
Citation: Espada, J.; Francisco, A.P.;

Rocher, T.; Russo, L.M.S.; Vaz, C.

On Finding Optimal (Dynamic)

Arborescences. Algorithms 2023, 16,

559. https://doi.org/10.3390/

a16120559

Academic Editor: Roberto

Montemanni

Received: 4 November 2023

Revised: 1 December 2023

Accepted: 2 December 2023

Published: 6 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

On Finding Optimal (Dynamic) Arborescences
Joaquim Espada 1,2, Alexandre P. Francisco 1,2,* , Tatiana Rocher 1, Luís M. S. Russo 1,2 and Cátia Vaz 1,3

1 Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa (INESC-ID),
1000-029 Lisboa, Portugal; espadas.joaquim@gmail.com (J.E.); tatiana.rocher@gmail.com (T.R.);
luis.russo@tecnico.ulisboa.pt (L.M.S.R.); cvaz@cc.isel.ipl.pt (C.V.)

2 Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
3 Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisboa, Portugal
* Correspondence: aplf@tecnico.ulisboa.pt

Abstract: Let G = (V, E) be a directed and weighted graph with a vertex set V of size n and an edge
set E of size m such that each edge (u, v) ∈ E has a real-valued weight w(u, c). An arborescence
in G is a subgraph T = (V, E′) such that, for a vertex u ∈ V, which is the root, there is a unique
path in T from u to any other vertex v ∈ V. The weight of T is the sum of the weights of its edges.
In this paper, given G, we are interested in finding an arborescence in G with a minimum weight,
i.e., an optimal arborescence. Furthermore, when G is subject to changes, namely, edge insertions
and deletions, we are interested in efficiently maintaining a dynamic arborescence in G. This is a
well-known problem with applications in several domains such as network design optimization
and phylogenetic inference. In this paper, we revisit the algorithmic ideas proposed by several
authors for this problem. We provide detailed pseudocode, as well as implementation details, and
we present experimental results regarding large scale-free networks and phylogenetic inference. Our
implementation is publicly available.

Keywords: optimal arborescences; Edmonds’ algorithm; dynamic algorithm; algorithm engineering

1. Introduction

The problem of finding an optimal arborescence in directed and weighted graphs is one
of the fundamental problems in graph theory, and it has several practical applications. It has
been found in modeling broadcasting [1], network design optimization [2], and subroutines
to approximate other problems—such as the traveling salesman problem [3]–and it is also
closely related to the Steiner problem [4]. Arborescences are also found in multiple cluster-
ing problems, from taxonomy to handwriting recognition and image segmentation [5]. In
phylogenetics, optimal arborescences are useful representations of probable phylogenetic
trees [6,7].

Chu and Liu [8], Edmonds [9], and Bock [10] independently proposed a polynomial
time algorithm for the static version of this problem. The algorithm by Edmonds relies on a
contraction phase followed by an expansion phase. A faster version of Edmonds’ algorithm
was proposed by Tarjan [11], which runs in O(m log n) time. Camerini et al. [12] corrected
the algorithm proposed by Tarjan, namely, they corrected the expansion procedure. The
fastest known algorithm was proposed later by Gabow et al. [13], with improvements
in the contraction phase and the capacity to run in O(n log n + m) time. Fischetti and
Toth [14] also addressed this problem restricted to complete directed graphs by relying on
the Edmonds’ algorithm. The algorithms proposed by Tarjan, Camerini et al., and Gabow
et al., rely on elaborated constructions and advanced data structures, namely, for efficiently
keeping mergeable heaps and disjoint sets.

As stated by Aho et al. [15], “efforts must be made to ensure that promising algorithms
discovered by the theory community are implemented, tested and refined to the point
where they can be usefully applied in practice.” The transference of algorithmic ideas

Algorithms 2023, 16, 559. https://doi.org/10.3390/a16120559 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16120559
https://doi.org/10.3390/a16120559
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-4852-1641
https://doi.org/10.3390/a16120559
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16120559?type=check_update&version=2

Algorithms 2023, 16, 559 2 of 27

and results from algorithm theory to practical applications can be, however, considerable,
especially when dealing with elaborated constructions and data structures, which present
well-known challenges in algorithm engineering [16].

Although there are practical implementations of the Edmonds’ algorithm, such as
the implementation by Tofigh and Sjölund [17] or the implementation in NetworkX [18],
most of them neglect these elaborated constructions. Even though the Tarjan version is
mentioned in the implementation by Tofigh and Sjölund, they state in the source code that
its implementation is left to be done. An experimental evaluation is also not provided,
together with most of these implementations. Only recently, Espada [19] and Böther
et al. [20] provided and tested efficient implementations, thereby taking into account
more elaborated constructions. We highlight in particular the experimental evaluation by
Böther et al. with respect to the use of different mergeable heap implementations and their
conclusions pointing out that the Tarjan version is the most competitive in practice.

These experimental results are for the static version. As far as we know, only Pollatos,
Telelis, and Zissimopoulos [21] studied the dynamic version of the problem of finding
optimal arborecences. Although Pollatos et al. provided experimental results, they did not
provide implementation details nor, as far as we know, a publicly available implementation.
Their results point out that the dynamic algorithm is particularly interesting for sparse
graphs, as is the case for most real networks, which are, in general, scale-free graphs [22].

In this paper, we present detailed pseudocode and a practical implementation of
Edmonds’ algorithm taking into account the construction by Tarjan [11] and the correction
by Camerini [12]. Based on this implementation, and on the ideas by Pollatos et al., we also
present an implementation for the dynamic version of the problem. As far as we know,
this is the first practical and publicly available implementation for dynamic directed and
weighted graphs using this construction. Moreover, we provide generic implementations in
the sense that a generic comparator is given as a parameter, and, hence, we are not restricted
to weighted graphs; we can find the optimal arborescence on any graph equipped with a
total order on the set of edges. We also provide experimental results of our implementation
for large scale-free networks and in phylogenetic inference use cases, thereby detailing
the design choices and the impacts of the used data structures. Our implementation
is publicly available at https://gitlab.com/espadas/optimal-arborescences (accessed on
4 November 2023).

The rest of this paper is organized as follows. In Section 2, we introduce the problem
of finding optimal arborescences, and we describe both the Edmonds’ algorithm and the
Tarjan algorithm, including the correction by Camerini et al. In Section 3, we present the
dynamic version of the problem and the studied algorithm. We provide the implementation
details and data structure design choices in Section 4. Finally, we present and discuss the
experimental results in Section 5.

2. Optimal Arborescences

Both the Edmonds’ and Tarjan algorithms proceed in two phases: a contraction phase
followed by an expansion phase. The contraction phase then maintains a set of candidate
edges for the optimal arborescence under construction. This set is empty in the beginning.
As this phase proceeds, selected edges may form cycles, which are contracted to form super
vertices. The contraction phase ends when no contraction is possible, and all the vertices
have been processed. In the expansion phase, super vertices are expended in the reverse
order of their contraction, and one edge is discarded per cycle to form the arborescence
of the original graph. The main difference between both algorithms is with respect to the
contraction phase.

https://gitlab.com/espadas/optimal-arborescences

Algorithms 2023, 16, 559 3 of 27

2.1. Edmonds’ Algorithm

Let G = (V, E) be a directed and weighted graph with a vertex set V of size n and an
edge set E of size m such that each edge (u, v) ∈ E has a real-valued weight w(u, v). Let
each contraction mark the end of an iteration of the algorithm, and, for iteration i, let Gi
denote the graph at that iteration, let Di be the set of selected vertices in iteration i, let Ei
be the set of selected edge incidents regarding the selected vertices, and let Qi be the cycle
formed by the edges in Ei, if any come to exist.

The algorithm starts with G0 = G, Di, and Ei being initialized as empty sets, and Qi is
initialized as an empty graph for all the iterations i.

2.1.1. Contraction Phase

The algorithm proceeds by selecting vertices in Gi, which are not yet in Di. If such a
vertex exists, then it is added to Di, and the minimum weight incident edge on it is added
to Ei. The algorithm stops if either a cycle is formed in Ei or if all the vertices of Gi are in Di.

If Ei holds a cycle, then we add the edges forming the cycle to Qi, and we build a new
graph Gi+1 from Gi, where the vertices in the cycle are contracted into a single super vertex
vi+1. The edges (u, v) ∈ Gi are added to Gi+1 and updated as follows:

1. Loop edge removal: If u, v ∈ Qi, then (u, v) /∈ Gi+1.
2. Unmodified edge preservation: If u, v /∈ Qi, then (u, v) ∈ Gi+1.
3. Edges originating from the new vertex: If u ∈ Qi ∧ v, /∈ Qi, then (vi+1, v) ∈ Gi+1.
4. Edges incident to the new vertex: If u /∈ Qi ∧ v ∈ Qi, then (u, vi+1) ∈ Gi+1, and

w(u, vi+1) = w(u, v) + σQi − w(u′, v).

Here, w(u, vi+1) is the weight of the edge (u, vi+1) in Gi+1, w(u, v) is the weight of
(u, v) in Gi, σQi denotes the maximum edge weight in the cycle Qi, and w(u′, v) is the
weight of the edge in the cycle incident to vertex v. After the weights are updated, the
algorithm continues the contraction phase with the next iteration i + 1.

