpret the 3D space well. They
proposed the AVOD model, which removed the point cloud front-view processing branch
and used an FPN (feature pyramid network) [23] to extract features from images and point
clouds from top views, to crop out corresponding areas from the two feature maps, and to
conduct feature fusion. The proposed candidate boxes are fused again, and the detection
results are obtained. The model reduces the amount of calculations required while ensuring
estimation accuracy. Liang et al. [24] designed a continuous fusion layer and the ContFuse
method, using a deep parameter continuous convolution network to fuse multi-scale image
features into the multi-scale features of the BEV view and perform detection. Xie et al. [25]
found that fusion based on a point cloud from a top view and other perspectives will have
insufficient accuracy due to the corresponding ambiguity in the fusion process. Based on
ContFuse, the point coordinates of the BEV view were improved into the three-dimensional
space representation of the point. Using the image as additional information and using
the subnetwork for segmentation, the point cloud is projected onto the image to obtain the
segmentation result corresponding to the point cloud to obtain the semantic information
of the fused image, and, with the help of a learnable MLP (multi-layer perception), can
fuse the features of adjacent points to form an attention mechanism for adjacent features.
Huang et al. [7] improved the model based on Point R-CNN [26] and proposed the EPNet
model, which applied the additive attention mechanism to the deep fusion of features from
point cloud and image data to improve the fusion effect.

3. Methodology
3.1. Feature Attention Module

For feature fusion problems, researchers often use feature addition or concatenation to
design attention modules [7,27–29]. Since the importance of different features in the model
often differs in different tasks, using the attention mechanism to complete the feature fusion
process can make different features better adapted to the needs of the task. At the same
time, because the attention mechanism has the characteristic of interpretability, it can help
us analyze the necessity and function of different features in the application process so
as to form a deeper understanding of the problem and make reasonable improvements
and optimizations to the model. However, additive attention is more suitable for features
with the same semantic information. In 3D object detection problems, point cloud features
represent position information, and image features represent semantic features. The direct
addition of the two features will cause the position information to blur the semantic
information. Therefore, in this study, we designed a feature attention module, as shown in
Figure 2, and conducted research using three different models. The module performs linear
layer encoding on the original point cloud feature and image feature. After concatenating
them together, an added feature dimension is encoded to two by the linear layer. Finally,
the features are scaled with the result of the Softmax activation function. Thus, for each
point cloud or pixel, we can obtain the weight of the point cloud and the weight of image.
And, by weighing the pixel-by-pixel point cloud and image features of the research object,
obtaining a sum for the point cloud and image features, and dividing them by the number
of point clouds or the total number of pixels of the object, respectively, the feature weights of
the two parts expressed in numerical form can be obtained. And, we obtain an average for
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all the scenes in the dataset. In this way, the fusion process of the two parts of the problem
can be better analyzed and understood, and the model can be reasonably improved.

Figure 2. Structure of feature attention module.

3.2. Basic Model and Feature Fusion Method

PatchNet, proposed by Ma et al. [4], is a 3D object detection model in the form of pixel-
by-pixel correspondence splicing. The data are organized in the form of a three-channel
point cloud, as shown in Figure 3. The RGB and XYZ information are in a one-to-one
correspondence. PlainNet in PatchNet is a model that represents a network with equivalent
functions to the PointNet [15] network but in the form of 2D convolution. The model
performs feature extraction through the PlainNet network, and then uses the features
extracted by PlainNet to perform regression of the center point and bounding box through
the linear layer. This study performed late fusion of the model, that is, we used the ResNet
network to extract features from three-channel picture blocks. The extracted features are
concatenated with the point cloud features extracted by PlainNet in the bounding box
estimation stage, and then bounding box regression is performed, as shown in Figure 4. In
the bounding box regression step, we followed the work of Ma et al. [4]. Thus, we made
three heads with the same structure. They differed only in learned parameters for handling
the boxes of different distances. For the sequence of linear layers, the channel number
varied from 643 (512 for point cloud features, 128 for image features, 3 for categories) to
128. Finally, a linear layer changed the channel from 128 to the learnable parameter number
of the bounding box.

Because the image and point cloud data are in pixel-by-pixel correspondence form,
the fusion process of the PatchNet model [4] is more straightforward. However, for most
detection models, the data are mostly organized in the form of unordered point sets, not
in the three-channel form corresponding to the image. Among the 2D-3D methods, the
F-PointNet model [6] is representative and is the second model we leveraged to study
the fusion problem in this paper. It is based on the F-PointNet model in the framework
provided by Ma et al. [4]; the feature fusion process is shown in Figure 5.

