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Abstract: Using a high-throughput neuroanatomical screen of histological brain sections developed
in collaboration with the International Mouse Phenotyping Consortium, we previously reported a list
of 198 genes whose inactivation leads to neuroanatomical phenotypes. To achieve this milestone, tens
of thousands of hours of manual image segmentation were necessary. The present work involved
developing a full pipeline to automate the application of deep learning methods for the automated
segmentation of 24 anatomical regions used in the aforementioned screen. The dataset includes
2000 annotated parasagittal slides (24,000 × 14,000 pixels). Our approach consists of three main parts:
the conversion of images (.ROI to .PNG), the training of the deep learning approach on the compressed
images (512 × 256 and 2048 × 1024 pixels of the deep learning approach) to extract the regions of
interest using either the U-Net or Attention U-Net architectures, and finally the transformation of
the identified regions (.PNG to .ROI), enabling visualization and editing within the Fiji/ImageJ 1.54
software environment. With an image resolution of 2048 × 1024, the Attention U-Net provided the
best results with an overall Dice Similarity Coefficient (DSC) of 0.90 ± 0.01 for all 24 regions. Using
one command line, the end-user is now able to pre-analyze images automatically, then runs the
existing analytical pipeline made of ImageJ macros to validate the automatically generated regions of
interest resulting. Even for regions with low DSC, expert neuroanatomists rarely correct the results.
We estimate a time savings of 6 to 10 times.

Keywords: anatomical phenotype; mouse brain; high resolution images; histological images;
segmentation

1. Introduction

A major goal of neuroscience is to understand the complex functions of the brain.
One approach is to study brain anatomy. Anatomical phenotypes involve observable and
measurable structural traits influenced by both genetics and the environment. These traits
include macroscopic characteristics like brain region size and shape, as well as microscopic
features such as neuron organization and connectivity. The integration of anatomy and
function enhances our understanding of how the brain develops.

The study of neuroanatomical phenotypes offers valuable insights into how variations
in brain structure relate to differences in development, function and behavior. This is
particularly suited in animal models where the brain can be easily accessed. Furthermore,
the mouse model provides powerful tools to establish connections between phenotypes and
genotypes, especially since the environment can be controlled and manipulating the mouse
genome is relatively straightforward. This enables researchers to study pathogenicity
at the molecular, cellular, physiological, and behavioral levels [1]. Historically, to tap
into the potential of mouse models, global scientific communities recognized the need
for a cohesive effort to explore gene function on a vast scale. The International Mouse
Consortium was born out of this recognition [2], aiming to undertake a systematic study of
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the mouse genome. This endeavor laid the groundwork for the subsequent formation of
the International Mouse Phenotyping Consortium (IMPC) [3], which expanded upon the
initial efforts by developing large-scale phenotyping pipelines such as the DMDD program.
These pipelines facilitated an exhaustive examination of gene-phenotype relationships.

The NeuroGeMM laboratory of the University of Burgundy (France) developed a
high throughput precision histology pipeline to characterize neuroanatomical pheno-
types (NAPs) from mice generated by the IMPC. NAPs are used as endophenotypes
of neurological disorders to detect specific genes influencing brain susceptibility to de-
velopmental disorders. A first list of 198 genes affecting brain morphogenesis through
a high-throughput screen of 1500 knock out lines was published in 2019 (mouse lines
where a specific gene has been inactivated) [4]. And, more recently, the characterization
of 20 genes out of 30 autism candidate genes at the 16p11.2 locus enabled us to high-
light, for the first time, MVP as a key morphogene and candidate [5]. The evaluation of
anatomical abnormalities was typically performed on high resolution histological images
(24,000 pixels × 14,000 pixel sizes at ∼0.45 micrometer/pixel resolution), and this task was
carried out using manual annotation of the different regions of the mouse brain with
manual contouring or semi-automatic software assisted methods.