The contraction phase ends when there are no more vertices to be selected in Gi for
some iteration i.

2.1.2. Expansion Phase

The final content of Ei holds an arborescence for the graph Gi. Let H denote a subgraph
formed by the edges of Ei. For every contracted cycle Qi, we add to H all the cycle edges
except one. If the contracted cycle is a root of H, we discard the cycle edge with the
maximum weight. If the contracted cycle is not a root of H, we discard the cycle edge that
shares the same destination as an edge currently in H. The algorithm proceeds in reverse
with respect to the contraction phase, thus examining the graph Gi−1 and the cycle Qi−1.
This process continues until all contractions are undone, and H is the final arborescence.

2.1.3. Illustrative Example

Let us consider the graph in Figure 1a. Let the input graph be denoted by G0. In
Figure 1b, the minimum weight incident edges in every vertex of G0 are colored in red;
those edges are added: E0 = {(2, 0), (3, 1), (3, 2), (2, 4), (5, 3), (4, 6), (6, 7)}. The green edges
in Figure 1c form a cycle and are added to Q0 = {(3, 2), (2, 4), (4, 5), (5, 3)}. The cycle Q0
must then be contracted. The maximum weight edge in Q0 is the edge (4, 5), and σQ0 = 9.

In Figure 2a, it is shown the contracted version of G0, which is named G1, with the
reduced costs already computed. In Figure 2b, the minimum weight incident edges are
highlighted in red, and they are added to E1 = {(C, 0), (C, 1), (C, 6), (7, C), (6, 7)}. In
Figure 2c, the cycle Q1 = {(C, 6), (6, 7), (7, C)} is marked in green, and it will be contracted.
The maximum weight edge of Q1 is edge (C, 6), and σQ1 = 12.

Algorithms 2023, 16, 559 4 of 27

0

1

2

3

4

5

6

7

15

11

5

6

3

13
2

10

12

9

7

8

1
4

(a)

0

1

2

3

4

5

6

7

15

11

5

6

3

13
2

10

12

9

7

8

1
4

(b)

0

1

2

3

4

5

6

7

15

11

5

6

3

13
2

10

12

9

7

8

1
4

(c)

Figure 1. Identification of the cycle Q0 in G0. (a) Input weighted directed graph. (b) Minimum weight
incident edges in every vertex of graph G0, which are colored in red. (c) Cycle in G0 colored in green.

0

1

C

6

7

11

12

13

15

12

8

10

1
10

0

1

C

6

7

11

12

13

15

12

8

10

1
10

(a) (b)

Figure 2. Cont.

Algorithms 2023, 16, 559 5 of 27

0

1

C

6

7

11

12

13

15

12

8

10

1
10

(c)

Figure 2. Contraction of cycle Q0 and identification of cycle Q1. (a) Contracted version of graph G0,
which is named G1. (b) Minimum weight incident edges in every vertex of graph G1. (c) Cycle Q1 in
graph G1 colored in green.

The contracted version of G1, which is named G2, is presented in Figure 3a. The
minimum weight incident edges in every vertex of G2 are marked in red in Figure 3b, and
they are added to E2 = {(0, C′), (C′, 0), (C′, 1)}. E2 has a cycle, Q2 = {(0, C′), (C′, 0)}, that
is colored in green in Figure 3c. This cycle must be also contracted. The maximum weight
edge of Q2 is edge (0, C′), and σQ2 = 15.

0

1

C ′11

14

15

15

10

0

1

C ′11

14

15

15

10

0

1

C ′11

14

15

15

10

(a) (b) (c)

Figure 3. Contraction of cycle Q1 and identification of cycle Q2. (a) Contracted version of G1, which
is named G2. (b) Minimum weight incident edges in G2. (c) Cycle in G2 colored in green.

Since E2 contains a cycle, a contraction is required, and we obtain the graph G3 in
Figure 4a. The minimum incident edges in G3 are marked in red in Figure 4b, and they are
added to E3 = {(1, C′′), (C′′, 1)}. Note that E3 contains another cycle: Q3 = {(1, C′′), (C′′, 1)}.
The maximum weight edge present in Q3 is (1, C′′), and σQ3 = 16. A final contraction of cycle
Q3 is required, thus leading to G4 with a single vertex, which is shown in Figure 4d. In this
last iteration, we have E4 = ∅ and Q4 = ∅, thereby ending the contraction phase.

1

C ′′16

11

10 1

C ′′16

11

10 1

C ′′16

11

10 C ′′′

(a) (b) (c) (d)

Figure 4. Contraction of Q2, identification of Q3, and final graph G4 after Q3 contraction. (a) Contracted
version of G2, which is named G3. (b) Minimum weight incident edges in G3. (c) Cycle Q3 in G3 colored
in green. (d) G4.

The expansion phase expands the cycles formed in reverse order by kicking out one
edge per cycle. The removed edges are presented as dashed edges. Let H = E4, and let the

Algorithms 2023, 16, 559 6 of 27

decrement be i. Vertex C′′′ is a root of H, since there is no edge directed towards C′′′. In
this case, every edge of Q3 is added to H except the maximum weight edge of the cycle,
as shown in Figure 5a. In iteration i = 2, note that H = {(C′, 1)}, and vertex C′ is a root;
therefore, every edge from Q2 must be added to H except the maximum weight edge (C′, 0).
In the next iteration, i = 1, vertex C is not a root of H, since edge (0, C) ∈ H. In this case,
we add every edge from Q1 except the ones that share the destination with the edges in H,
as illustrated in Figure 5c. Regarding the final expansion, H = {(0, C), (C, 1), (C, 6), (6, 1)}
implies that C is not a root. Every edge in Q0 = {(3, 2), (2, 4), (4, 5), (5, 3)} except edge
(3, 2) is added to H. The optimal arborescence of G0 is shown in Figure 5d.

1

C ′′16

10 1

0

C ′

14

10

15

(a) (b)

0

1

C

6

7

12 12

10

1

10

(c)

0

1

2

3

4

5

6

7

5

10

2

3

9

7

12

1

(d)

Figure 5. Expansion phase and optimal arborescence. (a) Expansion subgraph H for iteration
i = 3. (b) Expansion subgraph H for iteration i = 2. (c) Expansion subgraph H for iteration i = 1.
(d) Expansion subgraph H for iteration i = 0.

2.2. Tarjan Algorithm

The algorithm proposed by Tarjan [11] is built on the Edmonds’ algorithm, but it
relies on advanced data structures to become more efficient, particularly in the contraction
phase. The algorithm builds in this phase a subgraph H = (V, E′) of G = (V, E) such
that H contains the selected edges. The optimum arborescence could then be extracted
from H through a depth-first search, thereby taking into account Lemma 2 in the Tarjan
paper [11]. This lemma states that there is always a simple path in H from any vertex u in
a root that is a strongly connected component S to any vertex v in the weakly connected
component containing S. Camerini et al. [12], however, provided a counterexample for this
construction, and they proposed a correction that relies on an auxiliary forest F, which we
discuss below.

The algorithm by Tarjan keeps track of weakly and strongly connected components
in G, as well as nonexamined edges entering each strongly connected component. The

Algorithms 2023, 16, 559 7 of 27

bookkeeping mechanism used the union–find data structure [23] to maintain disjoint sets.
Let SFIND, SUNION, and SMAKE-SET denote operations on strongly connected components,
and let WMAKE-SET, WFIND, and WUNION denote operations on weakly connected compo-
nents. Find operations find the component where a given vertex lies in; union operations
merge two components together, and make-set operations initialize the singleton compo-
nents for each vertex. Nonexamined edges are kept through a collection of priority queues,
which are implemented as mergeable heaps. Let MELD, EXTRACT-MIN, and INIT denote the
operations on heaps, where the meld operation makes it possible to merge two heaps, the
extract-min makes it possible to obtain and remove the minimum weight element, and the
initialization operation makes it possible to initialize a heap from a list of elements. We also
consider the SADD-WEIGHT operation, which adds a constant weight to all the edge incidents
on a given strongly connected component in constant time. Note that edge incidents on a
given strongly connected component are maintained in a priority queue, where they are
compared taking into account its weight and the constant weight added to that strongly
connected component.

The correction proposed by Camarini et al. requires us then to maintain a forest F and
a set rset that holds the roots of the optimal arborescence, i.e., it holds the vertices without
incident edges. Each node of forest F has an associated edge of G, a parent node, and a list
of children.

2.2.1. Initialization

The data structures are initialized as follows. queues is an array of heaps, which is
initialized with an heap for each vertex v containing incident edges on v. roots is the list of
vertices to be processed, which is initialized as V. The forest F is initialized as empty, as well
as the set rset. Four auxiliary arrays are also needed to build F and the optimal arborescence,
namely, inEdgeNode—that for each vertex v stores a node of F associated with the minimum
weight edge incident in v, π—that stores the leaf nodes of F, cycleEdgeNode—that stores for
each representative cycle vertex v the list of cycle edge nodes in F, and max—that stores for
each strongly connected component the target of the maximum weight edge. These data
structures are initialized as detailed in Algorithm 1.

