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Abstract: Quadratic unconstrained binary optimization (QUBO) is a classic NP-hard problem with
an enormous number of applications. Local search strategy (LSS) is one of the most fundamental
algorithmic concepts and has been successfully applied to a wide range of hard combinatorial
optimization problems. One LSS that has gained the attention of researchers is the r-flip (also known
as r-Opt) strategy. Given a binary solution with n variables, the r-flip strategy “flips” r binary variables
to obtain a new solution if the changes improve the objective function. The main purpose of this paper
is to develop several results for the implementation of r-flip moves in QUBO, including a necessary
and sufficient condition that when a 1-flip search reaches local optimality, the number of candidates
for implementation of the r-flip moves can be reduced significantly. The results of the substantial
computational experiments are reported to compare an r-flip strategy-embedded algorithm and a
multiple start tabu search algorithm on a set of benchmark instances and three very-large-scale QUBO
instances. The r-flip strategy implemented within the algorithm makes the algorithm very efficient,
leading to very high-quality solutions within a short CPU time.

Keywords: combinatorial optimization; quadratic unconstrained binary optimization; local optimality;
r-flip local optimality

1. Introduction

Quadratic unconstrained binary optimization is a classic NP-hard problem that has
been used as a unifying approach to many combinatorial optimization problems [1,2].
Due to its practicality, as well as theoretical interest, over the years researchers have
proposed many theoretical results as well as simple and sophisticated approaches as
solution procedures [3–10]. However, due to the complexity and practicality of QUBO, it is
still necessary to provide results suitable for solving large-scale problems. In recent years,
researchers have developed theoretical results to reduce the algorithmic implementation
difficulty of QUBO, [11–16]. Our results in this paper also help to reduce the size and
difficulty of the algorithmic implementation of these problems.

Quadratic unconstrained binary optimization (QUBO) can be formulated as:

Max f (x) = ∑n
i=1qixi +

1
2 ∑n

i=1∑n
j 6=iqi,jxixj, s.t.xi ∈ {0, 1}, i = 1, · · · , n (1)

In Equation (1), 1
2 qi,j is the i,j-th entry of a given n by n symmetric matrix Q. QUBO

is often referred to as the xTQx model [17]. Since xi
2 = xi f or xi = 0, 1, and Q may be
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written as an upper triangular matrix by doubling each entry of the upper triangle part of
the matrix and letting qi,i = qi, then we can write Equation (1) as Equation (2).

Max f (x) = ∑n
i=1∑n

j≥iqi,jxixj = xTQx, s.t.x_i ∈ {0, 1}, i = 1, · · · , n (2)

Local search strategy (LSS) is one of the most fundamental algorithmic concepts and
has been successfully applied to a wide range of hard combinatorial optimization problems.
The basic ingredient of almost all sophisticated heuristics is some variation of LSS. One
LSS that has been used by many researchers as a stand-alone or as a basic component
of more sophisticated algorithms is the r-flip (also known as r-Opt) strategy [11,18–22].
In Table A4, we present a comprehensive review of r-flip strategies applied to QUBO.
Let N = {1, 2, . . ., n}. Given a binary solution, x = (x1, · · · , xn) of xTQx, the r-flip search
chooses a subset, S ⊆ N, with |S| ≤ r, and builds a new solution, x′, where x′i = 1− xi for
all i ∈ S. If x′ improves the objective function, it is called an improving move (or improving
subset S). The r-flip search starts with a solution x, chooses an improving subset S, and
flips all elements in S. The process continues until there is no subset S with |S| ≤ r that
improves the objective function. The result is called a locally optimal solution with respect
to the r-flip move (or r-Opt).

Often in strategies where variable neighborhood searches, such as fan-and-filter
(F&F) [23,24], variable neighborhood search (VNS) [25,26], and multi-exchange neighbor-
hood search (MENS) [18–22] are used, the value of r dynamically changes as the search
progresses. Generally, there are two reasons for a dynamically changing search space strategy.

(a) The execution of an implementation of an r-flip local search, for a larger value of r, can
be computationally expensive to execute. This is because the size of the search space
is of order n chosen r, and for fixed values of n, it grows quickly in r for the value
of r ≤ bn/2c. Hence, smaller values of r, especially r equal to 1 and 2, have shown
considerable success.

(b) In practice, an r-flip local search process with a small value of r (e.g., r = 1) can quickly
reach local optimality. Thus, as a way to escape 1-flip local optimality, researchers
have tried to dynamically change the value of r as the search progressed. This offers
an opportunity to expand the search to a more diverse solution space.

A clever implementation of (a) and (b) in an algorithm can not only save computational
time but also possibly reach better solutions because the larger values of r provide an
opportunity to search a more diverse part of the solution space.

Previous Works

The development of closed-form formulas for r-flip moves is desirable for devel-
oping heuristics for solving very-large-scale problem instances because it can reduce
computational time consumed by the implementation of an algorithm. Alidaee and Kochen-
berger [11] introduced several theorems showing closed-form r-flip formulas for general
pseudo-Boolean optimization. The authors in [12,13] recently provided closed-form formu-
las for evaluating r-flip rules in QUBO. In particular, Theorem 6 in [11] is specific to the
f (x) = xTQx problem. To explain the closed-form formula for the r-flip rule in xTQx, we
first introduce a few definitions. Refer to Table A4 for an exhaustive list of literature on
r-flip rules applied to QUBO.

Given a solution x = (x1, · · · , xn), the derivative of f (x) with respect to xi is defined as:

E(xi) = qi + ∑j<iqj,ixj + ∑j>iqi,jxj, i = 1, · · · , n (3)

Fact 1. Given a solution vector x = (x1, · · · , xi, · · · , xn), and a solution x′ =
(

x1, · · · ,
1− xi, · · · , xn

)
obtained by flipping the i-th element of x, we have:

∆ f = f
(

x′
)
− f (x) =

(
x′i − xi

)
E(xi). (4)
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It is well known that any locally optimal solution to an instance of the QUBO problem
with respect to a 1-flip search satisfies

Either ((xi = 0) i f f E(xi) < 0) or (xi = 1 i f f E(xi) ≥ 0), f or i = 1, · · · , n (5)

Furthermore, after changing x to x′, the update for E
(

xj
)
, j = 1, . . ., n, can be calculated

as follows:

∀j < i, E
(
xj
)
← E

(
xj
)
+ qj,i

(
x′i − xi

)
∀j > i, E

(
xj
)
← E

(
xj
)
+ qi,j

(
x′i − xi

)
=, E

(
xj
)
← E

(
xj
)

j = 1, . . . , n

(6)

Note that x′i − xi may be written as 1− 2xi, which can simplify the implementation
process. A simple 1-flip search is provided in Algorithm 1. Note that in line 3 we chose a
sequence to implement Fact 1. Using such a strategy has experimentally proven to be very
effective in several recent studies [27].

Before we present the algorithms in this study for the r-flip strategy, the notations
used are given as follows:

n: The number of variables;
x: A starting feasible solution;
x*: The best solution found so far by the algorithm;
K: The largest value of k for r-flip, k ≤ r;
Π(i): The i-th element of x in the order π(1)· · ·π(n);
S: = {i:xi is tentatively chosen to receive a new value to produce a new solution xi

′} restricting
consideration to |S| = r;
D: The set of candidates for an improving move;
Tabu_ten: The maximum number of iterations for which a variable can remain tabu;
Tabu(i): A vector representing tabu status of x;
E(xi): Derivative of f (x) with respect to xi;
E(x) = (E(x1), . . . , E(xn)) The vector of derivatives;
X(.): A vector representing the solution of x;
E(.): A vector representing the value of derivative E(xi).

