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Abstract: The idea of strong and weak adjacencies between vertices has been generalized into fuzzy
graphs and intuitionistic fuzzy graphs (IFGs), and it is an important part of making decisions.
However, one or two membership degrees are not always sufficient for making decisions on real-
world problems that need an answer of types “yes, neutral, and no”. Consequently, in previous
work, we generalized the concept into picture fuzzy graphs (PFGs) where each element in the PFG
has membership, neutral, and non-membership degrees. Moreover, we constructed the notion of
the coloring of PFGs based on strong and weak adjacencies between vertices. In this paper, we
investigate some properties of the chromatic number of PFGs based on the concept of strong and
weak adjacencies between vertices. According to these properties, we construct an algorithm to find
the chromatic number of PFGs. The algorithm is useful when we work with large PFGs. Further, we
improve the method to implement the PFG’s coloring for determining traffic signal phasing at an
intersection. A case study has also been carried to evaluate the method.

Keywords: coloring; chromatic number; picture fuzzy graph; strong; weak; traffic signal phasing

1. Introduction

The concept of fuzzy graph had been proposed by Rosenfeld [1] to handle indeter-
minate phenomena on vertices and relation between vertices. Therefore, the vertices and
edges have membership degrees to represent the indeterminacy situation. In real-world
problems, the degrees of non-membership of elements in a network are needed, for exam-
ple, in situations that need an answer of types “yes” and “no”. To handle this problem,
Atanassov [2] proposed an intuitionistic fuzzy set (IFS) and an intuitionistic fuzzy graph
(IFG). Each element in IFG has membership and non-membership degrees. Numerous
studies had been conducted on intuitionistic fuzzy graphs (IFGs), including the coloring
of IFGs ([3,4]), the application of wiener index for IFGs in water pipeline network [5],
interval-valued intuitionistic (S, T)-fuzzy graphs [6], and interval-valued intuitionistic
fuzzy competition graphs [7].

Two categories of memberships are not always sufficient for making decisions. There-
fore, Cuong [8] proposed a picture fuzzy set where each element not only had membership
and non-membership degrees but also had a neutral membership degree. For instance, in
an election problem, the committee must count the number of people who chose or did not
choose a candidate and how many abstained (the neutral condition). Further, the concept
of a picture fuzzy graph (PFG) was developed in [9], wherein the vertices and edges had
membership, neutral, and non-membership degrees.

Researchers recently expanded PFGs in numerous types, such as q-rung PFGs [10], bal-
anced PFGs [11], the application of PFGs for selecting best routes in an airlines network [12],
picture fuzzy soft graphs [13], complex PFGs [14], regular PFGs [15], and so on. Numerous
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studies had also been conducted on the use of PFGs in practical issues such as the appli-
cation of balanced PFGs [11], decision making under picture fuzzy soft graphs [13], the
implementation of regular PFGs in communication networks [15], road map design using
picture fuzzy multigraphs [16], the application of PFGs in social networks [17], the shortest
path algorithm in picture fuzzy digraphs [18], the site selection problem using laplacian
energy of PFGs [19], the application of picture fuzzy tolerance graphs [20], the genus of
PFGs [21], and multiple attribute decision-making via PFGs [22].

The theory of vertex coloring and edge coloring had been generalized in various types
of fuzzy graphs. Some researchers proposed various generalizations of graph coloring such
as the coloring of fuzzy graphs based on strong and weak adjacencies [23], fuzzy graph
coloring based on δ-fuzzy independent vertex sets [24], the fuzzy fractional coloring of
fuzzy graphs [25], the fuzzy coloring of fuzzy graphs [26], the fuzzy colouring of m-polar
fuzzy graphs [27], the chromatic number and perfectness of fuzzy graphs [28], and the edge
coloring of fuzzy graphs [29]. Several researchers have also proposed the coloring methods
through the α-cut approach and two forms of adjacencies (strong and weak) in fuzzy graphs
and IFGs, as seen in [3,4,23,30]. The fact that a PFG is an extension of an IFG inspired us to
generalize the vertex coloring from IFGs into PFGs in 2021 [31]. We utilized the (α, β, δ)-cut
approach to color PFGs. However, the computation of PFG’s coloring through the cut was
complicated since we should have used various values of (α, β, δ) when determining the
cut chromatic numbers. Therefore, we need another approach for coloring the PFGs.

Strong and weak adjacencies—two different forms of adjacencies—between vertices in
fuzzy graphs and IFGs are crucial in decision-making issues. Hence, we generalized strong
and weak adjacencies into PFGs and proposed a concept to color PFGs based on strong and
weak adjacencies [32]. When we work with PFGs with many vertices and edges, we need
a computational tool to identify the strong and weak adjacencies and find the chromatic
number of PFGs. In this paper, we construct an algorithm to handle the problem. In PFGs,
we can classify connections between two movements (two vertices) into one of these three
situations, i.e., crossing conflict, merging conflict, and non-conflict. The crowdedness of
traffic flows in conflicting movements (crossing or merging conflicts) is a phenomenon
that needs an answer of types “yes”, “no”, and “neutral”. The situation at an intersection
is usually crowded during peak times (06.30 a.m.–08.30 a.m. and 04.00 p.m.–06.00 p.m.).
However, occasionally it is not congested during non-peak hours (06.00 p.m.–06.00 a.m.)
or neutral conditions about whether it is crowded or not during 08.30 a.m.–03.30 p.m.
Therefore, we need a PFG to deal with this situation and propose a traffic signal phasing
wherein there are no traffic flows from merging conflicts that move simultaneously at the
same time. In this article, we improve the method to model traffic flows at an intersection
using PFGs and to determine the traffic signal phasing. Moreover, we also evaluate the
proposed method through a case study. This is a new finding in view of the application of
coloring of PFGs.

The following is the structure of this paper: The first section explains an introduction,
and Section 2 discusses research challenges and gaps. Section 3 presents preliminary
materials. Section 4 contains the most important findings in this research, and Section 5
provides an experimental result. Finally, the conclusions are given in Section 6.

2. Research Challenges and Gaps

1. An essential idea that can be used in making decisions on various networks of real-
world problems is the coloring method of fuzzy graphs and IFGs ([3,4,25,33]).

2. However, one membership degree or two membership degrees of elements in a
network are not sufficient for making decision. Therefore, we initiated a coloring
method of PFGs based on (α, β, δ)-cut of PFGs [31]. Since the computation of PFG’s
coloring through the cuts was complicated in determining the chromatic number, we
propose a coloring method of PFGs based on strong and weak adjacencies between
vertices in [32].
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3. In this paper, we investigate the connection between the cut chromatic numbers and
the chromatic number of PFGs based on strong and weak adjacencies. Moreover,
we construct an algorithm to find the chromatic number of PFGs and evaluate the
performance of the algorithm using Python and Matlab R2022b. The algorithm is
useful when we deal with large PFGs.