Manual segmentation of medical images involves a human expert manually delineat-
ing structures or regions of interest on the images. Experience and precision are required to
accurately delineate the boundaries of anatomical structures or lesions using computational
software (e.g., Fiji 1.54, ITKsnap 4.0.2, 3D slicer 5.6, etc.). This approach is an absolute
prerequisite for evaluating automated or semi-automated methods. It is considered as the
gold standard in cases requiring high precision and accurate delineation, such as radiation
therapy, disease diagnosis or image-guided interventions.

Semi-automatic segmentation of medical images has served as a valuable intermediate
step between manual and automatic approaches. It has allowed for user interaction and
guidance to refine segmentation results while reducing the manual effort required. How-
ever, the field is continuously advancing towards fully automatic segmentation methods.
The goal is to minimize user involvement and rely on advanced computational algorithms,
such as deep learning, for accurate and efficient segmentation of medical images.

New advances continuously enable the development of systems designed to assist in
the analysis of histological images. For instance, Groeneboom et al. developed Nutil, a pre-
and post-processing toolbox for histological rodent brain section images [6]. Nutil is notable
for its user-friendly interface and efficient handling of very large images, optimizing speed,
memory usage, and parallel processing. Despite the amount of benefits we find in this tool,
it has a lack of customization and management by the user when it comes to sectioning. Xu
et al. introduced an unsupervised method for histological image segmentation based no
tissue cluster level graph cup, particularly useful in unsupervised learning scenarios for
initial segmentation, especially in the context of cancer detection [7]. Yates et al. presented
a workflow for quantification and spatial analysis of features in histological images from
mouse brain [8]. They start with a first step of registration of the brain image series to
the Allen Mouse Brain Atlas to produce customized atlas maps adapted to match the
cutting plane and proportions of the sections with QuickNII software v1 [9]. For the
segmentation task, the labeling was segmented from the original images by the Random
Forest Algorithm for supervised classification from the ilastik software 1.4.0 [10] . Similarly,
Xu et al. worked on an automated brain region segmentation for histological images with
single cell resolution [11]. They proposed an hierarchical Markov random field (MRF)
algorithm where a MRF is applied to the down-sampled low-resolution images and the
result is used to initialize another MRF for the original high-resolution images. A fuzzy
entropy criterion is used to fine-tune the boundary from the hierarchical MRF model.

While these are examples of automated segmentation methods for histological studies
that are likely to multiply in the future, histology-based mouse brain studies were found.

Mesejo et al. [12] developed a two-step automated method for hippocampus seg-
mentation, showing an average segmentation accuracy of 92.25% and 92.11% on real and
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synthetic test sets, respectively. This method employs a unique combination of Deformable
Models and Random Forrest, providing high accuracy. However, it relies on manually
identified landmarks, which could introduce variability in results.

More recently, Barzekar et al. [13] using a U-Net-based architecture, efficiently seg-
mented two subregions on histological slides: the Substantia Reticular part (SNr) and
Substantia Nigra Compacta, dorsal tier (SNCD). achieving Dice coefficient of 86.78% and
79.28%, respectively. Their approach, which combines U-Net with EfficientNet as an en-
coder, excels in detecting specific brain regions despite limited training data. However, the
model’s dependence on the quality and diversity of annotated images could be limitation
in broader applications.

This demonstrates significant lack of model over the more than 10 years separating
the methods proposed by Mesejo et al. [12] and Barzekar et al. [13], reflecting the little
advancements in automated image analysis in the field of automated mouse histology.

Objective

The primary objective of this study is to optimize rodent brain segmentation by
evaluating the efficacy of U-Net-based architectures and devising a pipeline to significantly
reduce the time neuroanatomists spend on this task. Building upon the foundational
U-Net architecture proposed by Ronneberger et al. [14]—a gold standard in medical image
segmentation—we also integrated the advancements from Hamida et al.’s [15] weakly
supervised method, which employs Attention U-Net for colon cancer image segmentation.
The inclusion of attention blocks enables the network to dynamically prioritize crucial
image regions, thereby augmenting the precision of segmentation. Collectively, our method
offers a comprehensive approach to accurately annotate 24 specific mouse brain regions on
a parasagittal plane, encapsulating its practical implementation.