Figure 3. Data in three channels.
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Figure 4. Feature fusion method of PatchNet.

Figure 5. Feature fusion method of Pseudo-Lidar F-PointNet.

The F-PointNet model has a module called foreground–background segmentation,
which classifies the point as either foreground or background. Then, the regression can be
carried out based on the classification results. Considering that the role of image semantics
may be more important in the foreground and background segmentation stage based on
point clouds, this module was chosen for feature fusion. In the data preparation stage,
the image within the bounding box and the corresponding coordinates of the point cloud
projected to the image are saved in the model’s read-in file along with the 2D bounding
box information. When the model is reading data, the image within the detection frame is
scaled into an image block of a specified size and the absolute coordinates corresponding
to the point cloud in the 2D bounding box are converted into relative coordinates within
the bounding box. For the conversion of the coordinates, specifically, we first use the
x-coordinate and y-coordinate of the pixel projected by the point cloud within the bounding
box, subtract the x-coordinate of left edge and y-coordinate of upper edge of the bounding
box, then measure the size of the bounding box, and then normalize the x-coordinate and
y-coordinate to [−1, 1]. With the result we obtained in the first two steps, we finally scale
the coordinate of each pixel within the bounding box to a new coordinate in the image block
through interpolation. Thus, the relative coordinates of the point cloud in the bounding box
are obtained. The corresponding pixels in the bounding box are sampled with the specified
number of sampling points (such as 1024). During the detection process, PointNet [15]
is used to extract features from point clouds, and ResNet [30] is used to extract features
from image blocks. The image features corresponding to the point cloud are found through
interpolation, and their features are spliced with the point cloud features to complete the
fusion process.

EPNet, proposed by Huang et al. [7], uses the image features and point cloud features
to perform deep fusion. It is based on the Point R-CNN [26] detection model. The deep
fusion method is shown in Figure 6. Four point set abstraction (SA) layers and four feature



Algorithms 2023, 16, 560 7 of 18

propagation (FP) layers are used to process the point cloud features. Convolution and
deconvolution are used to process the image feature. Fusion is performed after each layer
of SA and after the last layer of FP. The channel and size variation of the feature is shown
in Figure 6. The feature fusion process of the EPNet model is carried out within the entire
image, but it is designed for the fusion of the lidar point cloud and images. By projecting
the lidar data back to the image, we obtain the corresponding pixel features by bilinear
interpolation, and we fuse the image features with the point cloud point by point. The
EPNet model fuses the image features in the form of additive attention. This article refers
to the deep fusion method of the EPNet model and applies it to the problem of stereo 3D
object detection, but we carried out the feature fusion process with our feature attention
module, not with the additive attention.

Figure 6. Feature fusion method of Pseudo-Lidar EPNet.

3.3. The Usage of Feature Attention Module
3.3.1. Interpretability of Image Segmentation with the Feature Attention Module

Firstly, we used the feature attention module to study the weight distribution in
the feature fusion process. This was carried out to reasonably explain issues such as
the importance of features. In the research related to the interpretability of the attention
mechanism, the attention mechanism represents the importance of features to a certain
extent. By numericizing and visualizing the feature weights in the fusion, the feature fusion
problem can be better understood. The image-based segmentation method is not included
in the models compared in this article, but through our research process, we can reasonably
explain why the segmentation method is effective in the gain effect of the model.