Algorithm 1: 1-flip local search.

Initialize: n, x, evaluate the vector E(x)
Flag = 1
1 Do while (Flag = 1)
2 Flag = 0
3 Randomly choose a sequence π(1), . . . , π(n) of integers 1,. . .,n.
4 Do I = π(1), . . . , π(n)
5 If (E(xi) < 0 and xi = 1) or (E(xi) > 0 and xi = 0):
xi = 1− xi, update the vector E(x) using Equation (6), Flag = 1
6 End do
7 End while

The result of Fact 1 was extended to the r-flip search, given below.
(Theorem 6, Alidaee and Kochenberger [11]) Let x be a given solution of QUBO and x′

obtained from x by the r-flip move (for a chosen set S), where S ⊆ N, |S| = r. The change
in the value of the objective function is:

∆ f = f (x′)− f (x) = ∑i∈S
(
x′ i − xi

)
E(xi) + ∑i,j∈S,i<j

(
x′ i − xi

)(
x′ j − xj

)
qi,j (7)

Furthermore, after changing x to x′, the update for E
(

xj
)
, j = 1, . . ., n, can be calculated

as follows:
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∀j ∈ N\S, E
(

xj
)
← E

(
xj
)
+ ∑

i∈S

(
x′i − xi

)
qi,j

∀j ∈ S, E
(
xj
)
← E

(
xj
)
+ ∑i∈S\{j}

(
x′i − xi

)
qi,j

(8)

As explained in [11], the evaluation of change in the objective function of Equation (7)
can be done in O

(
r2), i.e., evaluating f (x′) from f (x). The update in Equation (8) requires

r calculations for each j in N\S, and r − 1 calculations for each j in S. Thus, overall, the
update for all n variables can be performed in O(nr).

Note that for any two elements i,j = 1, . . ., n, and i < j, we can define:

E′(xi) = E(xi)− qi − qi,jxj,

E′(xj) = E(xj)− qj − qi,jxi.
(9)

Using Equation (9), a useful way to express Equation (7) is Equation (10).

∆ f = ∑
i∈S

(1− 2xi)E′(xi) + ∑
j∈S,j≤i

(
1− xi − xj

)
qi,j

 (10)

A simple exhaustive r-flip search is provided in Algorithm 2. The complexity of the
problem indicates that the use of a larger value of r in the r-flip local search can make the
implementation of the search process more time consuming. Meanwhile, the larger value
of r can provide an opportunity to search a more diverse area of search space and thus
possibly reach better solutions. To overcome such conflicts, researchers often use r = 1 (and
occasionally r = 2) as the basic components of their more complex algorithms, such as F&F,
VNS, and MENS. Below, in Theorem 1 and Proposition 1, we prove that after reaching
the locally optimal solution with respect to a 1-flip search, the implementation of an r-flip
search can significantly be reduced. Further, related results are also provided to allow for
the efficient implementation of an r-flip search within an algorithm.

Algorithm 2: Exhaustive r-flip local search.

Initialize: n, x, evaluate the vector E(x), value of r
Flag = 1
1 Do while (Flag = 1)
2 Flag = 0
3 For each combination S ⊂ N and |S| ≤ r, evaluate ∆ f , Equation (7):
If ∆ f > 0:
xi = 1− x1, for i ∈ S, update E(x) using Equation (8), Flag = 1
4 End while

2. New Results on Closed-Form Formulas

We first introduce some notations. For m < n, define (n
m) to be the number of combi-

nations of m elements out of n, and let ϕ = Max
i,j∈N

{∣∣qi,j
∣∣} and M = ϕ ∗ (2, r). Furthermore,

Lemmas 1 and 2, presented below, help to prove the results. Note that Lemma 1 is a direct
deduction from previous results [11].

Lemma 1. Given a locally optimal solutionx = (x1, · · · , xn)with respect to a 1-flip search, we have:(
x′ i − xi

)
E(xi) ≤ 0, for i = 1, . . . , n. (11)

Proof. The condition of local optimality in Equation (5) indicates that:

(E(xi) ≥ 0 iff xi = 1), and (E(xi) ≤ 0, iff xi = 0).
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Using this condition, we thus have:

(x′ i − xi)E(xi) ≤ 0, for i = 1, · · · , n.

�

Lemma 2. Let x = (x1, · · · , xn)be any solution to the problem; then, we have:

∑i,j∈S
(
x′i − xi

)(
x′j − xj

)
qi,j ≤ M (12)

Proof. For each pair of elements, i, j ∈ S, the left-hand side can be qi,j or−qi,j. Since |S| = r,
the summation on the left-hand side is, at most, equal to M. �

Theorem 1. Let ϕ and M be as defined above and let x = (x1, · · · , xn) be a locally optimal solution
of xTQx with respect to a 1-flip search. A subset S ⊆ N, with |S| = r, is an improving r-flip move
if and only if we have:

∑i∈S|E(xi)| ≤ ∑i,j∈S
(
x′i − xi

)(
x′j − xj

)
qi,j (13)

Proof. Using Equation (7), a subset S ⊆ N of r elements is an improving r-flip move if and
only if we have:

∆ f = f
(

x′
)
− f (x) = ∑

i∈S

(
x′i − xi

)
E(xi) + ∑

i,j∈S

(
x′i − xi

)(
x′j − xj

)
qi,j > 0 (14)

Since x is a locally optimal solution with respect to a 1-flip search, it follows from
Lemma 1 that Inequality (14) is equivalent to Equation (15); that completes the proof.

∑i,j∈S
(

x′i − xi
)(

x′j − xj
)
qi,j > −∑i∈S

(
x′i − xi

)
E(xi) = ∑i∈S|E(xi)| (15)

�

Proposition 1. Let ϕ and M be as defined above and let x = (x1, · · · , xn) be any locally optimal
solution of the xTQx problem with respect to a 1-flip search. If a subset S ⊆ N, with |S| = r, is an
improving r-flip move, then we must have ∑i∈S|E(xi)| < M.

Proof. Since x is a locally optimal solution with respect to a 1-flip search and S is an
improving r-flip move, based on Theorem 1, we have:

∑
i∈S
|E(xi)| < ∑

i,j∈S

(
x′i − xi

)(
x′j − xj

)
qi,j (16)

Using Lemma 2, we also have Equation (17), which completes the proof.

∑i∈S|E(xi)| < ∑i,j∈S
(
x′i − xi

)(
x′j − xj

)
qi,j ≤ M (17)

�

The consequence of Theorem 1 is as follows. Given a locally optimal solution x with
respect to a 1-flip search, if there is no subset of S with |S| = r that satisfies Equation (13),
then x is also locally optimal solution with respect to an r-flip search. Furthermore, if there
is no subset S of any size that satisfies Equation (13), then x is also locally optimal solution
with respect to an r-flip search for all r ≤ n. Similar statements are also true regarding
Proposition 1.

The result of Proposition 1 is significant in the implementation of an r-flip search. It
illustrates that, after having a 1-flip search implemented, if an r-flip search is next served
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as a locally optimal solution, only those elements with the sum of the absolute value of
derivatives less than M are eligible for consideration. Furthermore, when deciding on the
elements of an r-flip search, we can easily check to see whether any element xi by itself
or with a combination of other elements is eligible to be a member of an improving r-flip
move S. Example 1 below illustrates this situation.