The key contributions of our work can be summarized as follows:

• Management of high resolution histological images (up to 1.5 Gb each).
• Image treatment (up/down-scaling, re-sampling, curve approximation) and conversion

(ROI to PNG formats and vice versa) for initial and final steps of the training pipeline.
• Training and test U-Net and Attention U-Net architectures with two different size of

the images as input for the segmentation task.
• Creation and deploy of a usable tool to automatically segment histological mouse

brain images for 24 regions of interest, which would be significantly faster than
human annotators.

2. Materials and Methods

The proposed automatic segmentation for the different regions of the mouse brain
was divided into three main parts: dataset preparation, deep learning model, and image
post-processing.

2.1. Dataset Preparation

The NeuroGEMM laboratory (INSERM Unit 1231, University of Burgundy, Dijon,
France) currently hosts a database of 22,353 histological scanned 2D sections (parasagittal
and coronal) of mouse brain samples manually curated and segmented. In our labora-
tory, over 75% of the brains included in the dataset were processed by two technicians
(handling sectioning and staining). Additionally, 29 students, all trained by a single se-
nior neuroanatomist, performed segmentation. This approach was designed to minimize
inter-annotator variability in the training dataset.

In brief, brains from 14 to 16-week-old wild-type or mutant mice (knock-out or knock-
in) were collected, fixed in paraformaldehyde, and embedded in paraffin. Sections of
5 µm thickness were collected using a microtome, either in three coronal (Bregma +0.98,
−1.34, −5.80 mm) or one parasagittal (Lat +0.6 mm) plane +/− 60 µm. Sections were
deparaffinized and stained with fast luxol blue revealing axons through labeling of myelin
and cresyl violet which revealed cells via staining of Nissl bodies. High-resolution scanning
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of histological slides was performed using a dedicated scanner (NanoZoomer 2.0HT,
Hamamatsu, Hamamatsu City, Japan) to obtain digitized slides with enough resolution to
visualize individual cells. Quality control was conducted to assess critical section variation,
symmetry, staining, and image quality. Brain anatomical parameters were measured using
standard operating procedures using plug-ins developed in the ImageJ/Fiji software [16].
Measurements of surface areas and distances were manually annotated and saved in
ROI format, which stores region-specific information. Figure 1 shows an example of
visualization of the landmarks stored in the cerebellum annotation. Since the overarching
goal of the data analysis is to identify morphogenes, all the analysis is performed genotype-
blind until this step to avoid bias. Data were also checked for human error and outliers
using a database and routines allowing automated outliers detection using the interquartile
boundaries (1.2*IQR). Outliers due to plane asymmetries (asymmetrical sectioning relative
to specific coordinates) or non-critical sectioning (plane selected before or after the critical
plane) were removed. Extremes with no obvious reason were left as they may result from
genetic mutations. A genotype “deblind” is then carried out to group brain samples based
on genotype and identify novel morphogenes affecting brain structure [4]. Hence, the final
dataset consists of images from normal and abnormal brains.

Figure 1. Landmarks, manually taken, for the Cerebellum (TC).

In this segmentation project, we worked with a parasagittal plane that is currently the
main section used by the laboratory and the 24 regions of interest presented in Figure 2
and listed in Table 1.

Figure 2. Regions of interest taken by human user within the mouse brain in parasagittal view at
Lateral +0.60 mm.



Algorithms 2023, 16, 553 5 of 16

Table 1. Neuroanatomical features. To train the deep learning model for images in group 1, the entire
image was used as input. Meanwhile, for images in group 2, the total brain region was used as input.

GROUP 1 GROUP 2

Name Tag Name Tag Name Tag

Inferior Colliculus InfC anterior commisure aca Hippocampus HP
Superior Colliculus SupC corpus callosum cc Lateral Ventricle LV
Intra Granular Layer IGL Cingulate cortex Cg optic chiasm och
Total Cerebellum TC Caudate Putamen CPu stria medularis sm
Substancia Nigra SN Dentate Gyrus DG Total Cortical area TCTX
Pontine nucleus Pn Dorsal Subiculum DS pyramidal cell layer TILpy
fibers of the pons fp fornix f Thalamus TTH
Total Brain TB fimbria fi Ventro Median Hypothalamus VMHvl

The first step was the preparation of the dataset that was used to train several deep
learning models. Due to the large size of the image files, a minimum workable resolution
was evaluated as a trade-off between calculation time for training and annotation accuracy.

