

 algorithms-16-00557

algorithms-16-00557

Algorithms 2023, 16(12), 557; doi:10.3390/a16120557

Article

An Efficient Closed-Form Formula for Evaluating r-Flip Moves in Quadratic Unconstrained Binary Optimization

Bahram Alidaee 1, Haibo Wang 2 and Lutfu S. Sua 3,*

1

School of Business Administration, The University of Mississippi, University, Oxford, MS 38677, USA

2

A.R. Sánchez Jr. School of Business, Texas A&M International University, Laredo, TX 78041, USA

3

Department of Management and Marketing, Southern University and A&M College, Baton Rouge, LA 70807, USA

*

Correspondence: lutfu.sagbansua@subr.edu

Citation: Alidaee, B.; Wang, H.; Sua, L.S. An Efficient Closed-Form Formula for Evaluating r-Flip Moves in Quadratic Unconstrained Binary Optimization. Algorithms 2023, 16, 557. https://doi.org/10.3390/a16120557

Academic Editor: Francisco Cuevas de la Rosa

Received: 11 November 2023 / Revised: 28 November 2023 / Accepted: 2 December 2023 / Published: 5 December 2023

Abstract

:

Quadratic unconstrained binary optimization (QUBO) is a classic NP-hard problem with an enormous number of applications. Local search strategy (LSS) is one of the most fundamental algorithmic concepts and has been successfully applied to a wide range of hard combinatorial optimization problems. One LSS that has gained the attention of researchers is the r-flip (also known as r-Opt) strategy. Given a binary solution with n variables, the r-flip strategy “flips” r binary variables to obtain a new solution if the changes improve the objective function. The main purpose of this paper is to develop several results for the implementation of r-flip moves in QUBO, including a necessary and sufficient condition that when a 1-flip search reaches local optimality, the number of candidates for implementation of the r-flip moves can be reduced significantly. The results of the substantial computational experiments are reported to compare an r-flip strategy-embedded algorithm and a multiple start tabu search algorithm on a set of benchmark instances and three very-large-scale QUBO instances. The r-flip strategy implemented within the algorithm makes the algorithm very efficient, leading to very high-quality solutions within a short CPU time.

Keywords:

combinatorial optimization; quadratic unconstrained binary optimization; local optimality; r-flip local optimality

1. Introduction

Quadratic unconstrained binary optimization is a classic NP-hard problem that has been used as a unifying approach to many combinatorial optimization problems [1,2]. Due to its practicality, as well as theoretical interest, over the years researchers have proposed many theoretical results as well as simple and sophisticated approaches as solution procedures [3,4,5,6,7,8,9,10]. However, due to the complexity and practicality of QUBO, it is still necessary to provide results suitable for solving large-scale problems. In recent years, researchers have developed theoretical results to reduce the algorithmic implementation difficulty of QUBO, [11,12,13,14,15,16]. Our results in this paper also help to reduce the size and difficulty of the algorithmic implementation of these problems.

Quadratic unconstrained binary optimization (QUBO) can be formulated as:

 M a x f x = ∑ i = 1 n q i x i + 1 2 ∑ i = 1 n ∑ j ≠ i n q i , j x i x j , s . t . x i ∈ 0,1 , i = 1 , ⋯ , n

(1)

In Equation (1), 1 2 q i , j is the i,j-th entry of a given n by n symmetric matrix Q. QUBO is often referred to as the x T Q x model [17]. Since x i 2 = x i f o r x i = 0,1 , and Q may be written as an upper triangular matrix by doubling each entry of the upper triangle part of the matrix and letting q i , i = q i , then we can write Equation (1) as Equation (2).

 M a x f x = ∑ i = 1 n ∑ j ≥ i n q i , j x i x j = x T Q x , s . t . x _ i ∈ { 0,1 } , i = 1 , ⋯ , n

(2)

Local search strategy (LSS) is one of the most fundamental algorithmic concepts and has been successfully applied to a wide range of hard combinatorial optimization problems. The basic ingredient of almost all sophisticated heuristics is some variation of LSS. One LSS that has been used by many researchers as a stand-alone or as a basic component of more sophisticated algorithms is the r-flip (also known as r-Opt) strategy [11,18,19,20,21,22]. In Table A4, we present a comprehensive review of r-flip strategies applied to QUBO. Let N = {1, 2, …, n}. Given a binary solution, x = x 1 , ⋯ , x n of x T Q x , the r-flip search chooses a subset, S ⊆ N , with S ≤ r , and builds a new solution, x ′ , where x i ′ = 1 − x i for all i ∈ S . If x ′ improves the objective function, it is called an improving move (or improving subset S). The r-flip search starts with a solution x, chooses an improving subset S, and flips all elements in S. The process continues until there is no subset S with S ≤ r that improves the objective function. The result is called a locally optimal solution with respect to the r-flip move (or r-Opt).

Often in strategies where variable neighborhood searches, such as fan-and-filter (F&F) [23,24], variable neighborhood search (VNS) [25,26], and multi-exchange neighborhood search (MENS) [18,19,20,21,22] are used, the value of r dynamically changes as the search progresses. Generally, there are two reasons for a dynamically changing search space strategy.

	(a)

	
The execution of an implementation of an r-flip local search, for a larger value of r, can be computationally expensive to execute. This is because the size of the search space is of order n chosen r, and for fixed values of n, it grows quickly in r for the value of r ≤ n / 2 . Hence, smaller values of r, especially r equal to 1 and 2, have shown considerable success.

	(b)

	
In practice, an r-flip local search process with a small value of r (e.g., r = 1) can quickly reach local optimality. Thus, as a way to escape 1-flip local optimality, researchers have tried to dynamically change the value of r as the search progressed. This offers an opportunity to expand the search to a more diverse solution space.

A clever implementation of (a) and (b) in an algorithm can not only save computational time but also possibly reach better solutions because the larger values of r provide an opportunity to search a more diverse part of the solution space.

Previous Works

The development of closed-form formulas for r-flip moves is desirable for developing heuristics for solving very-large-scale problem instances because it can reduce computational time consumed by the implementation of an algorithm. Alidaee and Kochenberger [11] introduced several theorems showing closed-form r-flip formulas for general pseudo-Boolean optimization. The authors in [12,13] recently provided closed-form formulas for evaluating r-flip rules in QUBO. In particular, Theorem 6 in [11] is specific to the f x = x T Q x problem. To explain the closed-form formula for the r-flip rule in x T Q x , we first introduce a few definitions. Refer to Table A4 for an exhaustive list of literature on r-flip rules applied to QUBO.

Given a solution x = x 1 , ⋯ , x n , the derivative of f(x) with respect to x i is defined as:

 E x i = q i + ∑ j < i q j , i x j + ∑ j > i q i , j x j , i = 1 , ⋯ , n

(3)

Fact 1. Given a solution vector x = x 1 , ⋯ , x i , ⋯ , x n , and a solution x ′ = x 1 , ⋯ , 1 − x i , ⋯ , x n obtained by flipping the i-th element of x, we have:

 ∆ f = f x ′ − f x = x i ′ − x i E x i .

(4)

It is well known that any locally optimal solution to an instance of the QUBO problem with respect to a 1-flip search satisfies

 E i t h e r (x i = 0 i f f E x i < 0) o r x i = 1 i f f E x i ≥ 0 , f o r i = 1 , ⋯ , n

(5)

Furthermore, after changing x to x′, the update for E x j , j = 1, …, n, can be calculated as follows:

 ∀ j < i , E x j ← E x j + q j , i x i ′ − x i ∀ j > i , E x j ← E x j + q i , j x i ′ − x i = , E x j ← E x j j = 1 , … , n

(6)

Note that x i ′ − x i may be written as 1 − 2 x i , which can simplify the implementation process. A simple 1-flip search is provided in Algorithm 1. Note that in line 3 we chose a sequence to implement Fact 1. Using such a strategy has experimentally proven to be very effective in several recent studies [27].

Before we present the algorithms in this study for the r-flip strategy, the notations used are given as follows:

	
n: The number of variables;

	
x: A starting feasible solution;

	
x*: The best solution found so far by the algorithm;

	
K: The largest value of k for r-flip, k ≤ r;

	
Π(i): The i-th element of x in the order π(1)⋯π(n);

	
S: = {i:xi is tentatively chosen to receive a new value to produce a new solution xi′} restricting consideration to |S| = r;

	
D: The set of candidates for an improving move;

	
Tabu_ten: The maximum number of iterations for which a variable can remain tabu;

	
Tabu(i): A vector representing tabu status of x;

	
 E (x i) : Derivative of f(x) with respect to x i ;

	
 E (x) = (E (x 1) , … , E (x n)) The vector of derivatives;

	
X(.): A vector representing the solution of x;

	
E(.): A vector representing the value of derivative E (x i) .

	Algorithm 1: 1-flip local search.

	Initialize: n, x, evaluate the vector E(x)

Flag = 1

1 Do while (Flag = 1)

2 Flag = 0

3 Randomly choose a sequence π (1) , … , π (n) of integers 1,…,n.

4 Do I = π (1) , … , π (n)

5 If (E (x i) < 0 and x i = 1) or (E (x i) > 0 and x i = 0):

 x i = 1 − x i , update the vector E(x) using Equation (6), Flag = 1

6 End do

7 End while

The result of Fact 1 was extended to the r-flip search, given below.