Example 1. Consider an xTQx problem with n variables. Let x = (x1, · · · , xn) be a given locally
optimal solution with respect to a 1-flip search. Consider S = {i,j,k,l} for a possible 4-flip move. In
order to have S for an improving move, all 15 inequalities, given below in Equation (18), must be
satisfied. Of course, if the last inequality in Equation (18) is satisfied, all other inequalities are also
satisfied. This means that each subset of the S is also an improving move. This is important in any
dynamic neighborhood search strategy k-flip move for k ≤ r in consideration.

Here we have ϕ = Max
i,j∈N

{∣∣qij
∣∣} and M = 6 ∗ ϕ :

|E(xa)| < M for a = i, j, k, l,
|E(xa)|+ |E(xb)| < M for (a 6= b), a, b = i, j, k, l,
|E(xa)|+ |E(xb)|+ |E(xc)| < M for (a 6= b 6= c), a, b, c = i, j, k, l,

|E(xa)|+|E(xb)|+|E(xc)|+|E(xd)|< M for a = i, b = j, c = k, d = l

(18)

Obviously, choosing the appropriate subset S to implement a move is critical. There
are many ways to check for an improving subset S. Below, we explain two such strategies.
In addition, a numerical example is given in Appendix A.

2.1. Strategy 1

We first define a set, D(n), of candidates for improving moves. Given a locally optimal
solution x with respect to a 1-flip move, let the elements of x be ordered in ascending
absolute value of derivatives, as given in Equation (19).∣∣E(xπ(1)

)∣∣ ≤ · · · ≤ ∣∣E(xπ(n)
)∣∣ (19)

Here, π(i) means the i-th element of x in the order (π(1), · · · , π(n)). Let K be the
largest value of k = 1, 2,. . ., n, where Inequality (20) is satisfied. The set D(n) is now defined
by Equation (21).

∑k
i=1

∣∣E(xπ(i)
)∣∣ < M for k = 1, 2, 3, · · · , n (20)

D(n) =
{

xπ(1), · · · , xπ(K)
}

(21)

Lemma 3. Any subset S ⊆ D(n) satisfies the necessary condition for an improving move.

Proof. It follows from Proposition 1.
There are some advantages to having elements of x in an ascending order, i.e., Inequality (19):

I. The smaller the value of |E(xi)| is, the more likely that xi is involved in an improving
k-flip move for k ≤ r (this might be due to the fact that the right-hand-side value M in
Equation (20) for a given r is constant. Thus, smaller values of |E(xi)| on the left-hand
side might help to satisfy the inequality more easily.

II. Because the elements of D(n) are in ascending order of absolute values of derivatives,
a straightforward implementable series of alternatives to be considered for improving
subsets, S, may be the elements of the set given in Equation (22). Note that there are
many more subsets of D(n) compared to the sets in Equation (21) that are candidates
for consideration in possible k-flip moves. Here, we only provide one possible efficient
implementable strategy.

S ∈ {{π(1), π(2)}, {π(1), π(2), π(3)}, · · · , {π(1), · · · , π(K)}} (22)
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It is important to note that, if Proposition 1 is used in the process of implementing an
algorithm given a locally optimal solution x with respect to a 1-flip search, after an r-flip
implementation for a subset |S| = r with r > 1, the locally optimal solution with respect to
a 1-flip search for the new solution, x′, can be destroyed. Thus, if an r-flip search needed to
be continued, a 1-flip search might be necessary on solution x′ before a new r-flip move
could continue. However, there are many practical situations where this problem may be
avoided for many subsets, especially when the problem is very large scale, i.e., the value of
n is large and/or Q is sparse. Proposition 2 is a weaker condition of Proposition 1 that can
help be overcome to a certain point in the aforementioned problem.

In the proof of Theorem 1 and Proposition 1, we only used a condition of optimality
for a 1-flip search satisfied for the members of the subset S. We now define a condition as
follows and call it “condition of optimality with respect to a 1-flip search for a set S”, or
simply, “condition of optimality for S”.

Given a solution x, the condition of optimality for any subset S ⊆ N is satisfied if and
only if we have:

Either (xi = 0 i f f E(i) < 0) or (xi = 1 i f f E(i) ≥ 0) for i ∈ S (23)

�

Of course, if we have N in Equation (23) instead of S, x is a locally optimal solution, as
was defined in Fact 1.

For m < n, let (m, n) be the number of combinations of m elements out of n elements,
ϕS = max

i,j∈S

{∣∣qi,j
∣∣}, and MS = ϕS ∗ (2, r). With these definitions, we now state Proposition 2.

Proposition 2. (Weak necessary condition): Let S ⊆ N, |S| = r, and ϕS and MS are as defined
above. Given any solution x = (x1, · · · , xn) of xTQx, assume the condition of optimality is
satisfied for a subset S. If S is an r-flip-improving move, we must have ∑i∈S|E(xi)| < MS.

Proof. Similar to the proof of Proposition 1.
Notice that the values of ϕS and MS in Proposition 2 depend on S; however, these

values can be updated efficiently as the search progresses. As explained above, in situations
where the problem is very large scale and/or Q is sparse, for many variables, the values
of derivatives are “unaffected” by the change in values of the elements in S. This means
that a large set of variables still satisfies the condition of optimality, and thus, the search
can continue without applying a 1-flip search each time before finding a new set S for r-flip
implementation. �

2.2. Strategy 2

Another efficient and easily implementable strategy is when, instead of using Equation (20),
we only use an individual element to create a set of candidates for applying an r-flip search,
set D(1), as defined below. Corollary 1 is a special case of Proposition 1 that suffices for
such a strategy.

D(1) = {xi :|E(xi)|< M} (24)

Corollary 1 . Let ϕ and M be as defined before. Given a solution x = (x1, · · · , xn) of xTQx, if the
1-flip local search cannot further improve the value of f(x), and i ∈ S with S ⊆ N, where an r-flip
move of elements of S improves f(x), then we must have |E(xi)|< M .

To gain insight into the use of Corollary 1, we carried out some experimentation to
find the size of set D(1) for different sizes of instances. The steps of the experiment to find
the size of D(1) are provided below. The problems considered were taken from Ref. [26]
and have been used by many researchers. We only used the larger-scale problems with
2500 to 6000 variables for a total of 38 instances.
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Find_D(): Procedure for finding the size of set D(1):

• Step 1. Randomly initialize a solution to the problem. For each value of r, calculate
M. Apply the algorithm in Algorithm 1 and generate a locally optimal solution x
with respect to a 1-flip search. However, in Step 5 of Algorithm 1, only consider the
derivatives with |E(xi)|< M .

• Step 2. Find the number of elements in set D(1) for x.
• Step 3. Repeat steps 1 and 2 200 times for each problem and find the average number

of elements in set D(1) for the same size problem, density, and r-value.

The results of the experiment are shown in Table 1. From Table 1, in general we can
say that, as the density of matrix Q increased, the size of D(1) decreased for all problem
sizes and values of r. This is, of course, due to the fact that the larger density of Q made the
derivative of each element in x more related to other elements. As the size of a problem
increases, the size of D(1) also increases.

