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Abstract: Predicting student dropout is a crucial task in online education. Traditionally, each edu-
cational entity (institution, university, faculty, department, etc.) creates and uses its own prediction
model starting from its own data. However, that approach is not always feasible or advisable and
may depend on the availability of data, local infrastructure, and resources. In those cases, there are
various machine learning approaches for sharing data and/or models between educational entities,
using a classical centralized machine learning approach or other more advanced approaches such as
transfer learning or federated learning. In this paper, we used data from three different LMS Moodle
servers representing homogeneous different-sized educational entities. We tested the performance
of the different machine learning approaches for the problem of predicting student dropout with
multiple educational entities involved. We used a deep learning algorithm as a predictive classifier
method. Our preliminary findings provide useful information on the benefits and drawbacks of each
approach, as well as suggestions for enhancing performance when there are multiple institutions.
In our case, repurposed transfer learning, stacked transfer learning, and centralized approaches
produced similar or better results than the locally trained models for most of the entities.

Keywords: dropout prediction; predictive analytics; transfer learning; federated learning

1. Introduction

One important task in learning analytics (LA) [1] and educational data mining (EDM) [2]
research is student dropout prediction (SDP). SDP is an important educational problem
because of the high dropout rate, mainly from e-learning environments. The recent spread
of online courses—with enormous numbers of enrolled students, only a fraction of whom
complete their studies successfully—has led to increased attention to this problem. As a con-
sequence, there is a growing interest in the adoption of automated systems for predicting
student dropout. Automated methodologies have also caught the attention of researchers,
particularly in the area of machine learning. Students doing online degree programs have a
higher chance of dropping out than those attending conventional classroom environments.
According to [3], 40–80% of online students drop out from online classes. Moreover, stu-
dents may leave courses at any time without notice or further repercussions. Therefore, it is
of paramount interest to find more effective methods of addressing the problem of dropout
in e-learning environments. The specific objective of SDP in e-learning environments is to
model student behavior interacting with e-learning platforms to determine which students
are likely to not finish a course, degree, etc. [4].

Predicting student dropout in online learning is a challenge that has been widely
studied in the literature [5]. Educational data mining (EDM) techniques have been suc-
cessfully applied [2] to solve this problem as a binary classification task (zero or one).
In this task, there is a set of already labeled training data (students who have already
completed the course). Therefore, it is known whether they dropped out (labeled class 1)
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or successfully completed the course (labeled class 0). The task aims to make the earliest
possible prediction of the label or class for new students taking a new course. Traditionally,
a wide range of classical machine learning and data mining algorithms have been used to
solve this classification problem [6–8] such as decision trees, Bayesian networks, support
vector machines, etc. But in recent years, new, more powerful classification algorithms
have appeared, such as deep learning algorithms. They have significantly better predictive
capabilities than classical algorithms [9,10]. In this study, we used a deep learning classifier
as an algorithm for predicting student dropout.

At the outset, it is important to define a term that we use throughout this paper. The
term “educational entity” generally refers to any organization or institution that provides
educational services, such as a school, college, university, or any other type of learning
center. Traditionally, each educational entity builds its own individual predictive model
from its own data. These models are commonly referred to as individual or local models.
However, this method requires each entity to collect enough data to train its individual
model, which takes time and would require resources to create and maintain the prediction
model. Furthermore, an entity may be subdivided into smaller entities, for example, a
university with its individual faculties, departments, etc., or a group of universities in the
same country. In that case, it is crucial to have the necessary data and resources to build
and manage the model for each of those subentities and the costs that they entail. There
may be subentities with few resources or that do not have the data available to develop
their own prediction models.

When multiple entities share their data, a more diverse and representative dataset is
created, which can result in more robust and more broadly applicable models. However,
data sharing also poses significant privacy and security challenges, so any collaborative
effort involving data sharing must be conducted with a high level of confidentiality and in
compliance with privacy regulations [11,12]. Conversely, sharing machine learning models
between educational entities offers unique benefits and drawbacks. By sharing models,
entities can benefit from the knowledge of models trained elsewhere. This can expedite the
development of effective models, and shared models can serve as strong starting points
for modification to specific local contexts. Nevertheless, models may contain implicit
information about the original data and may even be susceptible to reverse engineering
attacks in certain situations. Therefore, it is critical to ensure that shared models do not
compromise data privacy or reveal personal information. Additionally, adapting shared
models to local data may require significant resources, and it is important to keep in mind
that a model that performs well in one context may not always be immediately applicable
in another. There are different approaches where entities can use models already trained
elsewhere or share data with other entities to create more reliable and generalizable models
for later use. Each approach has its advantages and disadvantages, such as data size, data
variability, privacy concerns, and generalization issues.

The most common data sharing approach consists of using a centralized learning
approach, where data from different sources are gathered together, and then, predictive
models are built to find common patterns among all of them. This approach has been widely
used by many authors in order to have a one-size-fits-all general model. Some authors who
started to consider it as a particular approach for data combination for different sources in
education include [13,14]. However, as those authors stated, the centralized approach has
some limitations due to legal and privacy issues, and therefore it is quite often not possible
to combine data.

Over recent years, several transfer learning studies have been performed in the field
of EDM, where models are built in a context (a course, for instance) and transferred to be
used in another context. There is a wide variety, as they include very trivial approaches and
other, more complex ones. A large group of studies have used deep learning techniques
to build models that are subsequently transferred. In [15], the authors suggested that a
model trained in one course can be replicated for use in other courses, so that the weights
of the target course are initialized with the weights learned in the source course, and from
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there training is continued towards the target. There have been innovative studies with
advanced techniques that use ensembles, which are strategies for combining decisions
taken by several machine learning models to improve generalization. This is the proposal
in [16], where local training is first performed on the nodes and then two ensemble transfer
strategies are used: the first, based on voting (the decision is made based upon the votes
from each node); and the second, based on stacking—an approach in which the decisions
adopted by the different models feed a new model. In addition, many studies have used
a more trivial approach consisting of direct transfer of a model trained on one source for
immediate use on the target [17–21].

When attempting to combine information in that context, there are situations where
the data cannot be merged directly. For example, when entities are not authorized to
share data due to legal privacy issues [22]. This has led to the emergence of so-called
federated learning (FL) methods, which allow multiple entities to build a common machine
learning model without sharing data [23]. Most FL methods use the idea of averaging the
values provided by the sources for each model parameter, with education being a domain
where this idea is also widespread [24,25]. In [14], average values were calculated of the
weights of the neural networks provided by the participating nodes for the prediction of
student dropout to demonstrate that this federated approach improved on the results of a
centralized approach and avoided the concentration of the data, thus maintaining privacy.