2.1.1. Landmarks to Binary Masks

The database was cross-checked for existence of both images and ROI files. With an ini-
tial amount of more than 2000 images in sagittal view, images and landmarks defined by the
ROI file were then checked if they overlapped properly and matched in size. Regions were
binarized, and their size reduced from high resolution (e.g., 24,000 pixels × 14,000 pixels)
to 512 × 256 and 2048 × 1024 in order to fit scaled images using a bilinear interpolation
algorithm at identical resolution.

2.1.2. Brain Division

Brain regions of interest were then divided into two groups. The first group consisted
of regions where the entire image were used as input to train the model. Meanwhile, for
the second group, the total brain area (TB) was used as the working boundary area and
only the regions within this area were localized. The division of all the neuroanatomical
features is shown in Table 1.

2.2. Deep Learning Models

Several deep learning models were tested. Initially, we chose to work and test these
models at low resolution (512 × 256) to verify their ability to capture important features in
the mouse brain.

The first tested model, U-Net, proposed by Ronneberger et al. [14], was used as a
starting point to segment brain regions, since this architecture is considered as the method
of reference in medical image segmentation. We chose to work with a depth of 5 levels and
with feature maps in the encoder of 3, 16, 32, 64 and 128; and 256, 128, 64, 32 and 16 for the
decoder, being the initial configuration of the architecture.

Each experiment was trained for 100 epochs with a minibatch size of 32 images. An
Adam optimization was performed and weights were saved for the epoch that produced
the last train iteration. A starting learning rate was fixed at 0.01 with a scheduler function
that reduces the learning rate by a factor of 10 after 15 consecutive epochs. An early
stopping function was implemented to make the model training process time efficient. The
model was trained with the Pytorch framework using a NVIDIA A100 GPU.

Two different loss functions were tested, binary cross entropy with logits loss (BCE)
and Dice loss. The Dice loss function was chosen because it offers better performance in
the chosen evaluation metric (Dice Score Coefficient, DSC). Moreover, at the end of this
round, using low definition images, it was concluded that the U-Net architecture was not
able to acquire enough information to adequately delimit the regions of interest. Indeed, it
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was necessary to apply extensive post-processing of the images to improve segmentation.
This model was thus discarded from the next round of testing which used low (521 × 256)
and medium (2048 × 1024) resolutions.

The second tested model is based on the work of Hamida et al. [15], who proposed a
weakly supervised method using Attention U-Net for colon cancer image segmentation.
The addition of attention blocks dynamically weighs the importance of different image
regions during the segmentation process. This enables the network to focus on relevant
features and enhances the accuracy of the segmentation results. Initially, the same depth
and features map as the previous architecture were maintained. Figure 3 presents a visual
comparison between both architectures. Given the promising segmentation results, we
decided to use an encoder/decoder feature maps consisting of 3, 64, 128, 256 and 512; and
1024, 512, 256, 128 and 64, respectively.

Figure 3. Comparison between U-Net (top) vs. Attention U-Net (bottom) architectures for training
corpus callosum segmentation as an example. Inputs are high-resolution images and outputs are
24 regions of interest (ROIs) generated by the deep learning model.

However, increasing the number of levels from 5 to 7 (encoder, 3, 64, 126, 256, 512,
1024, 2048 and decoder, 4096, 2048, 1024, 512, 256, 128, 64) gave better segmentation results
while increasing the image resolution to 2048 × 1024.

In order to train and test the models, the database of all masks and images was divided
into 3 groups. We used 70%, 15% and 15% for training, validation and testing, respectively.
Once the training was finished, performances of the models were tested in the different
regions and for the different resolutions previously established.
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2.3. Refinement and Landmarks

After training the deep learning models for the two considered resolutions, resulting
segmentations needed to be scaled back to the original size of the images. A bicubic
interpolation algorithm was used but irregularities remained in the fine definition of
the contour.