Algorithm 1 Initialization of Tarjan algorithm.

roots← ∅ . Set of vertices to process.
for each v ∈ V do

queues[v]← INIT(v, L[v]) . L[v] refers to the list of edges incident in v.
SMAKE-SET(v), WMAKE-SET(v)
roots← roots∪ {v}
max[v]← v
inEdgeNode[v]← null
π[v]← null
cycleEdgeNode[v]← ∅

end for
F ← ∅
rset← ∅

2.2.2. Contraction Phase

The contraction phase proceeds while roots 6= ∅ as follows; the while loop body is
detailed in Algorithms 2–4. It pops a vertex r from roots, and it verifies if there are incident
edges in r such that they do not belong to a contracted strongly connected component. If
there are such edges, then it extracts the one with minimum weight; otherwise, it stops and
it continues with another vertex in roots. See Algorithm 2 for the detailed pseudocode.

Algorithms 2023, 16, 559 8 of 27

Algorithm 2 Main loop body of the contraction phase.

r ← POP(roots)
if queues[r] 6= ∅ then

(u, r)← EXTRACT-MIN(queues[r])
while queues[r] 6= ∅ and SFIND(u) = SFIND(r) do

(u, r)← EXTRACT-MIN(queues[r])
end while
if SFIND(u) = SFIND(r) then

rset← rset∪ {r}
continue

end if
else

rset← rset∪ {r}
continue

end if

Once an incident edge on r is found that does not lie within a strongly connected
component, i.e., that is incident on a contracted strongly connected component, we must
update forest F. Hence, we create a new node minNodeF in forest F that is associated with
edge (u, r). If r is not part of a strongly connected component, i.e., r is not part of a cycle,
then minNodeF becomes a leaf of F. Otherwise, F must be updated by making minNodeF
a parent of the trees of F that are part of the strongly connected component. Algorithm 3
details this updating of forest F.

Algorithm 3 Continuation of the main loop body of the contraction phase.

Create the node minNodeF in forest F associated with the edge (u, r)
if cycleEdgeNode[r] = ∅ then

π[r]← minNodeF
else

for each n ∈ cycleEdgeNode[r] do
PARENT(n)← minNodeF
CHILDREN(minNodeF)← CHILDREN(minNodeF) ∪ {n}

end for
end if

The next step is to verify if (u, r) forms a cycle with the minimum weight edges
formerly selected. It is enough to check if (u, r) connects the vertices in the same weakly
connected components. Note that (u, r) is incident on a root and, if u lies in the same
weakly connected component as r, then adding (u, r) necessarily forms a cycle. Assuming
that adding (u, r) does not form a cycle, we perform the union of the sets representing
the two weakly connected components to which u and r belong, i.e., WUNION(u, r). We also
update the inEdgeNode[r] array, as r now has an incident edge selected.

If adding (u, r) forms a cycle, a contraction is performed. The contraction procedure
starts firstly by finding the edges involved in the cycle by using a backward depth-first
search. During this process, a map is initialized, where the edge is associated to its F node
(the map key). Then the maximum weight edge in the cycle is found, the reduced costs
are computed, and the weight of the edges is updated. Note that the min-heap property
is always maintained when reducing the costs without running any kind of procedure to
ensure it, since the constant reduced is added to every edge in a given priority queue. The
arrays inEdgeNode and cycleEdgeNode are updated, and the heaps involved in the cycle are
merged. See Algorithm 4 for detailed pseudocode.

Algorithms 2023, 16, 559 9 of 27

Algorithm 4 Continuation of the main loop body of the contraction phase.

if WFIND(u) 6= WFIND(r) then
inEdgeNode[r]← minNodeF
WUNION(u, r)

else
inEdgeNode[r]← null
cycle← {minNodeF}
Let map denote a map.
map[minNodeF]← (u, r)
u← SFIND(u)
while inEdgeNode[u] 6= null do

cycle← cycle∪ {inEdgeNode[u]}
(v, u)← EDGE(inEdgeNode[u])
map[inEdgeNode[u]]← (v, u)
u← SFIND(v)

end while
Let σ denote the weight of the maximum weight edge (uσ, vσ) in cycle.
rep← SFIND(vσ)
for each node n ∈ cycle do

cost← σ− w(map[n])
(u, v)← EDGE(n)
SADD-WEIGHT(v, cost)
cycleEdgeNode[SFIND(v)]← cycleEdgeNode[SFIND(v)] ∪ {n}

end for
for each node n ∈ cycle do

(u, v)← EDGE(n)
SUNION(u, v)

end for
roots← roots∪ {SFIND(rep)}
max[SFIND(rep)] = max[rep]
for each node n ∈ cycle do

(u, v)← EDGE(n)
if SFIND(v) 6= rep then

MELD(queues[rep], queues[SFIND(v)])
end if

end for
end if

2.2.3. Expansion Phase

We obtain the optimal arborescence from the forest F, which is decomposed to break
the cycles of G. Note that the nodes of F will represent the edges of H seen in Edmonds’
algorithm. The expansion phase is as follows. We first take care of the super nodes of F,
which are roots of the optimal arborescence, represented by the set rset. Each vertex u in
rset is the representative element of a cycle, i.e., the destination of the maximum edge of a
cycle. Hence, u becomes a root of the optimal arborescence, and every edge incident to u in
F must be deleted. The tree F is decomposed by deleting the node π[u] and all its ancestors.
For the other cycles, whose corresponding super vertices are not optimal arborescence roots,
the incident edge (u, v), represented by a root in F, is added to H, and the other incident
edges represented in F by π[v] and its ancestors are deleted. The procedure ends when
there are no more nodes in F. The optimal arborescence is given by H. The pseudocode is
detailed in Algorithm 5.

Algorithms 2023, 16, 559 10 of 27

Algorithm 5 Expansion phase.

H ← ∅ . Set of edges.
R← {max[v] | ∀v ∈ rset}
N ← roots of F
while R 6= ∅ do

u← POP(R)
N ← DELETE-ANCESTORS(π[u], N)

end while
while N 6= ∅ do

(u, v)← EDGE(POP(N))
H ← H ∪ (u, v)
N ← DELETE-ANCESTORS(π[v], N)

end while
return H
procedure DELETE-ANCESTORS(nodeF, N)

while nodeF 6= null do
for each edge ∈ CHILDREN(nodeF) do

PARENT(edge) = null
N ← N ∪ {edge}

end for
remove nodeF
nodeF = PARENT(node)

end while
return N

end procedure

2.2.4. Illustrative Example

Let us consider the graph G = (V, E) in Figure 6. At the beginning of the contraction
phase, the forest F is empty. There is a priority queue associated with each vertex, and
the contents are Q0 = {(3, 0, 1)}, Q1 = {(0, 1, 6), (2, 1, 10)}, Q2 = {(3, 2, 8), (1, 2, 10)}, and
Q3 = {(1, 3, 12)}.

0

1

2 3

6
1

10

10
12

8

Figure 6. Input weighted directed graph.

We have also roots = {0, 1, 2, 3}, rset = ∅, and max[v] = v for v ∈ V.
We start popping vertices, denoted by r, from the set roots and finding the minimum

weighted edge incident to each r. We can safely pop zero, one, and two from roots, and
the respective minimum weight incident edges (3, 0), (0, 1), and (3, 2), with weights one,
six, and eight, respectively, without forming a cycle. These edges are added to forest F as
nodes, thereby leading to the state seen in Figure 7. Since each vertex in {0, 1, 2} forms a
strongly connected component with a single vertex, we have π[0] = (3, 0), π[1] = (0, 1),
and π[2] = (3, 2).

(3, 0) (0, 1) (3, 2)

Figure 7. Forest F after popping 0, 1, and 2 from set roots.

Algorithms 2023, 16, 559 11 of 27

Note that currently roots = {3}, and the contents of each priority queue are Q0 = ∅,
Q1 = {(2, 1, 10)}, Q2 = {(1, 2, 10)}, and Q3 = {(1, 3, 12)}. Vertex 3 is then removed
from set roots, edge (1, 3) is added as a node to F, and π[3] = (1, 3). Also, a cycle
{(3, 0), (0, 1), (1, 3)} is formed, thereby implying that a contraction must be performed. Let
three denote the cycle representant. After the contraction, we have max[3] = 3, since (1, 3)
is the maximum weight edge in the cycle, and we have Q3 = {(2, 1, 16)}, Q2 = {(1, 2, 10)},
and roots = {3}. Figure 8 depicts this first contraction.

0

1

2 3

6 1

10

10
12

8 2

3

16

8
10

(a) (b)

Figure 8. First contraction of the input graph. (a) Cycle {(3, 0), (0, 1), (1, 3)} colored in green. (b) Con-
traction result.

Vertex 3 is yet again removed from the set roots; moreover, edge (2, 1, 16) is popped out
from Q3, and added to F as a node. Since edge (2, 1, 16) is incident in a strongly connected
component that contains cycle C = {(3, 0), (0, 1), (1, 3)}, the edges directed from (2, 1) to
every edge in C are created in F, and parent pointers are initialized in the reverse direction,
as shown in Figure 9.

(3, 0) (0, 1) (1, 3) (3, 2)

(2, 1)

Figure 9. Adding directed edges from node (2, 1) to the nodes of cycle C in forest F.