Several studies have proposed some of the above approaches, mainly transfer learning,
to address the problem of student dropout prediction between different instances of the
same course [26] or from one course to a different, related or unrelated course [15,27], while
others addressed the problem with different universities involved [16]. The novelty of
the current paper is specifically that it evaluates and compares the performance of all the
previously proposed machine learning approaches when there are several, different-sized
entities involved.

In this paper, we explore all the previously mentioned approaches (individual, cen-
tralized, transfer learning, and federated learning) applied to the SDP problem. To our
knowledge, this is the first study to compare all these approaches together. We present
experimental results that highlight the strengths and limitations of each approach based
on the results from applying the aforementioned collaborative approaches to datasets
from three different-sized educational entities. Ultimately, our goal is to provide an initial
understanding of how all these approaches can influence the creation of accurate predictive
models in real-world situations with several different-sized entities. The main contribution
of this paper is the proposal of a series of findings to guide practitioners and the research
community toward informed decision-making when addressing predictive modeling from
different entities.

The rest of this paper is organized as follows: In Section 2, we examine the main
approaches for generating prediction models starting from different entities. In Section 3,
we present the materials and methods, including the datasets used and the neural network
architecture we used. In Section 4, we present the results of our experiment findings and
in Section 5, we discuss these results and explore practical implications arising from our
discoveries. Finally, in Section 6, we conclude the paper by presenting our findings and
discussing their significance for both EDM as a field and for student dropout prediction.
Furthermore, we propose directions for future research that could further enhance our
understanding in this domain.

2. Machine Learning Approaches

There are various machine learning strategies or approaches that can be used to create
prediction models of student dropout starting from multiple educational entities [13,22].
The different approaches can be compared in terms of sharing data and collaboration to
generate models. Some authors [16] use the term multi-institutional when using data
from multiple institutions or entities during training and cross-institutional when using
models from multiple institutions or entities for inference. These strategies vary from
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traditional individual models to centralized models to more updated transfer and federated
learning models. A summary of the main learning approaches is shown in Figure 1. In
the individual approach, each entity maintains its data and models independently, which
limits collaboration and joint use of resources. In contrast, the centralized approach relies
on the consolidation of data from different entities into a single dataset. Meanwhile,
transfer learning allows the reuse of pre-trained models from one entity to another. Finally,
federated learning is based on the consolidation of a central model based on models trained
at each entity separately.
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2.1. Individual Models

The use of local or individual models is the traditional approach where each entity
uses its own specific prediction model trained from its own data [13]. One of the potential
benefits lies in the ability to adapt to the unique peculiarities of that data. This can result in
robust performance when predicting student dropout in that particular dataset. However,
these models have additional challenges, such as the time needed to collect enough data or
duplication of effort and resources needed to develop specific entity models, as well as the
difficulty in applying the findings in a broader context.

The process (see Figure 2) begins with data collection from each entity (1). With the
data prepared, the machine learning model is then designed and trained (2). Finally, once
the model has been trained and validated, it is deployed in its own entity where it is used
to make predictions and decisions based on each entity’s unique data (3).

2.2. Centralized Model

Centralized learning [13] is a data analysis strategy that involves training a single
model using combined data from multiple entities. The centralized model optimizes
performance by leveraging the unique characteristics of each dataset, leading to the creation
of models that are more generalizable. However, it is crucial to understand that there may
be issues such as noise, bias, and even privacy concerns when using data that are shared
between entities.
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In this case (see Figure 3), each entity (1) sends its raw data to the central server
(2). Subsequently, the central server combines all the data from all the different entities’
students and then trains a machine learning model using the combined data (3). As a result,
a single integrated model is created, which is used to predict dropout (4).
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2.3. Transfer Learning

Transfer learning follows the idea of using the learning in a model trained on one
specific source in another specific context. There are different versions of transfer learning
such as direct transfer learning, repurposed transfer learning, in which the model retrains
on the target data, and ensemble-based transfer learning models such as soft voting and
stacking transfer learning.

2.3.1. Direct Transfer

Direct transfer learning [16] is used to leverage knowledge and insights gained from
one dataset or entity to improve performance in another related domain or dataset. In this
strategy, models can benefit from patterns and representations learned from the source data
and apply them directly to the target data. However, the performance of direct transfer
may largely depend on the match between the sizes of each entity.

The process is described in Figure 4. Firstly, the information is collected from the
source entity, which acts as a source of knowledge. (1) These data are used to train an initial
model that captures fundamental patterns and features (2). Then, these models are directly
transferred or applied to the target data of interest to make predictions (3).
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2.3.2. Repurposed Transfer

Repurposed transfer learning [15] is a machine learning approach that leverages
knowledge learned from a pretrained model to retrain it to be applied effectively to related
but different tasks with different datasets. The key idea is to adapt and reuse the knowledge
learned by a pretrained model, fine-tuning its parameters on a task-specific dataset (retrain
phase). It is important to underscore that the implementation of repurposed models may
require additional resources for adaptation to specific local contexts.

This approach (see Figure 5), like the previous one, starts with data collection in
entities or relevant datasets, which act as a source of knowledge (1). These data are used
to train an initial model that captures fundamental patterns and features (2). Then, these
models are transferred to the target data, and additional training is carried out on the target
data. This stage involves fine-tuning or adjusting the pretrained model to adapt it to the
peculiarities of the new target data.
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2.3.3. Soft-Voting Transfer

Soft-voting transfer [16] is an ensemble approach that uses an averaging mechanism
to combine the results of models “voters” trained on separate entities. The soft-voting
approach tries to improve collaboration and efficiency in early dropout detection without
having to create extra models.

The process (see Figure 6) begins with collecting data from relevant distributions or
entities (1). Each model or “voter” is trained on one of these separate distributions, with no
training at the target entity in a “zero-shot” setup (2). Then, during the prediction stage, a
soft-voting mechanism is used to combine the probabilities predicted by each model (3–4).
Unlike hard voting, where decisions are made based on majority votes, soft voting averages
the predicted probabilities of each model.
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2.3.4. Stacking Transfer

Another ensemble approach is stacking transfer which uses stacked generalization [16]
to combine the predictions of models trained on all available entities with the training data
of the source entity. This is achieved by concatenating the predictions of each classifier
to the input features and creating a new classifier from this concatenated data. This
approach is especially valuable when working with multiple entities or data sources, as it
allows predictions from models trained on different sources to be combined to improve
generalization and performance on a specific target task. However, it is important to note
that implementing this technique may require more computational resources and effort
than other approaches.