4. An implementation of the coloring method of fuzzy graphs in road networks has
been proposed in [33]. However, it did not consider three types of connections
between traffic movements and three conditions of crowdedness of traffic flows at an
intersection. Sometimes, the traffic flow is crowded during peak times, or sometimes it
is not crowded, or sometimes there is a neutral condition about whether it is crowded
or not at non peak-times. In this research, we improve the method to implement the
PFG’s coloring for determining traffic signal phasing at an intersection and evaluate
the method through a case study.

3. Preliminaries

We review some of the key ideas from this study in this part. In the beginning, we
are going to discuss intuitionistic fuzzy sets (IFSs) and the construction of an IFS from a
fuzzy set.

Given an ordinary finite non-empty set X and A ⊆ X, an Atanassov IFS on X is
a set of the form AI = {(x, µA(x), νA(x))|x ∈ X} wherein µA, νA : X → [0, 1] and
0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X. Meanwhile, a degree of hesitation (intuitionistic
fuzzy index) of an element x in IFS AI is defined as πAI (x) = 1− µA(x)− νA(x).

A method to construct an IFS from a fuzzy set is given in Proposition 1, Theorem 1,
and Corollary 1, which are cited from [34,35].

Proposition 1 ([34,35]). Let F be a mapping that is defined as F : [0, 1]2 × [0, 1]→ L∗ with
L∗ = {(x, y)|(x, y) ∈ [0, 1]× [0, 1] & x+ y ≤ 1}, and F(x, y, δ) = (Fµ(x, y, δ), Fν(x, y, δ)),
where Fµ(x, y, δ) = x(1− δy) and Fν(x, y, δ) = 1− x(1− δy) − δy. Let π∗ : L∗ → [0, 1]
be a function defined as π∗(u, v) = 1 − u − v for u, v ∈ [0, 1]. The mapping F satisfies the
following conditions:

1. If y1 ≤ y2, then π∗(F(x, y1, δ)) ≤ π∗(F(x, y2, δ)) for x ∈ [0, 1],
2. Fµ(x, y, δ) ≤ x ≤ 1− Fν(x, y, δ) for x ∈ [0, 1],
3. F(x, 0, δ) = (x, 1− x),
4. F(0, y, δ) = (0, 1− δy),
5. F(x, y, 0) = (x, 1− x),
6. π∗(F(x, y, δ)) = δy.

Theorem 1 ([34,35]). Let FS(X) be a set of all fuzzy set in X and A ⊆ X. Let AF = {(x, µA(x))|
x ∈ X} be a fuzzy set in FS(X), where µA : X → [0, 1]. Let π, , ξ : X → [0, 1] be two functions
defined on X. The set

AI = {(x, F(µA(x), π(x), ξ(x))|x ∈ X}

is an Atanassov IFS, where the function F is defined as in Proposition 1.

Corollary 1 ([34]). Let π∗ and F be two functions as defined in Proposition 1. If we choose
ξ(x) = 1 for each x ∈ X in Theorem 1, then

π(x) = π∗(F(µA(x), π(x), 1)).

Under the condition in Corollary 1, we obtain an IFS:

AI = {(x, µA(x)(1− π(x)), 1− (µA(x)(1− π(x)))− π(x)|x ∈ X}. (1)

The non-membership degree of IFS AI in (1) will be used in the implementation of
coloring of PFGs in Section 5.
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Furthermore, the notion of a picture fuzzy set (PFS) and the construction of a PFS from
an IFS are discussed.

Definition 1 ([8]). Given a universal set X and A ⊆ X. A set of the form Ã = {(v, µA(v), ηA(v),
νA(v))|v ∈ X} is mentioned as a PFS on X, wherein µA(v) ∈ [0, 1] is a membership degree that

describes the truth value of existence of element v in Ã, ηA(v) ∈ [0, 1] is a NeuM degree that repre-
sents the indeterminacy degree of existence of v in Ã, and νA(v) ∈ [0, 1] is a non-membership degree
that shows the falsity degree of existence of v in PFS Ã, such that 0 ≤ µA(v)+ ηA(v)+ νA(v) ≤ 1.
The value πÃ(v) = 1− (µA(v) + ηA(v) + νA(v)) is called a refusal degree of membership of v
in Ã.

A method to construct a PFS from an IFS is given in Theorem 2.

Theorem 2 ([36]). If AI = {(x, µA(x), νA(x))|x ∈ X} is an IFS on X and g : [0, 1]→ [0, 1] is
any function such that g(0) = 0 and g(x) ≤ x, then

Ap = {(x, Pµ(µA(x), νA(x)), Pη(µA(x), νA(x)), Pν(µA(x), νA(x)))}

is a PFS on X wherein the mapping P : [0, 1] × [0, 1] → [0, 1]2 × [0, 1] is defined by
P(u, v) = (Pµ(u, v), Pη(u, v), Pν(u, v)) with Pµ(u, v) = u, Pη(u, v) = g(1 − u − v), and
Pν(u, v) = v.

In other words, Pµ(µA(x), νA(x)) = µA(x), Pη(µA(x), νA(x)) = g(1− µA(x)− νA(x)),
and Pν(µA(x), νA(x)) = νA(x) for x ∈ X. Further, the function g in Theorem 2 is called a
neutral or refusal membership function of PFS Ap, and it will be used in Section 5.

In Definitions 2 and 3, we present ideas of an empty PFS and a universal PFS, which
are cited from [37].

Definition 2 ([37]). Let Ã = {(v, µA(v), ηA(v), νA(v))} be a PFS on X and A ⊆ X. The set Ã
is called an empty PFS if µA(v) = 0, ηA(v) = 0, and νA(v) = 1 for each v ∈ X. The empty PFS
is denoted by ∅p f s.

Definition 3 ([37]). Given PFS Ã in Definition 2, the set Ã is named a universal PFS if µA(v) = 1,
ηA(v) = 0, and νA(v) = 0 for each v ∈ X.

Additionally, we provide information on the picture fuzzy subset in Definition 4,
which is quoted from [8].

Definition 4 ([8]). Let X be a universal set and A, B ⊆ X. Given two PFSs on X: Ã = {(a, µA(a),
ηA(a), νA(a))} and B̃ = {(b, µB(b), ηB(b), νB(b))}, a, b ∈ X. The PFS Ã is mentioned as the
picture fuzzy subset of B̃, denoted by Ã ⊆ B̃, if

µA(v) ≤ µB(v), ηA(v) ≤ ηB(v), νA(v) ≥ νB(v)

for all v ∈ X.