3.3.2. Design of Category Reweighting Module

In this study, in the feature fusion process of the PL-FP (Pseudo-Lidar F-PointNet)
model [5,6], we found that although the feature fusion method helped improve the detection
performance, its segmentation accuracy in the foreground and background segmentation
module decreased. This may occur because, for the original design, without the help of
image features, the category feature was directly concatenated with the point cloud feature,
but for the feature fusion process, we did not use category information and only used point
clouds and image features. It is difficult to distinguish some categories from the used data
in some circumstances, such as a pedestrian and cyclist, so the accuracy of this module may
be reduced. Thus, we hope to try to explicitly apply the category information obtained
in 2D detection to enhance the difference in model weights during the object detection
of different categories. In the explicit use of category information in the original paper
of F-PointNet [6], the category information is presented in the form of one-hot vectors
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and is spliced and fused with the extracted point cloud features using one-dimensional
convolution during the foreground and background segmentation process. In our work,
we encoded the one-hot category vector with a linear layer and repeated the feature vector
according to the number of point clouds to form a feature with a shape of (B, C, N) (B
represents the number of batches, C represents the feature dimension, and N represents the
number of point clouds) where C is consistent with the image feature dimension C1. After
the feature weight analysis process, taking into account the important relationship between
the image features and the foreground area, we concatenated the image feature and point
cloud feature, and the dot product attention was used for the image–point cloud fusion
feature and the image feature. The detailed design of the reweighted module is shown
in Figure 7. Compared with the one-hot category feature directly concatenated with the
fusion feature, the accuracy of segmentation was improved.

Figure 7. Design of category reweighting module.

3.3.3. Parameter Optimization Strategy of the Global Fusion Method

In the process of solving 3D object detection problems using point cloud and image
feature fusion strategies, the different perspectives of correspondence features play an
important role that affects the detection effect [31,32]. Some models adopt the point cloud
form of a bird’s-eye view during the process of fusion with image features; it is easy to
produce fuzzy correspondence problems when using a front-view and bird’s-eye view
point cloud at the same time [13,31,32]. The AVOD model [13] is a typical work on the
fusion of point cloud and image features using the form of a bird’s-eye view. Another kind
of work is point-by-point corresponding point cloud models, such as Point R-CNN [26];
it has a natural one-to-one correspondence when fused with image features. However,
the density of binocular point clouds is far greater than that of lidar data. For this kind of
model, we directly used three-dimensional point cloud data, making the parameter amount
and calculation amount of the model relatively large. Adding image features increases the
calculation burden to a greater extent, so the model has deficiencies in terms of calculation
amount, flops, etc. In order to reduce the number of parameters and the computational
burden of the model, this research used the feature attention module to observe the feature
weights in the fusion process at each level of feature fusion based on the EPNet [7] model.
In the experimental process of hierarchical fusion, in addition to adjusting the parameter
amounts, by analyzing the feature weights and their fusion detection effects, we can obtain
a more in-depth understanding of the role of global and local image features in the fusion
process. The improvement using the feature fusion method model is significant.

4. Experiment
4.1. Dataset

This study mainly used KITTI’s 3D object detection dataset [33] to carry out experi-
ments. Following the protocol of prior works [1,2,4,5], this study used 3712 and 3769 sets
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of image data as the training set and validation set from the training data of KITTI’s 3D
object detection dataset and used the depth map generated by the PSMNet [12] model
provided in the work of Ma et al. [4] to generate a stereo point cloud through the coordinate
conversion formula.

4.2. PatchNet Local Fusion and Model Interpretability

This study used the depth estimation results obtained by the PSMNet model [12]
provided by Ma et al. [4] as the source of stereo point cloud data and trained 100 epochs
using the frame of the PatchNet model. The model used 0.001 as the initial learning rate,
which decayed at a rate of 0.1 at the 40th and 80th epochs. Because the late fusion method
has the most significant fusion effect, the feature attention module was inserted during the
late fusion process to observe the feature weights. The feature weights of the two parts
expressed in numerical form were obtained. The feature fusion method was explained
based on the weight and visualization results.

Referring to the official evaluation method of the KITTI dataset, the object to be
detected was divided into three difficulty levels (Easy, Moderate, and Difficult) based on
the size of the object to be detected in the image, degree of occlusion, etc. The Table 1
shows the detection accuracy of bird’s-eye view (BEV) perspective/3D view of the original
PatchNet model and PatchNet with late fusion.

Table 1. Detection results based on PatchNet.

Category
PatchNet PatchNet with Late Fusion

Easy Moderate Difficult Easy Moderate Difficult

Car 76.90/
68.44

53.00/
41.84

44.09/
33.90

76.39/
65.17

53.21/
41.35

42.92/
33.41

Pedestrian 40.11/
33.53

31.73/
26.13

26.30/
21.35

41.42/
36.19

32.90/
28.29

26.75/
23.14

Cyclist 40.38/
36.56

22.13/
20.02

20.43/
18.36

42.64/
36.83

23.93/
20.50

22.27/
18.97

With the comparison of detection based only on the point cloud and with late fusion
strategy, we can see that the detection of small objects (Pedestrian and Cyclist) has clearly
improved. After that, we calculated the weight of different features by using our feature
attention module; the results can be seen in Table 2.