Recall that edge (3, 2) was previously selected, and the addition of edge (2, 1) forms
cycle C′ = {(2, 1), (3, 2)}. After processing C′, let three be the cycle representative, and,
hence, roots = {3}, Q3 = ∅, and max[3] = 3, since (2, 1) is the maximum weight edge
in the cycle, and SFIND(1) = 3. Finally, three is removed from set roots, but Q3 is empty,
thereby ending the contraction phase. The final contracted graph is presented in Figure 10.

2

3

16

8
10

3

(a) (b)

Figure 10. Last cycle and final contracted graph. (a) Cycle {(2, 1), (3, 2)}marked in green. (b) Contrac-
tion result.

Algorithms 2023, 16, 559 12 of 27

The expansion phase can proceed now. Let N = {(2, 1), (3, 2)}, R = {3}, and H = ∅.
Recall that π[0] = (3, 0), π[1] = (0, 1), π[2] = (3, 2), and π[3] = (1, 3). The expansion begins
by evaluating the elements from set R, which contain only vertex 3. Since π[3] = (1, 3), and
the path P3 is constructed by following the child-to-parent direction until a root node is found,
P3 = {(1, 3), (2, 1)}. Then, P3 is removed from F, and the content of set N is updated to be
N = {(3, 2), (3, 0), (0, 1)}, as shown in Figure 11.

(3, 0) (0, 1) (1, 3) (3, 2)

(2, 1)

(3, 0) (0, 1) (3, 2)

(a) (b)

Figure 11. Forest F after removing P3. (a) Path P3 colored in red. (b) Removal of path P3 from forest F.

Since R = ∅, the expansion phase proceeds with an evaluation of the nodes in set N.
Set N is processed similarly to set R with two minor changes: the elements of N, when
removed, are added to H; since N contains the edges (u, v) as nodes, then the path Pv is
traced from the leaf node stored in π[v]. This process terminates when N = ∅, and H holds
the optimal arborescence. The final arborescence H = {(3, 2), (3, 0), (0, 1)} for our example
is depicted in Figure 12.

0

1

2 3

6 1

8

Figure 12. MSA of the input graph.

3. Optimal Dynamic Arborescences

Pollatos, Telelis, and Zissimopoulos [21] proposed two variations of an intermediary
tree data structure, which are built during the execution of the Edmonds’ algorithm on G
and then updated when G changes. We will present the data structure by Pollatos et al. [21],
named the augmented tree data structure (ATree), that encodes the set of edges H introduced
in the previous section, along with all the vertices (simple and contracted) processed
during the contraction phase of Edmonds’ algorithm. When G is modified, the ATree is
decomposed and processed, thereby yielding a partially contracted graph G′ = (V′, E′).
Then, the Edmonds’ algorithm is executed for G′. Note that only G and the ATree are kept
in the memory.

Let us assume that the graph G = (V, E) is strongly connected and that w(u, v) > 0 for
all (u, v) ∈ E. If G is not strongly connected, we can add a vertex v∞ and 2n edges such that
w(v∞, v) = ∞ and w(v, v∞) = ∞ for all v ∈ V.

3.1. ATree

A simple node of the ATree, represented as Ns
v, encodes an edge with target v ∈ V.

A complex node, represented as Nc
i...j, encodes an edge that targets a super vertex that

represents a contraction of the vertices i . . . j ∈ V. In what follows, whenever the type of
an ATree node is not known or relevant in the context, we just use N to represent it. The
parent of an ATree node is the complex node, which edge targets the super vertex into
which the child edge target is contracted. Since G is strongly connected, all vertices will

Algorithms 2023, 16, 559 13 of 27

eventually be contracted into a single super vertex, and the ATree will have a single root. A
null edge is encoded in the ATree root node. See Figure 13. The ATree takes O(n) space, and
its construction can be embedded into the Edmonds’ algorithm implementation without
affecting its complexity. Let us detail how an update in G affects the ATree F, namely, the
edge insertions and deletions. Edge weight updates are easily achieved by deleting the
edge and adding it again with the new weight. Vertex deletions are solved by deleting
all the related edges, and vertex insertions are trivially solved by considering G′ with the
existing super vertex and the new vertex (and related edges).

0

1

22 33

6

10

12
10

1

8

(3, 0) (0,1) (1, 3) (3, 2)

(2, 1)

null

Ns
0 Ns

1 Ns
3 Ns

2

Nc
0,1,3

Nc
0,1,2,3

(a) (b)

Figure 13. A graph and its ATree. The root represents the edge incident to the contraction of all graph
nodes (null). (a) A weighted directed graph. (b) The corresponding ATree.

3.2. Edge Deletion

Let (u, v) ∈ E be the edge we want to delete from G. If (u, v) /∈ F, we just remove it
from G. If (u, v) ∈ F, we remove (u, v) from G, and we decompose the ATree: we delete
the node N, which represents the edge (u, v), and since we consequently break the cycles
containing (u, v), we also delete every ancestor node of N in F. Each child of a removed
node becomes the root of its subtree. Then, we create a partially contracted graph G′ with
the remaining nodes in the ATree, and we run the Edmonds’ algorithm for G′ to rebuild
the full ATree F and find the new optimal arborescence.

The graph G′ = (V′, E′) is obtained from the decomposed ATree as follows. Note
that if a complex node Nc

i,...,j is a root of F, the super vertex representing the contraction of
vertices i, . . . , j belongs to V′. Let then {Nx1 , . . . , Nx`} be the roots of the ATree F, where
xk is the representant of the contraction when Nxk is a complex node in the ATree. Then,
V′ = {x1, . . . , x`}. E′ is the set of the incident edges in V′.

3.3. Edge Insertion

Inserting a new edge (u, v) is handled by reducing the problem to an edge deletion.
We first add (u, v) in G. Then, we check if (u, v) should replace an edge present in ATree
F. Starting from the leaf Ns

v of the ATree F representing an edge incident to v, and then
following its ancestors, we check if w(u, v) is smaller than the weight of the edge represented
by each N (see Figure 14). We can replace an edge if the previous condition holds and if
Ns

u is not present in its subtree, i.e. (u, v) should not be an edge connecting two nodes of
the current cycle. We then engage a virtual deletion of the candidate node (the edge is not
deleted, but the ATree is decomposed); we build the graph G′ = (V′, E′ ∪ {(u, v)}) from
the decomposed ATree, and we execute the Edmonds’ algorithm for G′ to rebuild the full
ATree F.

Algorithms 2023, 16, 559 14 of 27

0

1

22 33

6

10

12
10

2 1

8

(3, 0) (0,1) (1, 3) (3, 2)

(2, 1)

null

Ns
0 Ns

1 Ns
3 Ns

2

Nc
0,1,3

Nc
0,1,2,3

(a) (b)

Figure 14. We add the edge (2, 0) with weight 2 to the graph ((a): edge represented in red). The
process starts with the analysis of node Ns

0, which represents edge (3, 0) with weight 1. The vertex
(2, 0) cannot replace the Ns

0 edge, as it is heavier. Then, the Ns
0 parent is examined, Nc

0,1,3. The
corresponding edge is heavier than (2, 0), and Ns

2 is not present in its subtree. Then, (2, 0) should
replace this node, and Nc

0,1,3 and its ancestors are virtually deleted ((b): nodes represented in white).
The Edmonds’ algorithm is executed on the remaining nodes (represented in gray).

3.4. ATree Data Structure

ATree is an extension of the forest F data structure presented in Section 2.2. The nodes
of the ATree maintain the following records: the edge of G, the node N, represents EDGE(N);
the cost of the edge at the time it was selected is represented by wN ; its parent is represented
by PARENT(N); the list of its children is represented by CHILDREN(N); its kind (simple or
contracted) is measured; the list of contracted edges during the creation of the super
node is documented; the edge of maximum weight in the cycle emax is measured; and its
weight wmax is measured.

In an edge deletion, the edge is removed from the contracted edges list into which
it belongs. In the process of decomposing and reconstructing the ATree, the set of edges
E′ corresponds to the concatenation of the lists of contracted edges associated with each
deleted ATree node. And, we need to update the weight of every edge (u, v) of E′. Let Ns

v
be the simple node whose contracted edges contain (u, v). The new weight w′(u, v) is
w′(u, v) = w(u, v)−∑N∈P wN , where P is the set of ancestors of Ns

v, w(u, v) is the original
weight, and wN the weight of the edge represented by N at the time it was selected. We
run a BFS on each tree to find the subtracted sum ri of each simple node Ns

i in O(n) time.
Then, we scan the edges e to assign the reduced cost w′(e) = w(e)− ri.

While adding an edge (u, v), we look for a candidate node to replace in the ATree.
The process starts with Ns

v, and it checks every ancestor until the root is inspected or if a
node N verifies w′(EDGE(N)) > w′(u, v), where w′(EDGE(N)) denotes the reduced cost of
the edge presented by N. If the root is reached without verifying the condition, we insert
(u, v) in the contracted edges list of the lowest common ancestor of Ns

v and Ns
u. If the

condition is met, we find a candidate node N where (u, v) could be added, but we must
determine if (u, v) is safe to be added. We check if Ns

u is already present with a BFS in
the subtree of root N. If we find Ns

u, and we insert (u, v) in the contracted edges list of
the lowest common ancestor of Ns

v and Ns
u. Otherwise, we engage a virtual deletion of

EDGE(N) (the edge is not deleted, but the ATree is decomposed); then, we build the graph
G′ = (V′, E′ ∪ {(u, v)}) and execute the Edmonds’ algorithm for G′ as mentioned before.
The pseudocode for finding a candidate is detailed in Algorithm 6, where (u, v) is the edge
to be inserted.