In summary, training with stacking (see Figure 7) involves concatenating predictions
(2) from models trained on different entities (1) with the input features (3). Then, a new
classifier is trained (4) using this new dataset, allowing knowledge from various sources to
be leveraged to improve model performance on a specific task (5).
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2.4. Federated Learning

Federated Learning addresses privacy and security issues using collaborative training
without sharing data [23]. This approach typically comprises two variants: horizontal
(datasets share the same feature space but differ in samples) and vertical (datasets share
the same sample identifier but differ in feature space). In our study, we used the hor-
izontal variant of federated learning, where the data structure across different entities
remains consistent.

In this approach (see Figure 8), each entity has its own dataset (1), and to compute
the final model, an iterative process is used for model parameter estimation within the
clients and the server. In each iteration, specific clients are chosen to train the model with
their own data locally (2). Then, the server aggregates all clients’ results to update the
model state (3 and 4) and update the final global model (5) using an average of the local
parameter estimations.
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3. Materials and Methods

The objective of our experiments, as shown in Figure 9, was to compare and evaluate
different machine learning approaches (described in Section 2 above) for student dropout
detection when having multiple entities’ datasets available. We started by collecting
data from multiple educational entities (left of Figure 9). Then, we applied the proposed
approaches from local/individual to centralized models, going from different versions of
transfer learning to federated learning (central part of Figure 9). We used the same deep
learning prediction model as the classifier to compare the different approaches. Finally, our
study sought to identify the most effective approach, its advantages and drawbacks (right
of Figure 9), and how performance varied when using different-sized datasets.
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3.1. Data

All of the anonymized data in this study were provided by three online higher-
education entities. The data came from student interaction data with Moodle courses. As
Figure 10 shows, the student interaction data were sequentially grouped by week. It is also
important to note that a student could start and drop out a course in any week during the
course. Thus, for each student, there was a sequence of weeks or rows in the data file where
their interaction activity with the course was stored. The length of the sequence (number of
rows) for each learner was variable depending on the number of weeks where each learner
presented interaction information. The final status of each student: dropout (value 1) or
nondropout (value 0), was added as a class to predict. A dropout student in our context
referred to a student who enrolled in an online course but did not complete it.
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The data used in this paper came from three different LMS (learning management
system) Moodle servers representing three educational entities with diverse students and
courses (see Figure 11):

• The first entity’s dataset comprised 224,136 students and 7706 courses of which
174,556 students completed their courses (78%), and 49,580 dropped out before finish-
ing the course (22%). This was a large dataset.

• The second entity’s dataset comprised 98,829 students and 5871 courses of which
74,048 students completed their courses (75%), and 24,781 dropped out before finishing
the course (25%). This was a medium dataset.

• The third entity’s dataset comprised 15,023 students and 517 courses of which
10,552 students completed their courses (77%), and 4382 dropped out before finishing
the course (23%). This was a small dataset.

Figure 11 shows that the distribution of classes was unbalanced, but there was a
similar percentage of dropout in the three entities’ data (between 22% and 25%).

We used the same attributes to predict student dropout for the three entities. We used
only attributes related to students’ activity on their courses in the LMS Moodle system,
avoiding any bias in the data and trying to achieve homogeneous entity datasets. The
specific attributes are shown in Table 1. We only selected summarization attributes or
features that could be directly obtained from students’ interaction with the online courses.
Our objective was to be able to generate prediction models that could be directly applied
or transferred to any learning management systems (LMS), massive online open courses
(MOOCs), etc. These summarization variables can be easily obtained from any type
of online educational environment. In our case, the 11 specifically used variables were
provided by the online course provider, and we only had to preprocess them.
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Table 1. Description of student interaction data.

Variable Name Description

discussions_viewed Number of discussions the student has seen
htm_completed Number of HTML pages completed
vid_completed Number of completed video views
exa_completed Number of examinations completed

autoeva_completed Number of self-assessments completed
n_posts Number of posts or messages viewed

n_discussions Number of discussions held in the period
assignment_submited Number of tasks performed

com_tutor Number of times connected to the tutor
Hours in course Number of hours spent

Course visits Number of visits to the course

The values of these attributes were preprocessed as follows:

• Data cleaning: if a null or unknown value was found in any attribute, it was replaced
with a value of 0.

• Data normalization/scaling: to bring all numerical values into the same range, they
were rescaled to the range [0–1] using the standard min–max scaler normalization, as
shown in Equation (1):

Xscaled =
(X− Xmin)

(Xmax− Xmin)
, (1)

3.2. Prediction Model

The same deep learning classifier or prediction model was used for all the machine
learning approaches in order to compare them. We selected a bidirectional long short-term
memory (BiLSTM) neural network (Figure 12), which allowed us to capture dependencies
and patterns in sequential data. We used this specific classifier because it gave the best
results when comparing other classification models in previous work [28].
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Figure 12. BiLSTM prediction model.

In this type of neural network, there is a bidirectional LSTM [29] layer that is respon-
sible for learning and representing complex patterns and dependencies within the input
sequence. As Figure 12 shows, it contains a variable number of LSTM units, which have
internal memory cells to store and update information over time. These memory cells
enable the network to capture long-term dependencies and retain important information
throughout the sequence. In our research, the input data from the different weeks of the
course (top side of Figure 12) were fed into a 128-neuron BiLSTM layer with 128 LSTM
forward neurons and 128 LSTM backward neurons. The bidirectional nature of the BiLSTM
enables the network to use information from both past and future contexts, enhancing its
ability to understand the temporal dynamics of the data. The output of the BiLSTM layer
is then passed to the final output layer. In our case, this output layer consisted of a single
neuron with a sigmoid activation function. The sigmoid activation function ensures that the
output is bounded between 0 and 1, representing a probability of our binary classification
problem, 0 for nondropout, and 1 representing dropout.

Deep neural networks are represented by a number of connecting weights between
the layers. During the training process, these weights are adjusted in order to minimize
the error of the expected output. The parameters of the BiLSTM layer and the output layer
were updated using the Adam optimizer, which adjusts the weights of the neurons based
on the gradient of a loss function.