Table 2. The weight of the feature attention module.

Category/Feature Point Cloud Image

Car 0.77 0.23
Pedestrian 0.73 0.27

Cyclist 0.68 0.31

We can see that the image feature weight of small objects was evidently higher than
that of cars. We then visualized the results. We made a figure to depict the feature weight
distribution (Figure 8). The red color represents the area where the point cloud has a
higher weight than the image, and the blue color represents the area where the image
weight is higher than that of the point cloud. We can see the two kinds of feature weight
distributions. The important image feature area is represented by the blue color, which
correlates with the position and contour of the objects in the image block. For small objects,
due to their small area in the image, the area and weight of the image features will be
relatively large. We analyzed the reason behind this phenomenon. Specifically, since the
objects must be detected and located by the point cloud feature, the main part of the objects
always has a higher point cloud weight. Given that the image can help us better locate
the object’s position in the image and distinguish the foreground and background area,
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the image feature occupies the background area, near the outline of the objects. And, as
discussed in Section 1 of this article, the gain effect of the image segmentation method
on 3D object detection can be discussed. The area and contour information of the object
obtained from images play an auxiliary role in 3D object detection, although we did not
make a segmentation for the image, the image feature tends to outline the object, and we
can understand that the image segmentation method can have an evident function in stereo
3D object detection, as confirmed by other works [1,2].

Figure 8. Fusion feature distribution map within image blocks.

4.3. Pseudo-Lidar F-PointNet Local Fusion and Improvement Strategy

In this part of the experiment, this study carried out feature fusion in the foreground
and background segmentation module of Pseudo-Lidar F-PointNet [5,6]. Based on the
fusion method described in Section 3.2, training was performed for 100 epochs, the model
used 0.001 as the initial learning rate which decayed at a rate of 0.1 at the 40th and
80th epochs, and we only compared with the model with the point cloud data; the experi-
ment results are shown in Table 3. We obtained the bird’s-eye view/3D detection accuracy
of the three categories. During the experiment, for each object to be detected, a total of
1024 points in the foreground and background were selected, of which 512 points were
sampled (downsampled or resampled) in the foreground area.

Table 3. Detection results based on Pseudo-Lidar F-PointNet.

Category
Pseudo-Lidar F-PointNet Pseudo-Lidar F-PointNet with Late Fusion

Easy Moderate Difficult Easy Moderate Difficult

Car 71.69/
57.58

47.77/
35.16

39.43/
29.19

75.06/
62.04

51.09/
38.30

43.82/
32.17

Pedestrian 43.63/
33.43

35.01/
25.65

29.37/
21.41

51.58/
42.67

41.55/
33.59

34.40/
27.83

Cyclist 48.31/
40.83

27.67/
23.28

25.60/
21.62

55.20/
47.49

31.03/
26.47

28.72/
24.33

For point cloud data in the form of pseudo-lidar, the feature fusion was performed in
the foreground–background segmentation module, and the detection effect was improved
to a greater extent. Our first guess for why this occurred is that it is related to the important
impact of image semantic information on the segmentation module. For the three categories,
the detection results were significantly improved. Similarly, for the segmentation module,
this study used the feature attention module to observe different feature weights within the
image block. We inserted it into the feature fusion module, obtained the sum of the weights
of two kinds of features, divided this by the number of the point cloud, and then obtained
the average of all the scenes in the dataset. The results are shown in Table 4. And, we
compared the distribution of features that are more important to the point cloud between
the two kinds of features. The distribution was visualized, as shown in Figure 9.

Table 4. The weight of feature attention module.

Category/Feature Point Cloud Image

Car 0.67 0.33
Pedestrian 0.79 0.21

Cyclist 0.81 0.19
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Figure 9. Feature distribution and map of foreground–background segmentation results. (a) Image
block, (b) Distribution map of point cloud and image, (c) Map of segmentation of foreground and
background point cloud, (d) Comparison in view1, (e) Comparison in view2, (f) Comparison in view3.