(Theorem 6, Alidaee and Kochenberger [11]) Let x be a given solution of QUBO and x′ obtained from x by the r-flip move (for a chosen set S), where S ⊆ N , |S| = r. The change in the value of the objective function is:

 ∆ f = f (x ′) − f (x) = ∑ i ∈ S (x ′ i − x i) E (x i) + ∑ i , j ∈ S , i < j (x ′ i − x i) (x ′ j − x j) q i , j

(7)

Furthermore, after changing x to x′, the update for E (x j) , j = 1, …, n, can be calculated as follows:

 ∀ j ∈ N \ S , E x j ← E x j + ∑ i ∈ S x i ′ − x i q i , j ∀ j ∈ S , E x j ← E x j + ∑ i ∈ S \ { j } x i ′ − x i q i , j

(8)

As explained in [11], the evaluation of change in the objective function of Equation (7) can be done in O (r 2) , i.e., evaluating f(x′) from f(x). The update in Equation (8) requires r calculations for each j in N\S, and r − 1 calculations for each j in S. Thus, overall, the update for all n variables can be performed in O(nr).

Note that for any two elements i,j = 1, …, n, and i < j, we can define:

 E ′ x i = E x i − q i − q i , j x j , E ′ (x j) = E (x j) − q j − q i , j x i .

(9)

Using Equation (9), a useful way to express Equation (7) is Equation (10).

 ∆ f = ∑ i ∈ S 1 − 2 x i E ′ x i + ∑ j ∈ S , j ≤ i 1 − x i − x j q i , j

(10)

A simple exhaustive r-flip search is provided in Algorithm 2. The complexity of the problem indicates that the use of a larger value of r in the r-flip local search can make the implementation of the search process more time consuming. Meanwhile, the larger value of r can provide an opportunity to search a more diverse area of search space and thus possibly reach better solutions. To overcome such conflicts, researchers often use r = 1 (and occasionally r = 2) as the basic components of their more complex algorithms, such as F&F, VNS, and MENS. Below, in Theorem 1 and Proposition 1, we prove that after reaching the locally optimal solution with respect to a 1-flip search, the implementation of an r-flip search can significantly be reduced. Further, related results are also provided to allow for the efficient implementation of an r-flip search within an algorithm.

	Algorithm 2: Exhaustive r-flip local search.

	Initialize: n, x, evaluate the vector E(x), value of r

Flag = 1

1 Do while (Flag = 1)

2 Flag = 0

3 For each combination S ⊂ N and S ≤ r , evaluate ∆ f , Equation (7):

 If ∆ f > 0:

 x i = 1 − x 1 , for i ∈ S , update E(x) using Equation (8), Flag = 1

4 End while

2. New Results on Closed-Form Formulas

We first introduce some notations. For m < n, define n m to be the number of combinations of m elements out of n, and let φ = Max i , j ∈ N ⁡ q i , j and M = φ ∗ (2 , r) . Furthermore, Lemmas 1 and 2, presented below, help to prove the results. Note that Lemma 1 is a direct deduction from previous results [11].

Lemma 1.

Given a locally optimal solution x = x 1 , ⋯ , x n with respect to a 1-flip search, we have:

 (x ′ i − x i) E (x i) ≤ 0 , for i = 1 , … , n .

(11)

Proof.

The condition of local optimality in Equation (5) indicates that:

 E x i ≥ 0 iff x i = 1 , and E x i ≤ 0 , iff x i = 0 .

Using this condition, we thus have:

 (x ′ i − x i) E (x i) ≤ 0 , for i = 1 , ⋯ , n .

□

Lemma 2.

Let x = x 1 , ⋯ , x n be any solution to the problem; then, we have:

 ∑ i , j ∈ S x i ′ − x i x j ′ − x j q i , j ≤ M

(12)

Proof.

For each pair of elements, i , j ∈ S , the left-hand side can be q i , j or − q i , j . Since |S| = r, the summation on the left-hand side is, at most, equal to M. □

Theorem 1.

Let φ and M be as defined above and let x = x 1 , ⋯ , x n be a locally optimal solution of x T Q x with respect to a 1-flip search. A subset S ⊆ N , with |S| = r, is an improving r-flip move if and only if we have:

 ∑ i ∈ S E x i ≤ ∑ i , j ∈ S x i ′ − x i x j ′ − x j q i , j

(13)

Proof.

Using Equation (7), a subset S ⊆ N of r elements is an improving r-flip move if and only if we have:

 ∆ f = f x ′ − f x = ∑ i ∈ S x i ′ − x i E x i + ∑ i , j ∈ S x i ′ − x i x j ′ − x j q i , j > 0

(14)

Since x is a locally optimal solution with respect to a 1-flip search, it follows from Lemma 1 that Inequality (14) is equivalent to Equation (15); that completes the proof.

 ∑ i , j ∈ S x i ′ − x i x j ′ − x j q i , j > − ∑ i ∈ S x i ′ − x i E x i = ∑ i ∈ S E x i

(15)

□

Proposition 1.

Let φ and M be as defined above and let x = x 1 , ⋯ , x n be any locally optimal solution of the x T Q x problem with respect to a 1-flip search. If a subset S ⊆ N , with |S| = r, is an improving r-flip move, then we must have ∑ i ∈ S E x i < M .

Proof.

Since x is a locally optimal solution with respect to a 1-flip search and S is an improving r-flip move, based on Theorem 1, we have:

 ∑ i ∈ S E x i < ∑ i , j ∈ S x i ′ − x i x j ′ − x j q i , j

(16)

Using Lemma 2, we also have Equation (17), which completes the proof.

 ∑ i ∈ S E x i < ∑ i , j ∈ S x i ′ − x i x j ′ − x j q i , j ≤ M

(17)

□

The consequence of Theorem 1 is as follows. Given a locally optimal solution x with respect to a 1-flip search, if there is no subset of S with |S| = r that satisfies Equation (13), then x is also locally optimal solution with respect to an r-flip search. Furthermore, if there is no subset S of any size that satisfies Equation (13), then x is also locally optimal solution with respect to an r-flip search for all r ≤ n . Similar statements are also true regarding Proposition 1.

The result of Proposition 1 is significant in the implementation of an r-flip search. It illustrates that, after having a 1-flip search implemented, if an r-flip search is next served as a locally optimal solution, only those elements with the sum of the absolute value of derivatives less than M are eligible for consideration. Furthermore, when deciding on the elements of an r-flip search, we can easily check to see whether any element x i by itself or with a combination of other elements is eligible to be a member of an improving r-flip move S. Example 1 below illustrates this situation.

Example 1.

Consider an x T Q x problem with n variables. Let x = x 1 , ⋯ , x n be a given locally optimal solution with respect to a 1-flip search. Consider S = {i,j,k,l} for a possible 4-flip move. In order to have S for an improving move, all 15 inequalities, given below in Equation (18), must be satisfied. Of course, if the last inequality in Equation (18) is satisfied, all other inequalities are also satisfied. This means that each subset of the S is also an improving move. This is important in any dynamic neighborhood search strategy k-flip move for k ≤ r in consideration.

 Here we have φ = M a x i , j ∈ N q i j and M = 6 ∗ φ : E x a < M for a = i , j , k , l , E x a + E x b < M for a ≠ b , a , b = i , j , k , l , E x a + E x b + E x c < M for a ≠ b ≠ c , a , b , c = i , j , k , l , | E (x a) | + | E (x b) | + | E (x c) | + | E (x d) | < M for a = i , b = j , c = k , d = l

(18)

Obviously, choosing the appropriate subset S to implement a move is critical. There are many ways to check for an improving subset S. Below, we explain two such strategies. In addition, a numerical example is given in Appendix A.

2.1. Strategy 1

We first define a set, D(n), of candidates for improving moves. Given a locally optimal solution x with respect to a 1-flip move, let the elements of x be ordered in ascending absolute value of derivatives, as given in Equation (19).

 | E (x π (1)) | ≤ ⋯ ≤ | E (x π (n)) |

(19)

Here, π (i) means the i-th element of x in the order (π (1) , ⋯ , π (n)) . Let K be the largest value of k = 1, 2,…, n, where Inequality (20) is satisfied. The set D(n) is now defined by Equation (21).

 ∑ i = 1 k | E (x π (i)) | < M for k = 1,2 , 3 , ⋯ , n

(20)

 D (n) = { x π (1) , ⋯ , x π (K) }

(21)

Lemma 3.

Any subset S ⊆ D (n) satisfies the necessary condition for an improving move.

Proof.

It follows from Proposition 1.

There are some advantages to having elements of x in an ascending order, i.e., Inequality (19):

	I.

	
The smaller the value of | E (x i) | is, the more likely that x i is involved in an improving k-flip move for k ≤ r (this might be due to the fact that the right-hand-side value M in Equation (20) for a given r is constant. Thus, smaller values of | E (x i) | on the left-hand side might help to satisfy the inequality more easily.

	II.

	
Because the elements of D(n) are in ascending order of absolute values of derivatives, a straightforward implementable series of alternatives to be considered for improving subsets, S, may be the elements of the set given in Equation (22). Note that there are many more subsets of D(n) compared to the sets in Equation (21) that are candidates for consideration in possible k-flip moves. Here, we only provide one possible efficient implementable strategy.

 S ∈ { π (1) , π (2) } , { π (1) , π (2) , π (3) } , ⋯ , { π (1) , ⋯ , π (K) }

(22)

It is important to note that, if Proposition 1 is used in the process of implementing an algorithm given a locally optimal solution x with respect to a 1-flip search, after an r-flip implementation for a subset |S| = r with r > 1, the locally optimal solution with respect to a 1-flip search for the new solution, x′, can be destroyed. Thus, if an r-flip search needed to be continued, a 1-flip search might be necessary on solution x′ before a new r-flip move could continue. However, there are many practical situations where this problem may be avoided for many subsets, especially when the problem is very large scale, i.e., the value of n is large and/or Q is sparse. Proposition 2 is a weaker condition of Proposition 1 that can help be overcome to a certain point in the aforementioned problem.