The notion of PFS is used as a basis to define a PFG, as described in Definition 5.

Definition 5 ([9]). We assume that X is a universal set that contains vertices. We mention
a graph G̃ = (Ṽ, Ẽ) as a PFG if Ṽ = {(x, µ1(x), η1(x), ν1(x))} is a picture fuzzy vertex set
(PFVS) on X with the membership, neutral, and non-membership functions as follows: µ1, η1, ν1 :
X → [0, 1], in which 0 ≤ µ1(x) + η1(x) + ν1(x) ≤ 1 for each x ∈ X. Meanwhile, Ẽ =
{(xy, µ2(xy), η2(xy), ν2(xy))} is a picture fuzzy edge set (PFES) on E ⊆ X× X with the mem-
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bership, neutral membership, and non-membership functions as follows:
µ2, η2, ν2 : X× X → [0, 1], such that

µ2(xy) ≤ min{µ1(x), µ1(y)}, η2(xy) ≤ min{η1(x), η1(y)}, ν2(xy) ≤ max{ν1(x), ν1(y)},

and 0 ≤ µ2(xy) + η2(xy) + ν2(xy) ≤ 1 for each xy ∈ E.
The value of µ1(x) is a membership degree that represents the truth value of existence of vertex

x in X, η1(x) is NeuM degree that describes the indeterminacy degree of existence of x in X, and
ν1(x) is non-membership degree that shows the falsity degree of the existence of vertex x in X.
Meanwhile, the values of µ2(xy), η2(xy), ν2(xy) represent a membership degree that tells the truth
of adjacency of x and y, an NeuM degree that describes the indeterminacy of adjacency of x and y,
and a non-membership degree that shows the falsity of adjacency between x and y, respectively.

Furthermore, we discuss the concepts of underlying graph, picture fuzzy subgraph,
and a complete picture fuzzy graph (CPFG) that will be used in the next section.

Definition 6 ([38]). Given a PFG G̃ = (Ṽ, Ẽ) on a universal set X, an underlying graph of G̃,
symbolized as G∗ = (V∗, E∗), is a graph wherein µ1(x) > 0, η1(x) > 0, and ν1(x) > 0 for each
x ∈ V∗.

Definition 7 ([17]). Let G̃ = (Ṽ(G), Ẽ(G)) and H̃ = (Ṽ(H), Ẽ(H)) be PFGs on a universal set
X. The PFG H̃ is said to be a picture fuzzy subgraph of G̃, denoted by H̃ ⊆ G̃, if Ṽ(H) ⊆ Ṽ(G)
and Ẽ(H) ⊆ Ẽ(G).

Definition 8 ([15]). Given PFG G̃ = (Ṽ, Ẽ), where Ṽ is a PFS on universal set X. We call x
and y as neighbor vertices in G̃ if µ2(xy) > 0, η2(xy) > 0, and ν2(xy) > 0. Meanwhile, the set
NẼ(x) = {y ∈ X| x and y are neighbor vertices}. In addition, |NẼ(v)| denotes the cardinality of
neighbors of vertex v in G̃.

Definition 9 ([12]). Let G̃ = (Ṽ, Ẽ) be a PFG, where Ṽ is a PFS on X. We mention PFG G̃ as a
CPFG if

min{µ1(u), µ1(v)} = µ2(uv); min{η1(u), η1(v)} = η2(uv); max{ν1(u), ν1(v)} = ν2(uv)

for each pair u, v ∈ X.

3.1. Strong and Weak Adjacencies between Vertices in PFGs

The terms “strong adjacency” and “weak adjacency” have been defined in an IFG
by [4]. We expand upon these ideas in terms of PFGs in the previous work [32].

Definition 10 ([32]). Given a PFG G̃ = (Ṽ, Ẽ) where Ṽ is a PFS on V. The vertices u, v ∈ V are
mentioned as strongly adjacent vertices if

1
2

min{µ1(u), µ1(v)} ≤ µ2(uv);
1
2

min{η1(u), η1(v)} ≤ η2(uv);
1
2

max{ν1(u), ν1(v)} ≤ ν2(uv).

Otherwise, we mention u and v as weakly adjacent vertices.

3.2. Coloring of PFGs Based on Strong and Weak Adjacencies between Vertices

In this part, we discuss a coloring of PFGs based on strong and weak adjacencies
between vertices.

Definition 11 ([32]). Given PFG G̃ = (Ṽ, Ẽ) where Ṽ is a PFS on V = {v1, v2, · · · , vn}, i.e.,
Ṽ = {(vi, µ1(vi), η1(vi), ν1(vi))| vi ∈ V}. Whereas, Ẽ = {(vivj, µ2(vivj), η2(vivj), ν2(vivj))
| i 6= j} is a PFS on E ⊆ V × V. Let Γ = {γ1, γ2, · · · , γk} be a family of picture fuzzy (PF)
subsets of Ṽ where

γi = {(vj, µγi (vj), ηγi (vj), νγi (vj))}
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for 1 ≤ i ≤ k, and 1 ≤ j ≤ n. The family Γ is called as a k-vertex coloring of G̃ if

1.
⋃k

i=1 γi = Ṽ, i.e.,

max{µγi (vj)} = µ1(vj), max{ηγi (vj)} = η1(vj), min{νγi (vj)} = ν1(vj),

for 1 ≤ i ≤ k; 1 ≤ j ≤ n.
2. γi ∩ γj = ∅p f s, ∀i 6= j, i.e.,

min{µγi (vl), µγj(vl)} = 0, min{ηγi (vl), ηγj(vl)} = 0, max{νγi (vl), νγj(vl)} = 1,

for 1 ≤ i, j ≤ k; 1 ≤ l ≤ n.
3. For every pair of strongly adjacent vertices u, v ∈ V:

min{µγi (u), µγi (v)} = 0, min{ηγi (u), ηγi (v)} = 0, max{νγi (u), νγi (v)} = 1,

for 1 ≤ i ≤ k. In other words, every pair of strongly adjacent vertices belongs to different
PF subsets.

The minimum value k for which G̃ has k-vertex coloring is referred as the chromatic number of
G̃, denoted by χ f (G̃).

We describe the coloring of a PFG in Example 1 to provide a better understanding of
the concept.

Example 1. Let us consider PFG G̃ = (Ṽ, Ẽ) in Figure 1. The set Ṽ is a PFVS on universal set
V = {A, B, C, D}.
1. The pairs of strongly adjacent vertices are {A, B}, {A, D}, {B, C}, {B, D}, and {C, D}.