The Douglas–Peucker algorithm [17] was used to solve this problem. By iteratively
calculating distances and selecting the point with the maximum distance from a line seg-
ment, the algorithm removes redundant points and simplifies the contour while retaining
its essential characteristics. For example, Bimanjaya et al. used the same approach of refine-
ment for the extraction of road network in urban area [18]. Several tests were performed to
achieve a balance between the number of points delivered by the polygon contour from the
binary mask, and the required accuracy in annotating the contour of the region of interest.

The final result consists of a set of landmarks grouped into a region of interest as an
.ROI file usable by ImageJ for each of the 24 regions of interest. The number of landmarks
can be different according to the size and the shape of the area.

2.4. Evaluation Metrics

• The Dice coefficient, or Dice similarity coefficient [19], is a metric commonly used to
evaluate the accuracy of segmentation results (Equation (1)). It measures the overlap
between the predicted segmentation and the ground truth by calculating the ratio of
twice the intersection of the two regions to the sum of their sizes.

Dice coefficient =
2 ∗ Intersection

Prediction + GroundTruth
(1)

• The False Positive Rate (FPR) [20] is a metric that measures the proportion of incorrect
positive predictions made by the model (Equation (2)). A lower False Positive Rate
indicates better performance, as it indicates a lower rate of false alarms or incorrect
positive predictions.

FPR =
FP

FP + TN
(2)

where FP = False Positive, TN = True Negative.
• The False Negative Rate (FNR). Ref. [20] measures the proportion of missed positive

predictions by the model (Equation (3)). A lower False Negative Rate is desired as it
signifies a lower rate of missed detections or incorrectly classified negatives, indicating
better sensitivity and accuracy in capturing the target structure or region.

FNR =
FN

FN + TP
(3)

where TP = True Positive, FN = False Negative.
Both FPR and FNR will be used to evaluate the response of the models at pixel level.

• The Hausdorff Distance (HD) [21] measures the dissimilarity between two sets of
points or contours (Equation (4)). It quantifies the maximum distance between any
point in one set to the closest point in the other set.

HD(A, B) = max(max(d(a, B)), max(d(b, A))) (4)

where:
d(a, B) represents the minimum distance between a point a in set A and the closest
point in set B.
d(b, A) represents the minimum distance between a point b in set B and the closest
point in set A.
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2.5. Implementation

The proposed method was integrated into existing analytical pipelines to allow neu-
roanatomists to continue annotating regions of interest in the mouse brain albeit more
efficiently. Using a command line, the end user is now able to pre-analyze the images
automatically and then run the existing analytical pipeline made of ImageJ macros to
validate or edit the deep-learning generated regions of interest. For the end user, this results
in faster (6 to 10X) image annotation times. Figure 4 shows the final pipeline of the model.

Figure 4. Overall pipeline of the proposed method. Top: Input (high-resolution images) and Output
(24 regions of interest, ROIs) used or generated by the deep learning model. The process of automated
segmentation is delineated into several steps: downscaling of images, pretraining based on the specific
group to which each ROI belongs, upscaling of the mask, and conversion of the mask to landmarks.

In Figure 5, an example of standard workflow for all the regions within the mouse
brain is shown. As inputs we have, on the one hand, the masks of each of the regions of
interest (up to 24 per brain), and on the other hand, about 2000 histological images of the
mouse brain associated with these masks. Of the total number of target images, 85% are
used for training and validation tasks. The remaining 15% were destined for testing. The
regions of interest are converted to a format that can be used in the deep learning model
(ROI format to PNG format) and then reduced in size to the size set for the study. In the
same way, the size of the histological images is reduced. Afterwards, with both images
reduced in size, we proceed to train the deep learning model (in this case, an Attention
U-Net architecture). Once the model has been trained, the predicted masks are then stored
and evaluated with the aforementioned evaluation metrics.