We used binary cross-entropy as the loss function, which measures the dissimilarity
between the predicted outputs and the true target values for binary classification tasks. The
BiLSTM algorithm was implemented in Python using the libraries: scickit-learn, tensorflow,
and keras. We set class weights to solve the problem of class imbalance. More specifically,
we set a higher weight to the minority class by using the compute_class_weight function
from the sckikit-learn library.

4. Results

This section describes the results from our experiments for evaluating the effectiveness
of the different ML approaches using the BiLSTM neural network on the three educational
datasets or entities presented in Section 3.1. Our main goal was to understand how
performance varied for each approach and reveal their main advantages and drawbacks.
We followed the same methodology for all experiments with the three entities’ datasets
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and the different approaches. We executed the deep learning model in a 10-fold cross-
validation to ensure the reliability of our results through training and testing with different
partitions of the datasets in each iteration. This allowed us to understand how well each
method performed overall and its ability to handle new and unexpected data. As a baseline
for comparison, we considered the individual or local model trained and tested at the
same entity.

To evaluate the predictive performance of our models, taking into account the imbal-
ance in the data and ensuring a robust assessment of effectiveness in predicting student
dropout, we used the two following metrics:

1. AUC-ROC: The area under the ROC curve is one of the most important metrics used
to represent the expected performance of a classifier based on the area under the
receiver operating characteristic curve (AUC). The AUC is formally defined as the
result of applying a prediction threshold, denoted as in Equation (2),

AUC( f (θ)) =
∫ 1

0
TPR(FPR( f ι(θ)))dι (2)

where ι represents the prediction threshold applied to model predictions, and TPR and
FPR represent the true positive rate and false positive rates, respectively. AUC scores
are limited to a range of zero to one, with a random predictor achieving an AUC of 0.5.
Given the unbalanced distribution of the data, we used the AUC-ROC to assess the
overall predictive accuracy of our models in accurately capturing dropout patterns.

2. ∆AUC: The increment in AUC-ROC is defined to measure changes in predictive
performance as shown in Equation (3):

∆AUC
(
T, T′

)
= AUC(T)− AUC

(
T′
)

(3)

where AUC(T′) refers to the AUC of an individual model, and AUC(T) refers to a
model trained with another approach. This allowed us to compare, for example, how
AUC values were affected by different approaches. If ∆AUC was close to zero, we
could conclude that the model performs approximately the same as individual models,
but if it was positive or negative, the model performed better or worse, respectively,
in context T relative to T′.

Next, we show the results of executing 10 cross-validations of the individual, central-
ized, transfer (direct, repurposed, voting, and stacked) and federated learning approaches.
We evaluated the performance of each approach separately for each target entity’s dataset.
This also allowed us to demonstrate how model performance varied based on the size of
the target datasets.

Figures 13–15 show the results for each destination entity in our study, demonstrating
the AUC (area under the curve) and ∆AUC (increment of AUC) metrics. Our visual
representation includes bar charts illustrating the average AUC achieved by each approach.
Box plots are also used to display the distribution of ∆AUC values, centered around zero,
allowing a clearer visualization of improvements or declines.

The left side of Figure 13 shows the results of the different approaches in terms of
AUC when the first dataset (in our case the biggest) was the target. In that case, the baseline
was its own individual/local model trained on its own data giving a mean value for the
AUC of 0.8166 ± 0.0042. The AUC values ranged between 0.819 and 0.746 which were the
lowest of the three target datasets. The centralized model produced a similar but lower
performance than the baseline, with an AUC of 0.8109 ± 0.0042. Direct transfer learning
models performed below the baseline, 0.7896 ± 0.0049 with the model transferred from the
second dataset, and even lower with 0.7461 ± 0.0027 from the third dataset. This is because
these models may be biased by the source data and had fewer samples to learn from, losing
generalization on the first dataset which was the largest one. However, when these models
were retrained on the target data, the results of the repurposed transfer improved, and
they were better than using the individual model, with values of 0.8175 ± 0.0033 and
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0.8168 ± 0.0040 from the second and third entities, respectively. The stacking approach,
which combined the results of the individual models, performed very well and had a higher
AUC than the baseline at 0.8196 ± 0.0017. However, the soft voting and federated learning
approaches produced lower results, performing below the baseline.
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The right side of Figure 13 shows the increase or decrease in AUC for the different
approaches when the target was the first dataset. All the boxes above the zero line indicate
a model performing better than the baseline, which was the individual model for the first
dataset (the largest). The results confirmed the previous AUC results; the performance
of the repurposed models and the stacking approach were better than the baseline with
very small differences in terms of ∆AUC. More specifically, the stacking approach stood
out for its capability and potential since it offered better performance than all the other
approaches with an increase of 0.3% in AUC. The repurposed models also performed
very well compared with the single model, with increases of 0.09% and 0.03% when data
came from the second individual model and the third individual model, respectively. The
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centralized model produced a small decrease of −0.55%. The lowest results were produced
by a direct transfer from individual model 3 (the smallest) with a decrease of −7.04%,
along with the voting approach and the federated approach, with decreases of 2.35% and
3.63%, respectively.
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With the second (medium-sized) dataset as the target, as shown on the left side of
Figure 14, the results of AUC were similar to the results for the first dataset (AUC ranging
between 0.8234 and 0.7821), albeit with some differences. The main difference was that
the baseline (individual model trained with the second dataset) did not produce the best
results, with a value of 0.8234 ± 0.0037. The centralized model performed similarly to the
reference/baseline model, confirming its potential. The model transferred directly from
the first, large dataset worked well (0.8177 ± 0.0044) but the model transferred from the
third, small dataset worked worse (0.7821). The reused models performed very well, at
the cost of retraining. In fact, the best results came from the repurposed first dataset. The
soft-voting approach improved a little on the previous dataset with 0.8186 ± 0.0040 and
the stacking method continued to improve with 0.8257 ± 0.0011. Finally, the federated
learning approaches continued to underperform, but improved a little by now taking
advantage of learning from the largest dataset, with a value of 0.8054 ± 0.0039. Looking
at the increases or decreases in AUC for the second (medium-sized) dataset, the right
side of Figure 14 shows that the results were similar to the results from the first dataset,
with repurposed (0.34% from the first) and stacking (0.23%) approaches giving the best
results, even outperforming the individual models. The centralized model produced a
very small drop of −0.12% in AUC (lower than with the first dataset). The lowest results
were from direct transfer from individual model 3 (the smallest), with a drop of −4.14%,
along with the voting approach and the federated approach with drops of −0.48% and
−3.63%, respectively.