Meanwhile, {A, C} is the pair of weakly adjacent vertices.
2. Therefore, we obtain the PF-subset γ1 = {(A, 0.1, 0.3, 0.1), (C, 0, 0.2, 0.1)}. Since B and D

are strongly adjacent, γ2 = {(B, 0.2, 0.1, 0.5)}, and γ3 = {(D, 0.2, 0.3, 0.5)}. We obtain
the family Γ = {γ1, γ2, γ3}.

3. Thus, the chromatic number of G̃ is χ f (G̃) = 3.

Figure 1. The picture fuzzy graph G̃ for Example 1.

3.3. The Chromatic Number of PFGs Based on (α, β, δ)-Cut Coloring

In this part, we discuss the concept of (α, β, δ)-cut of PFGs and the cut chromatic
number in Definition 12.

Definition 12 ([31]). Given a PFG G̃ = (Ṽ, Ẽ) and its underlying graph G∗(V∗, E∗), a level set
of Ṽ is defined as a set LṼ = {α|µ1(v) = α, v ∈ V∗} ∪ {β|η1(v) = β, v ∈ V∗} ∪ {δ|ν1(v) =
δ, v ∈ V∗}, whereas a level set of Ẽ is set LẼ = {α|µ2(uv) = α, uv ∈ E∗} ∪ {β|η2(uv) =
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β, uv ∈ E∗} ∪ {δ|ν2(uv) = δ, uv ∈ E∗}. Moreover, a level set of G̃ is a set L = LṼ ∪ LẼ. Given
α, β, δ ∈ L, an (α, β, δ)-cut of G̃ is a crisp graph Gα,β,δ = (Vα,β,δ, Eα,β,δ) where

Vα,β,δ = {v ∈ V∗| µ1(v) ≥ α & η1(v) ≥ β & ν1(v) ≤ δ}

and
Eα,β,δ = {uv ∈ E∗| µ2(uv) ≥ α & η2(uv) ≥ β & ν2(uv) ≤ δ}.

The (α, β, δ)-cut chromatic number, denoted by χα,β,δ, is the chromatic number obtained from crisp
coloring of the cut Gα,β,δ.

Example 2. We present an illustration of Definition 12 for PFG in Figure 1. The level set of Ṽ and
Ẽ are LṼ = {0, 0.1, 0.2, 0.3, 0.5}, and LẼ = {0, 0.1, 0.2, 0.4, 0.5}, respectively. Meanwhile, the
level set of G̃ is L = {0, 0.1, 0.2, 0.3, 0.4, 0.5}. Examples of (0, 0.1, 0.5)-cut, (0.1, 0.1, 0.5)-cut, and
(0.1, 0.2, 0.5)-cut are depicted in Figure 2. The (0, 0.1, 0.5)-cut chromatic number is 3, the (0.1, 0.1,
0.5)-cut chromatic number is also 3, and the (0.1, 0.2, 0.5)-cut chromatic number is 2.

Figure 2. Several cut graphs of PFG in Figure 1.

4. Main Results

In this section, we present some properties of the chromatic number of PFGs and an
algorithm to compute the chromatic number.

4.1. Some Characteristics of the Chromatic Number of PFGs

In this part, we investigate an upper bound for the chromatic number of PFGs in
Theorem 3.

Theorem 3. If G̃ = (Ṽ, Ẽ) is a PFG with the underlying graph G∗ = (V∗, E∗), then

χ f (G̃) ≤ max{|NẼ(x)| : x ∈ V∗}+ 1.

Proof. Let V∗ = {x1, x2, · · · , xn}. Assume Γ = {γ1, γ2, · · · , γk} is a family of PF-subsets
on Ṽ where γi = {(xj, µγi (xj), ηγi (xj), νγi (xj))}, 1 ≤ i ≤ k, 1 ≤ j ≤ n.
Suppose that k > max{|NẼ(x)| : x ∈ V∗}+ 1.
Based on Conditions 1–2 in Definition 11, we have:

1.
⋃k

i=1 γi = Ṽ,
2. γi ∩ γj = ∅p f s, ∀i 6= j, for 1 ≤ i, j ≤ k.

When every pair of vertices xi, xj(i 6= j) is strongly adjacent, the vertices should be
placed in different picture fuzzy (PF) subsets. According to the Condition 3 in Definition 11,
we have n PF subsets {γ1, γ2, · · · , γn}. Meanwhile, max{NẼ(x)| : x ∈ V∗} + 1 =
n− 1 + 1 = n. Thus, χ f (G̃) = n = max{NẼ(x)| : x ∈ V∗}+ 1. Otherwise, when there is
a pair or weakly adjacent vertices, χ f (G̃) = k < n = max{NẼ(x)| : x ∈ V∗}+ 1. It is a
contradiction. Thus, χ f (G̃) = k ≤ max{|NẼ(x)| : x ∈ V∗}+ 1.
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Moreover, we investigate the connection between the chromatic number of PFGs based
on strong and weak adjacencies and the (α, β, δ)-cut chromatic number in Definition 12.
Firstly, we define the chromatic number of a PFG by means of its-cut chromatic number.

Definition 13. Let G̃ = (Ṽ, Ẽ) be a PFG. The chromatic number of G̃ through the (α, β, δ)-cut
chromatic number is defined as follows:

χ(G̃) = max{χα,β,δ|α, β, δ ∈ L},

where L is the level set of G̃ and χα,β,δ = χ(Gα,β,δ).

When δ = 0, Definition 13 becomes the chromatic number of IFGs. In certain condi-
tions, we prove that the chromatic number of the underlying graph of PFG is equal to the
chromatic number concept in Definition 13.

Example 3. Let us consider Example 2. According to Definition 13, the chromatic number of G̃
through the (α, β, δ)-cut is

χ(G̃) = max{χα,β,δ|α, β, δ ∈ L} = 3.

Theorem 4. Given a PFG G̃ = (Ṽ, Ẽ) with the underlying graph G∗ = (V∗, E∗). If α1 =
min{α|α ∈ L}, β1 = min{β|β ∈ L}, and δ1 = max{δ|δ ∈ L}, then the chromatic number of G̃:

χ(G̃) = χ(G∗).

Proof. Since α1 = min{α|α ∈ L}, β1 = min{β|β ∈ L}, and δ1 = max{δ|δ ∈ L}, we have
χ(Gα1,β1,δ1) = max{χα,β,δ|α, β, δ ∈ L}.
Further, all vertices and edges of G̃ become elements of the crisp graph Gα1,β1,δ1 . This
implies Gα1,β1,δ1 = G∗ and χ(G∗) = χ(Gα1,β1,δ1) = max{χα,β,δ|α, β, δ ∈ L} = χ(G̃).