Once the network is correctly trained and with favorable responses for the segmenta-
tion of the regions of the mouse brain, we proceed to the implementation of the system that
will be put into operation in the NeuroGeMM laboratory. Figure 4 shows the final pipeline
implemented to segment 24 region of interest within the mouse brain. This system accepts
high-definition histological images as input and delivers up to 24 regions of interest found
in the input image as output. This process is performed by the automatic segmentation of
the regions thanks to the previous trained network. The main constituent parts to fulfill
this purpose are: size reduction, region prediction, size increase, and finally the selection of
points of interest for storage in ROI format.
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Figure 5. Workflow proposed to evaluate the accuracy of the training of a specific network. This
example is for Attention U-Net in medium resolution 2048 × 1024.

3. Results
3.1. Data Preparation

Database checks identified a small number of mislabeled regions of interest but the vast
majority of missing ROIs were down to asymmetries, histological artifacts or non critical
sectioning. Figure 6 shows the number of mask images per area of interest. Based on the
binary masks created for all the regions, it was found that several regions overlapped due
to the sub-accuracy of the manual segmentation. Thus, it was proposed to create individual
segmentation models for each the region of interest instead of a multi-class approach.

Figure 6. Number of mask images per area of interest.

3.2. Deep Learning

Training results with the U-Net architecture are presented for three different regions
of the mouse brain in Figure 7. The input images have a size of 512 pixels by 256 pixels.
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Figure 7. Left to right: prediction of the regions from U-Net architecture and ground truth masks for
(top) corpus callosum, (middle) fimbria, (bottom) pyramidal cell layer TILpy. Yellow arrows show
the areas where there is the greatest difference with respect to ground truth.

Morphological operations such as dilation and erosion were applied to fill in incom-
plete areas and in some cases to eliminate erroneously segmented pixels. Figure 8 presents
the results of post-processing for corpus callosum segmentation with the same U-Net
architecture.

The evaluation metrics obtained following these morphological operations decrease
and needed to be tailored to each image. And anyways, the poor performance of the
U-Net is evident. The switch to an Attention U-Net, where gates focus the training
on the regions of interest [15]m yielded better results even with low resolution images
(512 × 256 pixels) and an architecture depth of five levels. With a higher input resolution
images of 2048 × 1024 pixel and an architecture depth of seven levels, the best results were
obtained (see Figure 9), even without post-processing.
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Figure 8. Results before and after applying morphological operations (as post-processing) for the
segmentation of the corpus callosum using U-Net.

Figure 9. Left to right: predictions for (top) total brain area TB and (bottom) inferior colliculus InfC
with a 7 levels Attention U-Net.
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In Figure 10, the output evaluations metrics for the training with Attention U-Net for
TB and InfC is shown.

Results for the Attention U-Net with seven levels and 2048 × 1024 image resolution
are presented in Table 2. Highest DSC (Equation (1)) were obtained for the TB (total brain)
with 99.14% whilst worst performance was obtained for the fp (fibers of the pons) with
(70.47%). This model reaches an overall DSC of 0.90 ± 0.01.

Figure 10. Results for TB (left) and InfC (right) while training with the images with resolution of
2048 × 1028 and with a 7-level Attention U-Net.

Table 2. Results after image post-processing with an Attention U-Net with 7 levels and 2048 × 1024
resolution images. Evaluation metrics: DSC, Dice score coefficient; FPN, False Positive rate; FNR,
False Negative rate; HD, Hausdorff distance; all of them with their standard deviation (STD). The
best values are highlighted in bold and the worst values are emphasized in bold italics.