The left side of Figure 15 shows the AUC results when the target was the third dataset,
which was the smallest, with only 16,000 examples. The results were different and higher
than those of the two previous target datasets. The AUC values ranged between 0.8850
and 0.8458. These results showed that in that dataset, the local bias was higher. This is
reflected in the performance of the baseline, which was the best model, with an AUC of
0.8849 ± 0.0075. The repurposed and stacked transferred learning models again produced
the highest AUC values of about 0.88. However, the centralized approach produced the
lowest AUC values (0.84), showing that it did not work very well when applied to a small
target dataset. The model transferred directly from the first, large dataset produced the
second lowest value (0.85), and the model transferred from the second, medium dataset
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worked a little better (0.86). Finally, the voting and federated approaches produced very
similar results with AUC values of about 0.86.

The right side of Figure 15 shows the increase or decrease in AUC for the third target
dataset. In that case, all the approaches showed a decrease in AUC. The largest drop was
produced by the centralized (−3.92%) and direct approaches (−3.49% and −2.29%). In
contrast, the repurposed approach performed well on that dataset with a drop of only
−0.12% from the first dataset and −0.35% from the second. The stacked approach also
gave good results with a drop of −0.42%. Furthermore, the soft-voting and federated-
voting models gave even worse results but with a smaller difference (−1.75% and −2.04%,
respectively) than for the two previous cases using entities 1 and 2 as targets).

Finally, we carried out two tests to verify whether the differences in AUC were
statistically significant. To achieve that, we conducted a paired t-test and a z-test with
alpha = 0.05 (see Table 2) to analyze significant differences between the performance of the
approaches evaluated versus our baseline (individual model) in terms of AUC, using the
individual course dataset as a target. A p-value of 0.05 or less indicated that the difference
was significant. We used these two specific tests because they had been proposed as
statistical analysis in other related works [15,16] to find any significant differences between
these machine learning approaches.

Table 2. Test results.

Target Source Approach Z-Test
(p-Value)

T-Test
(p-Value)

1st

1st + 2nd + 3rd Centralized 0.073 0.090
2nd Direct transfer <0.001 * 0.015 *
3rd Direct transfer <0.001 * <0.001 *
2nd Repurposed transfer 0.109 0.164
3rd Repurposed transfer 0.710 0.732

2nd + 3rd Voting <0.001 * <0.001 *
1st + 2nd + 3rd Stacking 0.021 * 0.046 *
1st + 2nd + 3rd Federated <0.001 * <0.001 *

2nd

1st + 2nd + 3rd Centralized 0.623 0.569
1st Direct transfer <0.001 * <0.001 *
3rd Direct transfer <0.001 * <0.001 *
1st Repurposed transfer 0.106 0.120
3rd Repurposed transfer 0.623 0.087

1st + 3rd Voting <0.001 * <0.001 *
1st + 2nd + 3rd Stacking 0.035 * 0065 *
1st + 2nd + 3rd Federated <0.001 * <0.001 *

3rd

1st + 2nd + 3rd Centralized <0.001 * <0.001 *
1st Direct transfer <0.001 * <0.001 *
2nd Direct transfer <0.001 * <0.001 *
1st Repurposed transfer 0.253 0.307
2nd Repurposed transfer 0.317 0.368

1st + 2nd Voting <0.001 * <0.001 *
1st + 2nd + 3rd Stacking 0.101 0.136
1st + 2nd + 3rd Federated <0.001 * <0.001 *

* Significant differences.

As Table 2 shows, the p-values of the two tests (Z-test and T-test) confirmed the
same results. The only approaches that produced significant differences in the three target
dataset cases were direct transfer, soft voting, and federated learning. These approaches
produced the lowest performance in AUC, and these differences with the baseline model
were statistically significant indicating a real drop in performance.

With the other approaches, we identified no significant differences when using the
centralized approach compared to the individual model in the first and second entities
(p > 0.05), demonstrating that merging data from numerous entities does not decrease
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performance in most cases, regardless of differences in data size. But when the target
dataset was the smallest (third dataset), there were significant differences.

Looking at the stacking strategy, Table 2 shows that there were significant differences
when comparing with the individual model with the first and second datasets as targets. In
that case, stacking outperformed the baseline. But when the target dataset was the smallest
(third dataset), there were no significant differences. In this case, the stacking approach
produced a very similar performance with no significant differences.

Finally, repurposed transfer did not produce substantial differences in any of the
cases, indicating that its performance was almost indistinguishable from the local models,
even when the entities worked with different size datasets. Thus, it produced a very good
performance in AUC on the three datasets or entities without any significant differences
from the baseline models.

5. Discussion

Our experiments in this case study indicate that the different machine learning ap-
proaches produced subtle differences in performance with respect to the baseline local
models. Additionally, each method had its own set of advantages and disadvantages.
Therefore, entities or institutions must decide carefully in order to achieve a certain degree
of improvement, or if they are interested in reducing effort and resources.

Overall, our findings underscore the effectiveness of the repurposed transfer and
ensemble stacking approaches in terms of performance. These approaches showed high
promise and consistently outperformed our baseline. The stacking technique especially
stood out, significantly improving on the performance of individual models in almost
all cases. However, we note that this technique did not clearly improve performance
when working with a small dataset as the target, suggesting that its application may
depend on the size and/or context of the available data. The repurposed model also
provided notable results in all tests, outperforming the benchmark model in most cases.
However, its performance may decrease on smaller datasets, which could be due to a
lack of sufficient data for the pretrained model to adequately fit local features. These two
approaches, stacking and repurposed, improved the results of the individual models, but it
is important to bear in mind that these methods include extra resources, as they require the
implementation of additional models or extra training for the transfer process.

On the other hand, while the centralized approach generally produced good results, it
did not always outperform the individual model, for instance when applied to a smaller
dataset as the target. This may be because the diversity and complexity of the data in larger
datasets may exceed the generalization capabilities of the centralized model. It exhibited
improved performance when used on the medium-size dataset but faced challenges when
applied to smaller-size datasets, where differences between entities may have influenced
its ability to generalize.