In the proof of Theorem 1 and Proposition 1, we only used a condition of optimality for a 1-flip search satisfied for the members of the subset S. We now define a condition as follows and call it “condition of optimality with respect to a 1-flip search for a set S”, or simply, “condition of optimality for S”.

Given a solution x, the condition of optimality for any subset S ⊆ N is satisfied if and only if we have:

 E i t h e r (x i = 0 i f f E i < 0) o r (x i = 1 i f f E (i) ≥ 0) for i ∈ S

(23)

□

Of course, if we have N in Equation (23) instead of S, x is a locally optimal solution, as was defined in Fact 1.

For m < n, let (m, n) be the number of combinations of m elements out of n elements, φ S = max i , j ∈ S ⁡ q i , j , and M S = φ S ∗ (2 , r) . With these definitions, we now state Proposition 2.

Proposition 2.

(Weak necessary condition): Let S ⊆ N , |S| = r, and φ S and M S are as defined above. Given any solution x = x 1 , ⋯ , x n of x T Q x , assume the condition of optimality is satisfied for a subset S. If S is an r-flip-improving move, we must have ∑ i ∈ S | E (x i) | < M S .

Proof.

Similar to the proof of Proposition 1.

Notice that the values of φ S and M S in Proposition 2 depend on S; however, these values can be updated efficiently as the search progresses. As explained above, in situations where the problem is very large scale and/or Q is sparse, for many variables, the values of derivatives are “unaffected” by the change in values of the elements in S. This means that a large set of variables still satisfies the condition of optimality, and thus, the search can continue without applying a 1-flip search each time before finding a new set S for r-flip implementation. □

2.2. Strategy 2

Another efficient and easily implementable strategy is when, instead of using Equation (20), we only use an individual element to create a set of candidates for applying an r-flip search, set D(1), as defined below. Corollary 1 is a special case of Proposition 1 that suffices for such a strategy.

 D (1) = { x i : | E (x i) | < M }

(24)

Corollary 1

. Let φ and M be as defined before. Given a solution x = x 1 , ⋯ , x n of x T Q x , if the 1-flip local search cannot further improve the value of f(x), and i ∈ S with S ⊆ N , where an r-flip move of elements of S improves f(x), then we must have | E (x i) | < M .

To gain insight into the use of Corollary 1, we carried out some experimentation to find the size of set D(1) for different sizes of instances. The steps of the experiment to find the size of D(1) are provided below. The problems considered were taken from Ref. [26] and have been used by many researchers. We only used the larger-scale problems with 2500 to 6000 variables for a total of 38 instances.

Find_D(): Procedure for finding the size of set D(1):

	
Step 1. Randomly initialize a solution to the problem. For each value of r, calculate M. Apply the algorithm in Algorithm 1 and generate a locally optimal solution x with respect to a 1-flip search. However, in Step 5 of Algorithm 1, only consider the derivatives with | E (x i) | < M .

	
Step 2. Find the number of elements in set D(1) for x.

	
Step 3. Repeat steps 1 and 2 200 times for each problem and find the average number of elements in set D(1) for the same size problem, density, and r-value.

The results of the experiment are shown in Table 1. From Table 1, in general we can say that, as the density of matrix Q increased, the size of D(1) decreased for all problem sizes and values of r. This is, of course, due to the fact that the larger density of Q made the derivative of each element in x more related to other elements. As the size of a problem increases, the size of D(1) also increases.

An interesting observation in our experiment is that, in most cases, the size of D(1) for better locally optimal solutions was smaller than those with the worse locally optimal solutions. This indicates that, as the search reaches closer to the globally optimal solutions, the time for an r-flip search decreases when we take advantage of Corollary 1.

2.3. Implementation Details

We first implement two strategies in Section 2.1 and Section 2.2 via Algorithm 3 for Strategy 1 and Algorithm 4 for Strategy 2, and then proposed Algorithm 5 for Strategy 2 embedded with a simple tabu search algorithm for the improvement in Algorithm 5. A summary of the methodology used in this research is provided as follows:

We started by choosing the appropriate subset S to implement a move. There were two strategies employed at this step that required the utilization of two different algorithms.

Algorithm 3 was applied for Strategy 1, which involved defining a set of candidates for improving moves, given a locally optimal solution with respect to a 1-flip move.

Algorithm 4 was applied for Strategy 2, which involved using an individual element to create a set of candidates for applying an r-flip search.

Algorithm 5 was applied for improvement, which involved a tabu search algorithm.

The detailed pseudo-code of Algorithms 3–5 is provided below:

	Algorithm 3: r-flip local search: strategy 1

	Initialize: n, x, evaluate vector E(x), value of r, M

Flag = 1

1 Do while (Flag = 1)

2 Flag = 0

3 Call 1-flip local search: Algorithm 1

4 Sort variables according to E (x π (i)) ≤ E (x π i + 1) , using Inequality (20) evaluate value of K

5 For j = π 1 , ⋯ , π K :

6 For S j = π 1 , ⋯ , π (j) , evaluate M S j

 If ∑ i = 1 j E (x π (i)) < M S j , evaluate ∆f using Equation (7).

7 If ∆ f > 0:

 x i = 1 − x i , for i ∈ S j , update E(x) using Equation (8), Flag = 1, go to Step 1

8 End for

9 End while

	Algorithm 4: r-flip local search: strategy 2

	Initialize: n, x, evaluate E(x), value of r, M

Flag = 1

1 Do while (Flag = 1)

2 Flag = 0 , and S = ∅

3 Call 1-flip local search: Algorithm 1

4 Randomly choose a sequence π (1) , ⋯ , π (n) of integers 1 , ⋯ , n

5 For j = π (1) , ⋯ , π (n) :

6 If E (x j) < M , and S ∪ { j } ≤ r evaluate ∆ f for S ∪ { j } using Equation (7)

7 If ∆ f > 0:

 x i = 1 − x i , for i ∈ S ∪ { j } , update E(x) using Equation (8), S = S ∪ j ,

Flag =1, go to Step 1

8 End for

9 End while

	Algorithm 5: Hybrid r-flip/1-flip local search embedded with a simple tabu search algorithm

	Initialize: n, x, tabu list, evaluate E(x), value of r, M, tabu tenure

Call local search: Algorithm 4

Do while (until some stopping criteria, e.g., CPU time limit, is reached)

Call Destruction()

Call Construction()

Call randChange()

End while

In the Destruction() procedure, there are three steps:

	
Step 3a. Find the variable that is not on the tabu list and lead to the small change to the solution when the variable is flipped.

	
Step 3b. Change its value, place it on the tabu list to update the tabu list, and update E(x).

	
Step 3c. Test whether there is any variable that is not on the tabu list and that can improve the solution. If not, go to Step 3a.

In the Construction() procedure, there are four steps:

	
Step 4a. Test all of the variables that are not on the tabu list. If a solution better than the current best solution is found, change its value, place it on the tabu list, update E(x), update the tabu list, and go to Step 1.

	
Step 4b. Find the index i corresponding to the greatest value of E(xi), change its value of xi, place it on the tabu list to update the tabu list, and update E(x).

	
Step 4c. If this is the 15th iteration in the Construction() procedure, go to Step 1.

	
Step 4d. Test whether there is any variable that is not on the tabu list and that can improve the solution. If not, go to Step 3a. If yes, go to Step 4a.

The randChange() procedure is invoked occasionally and randomly to select an x for the Destruction() using a random number generator. There is a probability of less than 2% of invoking after the Construction() procedure. To get the 2% probability, a random number generator is used to create an integer between 1 and 1000. If the value of the integer is smaller than 20, the randChange() is invoked. The variable chosen in the randChange() will lead to the change of E(x) for Destruction().

Any local search algorithm, e.g., Algorithms 3 or 4, can be used in Step 1 of this simple tabu search heuristic. However, a limited preliminary implementation of Algorithms 3 and 4 within Algorithm 5 suggests that, due to its simplicity of implementation and computational saving time, Algorithm 4 with slight modification was quite effective; thus, we used it in Step 1 of Algorithm 5. The slight modification was as follows. If the solution found by a 1-flip is worse than the current best-found solution, quit the local search and go to Step 2.

In order to determine whether the hybrid r-flip/1-flip local search algorithms with two strategies (Algorithms 3 and 4) perform better than the hybrid r-flip/1-flip local search embedded with a simple tabu search implementation, we compared Algorithms 3 and 4 to Algorithm 5.

The goal of the new strategies is to reach local optimality on large-scale instances with less computing time. We report the comparison of the three algorithms of a 2-flip on very-large-scale QUBO instances in the next section.

3. Computational Results

In this study, we performed substantial computational experiments to evaluate the proposed strategies for problem size, density, and r-value. We compared the performance of Algorithms 3–5 for r = 2 on very-large-scale QUBO instances. We also compared the best algorithm among Algorithms 3–5 to one of the best algorithms for x T Q x , i.e., Palubeckis’s multiple start tabu search. We coded the algorithms in C++ programming language.

In [28], there are five multiple start tabu search algorithms, and the MST2 algorithm had the best results reported by the author. We chose the MST2 algorithm with the default values for the parameters recommended by the author [28]. In the MST2 algorithm, the number of iterations as the stopping criterion for the first tabu search start subroutine is 25,000× the size of the problem, and then the MST2 algorithm reduces the number of iterations to 10,000× the size of problem as the stopping criterion for the subsequent tabu search starts. Within the tabu search subroutine, if an improved solution is found, then the MST2 algorithm invokes a local search immediately. The CPU time limit in the MST2 algorithm is checked at the end of the tabu search start subroutine. Thus, the computing time might exceed the CPU time limit for large instances when choosing short CPU time limits.

All algorithms in this study were compiled by GNU C++ compiler v4.8.5 and run on a single core of Intel Xeon Quad-core E5420 Harpertown processors, which have a 2.5 GHz CPU with an 8 GB memory. All computing jobs were submitted through the Open PBS Job Management System (Version 3) to ensure that both methods used the same CPU for memory usage and CPU time limits in the same instance.