Table 1. Size of set D(1).

r = 2 r = 3 r = 4

Density

Prob.
Size 0.1 0.3 0.5 0.8 0.1 0.3 0.5 0.8 0.1 0.3 0.5 0.8

2500 <100 <40 <30 <20 <400 <200 <100 <100 <1000 <500 <300 <200

3000 <100 <40 <30 <20 <400 <200 <100 <100 <1100 <500 <400 <250

4000 <100 <30 <30 <20 <500 <200 <100 <100 <1200 <600 <400 <250

5000 <100 <30 <30 <20 <500 <200 <100 <100 <1300 <600 <400 <250

6000 <100 <30 <30 <20 <500 <200 <100 <100 <1400 <600 <400 <250

An interesting observation in our experiment is that, in most cases, the size of D(1)
for better locally optimal solutions was smaller than those with the worse locally optimal
solutions. This indicates that, as the search reaches closer to the globally optimal solutions,
the time for an r-flip search decreases when we take advantage of Corollary 1.

2.3. Implementation Details

We first implement two strategies in Sections 2.1 and 2.2 via Algorithm 3 for Strategy 1
and Algorithm 4 for Strategy 2, and then proposed Algorithm 5 for Strategy 2 embedded
with a simple tabu search algorithm for the improvement in Algorithm 5. A summary of
the methodology used in this research is provided as follows:

We started by choosing the appropriate subset S to implement a move. There were two
strategies employed at this step that required the utilization of two different algorithms.

Algorithm 3 was applied for Strategy 1, which involved defining a set of candidates
for improving moves, given a locally optimal solution with respect to a 1-flip move.

Algorithm 4 was applied for Strategy 2, which involved using an individual element
to create a set of candidates for applying an r-flip search.

Algorithm 5 was applied for improvement, which involved a tabu search algorithm.
The detailed pseudo-code of Algorithms 3–5 is provided below:



Algorithms 2023, 16, 557 9 of 19

Algorithm 3: r-flip local search: strategy 1

Initialize: n, x, evaluate vector E(x), value of r, M
Flag = 1
1 Do while (Flag = 1)
2 Flag = 0
3 Call 1-flip local search: Algorithm 1
4 Sort variables according to

∣∣E(xπ(i)
)∣∣ ≤ ∣∣E(xπ(i+1)

)∣∣, using Inequality (20) evaluate value of K
5 For j = π(1), · · · , π(K) :
6 For Sj = {π(1), · · · , π(j)}, evaluate MSj

If ∑
j
i=1

∣∣∣E(xπ(i)

)∣∣∣ < MSj , evaluate ∆f using Equation (7).
7 If ∆ f > 0:
xi = 1− xi, for i ∈ Sj, update E(x) using Equation (8), Flag = 1, go to Step 1
8 End for
9 End while

Algorithm 4: r-flip local search: strategy 2

Initialize: n, x, evaluate E(x), value of r, M
Flag = 1
1 Do while (Flag = 1)
2 Flag = 0, and S = ∅
3 Call 1-flip local search: Algorithm 1
4 Randomly choose a sequence π(1), · · · , π(n) of integers 1, · · · , n
5 For j = π(1), · · · , π(n):
6 If

∣∣∣E(xj

)∣∣∣ < M, and |S ∪ {j}| ≤ r evaluate ∆ f for S ∪ {j} using Equation (7)
7 If ∆ f > 0:
xi = 1− xi, for i ∈ S ∪ {j}, update E(x) using Equation (8), S = S ∪ {j},
Flag =1, go to Step 1
8 End for
9 End while

Algorithm 5: Hybrid r-flip/1-flip local search embedded with a simple tabu search algorithm

Initialize: n, x, tabu list, evaluate E(x), value of r, M, tabu tenure
Call local search: Algorithm 4
Do while (until some stopping criteria, e.g., CPU time limit, is reached)
Call Destruction()
Call Construction()
Call randChange()
End while

In the Destruction() procedure, there are three steps:

• Step 3a. Find the variable that is not on the tabu list and lead to the small change to
the solution when the variable is flipped.

• Step 3b. Change its value, place it on the tabu list to update the tabu list, and up-
date E(x).

• Step 3c. Test whether there is any variable that is not on the tabu list and that can
improve the solution. If not, go to Step 3a.

In the Construction() procedure, there are four steps:

• Step 4a. Test all of the variables that are not on the tabu list. If a solution better than
the current best solution is found, change its value, place it on the tabu list, update
E(x), update the tabu list, and go to Step 1.

• Step 4b. Find the index i corresponding to the greatest value of E(xi), change its value
of xi, place it on the tabu list to update the tabu list, and update E(x).

• Step 4c. If this is the 15th iteration in the Construction() procedure, go to Step 1.
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• Step 4d. Test whether there is any variable that is not on the tabu list and that can
improve the solution. If not, go to Step 3a. If yes, go to Step 4a.

The randChange() procedure is invoked occasionally and randomly to select an x for
the Destruction() using a random number generator. There is a probability of less than 2%
of invoking after the Construction() procedure. To get the 2% probability, a random number
generator is used to create an integer between 1 and 1000. If the value of the integer is
smaller than 20, the randChange() is invoked. The variable chosen in the randChange()
will lead to the change of E(x) for Destruction().

Any local search algorithm, e.g., Algorithms 3 or 4, can be used in Step 1 of this simple
tabu search heuristic. However, a limited preliminary implementation of Algorithms 3 and 4
within Algorithm 5 suggests that, due to its simplicity of implementation and computational
saving time, Algorithm 4 with slight modification was quite effective; thus, we used it in
Step 1 of Algorithm 5. The slight modification was as follows. If the solution found by a
1-flip is worse than the current best-found solution, quit the local search and go to Step 2.

In order to determine whether the hybrid r-flip/1-flip local search algorithms with
two strategies (Algorithms 3 and 4) perform better than the hybrid r-flip/1-flip local search
embedded with a simple tabu search implementation, we compared Algorithms 3 and 4 to
Algorithm 5.

The goal of the new strategies is to reach local optimality on large-scale instances
with less computing time. We report the comparison of the three algorithms of a 2-flip on
very-large-scale QUBO instances in the next section.

3. Computational Results

In this study, we performed substantial computational experiments to evaluate the
proposed strategies for problem size, density, and r-value. We compared the performance
of Algorithms 3–5 for r = 2 on very-large-scale QUBO instances. We also compared the best
algorithm among Algorithms 3–5 to one of the best algorithms for xTQx, i.e., Palubeckis’s
multiple start tabu search. We coded the algorithms in C++ programming language.

In [28], there are five multiple start tabu search algorithms, and the MST2 algorithm
had the best results reported by the author. We chose the MST2 algorithm with the default
values for the parameters recommended by the author [28]. In the MST2 algorithm, the
number of iterations as the stopping criterion for the first tabu search start subroutine
is 25,000× the size of the problem, and then the MST2 algorithm reduces the number
of iterations to 10,000× the size of problem as the stopping criterion for the subsequent
tabu search starts. Within the tabu search subroutine, if an improved solution is found,
then the MST2 algorithm invokes a local search immediately. The CPU time limit in
the MST2 algorithm is checked at the end of the tabu search start subroutine. Thus, the
computing time might exceed the CPU time limit for large instances when choosing short
CPU time limits.

All algorithms in this study were compiled by GNU C++ compiler v4.8.5 and run on a
single core of Intel Xeon Quad-core E5420 Harpertown processors, which have a 2.5 GHz
CPU with an 8 GB memory. All computing jobs were submitted through the Open PBS
Job Management System (Version 3) to ensure that both methods used the same CPU for
memory usage and CPU time limits in the same instance.