TAG DSC FPR FNR HD µm

aca 0.9660 ± 0.0394 0.0001 ± 0.0001 0.0276 ± 0.0573 5.2889 ± 11.0271
cc 0.9365 ± 0.0347 0.0012 ± 0.0007 0.0421 ± 0.0463 15.1756 ± 14.8965
f 0.8828 ± 0.0957 0.0001 ± 0.0002 0.0822 ± 0.1161 12.686 ± 40.1613
fi 0.9179 ± 0.081 0.0004 ± 0.0004 0.0798 ± 0.1035 27.9981 ± 28.0597
fp 0.7047 ± 0.1758 0.0013 ± 0.0015 0.2383 ± 0.2184 66.8368 ± 52.7969
och 0.9214 ± 0.0801 0.0001 ± 0.0002 0.0613 ± 0.1021 12.8222 ± 22.2288
sm 0.8775 ± 0.0927 0.0003 ± 0.0004 0.0997 ± 0.1256 31.4965 ± 52.4748
TB 0.9914 ± 0.0062 0.0079 ± 0.0085 0.0078 ± 0.008 42.9213 ± 42.1242
TCTX 0.978 ± 0.028 0.0010 ± 0.0008 0.0205 ± 0.0387 20.3151 ± 28.2891
TC 0.9902 ± 0.0053 0.001 ± 0.0006 0.0087 ± 0.0083 24.1482 ± 23.9261
IGL 0.9267 ± 0.0865 0.0036 ± 0.0042 0.0546 ± 0.124 33.7096 ± 43.5162
LV 0.9452 ± 0.1069 0.0005 ± 0.001 0.0493 ± 0.1058 41.9781 ± 64.002
TTh 0.9515 ± 0.0268 0.0021 ± 0.0017 0.0492 ± 0.0435 34.1868 ± 16.472
CPu 0.7918 ± 0.2614 0.001 ± 0.0013 0.1846 ± 0.2654 43.735 ± 42.5232
HP 0.9848 ± 0.0068 0.0004 ± 0.0002 0.0122 ± 0.0109 12.6344 ± 7.6397
TILpy 0.8852 ± 0.0812 0.0003 ± 0.0001 0.0814 ± 0.105 18.8284 ± 24.7633
DG 0.9302 ± 0.077 0.0002 ± 0.0002 0.0465 ± 0.0862 8.0014 ± 11.5809
Pn 0.9500 ± 0.060 0.0002 ± 0.0002 0.0391 ± 0.0667 9.2620 ± 8.7277
SN 0.7647 ± 0.1958 0.0006 ± 0.0007 0.2014 ± 0.2184 28.2791 ± 20.1335
Cg 0.9087 ± 0.0612 0.0007 ± 0.0006 0.0817 ± 0.0873 23.341 ± 19.6141
DS 0.8842 ± 0.0784 0.0001 ± 0.0001 0.1012 ± 0.1103 10.8247 ± 6.6032
InfC 0.9442 ± 0.0613 0.0006 ± 0.0005 0.0542 ± 0.0784 19.608 ± 13.8624
SupC 0.9483 ± 0.0249 0.0035 ± 0.0032 0.0479 ± 0.0364 11.7670 ± 6.0383
VMHvl 0.8039 ± 0.1754 0.0005 ± 0.0004 0.1797 ± 0.2095 23.7869 ± 23.7924
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3.3. Refinement and Landmark

As a last step, the masks are converted from binary images to point vectors so that
they can be visualized/edited using the Fiji/ImageJ software. Figure 11 compares the post-
processing performance with the two different resolutions (512 × 256 and 2048 × 1028). For
the TBA, working with 2048 × 1028 images resulted in landmarks at near equal distance
from each other than what would have been chosen by a human user making edits possible.
In the end, the time to compile an image takes approximately 5 min, although this task is
completely automated and was scripted to process folders containing many images.

Figure 11. Example of converting contours to landmarks for the total brain area. (a) Original number
of points (805) in 512 × 256 resolution. (b) Output landmarks (76) with resolution images in (a).
(c) Original number of points (1501) with 2048 × 1024 resolution images. (d) Final landmarks (56)
with resolution images in (c).

4. Discussion

In this article, we introduce a versatile approach for the automatic segmentation
of mouse brain histological samples, addressing the time-intensive challenge of manual
annotation. This is particularly valuable for high-throughput projects, where implementing
efficient segmentation strategies is crucial.

Our work presents advances in the resolution time of the segmentation task, reducing
the segmentation period to 5–7 min per image in comparison with Yates et al. [8], which
performs 60 images in less than 24 h. Similarly, in the accuracy in segmenting rodent brain
regions, Xu et al. provided a DSC close to 90% on average as for the hippocampus [11],
while our proposal reaches 98% DSC on average.