Theorem 5. Let G̃ = (Ṽ, Ẽ) be a PFG with the underlying graph G∗ = (V∗, E∗). If all edges in
Ẽ connect strongly adjacent vertices, then

χ f (G̃) = χ(G∗).

Proof. Assume that χ f (G̃) = k. According to Definition 11, we have a family Γ =
{γ1, γ2, . . . , γk} of PF-subsets of Ṽ such that it satisfies 3 conditions in Definition 11:

1.
⋃k

i=1 γi = Ṽ,
2. γi ∩ γj = ∅p f s, for 1 ≤ i, j ≤ k.
3. Based on the third condition in Definition 11, we have γi = {(vl , µ1(vl), η1(vl), ν1(vl)} ∪

{(vm, µ1(vm), η1(vm), ν1(vm)} where µ2(vlvm) = 0, η2(vlvm) = 0, and ν2(vlvm) = 1
(since all edges in Ẽ connect strongly adjacent vertices). This shows that each γi
becomes a crisp independent vertex set in G∗ for 1 ≤ i ≤ k.

Hence, the family Γ becomes a partition of V∗ into k-independent vertex set (crisp set).
Therefore, χ f (G̃) = k = χ(G∗).

According to Theorem 5, we obtain the following corollary.

Corollary 2. If G̃ = (Ṽ, Ẽ) is a complete picture fuzzy graph (CPFG) with n vertices, then
χ f (G̃) = n.

4.2. An Algorithm for Finding the Chromatic Number of PFGs

We create an algorithm to compute the chromatic number of PFGs with the exception
for CPFG. We use the assumption that not all edges in Ẽ connect strongly adjacent vertices.
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Algorithm 1 can also be used for the coloring of IFGs when the inputs are the intu-
itionistic fuzzy vertex set and the intuitionistic fuzzy edge set.

Algorithm 1 To find the chromatic number of PFGs

Input: The PFG G̃ = (Ṽ, Ẽ) with the elements:

• Vertex set V = {vi}, i = 1, 2, · · · , n, and edge set E = {el}, l = 1, 2, · · · , m.
• Degree of vertices WV = {wvi}, with wvi = (µ1(vi), η1(vi), ν1(vi)).
• Degree of edges WE = {wel }, where wel = (µ2(el), η2(el), ν2(el)), el = vivj, i 6= j ∈ {1, · · · , n}.

Output: The chromatic number: χ f (G̃)
1: for h = 1 to n − 1 do
2: for j = 1 to n − h do
3: Check for all pairs Qh = [vhvj+h]

4: if 1
2 min(µ1(vh), µ1(vj+h)) ≤ µ2(vhvj+h), 1

2 min(η1(vh), η1(vj+h)) ≤ η2(vhvj+h), and
1
2 max(ν1(vh), ν1(vj+h)) ≤ ν2(vhvj+h) then

5: “vh and vj+h are strongly adjacent”
6: else
7: “vh and vj+h are weakly adjacent”
8: Assign Ch = [{vh, vh+r}] for r ∈ {1, 2, · · · , n− h}
9: end if

10: end for
11: end for
12: if All pairs in Qh are strongly adjacent vertices then
13: Ch = ∅
14: if |V| = 2 then
15: Create two picture fuzzy (PF) subsets γ11 = {v1}, γ12 = {v2} and get χ f (G̃) = 2.
16: end if
17: else
18: Go to Step 20
19: end if
20: if C1 6= ∅ then
21: Initialization γ11 = C1
22: sc1 = number of elements of C1
23: for i = 1 to sc1-1 do
24: if {vi+1, vi+2} ∈ C2 then
25: Assign γ11 = union(C1, {vi+2})
26: end if
27: end for
28: if elements of γ11 are not elements of C2 then
29: Assign γ12 = C2
30: else
31: γ12 = C3
32: end if
33: Repeat the process in Steps 28–32 to create the picture fuzzy (PF) subsets γ11, γ12, · · · , γ1,k1 such that

γ11 ∪ γ12 ∪ · · · ∪ γ1,k1 = V, γi ∩ γj = ∅, for 1 ≤ i, j ≤ k1, and every pair of strongly adjacent vertices belongs
to different γ1i for 1 ≤ i ≤ k1.

34: if There is only one PF subset γ11 then
35: Stop the process, and go to Step 47
36: end if
37: else
38: Initialization γ11 = C2
39: Do the same process in Steps 22–33 to get the PF-subsets γ21, γ22, · · · , γ2,k2
40: end if
41: Do the same process in Steps 21–33 to get the PF subsets γs1, γs2, · · · , γs,ks with initialization γs1 = Cs and

s < n− 1.
42: if ks < ks−1 then
43: Stop the process, and go to Step 47
44: else
45: Back to Step 41
46: end if
47: Choose k = kmin = min{k1, k2, · · · , ks} and obtain the family Γ = {γ1, γ2, · · · , γk} where γ1 = γkmin1, γ2 =

γkmin2, · · · , γk = γkmin ,k .
48: Obtain the chromatic number: χ f (G̃) = k.
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We show that Algorithm 1 gives the chromatic number χ f (G̃) = k for k ≤ n and
proves the correctness of the algorithm by using mathematical induction on the cardinality
|V| as follows.
Base step: for |V| = 2 and V = {v1, v2}.
If the two vertices in V are strongly adjacent vertices, then Steps 1–11 will produce C1 = ∅.
Further, Steps 12–16 give γ11 = {(v1, µ1(v1), η1(v1), ν1(v1))}, γ12 = {(v2, µ1(v2), η1(v2),
ν1(v2))}, and the chromatic number χ f (G̃) = 2. If the two vertices in V are weakly
adjacent vertices, then Steps 1–11 produce C1 = {v1, v2}. Further, Steps 17–36 give PF-
subset γ1 = {(v1, µ1(v1), η1(v1), ν1(v1)), (v2, µ1(v2), η1(v2), ν1(v2))}. Finally, Steps 47–48
give the family Γ = {γ1} and χ f (G̃) = 1. Thus, the chromatic number χ f (G̃) = k ≤ 2. The
base step is satisfied.
Inductive step: Assume that Algorithm 1 is correct for cardinality |V| = n. Steps 1–11
produce the set of weakly adjacent vertices and the set of strongly adjacent vertices. Fur-
thermore, Steps 20–41 give the PF-subsets:

γ11, γ12, · · · , γ1,k1; γ21, γ22, · · · , γ2,k2; · · · ; γs1, γs2, · · · , γs,ks.