The least positive results were from the direct transfer approach, which was expected,
as the entities were different. However, it is interesting to note that direct transfer performed
remarkably well when transferring data from the largest dataset to the second dataset,
suggesting that direct transfer can be effective in certain cases.

As for the voting approach, while it did not perform universally well, it did perform
relatively well when applied to medium- or small-size datasets as the targets. This may be
because the differences between individual models were less noticeable, and the weighted
aggregation of models may have improved the robustness of the final result.

Although federated learning demonstrated a low level of performance, it is a viable
option, especially in contexts where the privacy of student data must be preserved. Its
ability to outperform direct transfer in terms of performance reinforces its importance,
although its performance was found to be more stable on small- and medium-sized datasets.

Our results confirm the previously obtained results in different related works that
have compared different machine learning approaches. In some studies [18,21,27], the per-
formance of direct transfer learning models against individual models has been exploited.
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These studies reveal that direct transfer methods retain most of their predictive power when
contexts are similar, but they do not match the performance of individual models. Some
works [17,20] compared individual, direct, and centralized approaches, showing that a
centralized approach obtained better results than the direct transfer, but individual models
were the best ones. Individual, direct transfer, soft voting, and stacking ensemble transfer
were examined in [16], where similar results to individual models were obtained with
soft voting and stacking, with a particular mention for the stacking method, which often
exhibited improvements. In [15], individual, direct transfer, and repurposed transfer were
compared. The results showed that repurposed transfer learning that retrained a previously
created model with another dataset provided the best results and a significant accuracy
improvement. Finally, other studies compare the innovative federated learning approach
versus the individual and centralized, as seen in [14,25], concluding that individual models
tend to achieve high accuracy, while centralized learning may have more dispersion, and
federated learning even more.

Our research consolidates and extends the discussions present in the literature. How-
ever, our review is the only one that compares together all these approaches (individual
learning, direct transfer learning, repurposed transfer learning, soft-voting and stacking en-
semble transfer learning, and federated learning) using different sizes of datasets, providing
a specific guide according to data availability. In summary, direct transfer and soft-voting
zero-shot approaches are suggested when an institution do not have data. When an insti-
tution begins to obtain data and has small-size datasets, they can use pretrained models,
such as repurposed transfer learning, obtaining very good performance. If an institution
has larger quantities of data, maintaining and training an individual model is the primary
option, as well as considering the stacking approach to improve collaborations between
institutions and predictive capability.

Finally, we provide some general key findings derived from our experimentation:

• When there are privacy concerns, the most immediately appealing alternative to
individual models seems to be federated learning. However, this approach never
improves on the baseline. There are some transfer approaches (such as stacking or
repurposed transfer learning) that can be used in those cases since they improve on
the baseline and do not have to share data.

• In terms of performance, it seems better to train models on the source context and
continue with the training process on the target (repurposed) than to merge all data
together in a centralized approach.

• When the resources needed for each approach are important, one positive aspect of
centralized and federated learning is that only one model is trained and maintained.
However, other approaches—not based on external centralized servers, such as stack-
ing or repurposed transfer learning—need to deal with a large number of models,
since the source models need to be created and more importantly, infrastructure and
resources are needed for training and managing the models in the target contexts,
which may lead to high resource consumption there.

6. Conclusions and Future Work

The prediction of student dropout is considered one of the main tasks in the field of
educational data mining (EDM) and learning analytics (LA). This study investigated how
different machine learning approaches could address this problem when the data came
from three different and different-size online educational entities by using homogeneous
student activity data. Our main conclusion following the study is that in general, there are
few differences in performance (AUC and ∆AUC), and some machine learning approaches
perform better than others in all cases even though the target entity changes in size. Below,
we summarize these differences, together with the advantages and disadvantages of each
approach and some specific key findings from our experiments:

• The individual models fit the data well at each entity. However, this requires training
as many individual models as there are entities. Collecting data takes time and
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resources to maintain so many models. We found that these models tended to have
better performance on smaller datasets, and performance may drop when entities
have larger datasets.

• Centralized models can build robust, generalizable models by combining data from
multiple educational entities. However, in the process of data aggregation, it is critical
to address privacy concerns and biases. In addition, the size of the data can influence
the effectiveness of this approach: when applied to a larger dataset as a target, it often
yields better results, while when applied to smaller or more specific datasets it can
lead to decreased performance. It is a good option when data from different entities
can be combined, so that these entities do not have to work to create and maintain
predictive models.

• Direct transfer has been shown to be feasible and useful in situations where the
previously trained model is accurate and adequately matches the particularities of the
target data. Direct transfer approaches may be influenced by the sizes of the source
and target datasets, and in cases where the datasets are more similar, it seems to
produce good results and minimize the duplication of effort between entities.

• Repurposed transfer learning produced the best results for different sizes of entity
datasets. This approach improves performance by being specialized on the target
dataset without the need to have a large quantity of data. Nevertheless, the entity
must have the resources to maintain this model.

• Soft-voting models achieved good performance on medium- and small-sized entities,
while there were greater performance differences with the largest dataset. It would
be a good option when there are similarities in data sizes and context, and when
entities are looking to improve performance by sharing models rather than sharing all
their data.

• The stacked transfer technique produced robust, consistent results in all our exper-
iments. It outperformed the individual models, demonstrating its effectiveness in
improving model generalizability and adaptability, allowing us to learn and benefit
from the strengths of each individual model. This approach improves performance
when entities can collaborate effectively by combining predictions from their individ-
ual models.

• Federated learning addresses privacy and security issues without sharing critical data.
Although there may be a slight decrease in performance, this approach stands out for
its resilience and potential in environments where privacy is a priority. Similar to other
approaches, the performance of federated learning can also be influenced by data size.
It typically performs well with small- to medium-sized datasets while maintaining
data privacy but may face challenges with large datasets due to communication and
resource constraints.

The results obtained in our research can be generalized to other educational contexts.
Our study is based on course data from three institutions managed by the same online
course provider, so they are expected to have a high similarity among them. In this
regard, our data were based on features about the interaction of the students with the
LMS (learning management systems), which makes it easier for any institution to obtain
similar features from any online educational environment such as Moodle, Canvas, Google
Classroom or MOOCs (massive open online courses). This is a positive aspect in terms
of generalizability. That is, the results obtained in our research can be extrapolated to
educational contexts similar to the one presented in our paper, in terms of data used and
educational environment.