Preliminary results indicate that Algorithms 3–5 performed well in instances with a size of less than 3000 and low density. All algorithms found the best-known solution with a CPU time limit of 10 s. Thus, we only compared the results of large instances with high density and a size of 3000 to 8000 with the MST2 algorithm and the best algorithm among Algorithms 3–5. These benchmark instances with sizes of 3000 to 8000 have been reported by other researchers [5,12]. In addition, we generated some very-large-scale QUBO instances with a high density and size of 30,000 using the same parameters from the benchmark instances. We used a CPU time limit of 600 s and r = 2 for Algorithms 3–5 in the very-large-scale instances in Table 2. We adopted the following notation for the computational results:

	
OFV: The value of the objective function for the best solution found by each algorithm;

	
BFS: The best solution found among algorithms within the CPU time limit;

	
TB [s]: Time for each algorithm to reach the best solution in seconds;

	
AT [s]: Average computing time out of 10 runs to reach OFV;

	
DT: % Deviation of computing time out of 10 runs to reach OFV.

Table 2 shows the results of the comparison for Algorithms 3–5 on very-large-scale instances out of 10 runs. Algorithm 5 produced a better solution than Algorithms 3 and 4 with r = 2; thus, we used Algorithm 5 with r = 1 and r = 2 to compare to the MST2 algorithm. We imposed a CPU time limit of 60 s and 600 s per run, with 10 runs per instance on Algorithm 5 and the MST2 algorithm. We choose a tabu tenure value of 100 for 1-flip and 2-flip.

In our implementation, we chose the CPU time limit as the stopping criterion and checked the CPU time limit before invoking the tabu search in Algorithm 5. Because the MST2 algorithm and Algorithm 5 are not single point-based search methods, the choice of the CPU time limit as the stopping criterion seemed to be a fair performance comparison method between the algorithms.

Table 3 describes the size and density of each instance and the number of times out of 10 runs the OFV was reached as well as the solution deviation within the CPU time limit for the MST2 algorithm and Algorithm 5 with r = 1 and r = 2. The MST2 algorithm produced a stable performance and reached the same OFV frequently out of 10 runs. Algorithm 5 started from a random initial solution and could search for a more diverse solution space within a short CPU time limit. When the CPU time limit was changed to 600 s, the MST2 algorithm and Algorithm 5 produced a better-quality solution in terms of the relative standard deviation [29]. The relative standard deviation (RSD) in Table 3 in parenthesis was measured by R S D = 100 σ μ , σ = ∑ (f x − f x ¯) 2 n , and μ = f x ¯ , where f(x) is the OFV of each run and f (x) ¯ is the mean value of the OFV out of n = 10 runs. For some instances, the relative standard deviation (RSD) was less than 5.0 × 10−4 even though not all runs found the same OFV. We used 0.000 as the value of RSD when the value was rounded up to three decimal points.

Table 4 reports the computational results of the CPU time limit of 60 s, and Table 5 reports the computational results of the CPU time limit of 600 s. In Table 4, it can be seen that the MST2 algorithm matched 5 out of 27 of the best solutions within the CPU time limit. The 1-flip strategy in Algorithm 5 matched 26 out of 27 of the best solutions, whereas the 2-flip strategy in Algorithm 5 matched 18 out of 27 of the best solutions. For the MST2 algorithm, the computing time to find the initial solution exceeded the CPU time limit of 60 s for two large instances.

When the CPU time limit was increased to 600 s, the MST2 algorithm matched 10 out of 27 of the best solutions. The 1-flip strategy matched 25 out of 27 of the best solutions, and the 2-flip strategy matched 23 out of 27 of the best solutions. The 1-flip and 2-flip strategies in Algorithm 5 performed well on the large, high-density instances. There was no clear pattern of the 2-flip strategy being used more often than the 1-flip strategy to find the same OFV. The 1-flip and 2-flip strategies in Algorithm 5 chose the initial solution randomly and independently. The 1-flip strategy had better performance when the CPU time limits were 60 and 600 s.

Table 6 and Table 7 present the time deviation of each algorithm upon reaching the OFV for each instance. The MST2 algorithm had less variation in computing time when it finding the OFV, whereas the r-flip strategy in Algorithm 5 had a wider range of computing time. If the algorithm only found the OFV once out of 10 runs, the time deviation was zero.

The r-flip strategy can be embedded in other local search heuristics as an improvement procedure. Clever implementation of the r-flip strategy can reduce the computing time and improve the solution quality. We reported the time and solutions out of 10 runs for each instance. The time deviation and solution deviation of 10 runs were computed with the short CPU time limits due to the computing resources available to this study.

The observed results show the effectiveness of the employed methodology in finding the best solutions within very competitive CPU time limits. This suggests the possibility of using alternative stopping criteria as a potential improvement in the future. Also, the application of an efficient strategy in evaluating flip moves has the potential to further improve the algorithm performance, as suggested by Anacleto et al. [12].

The r-flip method we developed presents itself as a compelling alternative for quantum computing solvers, which are capable of efficiently handling QUBO problems as large as 5000 by 5000 variables due to the design of quantum processors. The advantages of the r-flip method become particularly pronounced when dealing with substantial, complex problem instances, showcasing superior computing performance. In essence, our method emerges as a favorable choice for addressing large-scale, real-world challenges with efficacy and computational prowess.

4. Conclusions

In this study, we explored the quadratic unconstrained binary optimization (QUBO) problem, which produced significant findings. We established a necessary and sufficient condition for the local optimality of an r-flip search after a 1-flip search had already achieved local optimality. Our computational experiments demonstrated a substantial reduction in candidate options for r-flip implementation. The new r-flip strategy efficiently solved extremely large QUBO instances within 600 s, outperforming MST2 in terms of the time taken to reach the best-known solutions in benchmark instances. These results are particularly promising for implementing variable neighborhood strategies on extensive problems or sparse matrices.

Similar to other quadratic unconstrained binary optimization (QUBO) methods, our approach is subject to scalability constraints. The size of the Q matrix, representing the number of variables in the problem, is inherently restricted by the memory limitations of the computer system. In practical terms, our methodology exhibits robust performance, successfully tackling problem instances of up to 200,000 by 200,000 in dense matrices, with the potential to extend its capabilities to 500,000 by 500,000 in sparse matrices. This underscores the versatility and efficiency of our approach within the specified computational constraints, demonstrating its applicability to a wide range of problem sizes and structures.

Author Contributions

Conceptualization, B.A. and H.W.; methodology, B.A.; validation, B.A., H.W. and L.S.S.; formal analysis, H.W.; investigation, H.W.; data curation, H.W.; writing—original draft preparation, B.A.; writing—review and editing, H.W. and L.S.S.; visualization, B.A.; All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The instance data and solutions will be made available upon request.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A. Numerical Example for Theorem 1 and Proposition 1

Consider the problem with the Q matrix provided below in Figure A1. A locally optimal solution x with f(x) = 1528 and the vector of derivatives E(x) is shown in Table A1. For r = 2, M = 100, every two elements that satisfy Proposition 1 are shown in Table A1. However, the only sets of two-element combinations that were improved are those shown with the red font in Figure A2. These are the two elements that satisfied Theorem 1. The new results of f(x) and E(x) for the two elements are shown in Table A2. In this simple problem, instead of comparing 380 two-element combinations, we only needed to compare 21 combinations. Out of these 21 combinations, the 6 possible improved combinations are shown in Table A3.

[image: Algorithms 16 00557 g0a1]

Figure A1. Matrix Q for maximizing x T Q x .

Figure A1. Matrix Q for maximizing x T Q x .

[image: Algorithms 16 00557 g0a1]

Table A1. A locally optimal solution, x(.), and values of E(xi), i = 1,…, n.

Table A1. A locally optimal solution, x(.), and values of E(xi), i = 1,…, n.

	
	x(.)
	1
	1
	0
	0
	1
	0
	1
	0
	0
	1
	0
	1
	1
	1
	0
	1
	1
	0
	1
	0

	
	E(.)
	624
	177
	−74
	−459
	209
	−7
	44
	−7
	−120
	523
	−124
	233
	22
	114
	−3
	431
	375
	−89
	242
	−66

	f(x)
	1528
	624
	127
	0
	0
	55
	0
	70
	0
	0
	383
	0
	3
	58
	104
	0
	89
	−5
	0
	20
	0

In Figure A1 and Table A1, we have:

E(x1) = −30 + (50 ∗ 1 – 68 ∗ 0 – 66 ∗ 0 + 94 ∗ 1 – 100 ∗ 0 – 20 ∗ 1 – 4 ∗ 0 + 80 ∗ 0 + 94 ∗ 1 + 0 ∗ 0 + 86 ∗ 1 + 76 ∗ 1 + 98 ∗ 1 − 36 ∗ 0 + 76 ∗ 1 + 52 ∗ 1 − 8 ∗ 0 + 48 ∗ 1 + 42 ∗ 0) = 624

E(x2) = −7 + 50 ∗ 1 + (50 ∗ 0 + 28 ∗ 0 + 60 ∗ 1 + 56 ∗ 0 − 54 ∗ 1 + 78 ∗ 0 + 4 ∗ 0 + 30 ∗ 1 − 42 ∗ 0 − 28 ∗ 1 − 50 ∗ 1 + 90 ∗ 1 − 42 ∗ 0 + 90 ∗ 1 − 26 ∗ 1 + 6 ∗ 0 + 22 ∗ 1 + 0 ∗ 0) = 177