Preliminary results indicate that Algorithms 3–5 performed well in instances with
a size of less than 3000 and low density. All algorithms found the best-known solution
with a CPU time limit of 10 s. Thus, we only compared the results of large instances with
high density and a size of 3000 to 8000 with the MST2 algorithm and the best algorithm
among Algorithms 3–5. These benchmark instances with sizes of 3000 to 8000 have been
reported by other researchers [5,12]. In addition, we generated some very-large-scale
QUBO instances with a high density and size of 30,000 using the same parameters from
the benchmark instances. We used a CPU time limit of 600 s and r = 2 for Algorithms 3–5
in the very-large-scale instances in Table 2. We adopted the following notation for the
computational results:
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Table 2. Results of Algorithms 3–5 on p30000 instances with a CPU time limit of 600 s and r = 2.

Instance
ID

Algorithm 3 Algorithm 4 Algorithm 5

Size Density OFV TB (s) OFV TB (s) OFV TB (s)

p30000_1 30,000 0.5 127,239,168 591 127,292,467 591 127,336,719 592
p30000_2 30,000 0.8 158,439,036 572 158,472,098 555 158,526,518 571
p30000_3 30,000 1 179,192,241 584 179,219,781 587 179,261,723 590

OFV: The value of the objective function for the best solution found by each algorithm;
BFS: The best solution found among algorithms within the CPU time limit;
TB [s]: Time for each algorithm to reach the best solution in seconds;
AT [s]: Average computing time out of 10 runs to reach OFV;
DT: % Deviation of computing time out of 10 runs to reach OFV.

Table 2 shows the results of the comparison for Algorithms 3–5 on very-large-scale
instances out of 10 runs. Algorithm 5 produced a better solution than Algorithms 3 and 4
with r = 2; thus, we used Algorithm 5 with r = 1 and r = 2 to compare to the MST2 algorithm.
We imposed a CPU time limit of 60 s and 600 s per run, with 10 runs per instance on
Algorithm 5 and the MST2 algorithm. We choose a tabu tenure value of 100 for 1-flip
and 2-flip.

In our implementation, we chose the CPU time limit as the stopping criterion and
checked the CPU time limit before invoking the tabu search in Algorithm 5. Because the
MST2 algorithm and Algorithm 5 are not single point-based search methods, the choice of
the CPU time limit as the stopping criterion seemed to be a fair performance comparison
method between the algorithms.

Table 3 describes the size and density of each instance and the number of times out of
10 runs the OFV was reached as well as the solution deviation within the CPU time limit for
the MST2 algorithm and Algorithm 5 with r = 1 and r = 2. The MST2 algorithm produced
a stable performance and reached the same OFV frequently out of 10 runs. Algorithm 5
started from a random initial solution and could search for a more diverse solution space
within a short CPU time limit. When the CPU time limit was changed to 600 s, the MST2
algorithm and Algorithm 5 produced a better-quality solution in terms of the relative
standard deviation [29]. The relative standard deviation (RSD) in Table 3 in parenthesis

was measured by RSD = 100 σ
µ , σ =

√
∑( f (x)− f (x))

2

n , and µ = f (x), where f (x) is the OFV

of each run and f (x) is the mean value of the OFV out of n = 10 runs. For some instances,
the relative standard deviation (RSD) was less than 5.0 × 10−4 even though not all runs
found the same OFV. We used 0.000 as the value of RSD when the value was rounded up to
three decimal points.

Table 3. The solution quality of the MST2 algorithm and Algorithm 5 with CPU time limits of 60 and
600 s out of 10 runs.

Instance
ID

MST2
with 60 s

r-Flip with 60 s MST2
with 600 s

r-Flip with 600 s

Size Density r = 1 r = 2 r = 1 r = 2

p3000_1 3000 0.5 10 (0) 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
p3000_2 3000 0.8 10 (0) 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
p3000_3 3000 0.8 4 (0.01) 7 (0.007) 10 (0) 10 (0) 10 (0) 10 (0)
p3000_4 3000 1 10 (0) 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
p3000_5 3000 1 10 (0) 9 (0.003) 7 (0.002) 9 (0.001) 10 (0) 10 (0)
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Table 3. Cont.

Instance
ID

MST2
with 60 s

r-Flip with 60 s MST2
with 600 s

r-Flip with 600 s

Size Density r = 1 r = 2 r = 1 r = 2

p4000_1 4000 0.5 10 (0) 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
p4000_2 4000 0.8 10 (0) 10 (0) 10 (0) 9 (0.004) 10 (0) 10 (0)
p4000_3 4000 0.8 10 (0) 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
p4000_4 4000 1 1 (0.033) 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
p4000_5 4000 1 10 (0) 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
p5000_1 5000 0.5 6 (0.000) 1 (0.002) 2 (0.002) 10 (0) 3 (0.002) 2 (0.002)
p5000_2 5000 0.8 10 (0) 4 (0.003) 1 (0.002) 6 (0.012) 10 (0) 10 (0)
p5000_3 5000 0.8 10 (0) 7 (0.001) 3 (0.002) 10 (0) 10 (0) 10 (0)
p5000_4 5000 1 10 (0) 1 (0.002) 1 (0.001) 10 (0) 3 (0.002) 1 (0.001)
p5000_5 5000 1 6 (0.021) 9 (0.003) 4 (0.004) 10 (0) 10 (0) 10 (0)
p6000_1 6000 0.5 10 (0) 10 (0) 4 (0.001) 10 (0) 10 (0) 10 (0)
p6000_2 6000 0.8 10 (0) 4 (0.001) 4 (0.001) 1 (0.006) 10 (0) 9 (0)
p6000_3 6000 1 9 (0.002) 3 (0.002) 1 (0.007) 10 (0) 10 (0) 10 (0)
p7000_1 7000 0.5 1 (0.002) 1 (0.006) 1 (0.007) 10 (0) 2 (0.002) 4 (0.002)
p7000_2 7000 0.8 7 (0.000) 1 (0.008) 1 (0.008) 10 (0) 1 (0.004) 2 (0.004)
p7000_3 7000 1 8 (0.011) 3 (0.021) 5 (0.023) 10 (0) 10 (0) 10 (0)
p8000_1 8000 0.5 10 (0) 1 (0.004) 1 (0.005) 9 (0.001) 10 (0) 1 (0.002)
p8000_2 8000 0.8 10 (0) 1 (0.009) 1 (0.008) 10 (0) 7 (0.003) 10 (0)
p8000_3 8000 1 10 (0) 1 (0.013) 1 (0.01) 10 (0) 4 (0.001) 3 (0.002)
p30000_1 30,000 0.5 1 (0.002) 1 (0.023) 1 (0.019) 7 (0.018) 1 (0.017) 1 (0.011)
p30000_2 30,000 0.8 10 (0) 1 (0.017) 1 (0.016) 6 (0.01) 1 (0.019) 1 (0.013)
p30000_3 30,000 1 10 (0) 1 (0.015) 1 (0.019) 2 (0.037) 1 (0.025) 1 (0.019)

Table 4 reports the computational results of the CPU time limit of 60 s, and Table 5
reports the computational results of the CPU time limit of 600 s. In Table 4, it can be seen
that the MST2 algorithm matched 5 out of 27 of the best solutions within the CPU time
limit. The 1-flip strategy in Algorithm 5 matched 26 out of 27 of the best solutions, whereas
the 2-flip strategy in Algorithm 5 matched 18 out of 27 of the best solutions. For the MST2
algorithm, the computing time to find the initial solution exceeded the CPU time limit of
60 s for two large instances.