With respect to the practical implications of the findings for educational institutions,
our study constitutes a useful preliminary guide for selecting the most appropriate machine
learning approaches from the point of view of a target institution and taking into account
the size of its dataset:

• If the institution does not have their own data (labeled) to train and maintain a model,
in this case, they should use zero-shot techniques such as direct transfer or voting,
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although both obtain worse prediction results than an individual model. In the case
where a partner institution has a similar context, we would choose direct transfer or
combine the capabilities of different models using the soft-voting approach.

• If the institution has collected a few data (small-size dataset), individual models would
not be the best option because they may not optimally converge. The best option is
to use pretrained models from other institutions as a starting point and adapt them
to the institution’s local data. Among the most promising options are repurposed
transfer and stacking transfer. We also mention the federated learning approaches
which, although they obtained worse results, show a promising result to be studied
in the future. We also note that the use of a centralized model can generate a greater
dispersion and be biased by data from larger institutions.

• If the institution has a great quantity of data (medium- and large-size dataset), the
main recommendation is to maintain and train an individual model, since approaches
such as centralized and repurposed approaches do not offer significant advantages
in terms of performance. However, as a strategic alternative, a stacked ensemble is
highlighted as demonstrating superior performance and can be considered especially
useful when institutions look for collaborations with others, even when the individual
model is already efficient.

Finally, several future lines of research are envisaged that can deepen and expand our
case study for predicting student dropout using multiple datasets or entities:

• Dropout timestamp: In our research, we did not consider the specific timestamp at
which the dropout occurred. In particular, in our datasets, the students could start
and finish courses at any time, so it was hard to identify the exact dropout time, as it
was not a feature provided to us. In fact, the online course provider manually labeled
dropouts after dropout, once the student was contacted to confirm dropping out. As a
future line of research, it would be interesting to identify that moment (preferably by
the use of any automatic method), as long as the dataset can provide it. The use of that
new indicator could be of great power to analyze aspects such as the connection of
dropouts with the difficulty weight of the modules in the courses, to identify dropouts
as early as possible, to identify the topics inside a course that have more influence on
dropouts, or to detect similar dropout behaviors among students. All of them would
represent pieces of knowledge of great value that could be used to design interventions
to effectively prevent dropout.

• Model scalability and efficiency: As data volumes continue to rise, model scalability
and efficiency become increasingly important. Future research efforts could involve
extensive experiments with more entities of different sizes and domains, for example,
different education levels, not only higher education. This may help produce deeper
insights into how dataset size and the specific domain impact the performance of
predicting student dropout models. In our research, we employed data based on the
activity levels of the student in the LMS Moodle system. As a future line of research,
it would be interesting to study the performance of our approaches in other LMS
systems, since some studies have shown that student dropout and performance may
also depend on the LMS system used [30], and it could be a new variable to increase
the knowledge of our models

• Exploration of heterogeneous and multimodal data: Although this study focused
on homogeneous data, future research could consider including heterogeneous data,
where entities or datasets have different rather than identical attributes. An exploration
of heterogeneous data could provide a broader, more accurate view of student behavior
and characteristics. In this study, we used only attributes related to students’ activities.
The inclusion of multimodal attributes, encompassing text, video, and audio, obtained
from sources such as forum postings and recordings, has the potential to enrich the
predictive modeling process by capturing a broader range of student interactions and
experiences.



Algorithms 2023, 16, 554 20 of 21

Author Contributions: Conceptualization, S.V. and C.R.; data curation, J.M.P.; formal analysis, J.A.L.;
funding acquisition, S.V.; methodology, S.V. and C.R.; project administration, S.V. and C.R.; software,
J.M.P.; supervision, S.V.; validation, S.V. and C.R. visualization, J.M.P. and J.A.L.; writing—original
draft, J.M.P., J.A.L., S.V. and C.R.; writing—review and editing, J.M.P., J.A.L., S.V. and C.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Project CTA-22/1085 entitled Learning Analytics for Improv-
ing the Quality of Teaching in Educational Settings, by the Project PID2020-115832GB-I00 project of
Spanish Ministry of Science and Innovation and the European Regional Development Fund, and the
ProyExcel-0069 project of the Andalusian University.

Data Availability Statement: The data are not publicly available due to the regulations of the private
company who provided the online courses.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Keshavamurthy, U.; Guruprasad, H.S. Learning analytics: A survey. Int. J. Comput. Trends Technol. 2015, 18, 6. [CrossRef]
2. Romero, C.; Ventura, S. Educational data mining and learning analytics: An updated survey. WIREs Data Min. Knowl. Discov.

2020, 10, e1355. [CrossRef]
3. Smith, B.G. E-learning Technologies: A Comparative Study of Adult Learners Enrolled on Blended and Online Campuses

Engaging in a Virtual Classroom. Ph.D. Thesis, Capella University, Minneapolis, MN, USA, 2010.
4. Dalipi, F.; Imran, A.S.; Kastrati, Z. MOOC dropout prediction using machine learning techniques: Review and research challenges.

In Proceedings of the IEEE Global Engineering Education Conference (EDUCON’18), Santa Cruz de Tenerife, Spain, 17–20 April
2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1007–1014. [CrossRef]

5. Prenkaj, B.; Velardi, P.; Stilo, G.; Distante, D.; Faralli, S. A survey of machine learning approaches for student dropout prediction
in online courses. ACM Comput. Surv. 2020, 53, 1–34. [CrossRef]

6. Solomon, D. Predicting performance and potential difficulties of university students using classification: Survey paper. Int. J.
Pure Appl. Math. 2018, 118, 2703–2707.