For the image block shown in Figure 9a, the area with a higher proportion of point
cloud and image features is shown in Figure 9b, where the points with a higher image
weight are colored, and the points with a higher point cloud weight are shown in white.
The foreground and background segmentation results from the ground truth are shown in
Figure 9c, where green represents the area segmented as foreground, and white represents
the area segmented as background. After comparing Figure 9b,c, we found that the area
with a higher proportion of image features shown in Figure 9b and the foreground result
of the foreground–background segmentation shown in Figure 9c show a similarities. The
area in Figure 9b,c is the location area automatically determined in the Cloud Compare
tool. Their similarities and differences can be observed from three different perspectives,
as shown in Figure 9d–f. It is conjectured that there is a correlation between the weight
of image features and the foreground point clouds in the foreground and background
segmentation. So, the proportion of foreground point cloud was also counted. Specifically,
we divided the number of foreground point clouds by the total number of point clouds.
The results are shown in Table 5.

Table 5. Feature weight and proportion of foreground point clouds.

Category/Feature Point Cloud Image Proportion of Foreground
Point Cloud

Car 0.67 0.33 0.38
Pedestrian 0.79 0.21 0.32

Cyclist 0.81 0.19 0.24

We found that the proportion of the point cloud number in the ground-true foreground
area among the 1024 points is relatively consistent with the proportion of image features with
higher weights. Because the foreground area is an important research object in the detection
process, according to the heuristic experience, we counted the point cloud weight and image
weight in the foreground point cloud. Specifically, within the point cloud in the foreground area,
there were point clouds with a higher point cloud weight and higher image weight. By counting
the proportion of points with higher point cloud weights and image weights in the ground-true
foreground point cloud (Table 6), we found that the image features account for a relatively high
proportion in the foreground area, especially for small objects, which also confirms that image
features play an important role in the foreground and background segmentation module.

On the other hand, we found that although the detection accuracy was improved
with the help of the fusion method, the segmentation accuracy of the foreground and
background segmentation module decreased. Combining the existing experimental results,
we concluded that the lack of category information in the fusion process was the cause of
this significant result.
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Table 6. The higher weight proportion of point cloud and image features in the foreground point cloud.

Category/Feature Point Cloud Image

Car 0.54 0.56
Pedestrian 0.24 0.76

Cyclist 0.19 0.81

This conclusion can be understood through the problem shown in Figure 10. As shown
in Figure 10, since the pedestrians in Figure 10a partially overlap with many bicycles, the
foreground and background segmentation effectiveness becomes worse. In the process of
foreground and background segmentation of objects using only feature fusion methods,
the lack of category information leads to deficiencies in the foreground and background
segmentation stage. The ground-true segmentation result is shown in Figure 10c, and the
segmentation result after feature fusion is shown in Figure 10d where white represents the
background point cloud, green represents the foreground point cloud, and red represents
the misjudged point cloud. We can see that this method makes the segmentation results in
this situation very inaccurate, so that the regression effect of the 3D box was also obviously
different from the real one. Using the category reweighting method proposed in this article,
inspired by the important role of image features (structure shown in Figure 7), we can
achieve better results, as shown in Figure 10e. At the same time, we used PSMNet [12] and
GANet [34] as models to finish the disparity estimation and generate point cloud data. We
compared the segmentation and detection accuracy of different methods, and the way in
which category vectors were directly concatenated with fused features. We used the small
object as the research object, as shown in Tables 7–10.

Figure 10. Comparison of segmentation effects of different fusion methods. (a) The object to be
detected, (b) Image block, (c) The ground-truth of segmenation, (d) The segmentation result of fusion
method, (e) The segmentation result of category reweighing strategy.

Table 7. Comparison of different fusion methods (PSMNet-Pedestrian).

Method
Segmentation

Accuracy

Detection Accuracy

Point Cloud Image Category
Vector

Reweighting
Module Easy Moderate Difficult

√ √
0.851 33.43 25.65 21.41√ √
0.840 42.67 33.59 27.83√ √ √
0.841 37.14 29.21 23.95√ √ √ √
0.851 44.18 34.97 29.05
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Table 8. Comparison of different fusion methods (PSMNet-Cyclist).

Method
Segmentation

Accuracy

Detection Accuracy

Point Cloud Image Category
Vector

Reweighting
Module Easy Moderate Difficult

√ √
0.851 40.83 23.28 21.62√ √
0.840 47.49 26.47 24.33√ √ √
0.841 46.61 25.74 23.50√ √ √ √
0.851 47.88 25.22 23.46

Table 9. Comparison of different fusion methods (GANet-Pedestrian).