In Steps 42–48, we obtain Γ = {γ1, γ2, · · · , γk}, where k = kmin = min{k1, k2, · · · , ks} and
γ1 = γkmin1, γ2 = γkmin2, · · · , γk = γkmin ,k. The chromatic number χ f (G̃) = k ≤ n.

We prove that Algorithm 1 is correct for PFG G̃ with cardinality |V| = n + 1.
Assume that there is an edge vnvn+1. Based on the assumption in the inductive step,

we have the family Γ = {γ1, γ2, · · · , γk}. Without a loss of generality, vertex vn is an
element of the PF subset γk.

If {vn, vn+1} is a pair of weakly adjacent vertices, then vertex vn+1 could be an el-
ement of γk. Otherwise, when {vn, vn+1} is a pair of strongly adjacent vertices, vertex
vn+1 could be an element of γ1, or γ2, or · · · , γk−1, and hence we obtain the chromatic
number χ f (G̃) = k. According to Theorem 3, the chromatic number χ f (G̃) = k ≤
max{|NẼ(vi)|; vi ∈ V} + 1 = n + 1. Thus, the inductive step is true and Algorithm 1
is correct.

Examples 4 and 5 show the determination of the chromatic number of PFGs by
employing Algorithm 1, and the performance of the algorithm is evaluated using Python
and Matlab R2022b.

Example 4. Given PFG G̃ = (Ṽ, Ẽ) in Figure 3 with picture fuzzy vertex set Ṽ = {(A, 0.3, 0.2,
0.4), (B, 0.3, 0.2, 0.2), (C, 0.4, 0.2, 0.3), (D, 0.3, 0.2, 0.3), (E, 0.5, 0.2, 0.1)} and picture fuzzy edge
set Ẽ = {(AB, 0.1, 0.2, 0.4), (AC, 0.2, 0.2, 0.4), (BC, 0.3, 0.2, 0.3), (BD, 0.3, 0.2, 0.3), (CD, 0.3,
0.2, 0.3), (CE, 0.2, 0.2, 0.3), (DE, 0.3, 0.2, 0.3)}.

The output of Algorithm 1 in determining the chromatic number of G̃ is presented in Figure 4.

1. In Steps 1–11, we obtain the sets of the pairs of weakly adjacent vertices, i.e., C1 = {{A, B},
{A, D}, {A, E}}, C2 = {{B, E}}, C3 = ∅, C4 = ∅.

2. In Steps 17–41, we obtain the PF-subsets γ11 = {(A, 0.3, 0.2, 0.4), (B, 0.3, 0.2, 0.2)}, γ12 =
{(C, 0.4, 0.2, 0.3)}, γ13 = {(D, 0.3, 0.2, 0.3)}, γ14 = {(E, 0.5, 0.2, 0.1)}, with the initializa-
tion γ11 = C1(1) = {A, B}.
Other PF-subsets are as follows:
γ21 = {(B, 0.3, 0.2, 0.2), (E, 0.5, 0.2, 0.1)}, γ22 = {(A, 0.3, 0.2, 0.4), (D, 0.3, 0.2, 0.3)}, and
γ23 = {(C, 0.4, 0.2, 0.3)}, with the initialization γ21 = C2 = {B, E}.

3. In Steps 42–48, since k2 = 3 < k1 = 4 then stop. We choose γ1 = γ21, γ2 = γ22, γ3 = γ23,
and obtain the family Γ = {γ1, γ2, γ3}. Thus, the chromatic number χ f (G̃) = 3.
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Figure 3. The picture fuzzy graph G̃ for Example 4.

Figure 4. The output of Algorithm 1 for finding χ f (G̃) in Figure 3.

Example 5. Let us consider PFG G̃ = (Ṽ, Ẽ) in Figure 5, where Ṽ is a PFS on V = {WE, WS,
SN, SE, NW, NS, EN, EW}.

The output of Algorithm 1 for PFG G̃ in Figure 5 is shown in Figure 6. We obtain the family
Γ = {γ1, γ2, γ3, γ4} and the chromatic number χ f (G̃) = 4.
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Figure 5. The PFG G̃ for Example 5.

Figure 6. The output of Algorithm 1 for finding χ f (G̃) in Figure 5.

5. Experimental Result

In this section, we discuss an implementation of Algorithm 1 in determining traffic
signal phasing at an intersection. A phase is defined as any traffic light display that has its
own timings, and it determines how a specific vehicle or pedestrian will move, whereas
the term phase set refers to “any distinct combination of concurrent vehicle or pedestrian
phases”. Conflicting phases are those that cannot both have green indicators at the same
time [39]. There are two types of conflicts between traffic movements at an intersection. The
first type is crossing conflict, which is a collision that occurs when two separate directions
of traffic try to cross paths at one spot. The second type is merging conflict, i.e., a conflict
that happens when vehicles from multiple lanes or directions merge into a single lane
traveling in a single direction [40].

Traffic flow is “the number of traffic elements passing an undisturbed point upstream
in the approach per unit of time”. It is measured by the number of vehicles per hour or the
passenger car unit (pcu) per hour [40]. In this research, the traffic flow data are presented
in pcu per hour, where the conversion factors are as follows: 0.2 for motor cycle (MC); 1 for
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light vehicle (LV), including “passenger cars, pick-up, and micro buses”; and 1.3 for heavy
vehicle (HV), including “two or three-axle trucks and buses”.

5.1. The Method to Model Traffic Flows at an Intersection Using PFGs

We visualize traffic movements from different directions as vertices and connect two
vertices with an edge if the two movements are in conflict (crossing conflict or merging
conflict). Hence, we obtain the data of vertex and edge sets V and E, respectively. The
degrees of edges and vertices show the following circumstances:

• A vertex’s membership degree (µ1(x)) indicates the possibility of the crowdedness
of traffic flow on the movement x at the intersection. A vertex’s non-membership
degree (ν1(x)) shows whether the flow of traffic on the movement x is likely to be
free of congestion. The NeuM degree of a vertex (η1(x)) indicates the possibility of an
unknown circumstance about the crowdedness of traffic flow on x. We obtain a PFVS
Ṽ = {(x, µ1(x), η1(x), ν1(x))}.

• Traffic flow on an edge that connects two vertices (traffic movements) is determined
through the minimum of traffic flows on both movements. In addition, the mem-
bership degree of any edge uv in Ẽ, that is, µ2(uv), indicates the possibility of the
crowdedness of traffic flows on conflicting movements uv. On the contrary, the
non-membership degree ν2(uv) shows the possibility of the non-crowdedness of
traffic flows on uv. The NeuM degree η2(uv) represents the possibility of the un-
known condition of the crowdedness of traffic flows on uv. We obtain a PFES
Ẽ = {(uv, µ2(uv), η2(uv), ν2(uv))}.