Table 4. Results of the MST2 algorithm and r-flip strategy in Algorithm 5 within the CPU time limit
of 60 s.

Instance
ID

BFS (60 s)
MST2 (60 s) r-Flip (60 s)

OFV TB (s) OFV (r = 1) TB (s) OFV (r = 2) TB (s)

p3000_1 3,931,583 3,931,583 10 3,931,583 3 3,931,583 8
p3000_2 5,193,073 5,193,073 25 5,193,073 2 5,193,073 2
p3000_3 5,111,533 5,111,533 52 5,111,533 8 5,111,533 4
p3000_4 5,761,822 5,761,437 10 5,761,822 2 5,761,822 2
p3000_5 5,675,625 5,675,430 24 5,675,625 7 5,675,625 17
p4000_1 6,181,830 6,181,830 40 6,181,830 3 6,181,830 4
p4000_2 7,801,355 7,797,821 12 7,801,355 13 7,801,355 4
p4000_3 7,741,685 7,741,685 31 7,741,685 5 7,741,685 8
p4000_4 8,711,822 8,709,956 58 8,711,822 5 8,711,822 11
p4000_5 8,908,979 8,905,340 27 8,908,979 4 8,908,979 13
p5000_1 8,559,680 8,556,675 56 8,559,680 21 8,559,680 7
p5000_2 10,836,019 10,829,848 34 10,836,019 59 10,836,019 11
p5000_3 10,489,137 10,477,129 28 10,489,137 20 10,489,137 16
p5000_4 12,251,710 12,245,282 52 12,251,710 54 12,251,520 42
p5000_5 12,731,803 12,725,779 56 12,731,803 17 12,731,803 16
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Table 4. Cont.

Instance
ID

BFS (60 s)
MST2 (60 s) r-Flip (60 s)

OFV TB (s) OFV (r = 1) TB (s) OFV (r = 2) TB (s)

p6000_1 11,384,976 11,377,315 42 11,384,976 12 11,384,976 5
p6000_2 14,333,855 14,330,032 39 14,333,855 27 14,333,767 14
p6000_3 16,132,915 16,122,333 51 16,130,731 24 16,132,915 48
p7000_1 14,477,949 14,467,157 56 14,477,949 41 14,476,263 21
p7000_2 18,249,948 18,238,729 55 18,249,948 47 18,246,895 47
p7000_3 20,446,407 20,431,354 59 20,446,407 15 20,446,407 12
p8000_1 17,340,538 17,326,259 47 17,340,538 26 17,340,538 35
p8000_2 22,208,986 22,180,465 55 22,208,986 54 22,208,683 53
p8000_3 24,670,258 24,647,248 56 24,670,258 43 24,669,351 50
p30000_1 127,252,438 126,732,48,3 60 127,252,438 58 127,219,336 60
p30000_2 158,384,175 157,481,366 69 158,384,175 59 158,339,497 60
p30000_3 179,103,085 178,093,109 89 179,103,085 58 179,029,747 54

Table 5. Results of the MST2 algorithm and r-flip strategy in Algorithm 5 within the CPU time limit
of 600 s.

Instance
ID

BFS
(600 s)

MST2 (600 s) r-Flip (600 s)

OFV TB (s) OFV (r = 1) TB (s) OFV (r = 2) TB (s)

p3000_1 3,931,583 3,931,583 11 3,931,583 5 3,931,583 5
p3000_2 5,193,073 5,193,073 25 5,193,073 1 5,193,073 3
p3000_3 5,111,533 5,111,533 52 5,111,533 30 5,111,533 8
p3000_4 5,761,822 5,761,822 269 5,761,822 1 5,761,822 2
p3000_5 5,675,625 5,675,625 505 5,675,625 43 5,675,625 29
p4000_1 6,181,830 6,181,830 40 6,181,830 4 6,181,830 2
p4000_2 7,801,355 7,800,851 530 7,801,355 8 7,801,355 8
p4000_3 7,741,685 7,741,685 30 7,741,685 5 7,741,685 2
p4000_4 8,711,822 8,711,822 67 8,711,822 2 8,711,822 7
p4000_5 8,908,979 8,906,525 65 8,908,979 4 8,908,979 13
p5000_1 8,559,680 8,559,075 324 8,559,680 9 8,559,680 27
p5000_2 10,836,019 10,835,437 541 10,836,019 17 10,836,019 21
p5000_3 10,489,137 10,488,735 400 10,489,137 29 10,489,137 38
p5000_4 12,252,318 12,249,290 265 12,252,318 127 12,251,848 143
p5000_5 12,731,803 12,731,803 265 12,731,803 19 12,731,803 32
p6000_1 11,384,976 11,384,976 406 11,384,976 8 11,384,976 39
p6000_2 14,333,855 14,333,767 498 14,333,855 62 14,333,855 17
p6000_3 16,132,915 16,128,609 239 16,132,915 60 16,132,915 71
p7000_1 14,478,676 14,477,039 344 14,478,676 92 14,478,676 397
p7000_2 18,249,948 18,242,205 587 18,249,948 115 18,249,844 43
p7000_3 20,446,407 20,431,833 109 20,446,407 47 20,446,407 21
p8000_1 17,341,350 17,337,154 546 17,340,538 45 17,341,350 141
p8000_2 22,208,986 22,207,866 122 22,208,986 49 22,208,986 89
p8000_3 24,670,924 24,669,797 402 24,670,924 185 24,670,924 386
p30000_1 127,336,719 127,323,304 568 127,332,912 598 127,336,719 592
p30000_2 158,561,564 158,438,942 573 158,561,564 580 158,526,518 571
p30000_3 179,329,754 179,113,916 575 179,329,754 599 179,261,723 590

When the CPU time limit was increased to 600 s, the MST2 algorithm matched 10 out
of 27 of the best solutions. The 1-flip strategy matched 25 out of 27 of the best solutions, and
the 2-flip strategy matched 23 out of 27 of the best solutions. The 1-flip and 2-flip strategies
in Algorithm 5 performed well on the large, high-density instances. There was no clear
pattern of the 2-flip strategy being used more often than the 1-flip strategy to find the same
OFV. The 1-flip and 2-flip strategies in Algorithm 5 chose the initial solution randomly and
independently. The 1-flip strategy had better performance when the CPU time limits were
60 and 600 s.
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Tables 6 and 7 present the time deviation of each algorithm upon reaching the OFV for
each instance. The MST2 algorithm had less variation in computing time when it finding
the OFV, whereas the r-flip strategy in Algorithm 5 had a wider range of computing time.
If the algorithm only found the OFV once out of 10 runs, the time deviation was zero.

Table 6. Computing the time deviation of the MST2 algorithm and r-flip strategy in Algorithm 5
within the time limit of 60 s.