Algorithms 2023, 16, 559 15 of 27

Algorithm 6 Finding a candidate node in the ATree; (u, v) is the edge to be inserted.

nodeF = Ns
v

if w(EDGE(nodeF)) > w(u, v) then
return nodeF

end if
S← ∅ . Let S be a set.
while nodeF 6= null do

S = S ∪ {nodeF})
nodeF = PARENT(nodeF)

end while
Let L be a LIFO containing the nodes in cycle creation order.
compare = false
candidate = null
while L 6= ∅ do

nodeF = POP(L)
if nodeF is root then

return null
end if
if nodeF ∈ S then

compare = true
end if
candidate = FIND-CANDIDATE(nodeF, (u, v), compare)
compare = false
if candidate 6= null then

break
end if

end while
return candidate
procedure FIND-CANDIDATE(nodeF, ein, compare)

Let wmax be the maximum weight edge in CHILDREN(nodeF).
for each child ∈ CHILDREN(nodeF) do

(u′′, v′′) = EDGE(child)
cost = wmax − (w(u′′.v′′) + SFIND-WEIGHT(v′′))
SADD-WEIGHT(v′′, cost)

end for
(u′, v′) = EDGE(nodeF)
w′(u′, v′) = w(u′, v′) + SFIND-WEIGHT(v′)
w′(u, v) = w(u, v) + SFIND-WEIGHT(v)
if compare and w′(u, v) < w′(u′, v′) then

return nodeF
end if
for each edge ∈ CHILDREN(nodeF) do

(u′′, v′′) = EDGE(edge)
SUNION(u′′, v′′)

end for
return null

end procedure

4. Implementation Details and Analysis

Let us detail and discuss our implementation, namely, used data structures and their
customization, for finding an optimal arborescence and dynamically maintaining it. It follows
the pseudocode described in the previous sections. As mentioned earlier, this implementa-
tion is built on the theoretical results introduced by Edmonds [9], Tarjan [11], and Camerini
et al. [12] for the static algorithm, as well as on the results derived by Pollatos, Telelis, and Zis-
simopoulos [21] for the dynamic algorithm. The implementation incorporates all these results,
namely, the contraction and expansion phases by Edmonds, the bookkeeping mechanisms

Algorithms 2023, 16, 559 16 of 27

proposed by Tarjan, and the forest data structure introduced by Camerini et al., which have
been further extended as the ATree data structure. Recall that the bookkeeping mechanism
adjusted to maintain the forest data structure relies on the following data structures: for every
node v, a list L(v) stores each edge incident to v; disjoint sets keep track of the strongly and
weakly connected components; and a collection of queues keeps track of the edges entering
each vertex and a forest—or, in the dynamic case, an ATree F.

4.1. Incidence Lists

Since edges of G are processed by incidence and not by origin, G is represented as
an array of edges sorted with respect to target vertices. This is beneficial, since it takes
advantage of memory locality, thereby bringing improvements to the overall performance.

4.2. Disjoint Sets

Two implementations of the union–find data structure for managing disjoint sets
are used, with both supporting the standard operations. One is used to represent weakly
connected components, while the other is employed for strongly connected components.
The latter is an augmented version. In the case of the first implementation, the following
common operations are supported: WFIND(x), which returns a pointer to the representative
element of the unique set containing x; WUNION(x), which unites the sets that contain x and
y; and WMAKE-SET(x), which creates a new set whose only element and representative is
x. For the augmented implementation, the same operations are supported, but they are
named SFIND, SUNION, and SMAKE-SET; two extra operations are also supported, namely,
SADD-WEIGHT and SFIND-WEIGHT, which are detailed below.

Our implementations of the union–find data structure rely on the conventional heuristics,
namely, union by rank and path compression, thereby achieving nearly constant time per
operation in practice; m operations over n elements take O(mα(n)) amortized time, where α is
the inverse of the Ackermann [24]. Both implementations use two arrays of integers, namely,
the rank and the parent array instead of pointer-based trees. Even though the operation’s
computational complexity is, theoretically speaking, the same, using arrays instead of pointers
promotes memory locality, since arrays are allocated in contiguous memory.

The purpose of having a different implementation for strongly connected components
is to bring a constant time solution for the computation of the reduced costs, thereby
exploiting the path compression and union by rank heuristics. While finding the minimum
weight incident edges in every vertex in the contraction phase, cycles may arise. Then,
the maximum weight edge in the cycle is found, the reduced costs are computed, and the
weight of the incident edges is updated by summing the reduced costs. In this context, the
augmented version of the union–find data structure then supports the following operations
as mentioned above: SADD-WEIGHT(x, k), which adds a constant k to the weight of all the
elements of the set containing x, and SFIND-WEIGHT(x), which returns the accumulated
weight for the set containing x. Supporting these operations requires an additional attribute
weight, which is represented internally as a third array to store the weights. The weights
are initialized with 0. The SADD-WEIGHT(x, k) operation adds value k to the root or repre-
sentative element of the set containing x in constant time. The operation SFIND(x) has been
rewritten for updating the weights whenever the underlying union–find tree structure
changes due to the path compression heuristic; this change does not change the complexity
of this operation. The operation SFIND-WEIGHT(x) performs the sum of all values stored
in field weight on the path from x until we meet the root of the disjoint set containing x;
the cost of this operation is identical to the cost of operation of SFIND. A constant time
solution is obtained then for updating the weight of all the elements in a given set, which
allows us to update the weight of all the edges that are incident on a given vertex and also
in constant time.

Algorithms 2023, 16, 559 17 of 27

4.3. Queues

Heaps are used to implement the priority queues, which track the edges that are
incident in each vertex. In this context, three types of heaps were implemented and tested,
namely, binary heaps [25], binomial heaps [26], and pairing heaps [27,28]. The pairing heaps
are the alternative that have simultaneously better theoretical and expected experimental
results; although binary heaps are faster than all other heap implementations when the
decrease key operation is not needed. Pairing heaps are often faster than d-ary heaps
(like binary heaps) and almost always faster than other pointer-based heaps [29]. Our
experimental results also consider this comparison (see Section 5). With respect to the
theoretical results, using pairing heaps to implement priority queues and assuming that n
is the size of a heap, the common heap operations are as follows: INIT(L) creates a heap
with elements in list L in O(n) time; INSERT(h, e) inserts an element e in the heap h in Θ(1)
time; GET-MIN(h) obtains the element with minimum weight in Θ(1) time; EXTRACT-MIN(h)
returns and removes from the heap h the element with the minimum weight in O(log n)
amortized time; DECREASE-KEY(h, e) decreases the weight of element e in o(log n) amortized
time; and MELD(h1, h2) merges two heaps h1 and h2 in Θ(1) time.

Our implementation does not rely on the DECREASE-KEY operation, but it relies heavily
on the MELD and EXTRACT-MIN operations. In this context, it is important to note that the
MELD operation takes O(n) time for binary heaps and O(log n) time for binomial heaps. The
EXTRACT-MIN(h) runs in O(log n) time for both binary and binomial heaps. On the other hand,
both pairing and binomial heaps are pointer-based data structures, while binary heaps are
array-based. Hence, it is not clear a priori which heap implementation would be better in
practice and, hence, it is a topic of analysis in our experimental evaluation, as mentioned.

4.4. Forest

Several data structures were introduced to manage F and the cycles in G. A set rset holds
the roots of the optimal arborescence, i.e., it holds the vertices that do not have any incident
edge. A table max holds the destination of the maximum edges in a strongly connected
component. A table π points to the leaves of F, where π[v] = (u, v) means that the node
(u, v) of F was created during the evaluation of vertex v. The table inEdgeNode holds for each
v, the unique node of F entering the strongly connected component represented by v. Finally,
the list cycleEdgeNode holds the lists of nodes in a cycle, where cycleEdgeNode[rep] holds the
nodes of the cycle represented by rep.

These data structures allow us to construct and maintain the forest F within the
contraction phase without burdening the overall complexity of the algorithm. They allow
also to extract an optimal arborescence in linear time during the expansion phase. The
detailed pseudocode has been presented in Section 2.2.

This representation is extended for implementing the ATree to take into account the
data structure description and the pseudocode presented in Section 3.4.

4.5. Complexity

Let us discuss the complexity of our implementation for finding a (static) optimal
arborescence in a graph G with n vertices and m edges.

In the initialization phase, we mainly have the n INIT operations for the priority
queues, the n SMAKE-SET operations for the augmented disjoint sets, the n WMAKE-SET oper-
ations for the disjoint sets, and the O(n) operations for the other data structures. All these
operations take constant time each; thus, the initialization takes O(n) time.