7. Márquez-Vera, C.; Cano, A.; Romero, C.; Noaman, A.Y.M.; Fardoun, H.M.; Ventura, S. Early dropout prediction using data
mining: A case study with high school students. Expert Syst. 2016, 33, 107–124. [CrossRef]

8. Donoso-Díaz, S.; Iturrieta, T.N.; Traverso, G.D. Sistemas de Alerta Temprana para estudiantes en riesgo de abandono de la
Educación Superior. Ens. Avaliação Políticas Públicas Em Educ. 2018, 26, 944–967. [CrossRef]

9. Shafiq, D.A.; Marjani, M.; Habeeb, R.A.A.; Asirvatham, D. Student Retention Using Educational Data Mining and Predictive
Analytics: A Systematic Literature Review. IEEE Access 2022, 10, 72480–72503. [CrossRef]

10. Xing, W.; Du, D. Dropout prediction in MOOCs: Using deep learning for personalized intervention. J. Educ. Comput. Res. 2019,
57, 547–570. [CrossRef]

11. Miao, Q.; Lin, H.; Hu, J.; Wang, X. An intelligent and privacy-enhanced data sharing strategy for blockchain-empowered Internet
of Things. Digit. Commun. Netw. 2022, 8, 636–643. [CrossRef]

12. Gardner, J.; Yang, Y.; Baker, R.S.; Brooks, C. Modeling and Experimental Design for MOOC Dropout Prediction: A Replication
Perspective. In Proceedings of the 12th International Conference on Educational Data Mining (EDM 2019), Montréal, QC, Canada,
2–5 July 2019.

13. Fauzi, M.A.; Yang, B.; Blobel, B. Comparative Analysis between Individual, Centralized, and Federated Learning for Smartwatch
Based Stress Detection. J. Pers. Med. 2022, 12, 1584. [CrossRef]

14. Fachola, C.; Tornaría, A.; Bermolen, P.; Capdehourat, G.; Etcheverry, L.; Fariello, M.I. Federated Learning for Data Analytics in
Education. Data 2023, 8, 43. [CrossRef]

15. Tsiakmaki, M.; Kostopoulos, G.; Kotsiantis, S.; Ragos, O. Transfer Learning from Deep Neural Networks for Predicting Student
Performance. Appl. Sci. 2020, 10, 2145. [CrossRef]

16. Gardner, J.; Yu, R.; Nguyen, Q.; Brooks, C.; Kizilcec, R. Cross-Institutional Transfer Learning for Educational Models: Implications
for Model Performance, Fairness, and Equity. In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and
Transparency, Chicago, IL, USA, 12–15 June 2023. [CrossRef]

17. Vitiello, M.; Walk, S.; Chang, V.; Hernandez, R.; Helic, D.; Guetl, C. Mooc Dropouts: A Multi-System Classifier; Springer International
Publishing: Berlin/Heidelberg, Germany, 2017; pp. 300–314. [CrossRef]

18. Jayaprakash, S.M.; Moody, E.W.; Lauría, E.J.M.; Regan, J.R.; Baron, J.D. Early alert of academically at-risk students: An open
source analytics initiative. J. Learn. Anal. 2014, 1, 6–47. [CrossRef]

19. Li, X.; Song, D.; Han, M.; Zhang, Y.; Kizilcec, R.F. On the limits of algorithmic prediction across the globe. arXiv 2021,
arXiv:2103.15212.

20. Ocumpaugh, J.; Baker, R.; Gowda, S.; Heffernan, N.; Heffernan, C. Population validity for educational data mining models: A
case study in affect detection. Br. J. Educ. Technol. 2014, 45, 487–501. [CrossRef]

https://doi.org/10.14445/22312803/ijctt-v18p155
https://doi.org/10.1002/widm.1355
https://doi.org/10.1109/EDUCON.2018.8363340
https://doi.org/10.1145/3388792
https://doi.org/10.1111/exsy.12135
https://doi.org/10.1590/s0104-40362018002601494
https://doi.org/10.1109/ACCESS.2022.3188767
https://doi.org/10.1177/0735633118757015
https://doi.org/10.1016/j.dcan.2021.12.007
https://doi.org/10.3390/jpm12101584
https://doi.org/10.3390/data8020043
https://doi.org/10.3390/app10062145
https://doi.org/10.1145/3593013.3594107
https://doi.org/10.1007/978-3-319-66610-5_22
https://doi.org/10.18608/jla.2014.11.3
https://doi.org/10.1111/bjet.12156


Algorithms 2023, 16, 554 21 of 21

21. López-Zambrano, J.; Lara, J.A.; Romero, C. Towards portability of models for predicting students’ final performance in university
courses starting from moodle Logs. Appl. Sci. 2020, 10, 354. [CrossRef]

22. Smietanka, M.; Pithadia, H.; Treleaven, P. Federated learning for privacy-preserving data access. Int. J. Data Sci. Big Data Anal.
2021, 1, 1. [CrossRef]

23. McMahan, H.B.; Moore, E.; Ramage, D.; Agüera y Arcas, B. Federated Learning of Deep Networks Using Model Averaging. arXiv
2016, arXiv:1602.05629.

24. Peng, S.; Yang, Y.; Mao, M.; Park, D. Centralized Machine Learning Versus Federated Averaging: A Comparison using the MNIST
Dataset. KSII Trans. Internet Inf. Syst. 2022, 16, 742–756. [CrossRef]

25. Guo, S.; Zeng, D.; Dong, S. Pedagogical Data Analysis via Federated Learning toward Education 4.0. Am. J. Educ. Inf. Technol.
2020, 4, 56–65.

26. He, J.; Bailey, J.; Rubinstein, B.; Zhang, R. Identifying at-risk students in massive open online courses. In Proceedings of the AAAI
Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; Volume 29. [CrossRef]

27. Whitehill, J.; Mohan, K.; Seaton, D.; Rosen, Y.; Tingley, D. Delving deeper into MOOC student dropout prediction. arXiv 2017,
arXiv:1702.06404.

28. Porras, J.M.; Porras, A.; Fernández, J.; Romero, C.; Ventura, S. Selecting the Best Approach for Predicting Student Dropout in Full
Online Private Higher Education; LASI: Singapore, 2023.

29. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
30. Kanetaki, Z.; Stergiou, C.; Bekas, G.; Troussas, C.; Sgouropoulou, C. The impact of different learning approaches based on MS

Teams and Moodle on students’ performance in an on-line mechanical CAD module. Glob. J. Eng. Educ. 2021, 23, 185–190.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app10010354
https://doi.org/10.51483/IJDSBDA.1.2.2021.1-13
https://doi.org/10.3837/tiis.2022.02.020
https://doi.org/10.1609/aaai.v29i1.9471
https://doi.org/10.1109/78.650093

	Introduction 
	Machine Learning Approaches 
	Individual Models 
	Centralized Model 
	Transfer Learning 
	Direct Transfer 
	Repurposed Transfer 
	Soft-Voting Transfer 
	Stacking Transfer 

	Federated Learning 

	Materials and Methods 
	Data 
	Prediction Model 

	Results 
	Discussion 
	Conclusions and Future Work 
	References