E(x3) = −26 + (−68 ∗ 1 + 50 ∗ 1) + (−46 ∗ 0 + 26 ∗ 1 + 82 ∗ 0 − 50 ∗ 1 − 90 ∗ 0 + 44 ∗ 0 − 94 ∗ 1 + 54 ∗ 0 + 52 ∗ 1 − 50 ∗ 1 + 54 ∗ 1 − 68 ∗ 0 − 52 ∗ 1 + 20 ∗ 1 + 96 ∗ 0 + 64 ∗ 1 − 22 ∗ 0) = −74

E(x4) = −35 + (−66 ∗ 1 + 28 ∗ 1 − 46 ∗ 0) + (8 ∗ 1 − 82 ∗ 0 − 84 ∗ 1 − 46 ∗ 0 − 34 ∗ 0 − 22 ∗ 1 − 62 ∗ 0 − 34 ∗ 1 − 56 ∗ 1 − 86 ∗ 1 + 18 ∗ 0 + 44 ∗ 1 − 84 ∗ 1 + 2 ∗ 0 − 72 ∗ 1 − 60 ∗ 0) = −459

… for E(x5) to E(x19)

E(x20) = 22 + (42 ∗ 1 + 0 ∗ 1 − 22 ∗ 0 − 60 ∗ 0 + 14 ∗ 1 + 2 ∗ 0 − 70 ∗ 1 + 94 ∗ 0 − 16 ∗ 0 + 0 ∗ 1 + 52 ∗ 0 + 28 ∗ 1 − 96 ∗ 1 + 64 ∗ 1 − 34 ∗ 0 + 10 ∗ 1 − 26 ∗ 1 + 80 ∗ 0 − 54 ∗ 1) = −66

f(x1) = 1 ∗ (−30 + 50 + 94 − 20 + 94 + 86 + 76 + 98 + 76 + 52 + 48) = 624

f(x2) = 1 ∗ (−7 + 60 − 54 + 30 − 28 − 50 + 90 + 90 − 26 + 22) = 127

f(x3) = 0 ∗ (26 − 50 − 94 + 52 − 50 + 54 − 52 + 20 + 64) = 0

… for f(x4) to f(x19)

f(x20) = 0 ∗ (22) = 0

f(x) = 624 + 127 + 55 + 70 + 383 + 3 + 58 + 104 + 89 − 5 + 20 = 1528

[image: Algorithms 16 00557 g0a2]

Figure A2. The indicated elements satisfy Proposition 1. Only the two-element combinations indicated by the red font can improve f(x), which satisfies Theorem 1, whereas the ones indicated by the black font cannot.

Figure A2. The indicated elements satisfy Proposition 1. Only the two-element combinations indicated by the red font can improve f(x), which satisfies Theorem 1, whereas the ones indicated by the black font cannot.

[image: Algorithms 16 00557 g0a2]

Table A2. An improvement using 2-flip for the locally optimal solution, x, and values of E(xi), i = 1, …, n.

Table A2. An improvement using 2-flip for the locally optimal solution, x, and values of E(xi), i = 1, …, n.

	
	x(.)
	1
	1
	0
	0
	1
	0
	0
	1
	0
	1
	0
	1
	1
	1
	1
	1
	1
	0
	1
	1

	
	E(.)
	646
	267
	−204
	−463
	275
	−83
	−120
	199
	−270
	367
	−78
	269
	58
	348
	49
	347
	361
	−123
	78
	64

	f(x)
	1684
	646
	217
	0
	0
	121
	0
	0
	35
	0
	315
	0
	83
	10
	240
	−39
	99
	−31
	0
	−34
	22

In Figure A2 and Table A2, we have:

f(x1) = 1 ∗ (−30 + 50 + 94 − 4 + 94 + 86 + 76 + 98 − 36 + 76 + 52 + 48 + 42) = 646

f(x2) = 1 ∗ (−7 + 60 + 78 + 30 − 28 − 50 + 90 − 42 + 90 − 26 + 22) = 217

… for f(x3) to f(x18)

f(x19) = 1 ∗ (20 − 54) = −34

f(x20) = 1 ∗ (22) = 22

f(x) = 646 + 217 + 121 + 35 + 315 + 83 + 10 + 240 − 39 + 99 − 31 − 34 + 22 = 1684

Table A3. All 6 possible improved combinations for the locally optimal solution (f(x) = 1528).

Table A3. All 6 possible improved combinations for the locally optimal solution (f(x) = 1528).

	1
	1
	0
	0
	1
	0
	0
	1
	0
	1
	0
	1
	1
	1
	1
	1
	1
	0
	1
	1
	1684

	1
	1
	1
	0
	1
	1
	0
	0
	1
	1
	0
	1
	1
	1
	0
	1
	1
	1
	1
	0
	1646

	1
	1
	0
	0
	1
	0
	1
	1
	0
	1
	0
	1
	0
	1
	0
	1
	1
	0
	1
	1
	1633

	1
	1
	0
	0
	1
	0
	1
	1
	0
	1
	1
	1
	0
	1
	1
	1
	1
	0
	1
	1
	1616

	1
	1
	1
	0
	1
	1
	0
	0
	0
	1
	0
	1
	1
	1
	0
	1
	1
	0
	1
	0
	1601

	1
	1
	1
	0
	1
	0
	1
	0
	0
	1
	1
	1
	0
	1
	0
	1
	1
	0
	1
	1
	1530

	1
	1
	0
	0
	1
	0
	1
	0
	0
	1
	0
	1
	1
	1
	0
	1
	1
	0
	1
	0
	1528

Table A4. An exhaustive search of r-flip rules for QUBO.

Table A4. An exhaustive search of r-flip rules for QUBO.

	Study
	r-Flip Rules

	Debevre, P, Sugimura, M, and Parizy, M, Ieee Access, 2023 [2].
	The automotive paint shop problem was formulated as QUBO, then 1-flip and multiple flip moves provided for the solution.

	Glover, F, and Hao, J-K, Int. J. Metaheuristics, 2010 [6].
	An efficient evaluation of 2-flip moves for QUBO was presented.

	Glover, F, and Hao, J-K, Annals of Operations Research, 2016 [7].
	A class of approaches called f-flip strategies that include a fractional value for f is provided for QUBO.

	Lozano, M, Molina, D, and Garcia-Martinez, C, European Journal of Operational Research, 2011 [10].
	A maximum diversity QUBO problem was considered with an added number of variables that must be equal to an integer m. A 2-flip strategy with computational experiment was presented.

	Alidaee, B., G. Kochenberger, and H. Wang, Int. J. Appl. Metaheuristic Comput., 2010 [11].
	Several theoretical results for r-flip moves in a general pseudo-Boolean optimization including QUBO were demonstrated.

	Anacleto, E, Meneses, C, Ravelo, S, Computers & Operations Research, 2020 [12].
	Two closed-form formulas for evaluating r-flip moves were presented. The effectiveness of the moves was evaluated experimentally.

	Anacleto, E, Meneses, C, and Liang, T, Computers & Operations Research, 2021 [13].
	An r-flip move strategy for a quadratic assignment problem that can be transferred to QUBO was considered. A closed-form formula and experimental evaluations were considered.

	Katayama, K, and Naihisa, H, in: W. Hart, N. Krasnogor, J.E. Smith (Eds.), Recent Advances in Memetic Algorithms, Springer, Berlin, 2004 [30].
	A k-flip move in the context of a memetic algorithm was presented.

	Liang, R.N, Anacleto, E.A.J, and Meneses, C.N. Computers & Operations Research, 2023 [31].
	A closed-form formula for pseudo-Boolean optimization and data structure for efficient implementation of the 1-flip rule was presented.

	Merz, P, and Freisleben, B, Journal of Heuristics, 2002 [32].
	Provided 1-flip and multiple-flip strategies for QUBO and provided a computational experiment.

	Rosenberg, G., Vazifeh, M, Woods, B, and Haber, E, Computational Optimization and Applications, 2016 [33].
	A k-flip strategy in the context of a quantum annealer was presented.

	Alidaee, B., Wang, H., and Liu, W. Working Paper, WP 2021-002. Texas A&M International University, 2022 [34].
	New Results on Closed-Form Formulas for Evaluating r-flip Moves in Quadratic Unconstrained Binary Optimization.

References

	

Boros, E.; Hammer, P.L.; Minoux, M.; Rader, D.J. Optimal cell flipping to minimize channel density in VLSI design and pseudo-Boolean optimization. Discret. Appl. Math. 1999, 90, 69–88. [Google Scholar] [CrossRef]

	

Debevre, P.; Sugimura, M.; Parizy, M. Quadratic Unconstrained Binary Optimization for the Automotive Paint Shop Problem. IEEE Access 2023, 11, 97769–97777. [Google Scholar] [CrossRef]

	

Glover, F.; Kochenberger, G.; Du, Y. Quantum Bridge Analytics I: A tutorial on formulating and using QUBO models. Ann. Oper. Res. 2019, 17, 335–371. [Google Scholar] [CrossRef]

	

Glover, F.; Kochenberger, G.A.; Alidaee, B. Adaptive Memory Tabu Search for Binary Quadratic Programs. Manag. Sci. 1998, 44, 336–345. [Google Scholar] [CrossRef]

	

Glover, F.; Lü, Z.; Hao, J.-K. Diversification-driven tabu search for unconstrained binary quadratic problems. 4OR 2010, 8, 239–253. [Google Scholar] [CrossRef]

	

Glover, F.; Hao, J.-K. Fast two-flip move evaluations for binary unconstrained quadratic optimisation problems. Int. J. Metaheuristics 2010, 1, 100–108. [Google Scholar] [CrossRef]

	

Glover, F.; Hao, J.-K. f-Flip strategies for unconstrained binary quadratic programming. Ann. Oper. Res. 2016, 238, 651–657. [Google Scholar] [CrossRef]

	