In the contraction phase, only the operations on priority queues and disjoint sets may
not take constant time. The operations on priority queues are at most the m EXTRACT-MIN
operations and the n MELD operations. Since EXTRACT-MIN takes O(log n) time, and (for
pairing heaps) the MELD operation takes constant time, then it takes O(m log n) total time
for maintaining priority queues. The operations for disjoint sets are m WFIND and SFIND
operations, n WUNION and SUNION operations, and n SADD-WEIGHT operations. The disjoint
set operations take O(mα(n)) total time, where α is the inverse of the Ackermann func-

Algorithms 2023, 16, 559 18 of 27

tion [24]. The other operations run in O(m + n) time. Therefore, the contraction phase
takes O(m log n) time.

In the expansion phase, F contains no more than 2n− 2 nodes, and each node of F is
visited exactly once, so the procedure takes O(n) time. The total time required to find an
optimal arborescence is therefore dominated by the priority queue operations yielding a
final time complexity of O(m log n).

Let us analyze now the cost of dynamically maintaining the optimal arborescence.
Let ρ be the set of affected vertices and edges, |ρ| be the number of affected vertices, and
||ρ|| be the number of affected edges. A vertex is affected if it is included in a different
contraction in the new output after an edge insertion or removal. Note that |ρ| < n, thus
meaning that all operations in an addition or deletion of an edge occur in O(n) time and
that a re-execution of the Edmonds’ algorithm only processes the affected vertices. The
update of an optimal arborescence, using the implementation presented in Section 2.2, can
then be achieved in O(n + ||ρ|| log |ρ|) time per edge insertion or removal.

5. Experimental Evaluation

We implemented the original Edmonds’ algorithm as described in Section 2.1 and the
Tarjan algorithm as described in Section 2.2. The implementation of the Tarjan algorithm
has three variants, which differ only on the heap implementation. As discussed before,
we considered binary heaps, binomial heaps, and pairing heaps in our experiments. The
algorithms were implemented in Java 11, and the binaries were compiled with javac
11.0.20. The experiments were performed on a computer with the following hardware:
Intel(R) Xeon(R) Silver 4214 CPU at 2.20GHz and with 16 GB of RAM.

The aim of this experimental evaluation is to compare the performance of Edmonds’
original algorithm with the Tarjan algorithm to evaluate the use of different heap implemen-
tations and to investigate the practicality of the dynamic algorithm for dense and sparse
graphs. For the datasets, we used randomly generated graphs, both dense and sparse, and
real phylogenetic data.

5.1. Datasets

Graph datasets comprising sparse and dense graphs were generated according to
well known random models. To generate sparse graphs, we considered three different
models. One of them was the Erdos–Rényi (ER) model [30], with p =

c log n
n and c ≥ 1,

where p denotes the probability of linking a node u with a node v, and n is the number of
nodes in the network. Whenever p has the previously defined value, the network has one
giant component and some isolated nodes. Moreover, these graphs were generated using
the fast_gnp_random_graph generator of the NetworkX library [31], with p = 0.02.

Sparse scale-free directed graphs were also generated using the model derived by
Bollobás et al. [32] (identified as scale-free in our experiments) and a variant of the duplication
model derived by Chung et al. [33]. The first were generated using the scale_free_graph
function of the NetworkX library, with all the parameters set with their omission value
except for the number of nodes. The latter were generated using our own implementation,
where given 0 ≤ p ≤ 1, the partial duplication model builds a graph G = (V, E) according
to partial duplication as follows: start with a single vertex at time t = 1, and, at time t > 1,
perform a duplication step: uniformly select a random vertex u of G; add a new vertex v
and edges (u, v) and (v, u) with (different) random weights; for each neighbor w of u, add
edges (v, w) and/or (w, v) with probability p; and find random integer weights chosen
uniformly from [0, 1000].

Dense graphs were generated using the complete_graph generator of the NetworkX li-
brary, which creates a complete graph, i.e., all pairs of distinct nodes have an edge connecting
them. Edge weights were assigned randomly.

The running time and memory were averaged over five runs and for five different
graphs of each size for all models.

We also used real phylogenetic data in the dynamic updating evaluation, namely,
real dense graphs using phylogenetic datasets available on EnteroBase [34]; the respec-

Algorithms 2023, 16, 559 19 of 27

tive details are shown in Table 1. The graphs were built based on the pairwise distance
among genetic profiles, as usual using distance-based phylogenetic inference [7]. The
experiments on these data were carried out by considering increasing volumes of data,
namely, [10%, 20%, 30%, . . . , 100%].

Table 1. Phylogenetic datasets. The first three without missing data. The number of vertices n is the
number of genetic profiles in each dataset.

Datasets n = |V | m = |E|
clostridium.Griffiths 440 193, 600
Moraxella.Achtman7GeneMLST 773 597, 529
Salmonella.Achtman7GeneMLST 5464 29, 855, 296
Yersinia.McNally 369 136, 161

5.2. Edmonds’ versus Tarjan

We compared both the Edmonds’ and Tarjan algorithms for complete and sparse
graphs using generated graph datasets. This comparison is presented in Figure 15. As
expected, the Tarjan algorithm was faster, and the experimental running time followed the
expected theoretical bound of O(m log n). The memory requirements were also lower for
the Tarjan algorithm, which grew linearly with the size of the graph, as expected.

Given these results, we omitted Edmonds’ algorithm from the remaining evaluation.

0.0 0.2 0.4 0.6 0.8 1.0
m log(n) 1e7

0

5000

10,000

15,000

20,000

25,000

30,000

Ti
m

e
(m

s)

Binary heaps
Binomial heaps
Pairing heaps
Edmonds original

0.0 0.2 0.4 0.6 0.8 1.0 1.2
m log(n) 1e6

0

500

1000

1500

2000

2500

3000
Ti

m
e

(m
s)

Binary heaps
Binomial heaps
Pairing heaps
Edmonds original

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0
m+n 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
em

or
y

(K
B)

1e6
Binary heaps
Binomial heaps
Pairing heaps
Edmonds original

0.0 0.2 0.4 0.6 0.8 1.0
m+n 1e5

0

100,000

200,000

300,000

400,000

500,000

M
em

or
y

(K
B)

Binary heaps
Binomial heaps
Pairing heaps
Edmonds original

(c) (d)

Figure 15. Comparison between the Edmonds’ algorithm and the Tarjan algorithm (three different heap
implementation) with respect to complete and sparse graphs. (a) Running time for complete graphs.
(b) Running time for sparse graphs. (c) Memory for complete graphs. (d) Memory for sparse graphs.

Algorithms 2023, 16, 559 20 of 27

5.3. Different Heap Implementations

The results for scale-free graphs are presented in Figure 16. The running time and
memory requirements are according to the expectations and to the analysis for complete
and sparse graphs in the previous section. The somewhat strange behavior in the memory
plots for a lower number of vertices and edges is due to Java’s garbage collector, and it can
be ignored.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
m log(n) 1e5

20

40

60

80

100

120

140

Ti
m

e
(m

s)

Binary heaps
Binomial heaps
Pairing heaps

0.0 0.5 1.0 1.5 2.0
m log(n) 1e6

0

250

500

750

1000

1250

1500

1750

Ti
m

e
(m

s)

Binary heaps
Binomial heaps
Pairing heaps

(a) (b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
m+n 1e4

2000

4000

6000

8000

10,000

M
em

or
y

(K
B)

Binary heaps
Binomial heaps
Pairing heaps

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
m+n 1e5

0

25,000

50,000

75,000

100,000

125,000

150,000

175,000

200,000

M
em

or
y

(K
B)

Binary heaps
Binomial heaps
Pairing heaps

(c) (d)

Figure 16. Comparison of three different heap implementations within the Tarjan algorithm sparse
scale-free graphs. (a) Running time for scale-free graphs. (b) Running time for duplication model
graphs. (c) Memory for scale-free graphs. (d) Memory for duplication model graphs.

The focus in this section is the performance of different heap implementations when
applying the Tarjan algorithm. The improved theoretical performance of the binomial and
pairing heaps was not supported by our experiments, and, in fact, they fared no better
than binary heaps. The pairing heaps obtained a similar time performance to the binary
heaps in the duplication models while simultaneously using less space. This is particularly
interesting, since the meld operation is more efficient for pairing heaps. However, the
memory locality exploited by the binary heaps played an important role here.

We note that our results are consistent with those obtained by Böther et al. [20]. Even
though our implementation is in Java, while theirs is in C++, and ours is generic with
respect to the total order of edges, we observed the same behavior in what concerns the
running time increase versus the size of the graph, as well as with respect to binary heaps
versus pointer-based heap data structures.

5.4. Dynamic Optimal Arborescences

Let us compare the performance of maintaining dynamic optimal arborescences versus
ab initio computation on edge updates. Both implementations rely on the algorithm
derived by Tarjan that is described in this paper. Our experiments consisted pf evaluating
the running time and required memory for adding and deleting edges. The results were
averaged over a sequence of 10 independent DELETE operations and also over a sequence

Algorithms 2023, 16, 559 21 of 27

of 10 independent ADD operations. The sequences of edges subject to deletion or insertion
were randomly selected.