The degrees of vertices and edges are determined as follows:

• The membership degree µ1(x) is calculated through triangular or trapezoidal member-
ship functions, whereas the non-membership degree is calculated through Equation (1)
in Corollary 1, i.e., µ1(x) = µ1( fx)(1− π(x)) and ν1(x) = 1− µ1(x)(1− π(x)) −
π(x), x ∈ V by choosing π(x) = mean{µ1(x)|x ∈ V}, where fx stands for traffic flow
on movement x.

• The NeuM degree η1(x) is determined through the function g in Theorem 2:

η1(x) = g(1− µ1(x)− ν1(x))

where g(x) = 1−µ1(x)−ν1(x)
a for x ∈ V and a = ∑x∈V(1− µ1(x)− ν1(x)) ([35]). The

NeuM degree of each edge η2(uv) is defined similarly.
• The membership degree µ2(uv) and non-membership degree ν2(uv) are calculated

through formulas in Corollary 1: µ2(uv) = µ2(uv)(1− π(uv)), uv ∈ E, where
µ2(uv) = µ1(min{ fu, fv}),
ν2(uv) = 1− µ2(uv)(1− π(uv))− π(uv), uv ∈ E by choosing
π(uv) = min{µ2(uv)|uv ∈ E}.

5.2. Case Study

We take a case study at an intersection in the Special Region of Yogyakarta, Indonesia,
i.e., the Pingit intersection. The location of the intersection is depicted in Figure 7 (right
side). Tentara Pelajar street is in the Southern (S) direction, Diponegoro street is to the
Eastern (E) direction, Magelang street is to the Northern (N) direction, and Kyai Mojo street
is to the Western (W) direction.

A sketch of the intersection is also given in Figure 7 (left side). We collect the data of
traffic flows on 25–27 January 2023 in the morning (06.30–07.30 a.m.) and in the evening
(16.30–17.30 p.m.). There are 12 traffic movements in the intersection, i.e., WN, WE, WS, SN,
SW, SE, NE, NW, NS, EN, EW, and ES. This means that the vertex set V contains 12 vertices.
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Figure 7. Location of the Pingit intersection in the Special Region of Yogyakarta.

The next step is to transform the traffic flow data into PFVS Ṽ, wherein the membership
degree of each element is determined via triangular and trapezoidal membership functions
in Figure 8.

Figure 8. The function to calculate membership degree in the PFVS Ṽ.

The PFVS Ṽ of traffic flows in the intersection is displayed in Table 1.

Table 1. The PFVS Ṽ of traffic flow data in the Pingit intersection.

Traffic Movements
(Vertices) Traffic Flows Clusters Degree of Vertices

WN 1805 High (0.383, 0.083, 0)
WE 605 Medium (0.262, 0.083, 0.121)
WS 100 Low (0.306, 0.083, 0.077)
SN 354 Low (0.112, 0.083, 0.271)
SW 32 Low (0.359, 0.083, 0.024)
SE 458 Low (0.032, 0.083, 0.351)
NE 530 Medium (0.166, 0.083, 0.217)
NW 831 Medium (0.216, 0.083, 0.167)
NS 838 Medium (0.207, 0.083, 0.176)
EN 337 Low (0.125, 0.083, 0.258)
EW 1210 High (0.339, 0.083, 0.044)
ES 742 Medium (0.329, 0.083, 0.054)

It is shown in Table 1 that traffic flows on WN and EW have a high possibility of being
crowded compared to traffic flows on other movements. Conversely, the traffic flow on SW
has a lower possibility of being crowded.
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Further, the picture fuzzy edge sets from crossing and merging conflicts in the Pingit
intersection are shown in Tables 2 and 3, respectively. We observe that most of the edges in
both tables connect strongly adjacent vertices. Moreover, the traffic flows on edges WS SN,
WS SE, WS NW, WS EW, SW NW, SW and EW have a high possibility of being crowded.

Table 2. The PFES Ẽ of crossing conflict in the Pingit intersection

Crossing Conflict Degree of Conflict Crossing Conflict Degree of Conflict
(Edges) (Degree of Edges) (Edges) (Degree of Edges)

WE SN (0.2675, 0.0625, 0.6485) SN NW (0.2675, 0.0625, 0.6485)
WE NW (0.6259, 0.0625, 0.290) SN EW (0.2675, 0.0625, 0.6485)
WE NS (0.6259, 0.0625, 0.290) SE NS (0.0769, 0.0625, 0.8390)
WE EN (0.2986, 0.0625, 0.6174) SE EN (0.2986, 0.0625, 0.6174)
WS SN (0.7328, 0.0625, 0.1832) SE EW (0.0769, 0.0625, 0.839)
WS SE (0.7328, 0.0625, 0.1832) NW EN (0.2986, 0.0625, 0.6174)

WS NW (0.7328, 0.0625, 0.1832) NS EN (0.2986, 0.0625, 0.6174)
WS EW (0.7328, 0.0625, 0.1832) NS EW (0.4946, 0.0625, 0.4214)

Table 3. The PFES Ẽ of merging conflict.

Merging Conflict Degree of Conflict Merging Conflict Degree of Conflict
(Edges) (Degree of Edges) (Edges) (Degree of Edges)

WN SN (0.2675, 0.083, 0.6485) SN EN (0.2986, 0.083, 0.6174)
WN EN (0.2986, 0.083, 0.6174) SW NW (0.8574, 0.083, 0.0586)
WE SE (0.0769, 0.083, 0.839) SW EW (0.8574, 0.083, 0.0586)
WE NE (0.3969, 0.083, 0.519) SE NE (0.0769, 0.083, 0.839)
WS NS (0.7328, 0.083, 0.1832) EW NW (0.516, 0.083, 0.3999)
WS ES (0.7328, 0.083, 0.1832) NS ES (0.7877, 0.083, 0.1282)

The PFG model G̃ = (Ṽ, Ẽ) of traffic flow data is depicted in Figure 9.

Figure 9. The PFG model of traffic flows in the Pingit intersection.

We obtain the chromatic number χ(G̃) = 4 through Algorithm 1, and it has been
evaluated in Matlab R2022b, where the output is depicted in Figure 10. The traffic flows can
be arranged in 4 phases, and the patterns of traffic signal phasing are presented in Table 4.
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Figure 10. Determination of the chromatic number of PFG model G̃ in Figure 9.

Table 4. The traffic signal phasing that can be implemented at the Pingit intersection.