Method
Segmentation

Accuracy

Detection Accuracy

Point Cloud Image Category
Vector

Reweighting
Module Easy Moderate Difficult

√ √
0.843 48.46 26.96 25.15√ √
0.830 48.56 26.86 25.24√ √ √
0.829 51.58 28.28 26.25√ √ √ √
0.841 50.24 27.58 25.61

Table 10. Comparison of different fusion methods (GANet-Cyclist).

Method
Segmentation

Accuracy

Detection Accuracy

Point Cloud Image Category
Vector

Reweighting
Module Easy Moderate Difficult

√ √
0.843 31.41 24.58 19.86√ √
0.830 44.98 34.56 28.59√ √ √
0.829 40.09 31.23 25.58√ √ √ √
0.841 44.33 34.57 28.85

We can see that, with the point cloud obtained from PSMNet [12] and GANet [34], the
accuracy of segmentation accuracy was improved with our method, and it obtained a good
detection performance in most circumstances. The fusion method of directly concatenating
with the category vector has an evident disadvantage in pedestrian detection, and the
fusion with the reweighting module has better results than the method of feature fusion
without the category vector. We compared the detection accuracy results with the other
method for stereo object detection without the aid of lidar. Following other works, we
used PSMNet [12] as our disparity estimation model to generate the point cloud. We
were able to obtain a comparable effect for small objects. In addition, we made the point
cloud–image fusion and image segmentation strategy optional in the method, and only
referred to the method with image segmentation, as it’s shown in Tables 11 and 12. We
can see from the table that, although the reproduction result of PL-FP in our work had a
lower detection accuracy compared with the original paper, our feature fusion method can
achieve a good result compared with the other methods. For the pedestrian category, our
method outperformed all the other methods in the comparison, even the methods using
image segmentation.

Table 11. Comparison of the detection performance of different methods (pedestrian).

Method Easy Moderate Difficult Fusion Image
Segmentation

Method
Type

PSMNet + AVOD
[5,13] 27.39 26.00 20.72 Y N 3D

DSGN [35] 36.84 31.42 27.55 N N 3D



Algorithms 2023, 16, 560 14 of 18

Table 11. Cont.

Method Easy Moderate Difficult Fusion Image
Segmentation

Method
Type

PL-FP [5,6] (original
paper) 33.80 27.40 24.00 N N 2D-3D

PL-FP [5,6] (this
paper) 33.43 25.65 21.41 N N 2D-3D

Ours 44.18 34.97 29.05 Y N 2D-3D

OC-Stereo [1] 34.80 29.05 28.06 N Y 2D-3D
Disp-RCNN [2] 40.43 33.03 27.05 N Y 2D-3D

Table 12. Comparison of the detection effect of different methods (cyclist).

Method Easy Moderate Difficult Fusion Image
Segmentation

Method
Type

PSMNet + AVOD
[5,13] 35.88 22.78 21.94 Y N 3D

DSGN [35] 35.39 23.16 22.29 N N 3D
PL-FP [5,6] (original

paper) 41.30 25.20 24.90 N N 2D-3D

PL-FP [5,6] (this
paper) 40.83 23.28 21.62 N N 2D-3D

Ours 45.88 25.22 23.46 Y N 2D-3D

OC-Stereo [1] 45.59 25.93 24.62 N Y 2D-3D
Disp-RCNN [2] 55.98 33.46 29.51 N Y 2D-3D

4.4. Pseudo-Lidar EPNet Global Fusion and Model Compression Strategy

In this part of the experiment, we used the depth map obtained from the work of
Ma et al. [4] to generate the point cloud of the whole scene. Based on the EPNet model
proposed by Huang et al. [7], 80 epochs were trained with a learning rate of 0.002. We used
the pedestrian as the research object. Firstly, the feature attention fusion method proposed in
this article was compared with the detection without fusion and the detection using additive
attention fusion, i.e., PL Point R-CNN [26] and PL EPNet [7], as it’s shown in Table 13. We
were able to obtain a better result with the feature attention fusion method of this article.

Table 13. Comparison of different detection methods (pedestrian).

Method Easy Moderate Difficult

PL Point R-CNN [26] 46.12 36.59 30.35
PL EPNet [7] 49.56 40.01 33.60

Ours 50.50 40.91 34.68

We then compared the results with other models without the aid of lidar, and only
referred to the method with image segmentation. Our model outperformed all the other
methods in the comparison (Table 14).