Instance
ID

MST2 1-Flip 2-Flip

AT (s) DT AT (s) DT AT (s) DT

p3000_1 12.5 15.663 15.7 84.075 24.1 56.875
p3000_2 32.5 20.059 4.9 45.583 4.8 68.606
p3000_3 54.3 5.901 29.3 46.180 12.0 60.477
p3000_4 13.3 18.434 12.0 107.798 10.0 51.640
p3000_5 30.4 15.829 33.2 45.470 32.3 48.240
p4000_1 49.0 10.227 7.7 50.131 9.3 36.570
p4000_2 14.2 9.848 22.1 62.351 21.1 70.476
p4000_3 35.4 11.236 15.1 69.699 16.5 75.542
p4000_4 58.0 0 22.2 65.408 35.4 45.780
p4000_5 31.1 11.082 18.1 73.038 29.6 40.109
p5000_1 56.8 2.339 4.0 0 10.0 42.426
p5000_2 35.0 3.563 28.3 74.329 11.0 0
p5000_3 30.0 8.607 38.9 33.038 33.0 50.069
p5000_4 54.0 5.238 54.0 0 42.0 0
p5000_5 57.2 1.317 38.8 40.504 30.5 63.379
p6000_1 43.3 5.112 32.9 47.380 21.8 67.507
p6000_2 39.8 4.238 31.8 51.521 42.3 46.315
p6000_3 52.1 5.027 32.3 44.640 48.0 0
p7000_1 56.0 0 41.0 0 21.0 0
p7000_2 55.3 1.367 47.0 0 47.0 0
p7000_3 59.0 0 42.0 56.293 35.2 45.958
p8000_1 48.1 7.232 26.0 0 35.0 0
p8000_2 55.9 0.566 54.0 0 53.0 0
p8000_3 57.2 1.806 43.0 0 50.0 0

p30000_1 60.0 0 58.0 0 60.0 0
p30000_2 70.0 1.166 59.0 0 60.0 0
p30000_3 90.3 0.912 58.0 0 54.0 0

Table 7. Computing the time deviation of the MST2 algorithm and r-flip strategy in Algorithm 5
within the time limit of 600 s.

Instance
ID

MST2 1-Flip 2-Flip

AT (s) DT AT (s) DT AT (s) DT

p3000_1 11.9 16.067 21.3 62.678 37.8 130.045
p3000_2 29.1 18.144 5.5 69.234 7.7 81.231
p3000_3 58.5 16.889 126.4 99.610 143.6 116.812
p3000_4 292.1 11.285 10.8 58.365 13.7 49.512
p3000_5 543.9 6.365 109.1 88.328 164.3 72.144
p4000_1 42.8 7.773 13.5 63.553 15.1 63.861
p4000_2 552.2 2.597 30.7 49.923 37.0 110.712
p4000_3 31.7 7.293 18.8 57.442 22.9 47.545
p4000_4 70.8 4.094 42.2 102.331 48.7 115.376
p4000_5 70.5 8.596 25.3 81.984 43.0 69.595
p5000_1 337.2 4.265 70.7 126.287 48.0 61.872
p5000_2 557.8 4.565 135.4 96.462 210.6 67.670
p5000_3 428.5 7.257 115.8 96.524 115.5 104.238
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Table 7. Cont.

Instance
ID

MST2 1-Flip 2-Flip

AT (s) DT AT (s) DT AT (s) DT

p5000_4 279.4 5.987 270.3 48.842 143.0 0
p5000_5 287.1 9.234 194.5 94.641 172.7 92.268
p6000_1 424.8 4.555 152.9 95.641 145.9 46.657
p6000_2 498.0 0 142.5 97.375 73.8 122.070
p6000_3 252.3 5.571 248.0 51.129 318.1 61.672
p7000_1 344.5 0.153 272.5 93.675 441.5 12.974
p7000_2 587.0 0 115.0 0 265.1 76.694
p7000_3 109.0 0 84.5 39.472 131.1 55.401
p8000_1 548.6 1.398 251.3 63.346 141.0 0
p8000_2 145.4 11.829 258.3 56.352 300.7 56.001
p8000_3 514.3 11.365 368.8 43.667 417.3 12.797

p30000_1 572.0 1.365 598.0 0 592.0 0
p30000_2 581.5 1.526 580.0 0 571.0 0
p30000_3 586.5 2.773 599.0 0 590.0 0

The r-flip strategy can be embedded in other local search heuristics as an improvement
procedure. Clever implementation of the r-flip strategy can reduce the computing time and
improve the solution quality. We reported the time and solutions out of 10 runs for each
instance. The time deviation and solution deviation of 10 runs were computed with the
short CPU time limits due to the computing resources available to this study.

The observed results show the effectiveness of the employed methodology in finding
the best solutions within very competitive CPU time limits. This suggests the possibility
of using alternative stopping criteria as a potential improvement in the future. Also, the
application of an efficient strategy in evaluating flip moves has the potential to further
improve the algorithm performance, as suggested by Anacleto et al. [12].

The r-flip method we developed presents itself as a compelling alternative for quantum
computing solvers, which are capable of efficiently handling QUBO problems as large as
5000 by 5000 variables due to the design of quantum processors. The advantages of the
r-flip method become particularly pronounced when dealing with substantial, complex
problem instances, showcasing superior computing performance. In essence, our method
emerges as a favorable choice for addressing large-scale, real-world challenges with efficacy
and computational prowess.

4. Conclusions

In this study, we explored the quadratic unconstrained binary optimization (QUBO)
problem, which produced significant findings. We established a necessary and sufficient
condition for the local optimality of an r-flip search after a 1-flip search had already
achieved local optimality. Our computational experiments demonstrated a substantial
reduction in candidate options for r-flip implementation. The new r-flip strategy efficiently
solved extremely large QUBO instances within 600 s, outperforming MST2 in terms of the
time taken to reach the best-known solutions in benchmark instances. These results are
particularly promising for implementing variable neighborhood strategies on extensive
problems or sparse matrices.

Similar to other quadratic unconstrained binary optimization (QUBO) methods, our
approach is subject to scalability constraints. The size of the Q matrix, representing the
number of variables in the problem, is inherently restricted by the memory limitations of
the computer system. In practical terms, our methodology exhibits robust performance,
successfully tackling problem instances of up to 200,000 by 200,000 in dense matrices, with
the potential to extend its capabilities to 500,000 by 500,000 in sparse matrices. This under-
scores the versatility and efficiency of our approach within the specified computational
constraints, demonstrating its applicability to a wide range of problem sizes and structures.
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Appendix A. Numerical Example for Theorem 1 and Proposition 1

Consider the problem with the Q matrix provided below in Figure A1. A locally
optimal solution x with f (x) = 1528 and the vector of derivatives E(x) is shown in Table A1.
For r = 2, M = 100, every two elements that satisfy Proposition 1 are shown in Table A1.
However, the only sets of two-element combinations that were improved are those shown
with the red font in Figure A2. These are the two elements that satisfied Theorem 1. The
new results of f (x) and E(x) for the two elements are shown in Table A2. In this simple
problem, instead of comparing 380 two-element combinations, we only needed to compare
21 combinations. Out of these 21 combinations, the 6 possible improved combinations are
shown in Table A3.
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Figure A1. Matrix Q for maximizing xTQx.