Our proposed approach establishes a robust foundation for generating accurate mouse
brain landmarks, emphasizing the strategic choice of models. We prioritized achieving high-
quality, human-comparable segmentation with simpler, well-established architectures like
U-Net and its attention-augmented variant over more complex models such as EfficientNet.
This decision aligns with making advanced segmentation techniques more accessible to the
broader research community.

In their respective projects, Mesejo et al. [12] and Barzekar et al. [13] developed tools
to segment a maximum of two regions of interest, separated by a decade of technological
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advancements. Remarkably, Mesejo et al.’s system was introduced 11 years ago, a time
when computational resources were limited. Comparatively, their model achieved a 92.25%
accuracy in hippocampus segmentation, while our approach reached a DSC of 98.48%.
Similarly, Barzekar et al. reported DSCs of 86.78% and 79.28% for specific brain regions,
while our model achieved 76.47% for the substantia nigra. These comparisons indicate
modest improvements in accuracy and highlight that some brain regions are more easily
segmented than others, and that more advanced models do not always yield higher DSCs.

Our comparison of U-Net and Attention U-Net architectures reveals that the incor-
poration of attention gates significantly improves segmentation tasks. For example, seg-
mentation of the corpus callosum with U-Net achieved a DSC of 80%, which improved to
approximately 94% with Attention U-Net. This underscores the importance of attention
mechanisms, particularly for intricate brain structures. The efficacy of attention gates is
further demonstrated by our model’s consistent focus on the right regions, evidenced by
low false positive ratio values, and achieving a 99.14% DSC for the total brain area.

However, regions like the caudate putamen and fibers of the pons posed greater
challenges due to factors such as cellular-level grouping, genetic variation, and inconsisten-
cies across specimens. Despite these difficulties, our model attained DSCs of 79.18% and
70.47% for these regions. Notably, deep-learning segmentation of the VMH was successful
despite the belief that cell shapes are critical for manual segmentation. This suggests that
ultra-high-resolution imaging, typically a significant challenge for deep learning, is not
always essential for accurate segmentation.

Our model’s modular design allows each part to be substituted or improved, enhanc-
ing its versatility. We have implemented this model in our laboratory to annotate up to
24 brain regions, streamlining user interaction through a single command line. The training
dataset was sourced from studies examining data structure drifts [4]. The model is also
suitable for interobserver studies to assess variability among regions and anatomists. One
of the limitations of our work is that the study was performed only on sagittal view images;
work is currently being performed on the coronal view. On the other hand, the variability
that exists among the different annotators made it difficult to correctly automatically recog-
nize regions of interest such as the caudate putamen. Future work to be performed is how
to take the inter-annotatator variability into account.

Our study demonstrates that strategic model choices and augmentations like attention
mechanisms facilitate high-quality segmentation on histological images without relying on
the most complex deep learning architectures. Moreover, these tools are becoming increas-
ingly accessible to most laboratories. Paradoxically, while new technological advances are
flourishing in 3D histology [22], they bring challenges in data analysis akin to those in other
modalities like MRI and microCT. Our laboratory is now embracing these advancements by
processing brains in 3D using block face serial imaging. While the voxel resolution in this
method is ten times higher than what current MRI technologies offer for rodent brains [23],
it is clear that much of the groundwork in automated segmentation will likely stem from
these studies since they have long established that manually segmenting 3D volumes poses
even greater challenges.

5. Conclusions

In this work, we proposed an automatic solution to automatically segment 24 regions
of interest sagittal histological images of mouse brains. The proposed model produces
excellent results for all of the areas, and provides a starting point for the investigation of
more accurate histological image segmentation systems. The model, apart from being easy
to manage, does not require any additional software or training of the laboratory staff to
use it. The system accepts as input a given type of histological images and automatically
converts them into landmarks of the regions of interest of the mouse brain. It takes as
little as 5 min to correctly determine 24 regions, mainly due to validation and correction if
necessary, as opposed to an average of 1 h to perform the same task manually. The final
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results are ROI files of the analyzed regions, which can be used by classical medical image
software to perform the different neuroanatomical studies.
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