Figure 17a provides the results for the DELETE operations. We observe that updating
the arborescence was twice as fast compared to its ab initio computation. Note that these
results are aligned with the results presented by Pollatos, Telelis, and Zissimopoulos [21].
Figures 18a–22a provide the results for the DELETE operation with respect to the phyloge-
netic data described above. As the size of the dataset grew, and the inferred graph became
larger, and the dynamic updating also became more competitive, being twice as fast when
compared with the ab initio computation.

The results for the ADD operations are presented in Figure 17b for complete graphs and
in Figures 18b–22b. It is clearly perceived that the ab initio computation was outmatched by
the dynamic updating, in particular as the size of the graph grew. The dynamic updating
was consistently at least twice as fast as the ab initio computation, thereby often surpassing
that speedup factor.

(a) (b)

Figure 17. Optimal arborescence updating versus ab initio computation for DELETE and ADD opera-
tions for complete graphs. Running time averaged over 10 random operations. (a) DELETE operations.
(b) ADD operations.

(a) (b)

Figure 18. Optimal arborescence updating versus ab initio computation for DELETE and ADD opera-
tions for clostridium.Griffiths dataset. Running time averaged over 10 random operations. (a) DELETE
operations. (b) ADD operations.

Algorithms 2023, 16, 559 22 of 27

(a) (b)

Figure 19. Optimal arborescence updating versus ab initio computation for DELETE and ADD opera-
tions for Moraxella.Achtman7GeneMLST dataset. Running time averaged over 10 random operations.
(a) DELETE operations. (b) ADD operations.

(a) (b)

Figure 20. Optimal arborescence updating versus ab initio computation for DELETE and ADD opera-
tions for Salmonella.Achtman7GeneMLST dataset. Running time averaged over 10 random operations.
(a) DELETE operations. (b) ADD operations.

(a) (b)

Figure 21. Optimal arborescence updating versus ab initio computation for DELETE and ADD opera-
tions for Yersinia.cgMLSTv1 dataset. Running time averaged over 10 random operations. (a) DELETE
operations. (b) ADD operations.

Algorithms 2023, 16, 559 23 of 27

(a) (b)

Figure 22. Optimal arborescence updating versus ab initio computation for DELETE and ADD opera-
tions for Yersinia.wgMLST dataset. Running time averaged over 10 random operations. (a) DELETE
operations. (b) ADD operations.

We also evaluated the memory requirements for dynamic updating. We only measured
the memory consumption for the DELETE operation, because the ADD operation is essentially
reduced to an edge removal operation. Tables 2–6 show the memory usage comparison
between the ab initio computation and the dynamic updating, which were averaged over
10 operations. In each table, the first column contains the % of the dataset being considered,
the second column presents the memory usage for the ab initio computation, the third
column presents the memory usage for the dynamic updating, and the fourth column
presents the memory ratio between dynamic updating and ab initio computation. As an
illustrative baseline, Figure 23 shows the memory usage for the Yersinia.wgMLST dataset
as an increasing percentage of it added to the computation. Given these results, we can
observe that both the ab initio computation and the dynamic updating required linear space
regarding the size of the input. This is also consistent with the results for random graphs
presented above. However, the dynamic updating required three times more memory on
average than the ab initio computation, which is expected given that a more complex data
structure needed to be managed.

Figure 23. Memory usage of Tarjan algorithm for Yersinia.wgMLST dataset.

Algorithms 2023, 16, 559 24 of 27

Table 2. Memory usage comparison for the dynamic updating and ab initio computation of an optimal
arborescence for the clostridium.Griffiths dataset.

Dataset Ab Initio Dynamic Updating Memory Ratio% (MB) (MB)

10 6.94 21.05 3.03
20 7.87 24.14 3.07
30 8.90 27.73 3.12
40 10.54 32.52 3.09
50 12.54 39.12 3.12
60 14.93 46.76 3.11
70 17.98 55.34 3.08
80 21.42 65.21 3.05
90 26.29 77.17 2.94

100 31.18 89.37 2.87

Table 3. Memory usage comparison for the dynamic updating and ab initio computation of an
optimal arborescence for the Moraxella.Achtman7GeneMLST dataset.

Dataset Ab Initio Dynamic Updating Memory Ratio% (MB) (MB)

10 7.93 23.97 3.02
20 9.71 30.16 3.11
30 13.17 40.63 3.09
40 17.10 54.86 3.21
50 23.80 74.08 3.21
60 30.80 106.20 3.45
70 43.92 133.99 3.05
80 49.65 163.36 3.29
90 63.66 219.69 3.45

100 79.70 263.23 3.30

Table 4. Memory usage comparison for the dynamic updating and ab initio computation of an
optimal arborescence for the Yersinia.cgMLSTv1 dataset.

Dataset Ab Initio Dynamic Updating Memory Ratio% (MB) (MB)

10 20.96 85.10 4.06
20 38.98 142.42 3.65
30 78.79 240.36 3.05
40 131.39 415.18 3.16
50 195.35 565.25 2.89
60 261.86 841.66 3.21
70 376.26 1100.50 2.92
80 465.27 1374.02 2.95
90 612.67 1684.40 2.75

100 724.01 1997.67 2.76

Algorithms 2023, 16, 559 25 of 27

Table 5. Memory usage comparison for the dynamic updating and ab initio computation of an
optimal arborescence for the Yersinia.wgMLST dataset.

Dataset Ab Initio Dynamic Updating Memory Ratio% (MB) (MB)

10 125.32 415.93 3.32
20 156.31 513.5 3.29
30 214.65 680.62 3.17
40 295.80 908.01 3.07
50 411.26 1201.33 2.92
60 534.45 1585.99 2.97
70 714.39 2056.44 2.88
80 898.64 2479.41 2.76
90 1098.49 3026.20 2.75

100 1306.95 3640.20 2.79

Table 6. Memory usage comparison for the dynamic updating and ab initio computation of an
optimal arborescence for the Salmonella.Achtman7GeneMLST dataset.

Dataset Ab Initio Dynamic Updating Memory Ratio% (MB) (MB)

10 62.60 210.45 3.36
20 154.52 520.83 3.37
30 319.87 1041.22 3.26
40 575.05 1772.00 5.54
50 886.04 2667.96 3.01
60 1274.59 3883.46 3.04
70 1754.89 5242.21 2.99
80 2285.91 6841.03 2.99
90 2872.80 8574.12 2.99

100 3435.51 10,482.84 3.05

6. Conclusions

We provided implementations of Edmonds’ algorithm and of the Tarjan algorithm for
determining optimal arborescences on directed and weighted graphs. Our implementation
of the Tarjan Algorithm incorporated the corrections by Camerini et al., and it ran in
(m log n) time, where n is the number of vertices of the graph, and m is the number of edges.
We also provided an implementation for the dynamic updating of optimal arborescences
based on the ideas by Pollatos, Telelis, and Zissimopoulos that relies on the Tarjan algorithm
running in O(n + ||ρ|| log |ρ|) per update operation, where |ρ| and ||ρ|| are, respectively,
the number of affected vertices and edges that scale linearly with respect to the memory
usage. We highlight the fact that our implementations are generic in the sense that a generic
comparator was given as a parameter, and, hence, we were not restricted to weighted
graphs; we can find the optimal arborescence on any graph equipped with a total order
on the set of edges. To our knowledge, our implementation for the optimal arborescence
problem for dynamic graphs is the first one to be publicly available. The code is available
at https://gitlab.com/espadas/optimal-arborescences (accessed on 4 November 2023).

Experimental evaluation shows that our implementations comply with the expected
theoretical bounds. Moreover, while multiple changes occurred in G, the dynamic updating
was at least twice as fast as the ab initio computation, thereby requiring more memory,
even if by a constant factor. Our experimental results also corroborate the results presented
by Böther et al. and Pollatos et al.

We found one shortcoming regarding the dynamic optimal arborescence, namely, the
high dependence between the time needed to recalculate the optimum arborescence and the
affected level of the ATree. The lower the level, the larger the number of affected constituents
will be. A prospect to achieve a more efficient dynamic algorithm could be relying on link–
cut trees [35], which maintains a collection of node–disjoint forests of self-adjusting binary

https://gitlab.com/espadas/optimal-arborescences

Algorithms 2023, 16, 559 26 of 27

heaps (splay trees [36]) under a sequence of LINK and CUT operations. Both operation take
O(log n) time in the worst case.

With respect to the application in the phylogenetic inference context, we highlight the
fact that the proposed implementation for dynamic updates makes it possible to significantly
improve the time required to update phylogenetic patterns as datasets grow in size. We note
also that, due to the use of heuristics in the probable optimal tree inference, there are some
algorithms that include a final step for further local optimizations [6]. Although it may not
be always the case, it seems that we can often incorporate such local optimization in the total
order over edges. Given that our implementations assume that such a total order is given as
parameter, such optimizations can be easily incorporated. The challenge of combining these
techniques to implement classes of local optimizations is also a path for future work.