Kochenberger, G.; Hao, J.-K.; Glover, F.; Lewis, M.; Lü, Z.; Wang, H.; Wang, Y. The unconstrained binary quadratic programming problem: A survey. J. Comb. Optim. 2014, 28, 58–81. [Google Scholar] [CrossRef]

	

Kochenberger, G.A.; Glover, F.; Wang, H. Binary Unconstrained Quadratic Optimization Problem. In Handbook of Combinatorial Optimization; Pardalos, P.M., Du, D.-Z., Graham, R.L., Eds.; Springer: New York, NY, USA, 2013; pp. 533–557. [Google Scholar]

	

Lozano, M.; Molina, D.; Garcia-Martinez, C. Iterated greedy for the maximum diversity problem. Eur. J. Oper. Res. 2011, 214, 31–38. [Google Scholar] [CrossRef]

	

Alidaee, B.; Kochenberger, G.; Wang, H. Theorems Supporting r-flip Search for Pseudo-Boolean Optimization. Int. J. Appl. Metaheuristic Comput. 2010, 1, 93–109. [Google Scholar] [CrossRef]

	

Anacleto, E.A.J.; Meneses, C.N.; Ravelo, S.V. Closed-form formulas for evaluating r-flip moves to the unconstrained binary quadratic programming problem. Comput. Oper. Res. 2020, 113, 104774. [Google Scholar] [CrossRef]

	

Anacleto, E.; Meneses, C.; Liang, T. Fast r-flip move evaluations via closed-form formulae for Boolean quadraticprogramming problems with generalized upper bound constraints. Comput. Oper. Res. 2021, 132, 105297. [Google Scholar] [CrossRef]

	

Glover, F.; Lewis, M.; Kochenberger, G. Logical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problems. Eur. J. Oper. Res. 2018, 265, 829–842. [Google Scholar] [CrossRef]

	

Lewis, M.; Glover, F. Quadratic Unconstrained Binary Optimization Problem Preprocessing: Theory and Empirical Analysis. Networks 2017, 70, 79–97. [Google Scholar] [CrossRef]

	

Vredeveld, T.; Lenstra, J.K. On local search for the generalized graph coloring problem. Oper. Res. Lett. 2003, 31, 28–34. [Google Scholar] [CrossRef]

	

Kochenberger, G.; Glover, F. Introduction to special xQx issue. J. Heuristics 2013, 19, 525–528. [Google Scholar] [CrossRef]

	

Ahuja, R.K.; Ergun, Ö.; Orlin, J.B.; Punnen, A.P. A survey of very large-scale neighborhood search techniques. Discret. Appl. Math. 2002, 123, 75–102. [Google Scholar] [CrossRef]

	

Ahuja, R.K.; Orlin, J.B.; Pallottino, S.; Scaparra, M.P.; Scutellà, M.G. A Multi-Exchange Heuristic for the Single-Source Capacitated Facility Location Problem. Manag. Sci. 2004, 50, 749–760. [Google Scholar] [CrossRef]

	

Yagiura, M.; Ibaraki, T. Analyses on the 2 and 3-Flip Neighborhoods for the MAX SAT. J. Comb. Optim. 1999, 3, 95–114. [Google Scholar] [CrossRef]

	

Yagiura, M.; Ibaraki, T. Efficient 2 and 3-Flip Neighborhood Search Algorithms for the MAX SAT: Experimental Evaluation. J. Heuristics 2001, 7, 423–442. [Google Scholar] [CrossRef]

	

Yagiura, M.; Kishida, M.; Ibaraki, T. A 3-flip neighborhood local search for the set covering problem. Eur. J. Oper. Res. 2006, 172, 472–499. [Google Scholar] [CrossRef]

	

Alidaee, B. Fan-and-Filter Neighborhood Strategy for 3-SAT Optimization, Hearin Center for Enterprise Science; The University of Mississippi, Hearin Center for Enterprise Science: Oxford, MS, USA, 2004. [Google Scholar]

	

Glover, F. A Template for Scatter Search and Path Relinking; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]

	

Ivanov, S.V.; Kibzun, A.I.; Mladenović, N.; Urošević, D. Variable neighborhood search for stochastic linear programming problem with quantile criterion. J. Glob. Optim. 2019, 74, 549–564. [Google Scholar] [CrossRef]

	

Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [Google Scholar] [CrossRef]

	

Alidaee, B.; Sloan, H.; Wang, H. Simple and fast novel diversification approach for the UBQP based on sequential improvement local search. Comput. Ind. Eng. 2017, 111, 164–175. [Google Scholar] [CrossRef]

	

Palubeckis, G. Multistart Tabu Search Strategies for the Unconstrained Binary Quadratic Optimization Problem. Ann. Oper. Res. 2004, 131, 259–282. [Google Scholar] [CrossRef]

	

Glen, S. Relative Standard Deviation: Definition & Formula. 2014. Available online: https://www.statisticshowto.com/relative-standard-deviation/ (accessed on 10 November 2023).

	

Katayama, K.; Naihisa, H. An Evolutionary Approach for the Maximum Diversity Problem; Hart, W., Krasnogor, N., Smith, J.E., Eds.; Recent Advances in Memetic Algorithms; Springer: Berlin/Heidelberg, Germany, 2004; pp. 31–47. [Google Scholar]

	

Liang, R.N.; Anacleto, E.A.J.; Meneses, C.N. Fast 1-flip neighborhood evaluations for large-scale pseudo-Boolean optimization using posiform representation. Comput. Oper. Res. 2023, 159, 106324. [Google Scholar] [CrossRef]

	

Merz, P.; Freisleben, B. Greedy and Local Search Heuristics for Unconstrained Binary Quadratic Programming. J. Heuristics 2002, 8, 197–213. [Google Scholar] [CrossRef]

	

Rosenberg, G.; Vazifeh, M.; Woods, B.; Haber, E. Building an iterative heuristic solver for a quantum annealer. Comput. Optim. Appl. 2016, 65, 845–869. [Google Scholar] [CrossRef]

	

Alidaee, B.; Wang, H.; Liu, W. New Results on Closed-Form Formulas for Evaluating r-flip Moves in Quadratic Unconstrained Binary Optimization; Working Paper Series, WP 2021-002; Texas A&M International University: Laredo, TX, USA, 2022. [Google Scholar]

Table 1. Size of set D(1).

Table 1. Size of set D(1).

	

	
r = 2

	
r = 3

	
r = 4

	

	
Density

	
Prob. Size

	
0.1

	
0.3

	
0.5

	
0.8

	
0.1

	
0.3

	
0.5

	
0.8

	
0.1

	
0.3

	
0.5

	
0.8

	
2500

	
<100

	
<40

	
<30

	
<20

	
<400

	
<200

	
<100

	
<100

	
<1000

	
<500

	
<300

	
<200

	
3000

	
<100

	
<40

	
<30

	
<20

	
<400

	
<200

	
<100

	
<100

	
<1100

	
<500

	
<400

	
<250

	
4000

	
<100

	
<30

	
<30

	
<20

	
<500

	
<200

	
<100

	
<100

	
<1200

	
<600

	
<400

	
<250

	
5000

	
<100

	
<30

	
<30

	
<20

	
<500

	
<200

	
<100

	
<100

	
<1300

	
<600

	
<400

	
<250

	
6000

	
<100

	
<30

	
<30

	
<20

	
<500

	
<200

	
<100

	
<100

	
<1400

	
<600

	
<400

	
<250

Table 2. Results of Algorithms 3–5 on p30000 instances with a CPU time limit of 600 s and r = 2.

Table 2. Results of Algorithms 3–5 on p30000 instances with a CPU time limit of 600 s and r = 2.

	
Instance

ID

	

	

	
Algorithm 3

	
Algorithm 4

	
Algorithm 5

	
Size

	
Density

	
OFV

	
TB (s)

	
OFV

	
TB (s)

	
OFV

	
TB (s)

	
p30000_1

	
30,000

	
0.5

	
127,239,168

	
591

	
127,292,467

	
591

	
127,336,719

	
592

	
p30000_2

	
30,000

	
0.8

	
158,439,036

	
572

	
158,472,098

	
555

	
158,526,518

	
571

	
p30000_3

	
30,000

	
1

	
179,192,241

	
584

	
179,219,781

	
587

	
179,261,723

	
590

Table 3. The solution quality of the MST2 algorithm and Algorithm 5 with CPU time limits of 60 and 600 s out of 10 runs.

Table 3. The solution quality of the MST2 algorithm and Algorithm 5 with CPU time limits of 60 and 600 s out of 10 runs.