Table A1. A locally optimal solution, x(.), and values of E(xi), i = 1,. . ., n.

x(.) 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0

E(.) 624 177 −74 −459 209 −7 44 −7 −120 523 −124 233 22 114 −3 431 375 −89 242 −66

f (x) 1528 624 127 0 0 55 0 70 0 0 383 0 3 58 104 0 89 −5 0 20 0

In Figure A1 and Table A1, we have:
E(x1) = −30 + (50 ∗ 1 – 68 ∗ 0 – 66 ∗ 0 + 94 ∗ 1 – 100 ∗ 0 – 20 ∗ 1 – 4 ∗ 0 + 80 ∗ 0 + 94 ∗ 1

+ 0 ∗ 0 + 86 ∗ 1 + 76 ∗ 1 + 98 ∗ 1 − 36 ∗ 0 + 76 ∗ 1 + 52 ∗ 1 − 8 ∗ 0 + 48 ∗ 1 + 42 ∗ 0) = 624
E(x2) = −7 + 50 ∗ 1 + (50 ∗ 0 + 28 ∗ 0 + 60 ∗ 1 + 56 ∗ 0 − 54 ∗ 1 + 78 ∗ 0 + 4 ∗ 0 + 30 ∗ 1

− 42 ∗ 0 − 28 ∗ 1 − 50 ∗ 1 + 90 ∗ 1 − 42 ∗ 0 + 90 ∗ 1 − 26 ∗ 1 + 6 ∗ 0 + 22 ∗ 1 + 0 ∗ 0) = 177
E(x3) = −26 + (−68 ∗ 1 + 50 ∗ 1) + (−46 ∗ 0 + 26 ∗ 1 + 82 ∗ 0 − 50 ∗ 1 − 90 ∗ 0 + 44 ∗ 0

− 94 ∗ 1 + 54 ∗ 0 + 52 ∗ 1 − 50 ∗ 1 + 54 ∗ 1 − 68 ∗ 0 − 52 ∗ 1 + 20 ∗ 1 + 96 ∗ 0 + 64 ∗ 1 − 22
∗ 0) = −74

E(x4) = −35 + (−66 ∗ 1 + 28 ∗ 1 − 46 ∗ 0) + (8 ∗ 1 − 82 ∗ 0 − 84 ∗ 1 − 46 ∗ 0 − 34 ∗ 0 −
22 ∗ 1 − 62 ∗ 0 − 34 ∗ 1 − 56 ∗ 1 − 86 ∗ 1 + 18 ∗ 0 + 44 ∗ 1 − 84 ∗ 1 + 2 ∗ 0 − 72 ∗ 1 − 60 ∗
0) = −459

. . . for E(x5) to E(x19)
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E(x20) = 22 + (42 ∗ 1 + 0 ∗ 1 − 22 ∗ 0 − 60 ∗ 0 + 14 ∗ 1 + 2 ∗ 0 − 70 ∗ 1 + 94 ∗ 0 − 16 ∗ 0
+ 0 ∗ 1 + 52 ∗ 0 + 28 ∗ 1 − 96 ∗ 1 + 64 ∗ 1 − 34 ∗ 0 + 10 ∗ 1 − 26 ∗ 1 + 80 ∗ 0 − 54 ∗ 1) = −66

f (x1) = 1 ∗ (−30 + 50 + 94 − 20 + 94 + 86 + 76 + 98 + 76 + 52 + 48) = 624
f (x2) = 1 ∗ (−7 + 60 − 54 + 30 − 28 − 50 + 90 + 90 − 26 + 22) = 127
f (x3) = 0 ∗ (26 − 50 − 94 + 52 − 50 + 54 − 52 + 20 + 64) = 0
. . . for f (x4) to f (x19)
f (x20) = 0 ∗ (22) = 0
f (x) = 624 + 127 + 55 + 70 + 383 + 3 + 58 + 104 + 89 − 5 + 20 = 1528
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Figure A2. The indicated elements satisfy Proposition 1. Only the two-element combinations
indicated by the red font can improve f (x), which satisfies Theorem 1, whereas the ones indicated by
the black font cannot.

Table A2. An improvement using 2-flip for the locally optimal solution, x, and values of E(xi), i = 1, . . ., n.

x(.) 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1

E(.) 646 267 −204 −463 275 −83 −120 199 −270 367 −78 269 58 348 49 347 361 −123 78 64

f (x) 1684 646 217 0 0 121 0 0 35 0 315 0 83 10 240 −39 99 −31 0 −34 22

In Figure A2 and Table A2, we have:
f (x1) = 1 ∗ (−30 + 50 + 94 − 4 + 94 + 86 + 76 + 98 − 36 + 76 + 52 + 48 + 42) = 646
f (x2) = 1 ∗ (−7 + 60 + 78 + 30 − 28 − 50 + 90 − 42 + 90 − 26 + 22) = 217
. . . for f (x3) to f (x18)
f (x19) = 1 ∗ (20 − 54) = −34
f (x20) = 1 ∗ (22) = 22
f (x) = 646 + 217 + 121 + 35 + 315 + 83 + 10 + 240 − 39 + 99 − 31 − 34 + 22 = 1684

Table A3. All 6 possible improved combinations for the locally optimal solution (f (x) = 1528).

1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1684
1 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1646
1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1633
1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1616
1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1601
1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1530

1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1528
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Table A4. An exhaustive search of r-flip rules for QUBO.

Study r-Flip Rules

Debevre, P, Sugimura, M, and Parizy, M, Ieee Access, 2023 [2]. The automotive paint shop problem was formulated as QUBO,
then 1-flip and multiple flip moves provided for the solution.

Glover, F, and Hao, J-K, Int. J. Metaheuristics, 2010 [6]. An efficient evaluation of 2-flip moves for QUBO was presented.

Glover, F, and Hao, J-K, Annals of Operations Research, 2016 [7]. A class of approaches called f-flip strategies that include a
fractional value for f is provided for QUBO.

Lozano, M, Molina, D, and Garcia-Martinez, C, European
Journal of Operational Research, 2011 [10].

A maximum diversity QUBO problem was considered with an
added number of variables that must be equal to an integer m.
A 2-flip strategy with computational experiment was presented.

Alidaee, B., G. Kochenberger, and H. Wang, Int. J. Appl.
Metaheuristic Comput., 2010 [11].

Several theoretical results for r-flip moves in a general
pseudo-Boolean optimization including QUBO
were demonstrated.

Anacleto, E, Meneses, C, Ravelo, S, Computers & Operations
Research, 2020 [12].

Two closed-form formulas for evaluating r-flip moves were
presented. The effectiveness of the moves was
evaluated experimentally.

Anacleto, E, Meneses, C, and Liang, T, Computers & Operations
Research, 2021 [13].

An r-flip move strategy for a quadratic assignment problem that
can be transferred to QUBO was considered. A closed-form
formula and experimental evaluations were considered.

Katayama, K, and Naihisa, H, in: W. Hart, N. Krasnogor, J.E.
Smith (Eds.), Recent Advances in Memetic Algorithms, Springer,
Berlin, 2004 [30].

A k-flip move in the context of a memetic algorithm
was presented.

Liang, R.N, Anacleto, E.A.J, and Meneses, C.N. Computers &
Operations Research, 2023 [31].

A closed-form formula for pseudo-Boolean optimization and
data structure for efficient implementation of the 1-flip rule
was presented.

Merz, P, and Freisleben, B, Journal of Heuristics, 2002 [32]. Provided 1-flip and multiple-flip
strategies for QUBO and provided a computational experiment.

Rosenberg, G., Vazifeh, M, Woods, B, and Haber, E,
Computational Optimization and Applications, 2016 [33].

A k-flip strategy in the context of a quantum annealer
was presented.

Alidaee, B., Wang, H., and Liu, W. Working Paper, WP 2021-002.
Texas A&M International University, 2022 [34].

New Results on Closed-Form Formulas for Evaluating r-flip
Moves in Quadratic Unconstrained Binary Optimization.
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