Author Contributions: J.E. and A.P.F. designed and implemented the solution. J.E., L.M.S.R., T.R.
and C.V. conducted the experimental evaluation. C.V., A.P.F., L.M.S.R. and T.R. wrote the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: The work reported in this article received funding from the Fundação para a Ciên-
cia e a Tecnologia (FCT), with references UIDB/50021/2020, LA/P/0078/2020, and PTDC/CCI-
BIO/29676/2017 (NGPHYLO project), and from the European Union’s Horizon 2020 research and
innovation program under Grant Agreement No. 951970 (OLISSIPO project). It was also supported
through the Instituto Politécnico de Lisboa, with project IPL/IDI&CA2023/PhyloLearn_ISEL.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Y.; Thai, M.T.; Wang, F.; Du, D.Z. On the construction of a strongly connected broadcast arborescence with bounded transmission

delay. IEEE Trans. Mob. Comput. 2006, 5, 1460–1470.
2. Fortz, B.; Gouveia, L.; Joyce-Moniz, M. Optimal design of switched Ethernet networks implementing the Multiple Spanning Tree

Protocol. Discrete Appl. Math. 2018, 234, 114–130. [CrossRef]
3. Gerhard, R. The Traveling Salesman: Computational Solutions for TSP Applications; Lecture Notes in Computer Science; Springer:

Berlin/Heidelberg, Germany, 1994; Volume 840.
4. Cong, J.; Kahng, A.B.; Leung, K.S. Efficient algorithms for the minimum shortest path Steiner arborescence problem with applications

to VLSI physical design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1998, 17, 24–39. [CrossRef]
5. Coscia, M. Using arborescences to estimate hierarchicalness in directed complex networks. PLoS ONE 2018, 13, e0190825.

[CrossRef]
6. Zhou, Z.; Alikhan, N.F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization

of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [CrossRef]
7. Vaz, C.; Nascimento, M.; Carriço, J.A.; Rocher, T.; Francisco, A.P. Distance-based phylogenetic inference from typing data: a

unifying view. Brief. Bioinform. 2021, 22, bbaa147. [CrossRef] [PubMed]
8. Chu, Y.J.; Liu, T. On the shortest arborescence of a directed graph. Sci. Sin. 1965, 14, 1396–1400.
9. Edmonds, J. Optimum branchings. J. Res. Natl. Bur. Stand. B 1967, 71, 233–240. [CrossRef]
10. Bock, F. An algorithm to construct a minimum directed spanning tree in a directed network. Dev. Oper. Res. 1971, 29, 29–44.
11. Tarjan, R.E. Finding optimum branchings. Networks 1977, 7, 25–35. [CrossRef]
12. Camerini, P.M.; Fratta, L.; Maffioli, F. A note on finding optimum branchings. Networks 1979, 9, 309–312. [CrossRef]
13. Gabow, H.N.; Galil, Z.; Spencer, T.; Tarjan, R.E. Efficient algorithms for finding minimum spanning trees in undirected and

directed graphs. Combinatorica 1986, 6, 109–122. [CrossRef]
14. Fischetti, M.; Toth, P. An efficient algorithm for the min-sum arborescence problem on complete digraphs. ORSA J. Comput. 1993,

5, 426–434. [CrossRef]
15. Aho, A.V.; Johnson, D.S.; Karp, R.M.; Kosaraju, S.R.; McGeoch, C.C.; Papadimitriou, C.H.; Pevzner, P. Emerging opportunities for

theoretical computer science. ACM SIGACT News 1997, 28, 65–74. [CrossRef]
16. Sanders, P. Algorithm engineering—An attempt at a definition. In Efficient Algorithms; Springer: Berlin, Germany, 2009; pp. 321–340.
17. Tofigh, A.; Sjölund, E. Implementation of Edmonds’s Optimum Branching Algorithm. Available online: https://github.com/

atofigh/edmonds-alg/ (accessed on 4 November 2023).
18. Hagberg, A.; Schult, D.; Swart, P. NetworkX. Available online: https://networkx.org/documentation/stable/reference/algorithms/

(accessed on 4 November 2023).

http://doi.org/10.1016/j.dam.2016.07.015
http://dx.doi.org/10.1109/43.673630
http://dx.doi.org/10.1371/journal.pone.0190825
http://dx.doi.org/10.1101/gr.232397.117
http://dx.doi.org/10.1093/bib/bbaa147
http://www.ncbi.nlm.nih.gov/pubmed/32734294
http://dx.doi.org/10.6028/jres.071B.032
http://dx.doi.org/10.1002/net.3230070103
http://dx.doi.org/10.1002/net.3230090403
http://dx.doi.org/10.1007/BF02579168
http://dx.doi.org/10.1287/ijoc.5.4.426
http://dx.doi.org/10.1145/262301.262309
https://github.com/atofigh/edmonds-alg/
https://github.com/atofigh/edmonds-alg/
https://networkx.org/documentation/stable/reference/algorithms/

Algorithms 2023, 16, 559 27 of 27

19. Espada, J. Large Scale Phylogenetic Inference from Noisy Data Based on Minimum Weight Spanning Arborescences. Master’s
Thesis, IST, Universidade de Lisboa, Lisbon, Portugal, 2019.

20. Böther, M.; Kißig, O.; Weyand, C. Efficiently computing directed minimum spanning trees. In Proceedings of the 2023 Symposium
on Algorithm Engineering and Experiments (ALENEX), Florence, Italy, 22–23 January 2023; pp. 86–95.

21. Pollatos, G.G.; Telelis, O.A.; Zissimopoulos, V. Updating directed minimum cost spanning trees. In Proceedings of the International
Workshop on Experimental and Efficient Algorithms, Menorca, Spain, 24–27 May 2006; pp. 291–302.

22. Barabási, A.L. Network Science; Cambridge University Press: Cambridge, UK, 2016.
23. Galler, B.A.; Fisher, M.J. An improved equivalence algorithm. Commun. ACM 1964, 7, 301–303. [CrossRef]
24. Tarjan, R.E.; Van Leeuwen, J. Worst-case analysis of set union algorithms. J. ACM (JACM) 1984, 31, 245–281. [CrossRef]
25. Williams, J. Algorithm 232: Heapsort. Commun. ACM 1964, 7, 347–348.
26. Vuillemin, J. A data structure for manipulating priority queues. Commun. ACM 1978, 21, 309–315. [CrossRef]
27. Fredman, M.L.; Sedgewick, R.; Sleator, D.D.; Tarjan, R.E. The pairing heap: A new form of self-adjusting heap. Algorithmica 1986,

1, 111–129. [CrossRef]
28. Pettie, S. Towards a final analysis of pairing heaps. In Proceedings of the 46th Annual IEEE Symposium on Foundations of

Computer Science (FOCS’05), Pittsburgh, PA, USA, 23–25 October 2005; pp. 174–183.
29. Larkin, D.H.; Sen, S.; Tarjan, R.E. A back-to-basics empirical study of priority queues. In Proceedings of the 2014 Sixteenth

Workshop on Algorithm Engineering and Experiments (ALENEX), Portland, OR, USA, 5 January 2014; pp. 61–72.
30. Gilbert, E.N. Random graphs. Ann. Math. Stat. 1959, 30, 1141–1144. [CrossRef]
31. Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring Network Structure, Dynamics, and Function using NetworkX. In Proceedings

of the 7th Python in Science Conference, Pasadena, CA, USA, 19–24 August 2008; Varoquaux, G.; Vaught, T.; Millman, J., Eds.;
pp. 11–15.

32. Bollobás, B.; Borgs, C.; Chayes, J.T.; Riordan, O. Directed scale-free graphs. In Proceedings of the SODA, Baltimore, MD, USA,
12–14 January 2003; Volume 3, pp. 132–139.

33. Chung, F.R.K.; Lu, L.; Dewey, T.G.; Galas, D.J. Duplication Models for Biological Networks. J. Comput. Biol. 2003, 10, 677–687.
[CrossRef]

34. Zhou, Z.; Alikhan, N.F.; Mohamed, K.; Fan, Y.; Achtman, M.; Brown, D.; Chattaway, M.; Dallman, T.; Delahay, R.; Kornschober, C.;
et al. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia
core genomic diversity. Genome Res. 2020, 30, 138–152. [CrossRef] [PubMed]

35. Sleator, D.D.; Tarjan, R.E. A Data Structure for Dynamic Trees. J. Comput. Syst. Sci. 1983, 26, 362–391. [CrossRef]
36. Russo, L.M. A study on splay trees. Theor. Comput. Sci. 2019, 776, 1–18. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/364099.364331
http://dx.doi.org/10.1145/62.2160
http://dx.doi.org/10.1145/359460.359478
http://dx.doi.org/10.1007/BF01840439
http://dx.doi.org/10.1214/aoms/1177706098
http://dx.doi.org/10.1089/106652703322539024
http://dx.doi.org/10.1101/gr.251678.119
http://www.ncbi.nlm.nih.gov/pubmed/31809257
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1016/j.tcs.2018.12.020

	Introduction
	Optimal Arborescences
	Edmonds' Algorithm
	Contraction Phase
	Expansion Phase
	Illustrative Example

	Tarjan Algorithm
	Initialization
	Contraction Phase
	Expansion Phase
	Illustrative Example

	Optimal Dynamic Arborescences
	ATree
	Edge Deletion
	Edge Insertion
	ATree Data Structure

	Implementation Details and Analysis
	Incidence Lists
	Disjoint Sets
	Queues
	Forest
	Complexity

	Experimental Evaluation
	Datasets
	Edmonds' versus Tarjan
	Different Heap Implementations
	Dynamic Optimal Arborescences

	Conclusions
	References