	
Instance

ID

	

	

	
MST2

with 60 s

	
r-Flip with 60 s

	
MST2

with 600 s

	
r-Flip with 600 s

	
Size

	
Density

	
r = 1

	
r = 2

	
r = 1

	
r = 2

	
p3000_1

	
3000

	
0.5

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
p3000_2

	
3000

	
0.8

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
p3000_3

	
3000

	
0.8

	
4 (0.01)

	
7 (0.007)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
p3000_4

	
3000

	
1

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
p3000_5

	
3000

	
1

	
10 (0)

	
9 (0.003)

	
7 (0.002)

	
9 (0.001)

	
10 (0)

	
10 (0)

	
p4000_1

	
4000

	
0.5

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
p4000_2

	
4000

	
0.8

	
10 (0)

	
10 (0)

	
10 (0)

	
9 (0.004)

	
10 (0)

	
10 (0)

	
p4000_3

	
4000

	
0.8

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
p4000_4

	
4000

	
1

	
1 (0.033)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
p4000_5

	
4000

	
1

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
10 (0)

	
p5000_1

	
5000

	
0.5

	
6 (0.000)

	
1 (0.002)

	
2 (0.002)

	
10 (0)

	
3 (0.002)

	
2 (0.002)

	
p5000_2

	
5000

	
0.8

	
10 (0)

	
4 (0.003)

	
1 (0.002)

	
6 (0.012)

	
10 (0)

	
10 (0)

	
p5000_3

	
5000

	
0.8

	
10 (0)

	
7 (0.001)

	
3 (0.002)

	
10 (0)

	
10 (0)

	
10 (0)

	
p5000_4

	
5000

	
1

	
10 (0)

	
1 (0.002)

	
1 (0.001)

	
10 (0)

	
3 (0.002)

	
1 (0.001)

	
p5000_5

	
5000

	
1

	
6 (0.021)

	
9 (0.003)

	
4 (0.004)

	
10 (0)

	
10 (0)

	
10 (0)

	
p6000_1

	
6000

	
0.5

	
10 (0)

	
10 (0)

	
4 (0.001)

	
10 (0)

	
10 (0)

	
10 (0)

	
p6000_2

	
6000

	
0.8

	
10 (0)

	
4 (0.001)

	
4 (0.001)

	
1 (0.006)

	
10 (0)

	
9 (0)

	
p6000_3

	
6000

	
1

	
9 (0.002)

	
3 (0.002)

	
1 (0.007)

	
10 (0)

	
10 (0)

	
10 (0)

	
p7000_1

	
7000

	
0.5

	
1 (0.002)

	
1 (0.006)

	
1 (0.007)

	
10 (0)

	
2 (0.002)

	
4 (0.002)

	
p7000_2

	
7000

	
0.8

	
7 (0.000)

	
1 (0.008)

	
1 (0.008)

	
10 (0)

	
1 (0.004)

	
2 (0.004)

	
p7000_3

	
7000

	
1

	
8 (0.011)

	
3 (0.021)

	
5 (0.023)

	
10 (0)

	
10 (0)

	
10 (0)

	
p8000_1

	
8000

	
0.5

	
10 (0)

	
1 (0.004)

	
1 (0.005)

	
9 (0.001)

	
10 (0)

	
1 (0.002)

	
p8000_2

	
8000

	
0.8

	
10 (0)

	
1 (0.009)

	
1 (0.008)

	
10 (0)

	
7 (0.003)

	
10 (0)

	
p8000_3

	
8000

	
1

	
10 (0)

	
1 (0.013)

	
1 (0.01)

	
10 (0)

	
4 (0.001)

	
3 (0.002)

	
p30000_1

	
30,000

	
0.5

	
1 (0.002)

	
1 (0.023)

	
1 (0.019)

	
7 (0.018)

	
1 (0.017)

	
1 (0.011)

	
p30000_2

	
30,000

	
0.8

	
10 (0)

	
1 (0.017)

	
1 (0.016)

	
6 (0.01)

	
1 (0.019)

	
1 (0.013)

	
p30000_3

	
30,000

	
1

	
10 (0)

	
1 (0.015)

	
1 (0.019)

	
2 (0.037)

	
1 (0.025)

	
1 (0.019)

Table 4. Results of the MST2 algorithm and r-flip strategy in Algorithm 5 within the CPU time limit of 60 s.

Table 4. Results of the MST2 algorithm and r-flip strategy in Algorithm 5 within the CPU time limit of 60 s.

	
Instance

ID

	
BFS (60 s)

	
MST2 (60 s)

	
r-Flip (60 s)

	
OFV

	
TB (s)

	
OFV (r = 1)

	
TB (s)

	
OFV (r = 2)

	
TB (s)

	
p3000_1

	
3,931,583

	
3,931,583

	
10

	
3,931,583

	
3

	
3,931,583

	
8

	
p3000_2

	
5,193,073

	
5,193,073

	
25

	
5,193,073

	
2

	
5,193,073

	
2

	
p3000_3

	
5,111,533

	
5,111,533

	
52

	
5,111,533

	
8

	
5,111,533

	
4

	
p3000_4

	
5,761,822

	
5,761,437

	
10

	
5,761,822

	
2

	
5,761,822

	
2

	
p3000_5

	
5,675,625

	
5,675,430

	
24

	
5,675,625

	
7

	
5,675,625

	
17

	
p4000_1

	
6,181,830

	
6,181,830

	
40

	
6,181,830

	
3

	
6,181,830

	
4

	
p4000_2

	
7,801,355

	
7,797,821

	
12

	
7,801,355

	
13

	
7,801,355

	
4

	
p4000_3

	
7,741,685

	
7,741,685

	
31

	
7,741,685

	
5

	
7,741,685

	
8

	
p4000_4

	
8,711,822

	
8,709,956

	
58

	
8,711,822

	
5

	
8,711,822

	
11

	
p4000_5

	
8,908,979

	
8,905,340

	
27

	
8,908,979

	
4

	
8,908,979

	
13

	
p5000_1

	
8,559,680

	
8,556,675

	
56

	
8,559,680

	
21

	
8,559,680

	
7

	
p5000_2

	
10,836,019

	
10,829,848

	
34

	
10,836,019

	
59

	
10,836,019

	
11

	
p5000_3

	
10,489,137

	
10,477,129

	
28

	
10,489,137

	
20

	
10,489,137

	
16

	
p5000_4

	
12,251,710

	
12,245,282

	
52

	
12,251,710

	
54

	
12,251,520

	
42

	
p5000_5

	
12,731,803

	
12,725,779

	
56

	
12,731,803

	
17

	
12,731,803

	
16

	
p6000_1

	
11,384,976

	
11,377,315

	
42

	
11,384,976

	
12

	
11,384,976

	
5

	
p6000_2

	
14,333,855

	
14,330,032

	
39

	
14,333,855

	
27

	
14,333,767

	
14

	
p6000_3

	
16,132,915

	
16,122,333

	
51

	
16,130,731

	
24

	
16,132,915

	
48

	
p7000_1

	
14,477,949

	
14,467,157

	
56

	
14,477,949

	
41

	
14,476,263

	
21

	
p7000_2

	
18,249,948

	
18,238,729

	
55

	
18,249,948

	
47

	
18,246,895

	
47

	
p7000_3

	
20,446,407

	
20,431,354

	
59

	
20,446,407

	
15

	
20,446,407

	
12

	
p8000_1

	
17,340,538

	
17,326,259

	
47

	
17,340,538

	
26

	
17,340,538

	
35

	
p8000_2

	
22,208,986

	
22,180,465

	
55

	
22,208,986

	
54

	
22,208,683

	
53

	
p8000_3

	
24,670,258

	
24,647,248

	
56

	
24,670,258

	
43

	
24,669,351

	
50

	
p30000_1

	
127,252,438

	
126,732,48,3

	
60

	
127,252,438

	
58

	
127,219,336

	
60

	
p30000_2

	
158,384,175

	
157,481,366

	
69

	
158,384,175

	
59

	
158,339,497

	
60

	
p30000_3

	
179,103,085

	
178,093,109

	
89

	
179,103,085

	
58

	
179,029,747

	
54

Table 5. Results of the MST2 algorithm and r-flip strategy in Algorithm 5 within the CPU time limit of 600 s.

Table 5. Results of the MST2 algorithm and r-flip strategy in Algorithm 5 within the CPU time limit of 600 s.

	
Instance

ID

	
BFS

(600 s)

	
MST2 (600 s)

	
r-Flip (600 s)

	
OFV

	
TB (s)

	
OFV (r = 1)

	
TB (s)

	
OFV (r = 2)

	
TB (s)

	
p3000_1

	
3,931,583

	
3,931,583

	
11

	
3,931,583

	
5

	
3,931,583

	
5

	
p3000_2

	
5,193,073

	
5,193,073

	
25

	
5,193,073

	
1

	
5,193,073

	
3

	
p3000_3

	
5,111,533

	
5,111,533

	
52

	
5,111,533

	
30

	
5,111,533

	
8

	
p3000_4

	
5,761,822

	
5,761,822

	
269

	
5,761,822

	
1

	
5,761,822

	
2

	
p3000_5

	
5,675,625

	
5,675,625

	
505

	
5,675,625

	
43

	
5,675,625

	
29

	
p4000_1

	
6,181,830

	
6,181,830

	
40

	
6,181,830

	
4

	
6,181,830

	
2

	
p4000_2

	
7,801,355

	
7,800,851

	
530

	
7,801,355

	
8

	
7,801,355

	
8

	
p4000_3

	
7,741,685

	
7,741,685

	
30

	
7,741,685

	
5

	
7,741,685

	
2

	
p4000_4

	
8,711,822

	
8,711,822

	
67

	
8,711,822

	
2

	
8,711,822

	
7

	
p4000_5

	
8,908,979

	
8,906,525

	
65

	
8,908,979

	
4

	
8,908,979

	
13

	
p5000_1

	
8,559,680

	
8,559,075

	
324

	
8,559,680

	
9

	
8,559,680

	
27

	
p5000_2

	
10,836,019

	
10,835,437

	
541

	
10,836,019

	
17

	
10,836,019

	
21

	
p5000_3

	
10,489,137

	
10,488,735

	
400

	
10,489,137

	
29

	
10,489,137

	
38

	
p5000_4

	
12,252,318

	
12,249,290

	
265

	
12,252,318

	
127

	
12,251,848

	
143

	
p5000_5

	
12,731,803

	
12,731,803

	
265

	
12,731,803

	
19

	
12,731,803

	
32

	
p6000_1

	
11,384,976

	
11,384,976

	
406

	
11,384,976

	
8

	
11,384,976

	
39

	
p6000_2

	
14,333,855

	
14,333,767

	
498

	
14,333,855

	
62

	
14,333,855

	
17

	
p6000_3

	
16,132,915

	
16,128,609

	
239

	
16,132,915

	
60

	
16,132,915

	
71

	
p7000_1

	
14,478,676

	
14,477,039

	
344

	
14,478,676

	
92

	
14,478,676

	
397

	
p7000_2

	
18,249,948

	
18,242,205

	
587

	
18,249,948

	
115

	
18,249,844

	
43

	
p7000_3

	
20,446,407

	
20,431,833

	
109

	
20,446,407

	
47

	
20,446,407

	
21

	
p8000_1

	
17,341,350

	
17,337,154

	
546

	
17,340,538

	
45

	
17,341,350

	
141

	
p8000_2

	
22,208,986

	
22,207,866

	
122

	
22,208,986

	
49

	
22,208,986

	
89

	
p8000_3

	
24,670,924

	
24,669,797

	
402

	
24,670,924

	
185

	
24,670,924

	
386

	
p30000_1

	
127,336,719

	
127,323,304

	
568

	
127,332,912

	
598

	
127,336,719

	
592

	
p30000_2

	
158,561,564

	
158,438,942

	
573

	
158,561,564

	
580

	
158,526,518

	
571

	
p30000_3

	
179,329,754

	
179,113,916

	
575

	
179,329,754

	
599

	
179,261,723

	
590

Table 6. Computing the time deviation of the MST2 algorithm and r-flip strategy in Algorithm 5 within the time limit of 60 s.