Table 14. Comparison of different detection methods (pedestrian).

Method Easy Moderate Difficult Fusion Image
Segmentation

Method
Type

PSMNet + AVOD
[5,13] 27.39 26.00 20.72 Y N 3D

DSGN [35] 36.84 31.42 27.55 N N 3D
PL-FP [5,6] 33.80 27.40 24.00 N N 2D-3D

Ours 50.50 40.91 34.68 Y N 3D

OC-Stereo [1] 34.80 29.05 28.06 N Y 2D-3D
Disp-RCNN [2] 40.43 33.03 27.05 N Y 2D-3D
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Then, we used our feature attention module to observe two feature weights at different
fusion levels. The feature weight distribution results are shown in the Table 15.

Table 15. Feature attention weight of different fusion layers.

Layer Point Cloud Image

The feature immediately following the 0th layer of the SA module 0.914 0.086
The feature immediately following the 1st layer of the SA module 0.999 0.001
The feature immediately following the 2nd layer of the SA module 0.999 0.001
The feature immediately following the 3rd layer of the SA module 0.001 0.999
The feature immediately following the last layer of the FP module 0.839 0.161

We found that for the pedestrian category, the image features occupy a greater weight
on the feature immediately following the third layer of the SA module, while the point
cloud features occupy the main weight on other levels. The image features occupy a certain
weight on the feature after zeroth layer of the SA module and after the last layer of the
FP module. Then, we visualized the feature map of the layer which has image features
with the main weight and certain weight, as shown in Figure 11. We were able to find
that the feature immediately following the zeroth layer of the SA module and the feature
immediately following the last layer of the FP module presented the local features of the
image, while the feature immediately following the third layer of the SA module presented
the global features of the image.

Figure 11. Feature map of different layers. (a) image, (b) the feature immediately following the 0th
layer of the SA module, (c) the feature immediately following the 3rd layer of the SA module, (d) the
feature immediately following the last layer of the FP module.

Since this method has disadvantages in terms of model parameters and calculation
amount, this study used the obtained feature weights and referred to some existing meth-
ods [36,37] of channel pruning using attention mechanisms to perform fusion of different
layers. We performed feature selection for the model with the help of our module. The
problem was subjected to an ablation study; the results are shown in Table 16.

Table 16. Comparison of the precision and recall for the fusion of different layers.

Num
Fusion Layer Precision

Recall Parameter Flops
NOT SA0 SA1 SA2 SA3 FP Easy Moderate Difficult

1
√

46.12 36.59 30.35 0.512 3.01 M 6884 M
2

√ √
45.16 36.97 31.14 0.513 11.11 M 53,657 M

3
√ √ √

48.20 38.74 32.70 0.513 13.54 M 123,3136 M
4

√ √ √ √ √
50.50 40.91 34.68 0.520 13.96 M 123,3304 M

5
√

48.66 38.50 32.14 0.488 11.09 M 53,602 M
6

√ √
47.17 37.67 31.65 0.531 13.53 M 123,3080 M

We can see that with the increase in fusion levels, the detection accuracy was improved
to a certain extent. Through the comparison of number 1 and number 5, we can see that
the global feature had an evident effect on the increase in detection accuracy and had little



Algorithms 2023, 16, 560 16 of 18

effect on recall, so we can infer that the global feature is mainly helpful for the problem of
false detections. Through the comparison of number 5 and number 6, we can see that the
local feature was helpful in improving the recall, that is, the local feature has an effect on the
problem of missed detections. With the change in fusion level, the number of parameters
and flops of the model were improved to varying degrees, and the corresponding fusion
method can be selected according to actual needs.

5. Conclusions

This study proposes a novel feature attention module designed specifically to address
the challenge of stereo 3D object detection. Our proposed methodology leverages a con-
catenated attention module, enabling an in-depth analysis of feature significance during
the fusion process. This analysis, in turn, empowers us to enhance the model based on
the derived insights. Within this work, we explored both local and global feature fusion
strategies. Within the local fusion methodology, we conducted an interpretability analysis
of the image segmentation method and introduced a category reweighting fusion strategy.
On the other hand, our global fusion approach encompassed a model compression strategy
along with an analysis discerning the functionality of global and local features. The culmi-
nation of these methodologies results in our method achieving a competitive performance
for stereo 3D object detection tasks.
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