Table 6. Computing the time deviation of the MST2 algorithm and r-flip strategy in Algorithm 5 within the time limit of 60 s.

	
Instance

ID

	
MST2

	
1-Flip

	
2-Flip

	
AT (s)

	
DT

	
AT (s)

	
DT

	
AT (s)

	
DT

	
p3000_1

	
12.5

	
15.663

	
15.7

	
84.075

	
24.1

	
56.875

	
p3000_2

	
32.5

	
20.059

	
4.9

	
45.583

	
4.8

	
68.606

	
p3000_3

	
54.3

	
5.901

	
29.3

	
46.180

	
12.0

	
60.477

	
p3000_4

	
13.3

	
18.434

	
12.0

	
107.798

	
10.0

	
51.640

	
p3000_5

	
30.4

	
15.829

	
33.2

	
45.470

	
32.3

	
48.240

	
p4000_1

	
49.0

	
10.227

	
7.7

	
50.131

	
9.3

	
36.570

	
p4000_2

	
14.2

	
9.848

	
22.1

	
62.351

	
21.1

	
70.476

	
p4000_3

	
35.4

	
11.236

	
15.1

	
69.699

	
16.5

	
75.542

	
p4000_4

	
58.0

	
0

	
22.2

	
65.408

	
35.4

	
45.780

	
p4000_5

	
31.1

	
11.082

	
18.1

	
73.038

	
29.6

	
40.109

	
p5000_1

	
56.8

	
2.339

	
4.0

	
0

	
10.0

	
42.426

	
p5000_2

	
35.0

	
3.563

	
28.3

	
74.329

	
11.0

	
0

	
p5000_3

	
30.0

	
8.607

	
38.9

	
33.038

	
33.0

	
50.069

	
p5000_4

	
54.0

	
5.238

	
54.0

	
0

	
42.0

	
0

	
p5000_5

	
57.2

	
1.317

	
38.8

	
40.504

	
30.5

	
63.379

	
p6000_1

	
43.3

	
5.112

	
32.9

	
47.380

	
21.8

	
67.507

	
p6000_2

	
39.8

	
4.238

	
31.8

	
51.521

	
42.3

	
46.315

	
p6000_3

	
52.1

	
5.027

	
32.3

	
44.640

	
48.0

	
0

	
p7000_1

	
56.0

	
0

	
41.0

	
0

	
21.0

	
0

	
p7000_2

	
55.3

	
1.367

	
47.0

	
0

	
47.0

	
0

	
p7000_3

	
59.0

	
0

	
42.0

	
56.293

	
35.2

	
45.958

	
p8000_1

	
48.1

	
7.232

	
26.0

	
0

	
35.0

	
0

	
p8000_2

	
55.9

	
0.566

	
54.0

	
0

	
53.0

	
0

	
p8000_3

	
57.2

	
1.806

	
43.0

	
0

	
50.0

	
0

	
p30000_1

	
60.0

	
0

	
58.0

	
0

	
60.0

	
0

	
p30000_2

	
70.0

	
1.166

	
59.0

	
0

	
60.0

	
0

	
p30000_3

	
90.3

	
0.912

	
58.0

	
0

	
54.0

	
0

Table 7. Computing the time deviation of the MST2 algorithm and r-flip strategy in Algorithm 5 within the time limit of 600 s.

Table 7. Computing the time deviation of the MST2 algorithm and r-flip strategy in Algorithm 5 within the time limit of 600 s.

	
Instance

ID

	
MST2

	
1-Flip

	
2-Flip

	
AT (s)

	
DT

	
AT (s)

	
DT

	
AT (s)

	
DT

	
p3000_1

	
11.9

	
16.067

	
21.3

	
62.678

	
37.8

	
130.045

	
p3000_2

	
29.1

	
18.144

	
5.5

	
69.234

	
7.7

	
81.231

	
p3000_3

	
58.5

	
16.889

	
126.4

	
99.610

	
143.6

	
116.812

	
p3000_4

	
292.1

	
11.285

	
10.8

	
58.365

	
13.7

	
49.512

	
p3000_5

	
543.9

	
6.365

	
109.1

	
88.328

	
164.3

	
72.144

	
p4000_1

	
42.8

	
7.773

	
13.5

	
63.553

	
15.1

	
63.861

	
p4000_2

	
552.2

	
2.597

	
30.7

	
49.923

	
37.0

	
110.712

	
p4000_3

	
31.7

	
7.293

	
18.8

	
57.442

	
22.9

	
47.545

	
p4000_4

	
70.8

	
4.094

	
42.2

	
102.331

	
48.7

	
115.376

	
p4000_5

	
70.5

	
8.596

	
25.3

	
81.984

	
43.0

	
69.595

	
p5000_1

	
337.2

	
4.265

	
70.7

	
126.287

	
48.0

	
61.872

	
p5000_2

	
557.8

	
4.565

	
135.4

	
96.462

	
210.6

	
67.670

	
p5000_3

	
428.5

	
7.257

	
115.8

	
96.524

	
115.5

	
104.238

	
p5000_4

	
279.4

	
5.987

	
270.3

	
48.842

	
143.0

	
0

	
p5000_5

	
287.1

	
9.234

	
194.5

	
94.641

	
172.7

	
92.268

	
p6000_1

	
424.8

	
4.555

	
152.9

	
95.641

	
145.9

	
46.657

	
p6000_2

	
498.0

	
0

	
142.5

	
97.375

	
73.8

	
122.070

	
p6000_3

	
252.3

	
5.571

	
248.0

	
51.129

	
318.1

	
61.672

	
p7000_1

	
344.5

	
0.153

	
272.5

	
93.675

	
441.5

	
12.974

	
p7000_2

	
587.0

	
0

	
115.0

	
0

	
265.1

	
76.694

	
p7000_3

	
109.0

	
0

	
84.5

	
39.472

	
131.1

	
55.401

	
p8000_1

	
548.6

	
1.398

	
251.3

	
63.346

	
141.0

	
0

	
p8000_2

	
145.4

	
11.829

	
258.3

	
56.352

	
300.7

	
56.001

	
p8000_3

	
514.3

	
11.365

	
368.8

	
43.667

	
417.3

	
12.797

	
p30000_1

	
572.0

	
1.365

	
598.0

	
0

	
592.0

	
0

	
p30000_2

	
581.5

	
1.526

	
580.0

	
0

	
571.0

	
0

	
p30000_3

	
586.5

	
2.773

	
599.0

	
0

	
590.0

	
0

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Check ACS Ref Order

Check Foot Note Order

Check CrossRef

nav.xhtml

 algorithms-16-00557

 		
 algorithms-16-00557

media/file5.png
oo NOoOOLh WN —~

N__________\QO
O ©C oo ~NOO P> WN-—-~O

9 10 11 12 13 14 15 16 17 18 19 20
X X

X X X X
X X

X X X X

X X

X X

media/file3.png

media/file0.png

media/file2.png
-30

50 -68 -66
-/ 50 28
-26 -46
-35

94
60
26

31

100 -20
56 -54
82 -50
82 -84
-86 48
19 -66

-4

80 94 0 86 76

4 30
44 -94
-34 -22
-50 -70
50 60
-20 86
-74 -2
-30 -14

25

-42
54
-62
-50
-94
36
-32
54
26
32

-28 -50
52 -50
-34 -56
8 -42
88 76
94 -94
50 -10
6 -24
70 2
-22 -58
-47 72

40

100

-36 76 52

-42
-68
18
10
-46
-34
52
-80
-68
62
52
48
72
-31

90
-52
44
92
72
-36
-68
-56
100
86
-40
-16
76
-62
37

-26
20
-84
64
-36
12
-64
22
70
-8
2
76
66
88
64
13

-8 48 42
6 22 O
96 64 -22
2 -72 -60

-28 64 -70
84 -46 94
82 -64 -16

-90 -68 52
10 58 28
92 -4 -96
-70 -22 64
-66 0 -34
-72 -12 10
-6 -18 -26
-3 74 -80
20 -54

22

media/file4.jpg
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

media/file1.jpg
730 50 68 66 94 -100
57l 50 28 60 56
526146 26 82

=6l 8 82

3l -8

19

20
54
50
-84

% 80
78 4
-80 44
-46 34
%0 -50
98 50
60 -20
=il -74

% 0 8 76 %

30
04
2
70
60
8
2
-14
2

42
54
-62
-50
94
36
32
54
2
2

28 -50
52 -50
34 -56
8 -42
8 76
94 94
50 -10
6 -2
70 2
22 58
47 72

40

%
54
86
-80
100
52
45