Patterns Phase 1 Phase 2 Phase 3 Phase 4

1 WN, WE, WS SE, SN, SW NE, NW, NS EN, EW, ES
2 WE, WS, SW SN, SE, ES WN, NE, NW, NS EN, EW
3 WS, SW, EN SE, NW, ES SN, NE, NS EW, WE, WN

5.3. Comparison to the Fuzzy Graph Coloring Method

In this part, we compare the result in Table 4 with a traffic signal phasing obtained
from the fuzzy graph coloring method based on δ-fuzzy independent vertices (δ ∈ [0, 1]) as
given in [33]. The fuzzy graph model of traffic flows in the Pingit intersection is depicted
in Figure 11.

For δ = 0.8857, the sets {SW, EW, NW}, {ES, WS, NS}, and {SE, WE, NE} are the
sets of δ-fuzzy independent vertices since µ(uv) ≤ δ for each pair u, v in the above sets.
Therefore, we obtain 4-phase scheduling as follows:

(i)SW, EW, NW, WN; (ii)SN, NS, ES; (iii)EN, WS, NE; (iv)WE, SE. (2)

We observe that some pairs of vertices in (2) are elements of merging conflict in Table 3.
Hence, the traffic signal phasing obtained from PFG coloring in Table 4 is safer than the
signal phasing from the fuzzy graph coloring in (2) since there are no traffic flows from
merging conflict that move simultaneously at the same phase.
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Figure 11. The fuzzy graph model of traffic flows in the Pingit intersection.

6. Conclusions

The concept of strong and weak adjacencies between vertices could be implemented
in making decisions regarding real-world problems. Therefore, we generalized the concept
from the intuitionistic fuzzy graph (IFG) into the picture fuzzy graph (PFG) in the previous
work. In this research, we investigated some of the characteristics of the chromatic number
of PFGs based on strong and weak adjacencies between vertices and their relation to the
(α, β, δ)-cut chromatic numbers. Furthermore, we constructed an algorithm (Algorithm 1)
for determining the chromatic number of PFGs and implement it in Python and Matlab
R2022b to assess the algorithm’s performance. The correctness of Algorithm 1 was also
proved using mathematical induction.

Additionally, we improved the method to model traffic flows at an intersection using
PFGs and to determine an intersection’s traffic light phasing. We took a case study at an
intersection in the Special Region of Yogyakarta-Indonesia to evaluate the method. The
outcome demonstrated that there were no concurrent traffic flows from merging conflict
that moved at the same phase. The traffic signal phasing acquired using the PFG coloring
method was found to be safer than the signal phasing obtained using the fuzzy graph
coloring method.

Further research can be carried out to improve the method for handling traffic signal
phasing at any intersection, such as implementing the method for the five way-intersection
and integrating the algorithm with automatic counting for traffic flow data at the intersec-
tion. In the basic theories of PFG’s coloring, we can investigate the chromatic number of
certain operations of two PFGs, such as union, join, Cartesian product, and composition of
two PFGs.

Author Contributions: Conceptualization, I.R.; methodology, I.R.; software, I.R.; validation, I.R. and
C.R.I.; formal analysis, I.R. and C.R.I.; investigation, I.R.; resources, I.R.; data curation, I.R.; writing—
original draft preparation, I.R.; writing—review and editing, C.R.I.; visualization, I.R.; supervision,
C.R.I.; project administration, C.R.I.; and funding acquisition, C.R.I. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the postdoctoral program Universitas Gadjah Mada under
grant number 6468/UN1/DITLIT/Dit-Lit/PT.00/2022.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors express their gratitude to the reviewers for their insightful feedback
on how to make the work better.

Conflicts of Interest: The authors declare no conflict of interest.



Algorithms 2023, 16, 551 18 of 19

Abbreviations
The following abbreviations are used in this manuscript:

IFS Intuitionistic fuzzy set
IFG Intuitionistic fuzzy graph
PFS Picture fuzzy set
PF Picture fuzzy
PFVS Picture fuzzy vertex set
PFES Picture fuzzy edge set
PFG Picture fuzzy graph
NeuM Neutral membership
CPFG Complete picture fuzzy graph

References
1. Rosenfeld, A. Fuzzy graphs. In Fuzzy Sets and Their Applications to Cognitive and Decision Processes; Zadeh, L.A., Fu, K.S.,

Shimura, M., Eds.; Academic Press: Cambridge, MA, USA, 1975; pp. 77–95.
2. Atanassov, K.T. On intuitionistic fuzzy graphs and intuitionistic fuzzy relations. In Proceedings of the VI IFSA World Congress,

Sao Paulo, Brazil, 22–28 July 1995; Volume 1, pp. 551–554.
3. Prasanna, A.; Rifayathali, M.A.; Ismail Mohideen, S. Strong intuitionistic fuzzy graph coloring. Int. J. Latest Eng. Res. Appl. 2017,

2, 163–169.
4. Rifayathali, M.A.; Prasanna, A.; Ismail Mohideen, S. Intuitionistic fuzzy graph coloring. Int. J. Res. Anal. Rev. 2018, 5, 734–742.
5. Dinar, J.; Hussain, Z.; Ur Rehman, S. Wiener index for an intuitionistic fuzzy graph and its application in water pipeline network.

Ain Shams Eng. J. 2023, 14, 101826. [CrossRef]
6. Rashmanlou, H.; Borzooei, R.A. New concepts of interval-valued intuitionistic (S,T)-fuzzy graphs. J. Intell. Fuzzy Syst. 2016, 30,

1893–1901. [CrossRef]
7. Talebi, A.A.; Rashmanlou, H.; Sadati, S.H. Interval-valued intuitionistic fuzzy competition graph. J. Mult.-Valued Log. Soft Comput.

2020, 34, 335–364.
8. Cuong, B.C.; Kreinovich, V. Picture fuzzy sets-A new concept for computational intelligence problems. In Proceedings of the

2013 Third World Congress on Information and Communication Technologies (WICT), Hanoi, Vietnam, 15–18 December 2013;
pp. 1–6.

9. Al-hawary, T.; Mahmood, T.; Jan, N.; Ullah, K. On intuitionistic fuzzy graphs and some operations on picture fuzzy graphs. Ital. J.
Pure Appl. Math. 2018, 32, 1–15.

10. Akram, M.; Habib, A. q-Rung picture fuzzy graphs: A creative view on regularity with applications. J. Appl. Math. Comput. 2019,
61, 235–280. [CrossRef]

11. Amanathulla, S.; Bera, B.; Pal, M. Balanced picture fuzzy graph with application. Artif. Intell. Rev. 2021, 54, 5255–5281. [CrossRef]
12. Amanathulla, S.; Pal, M. An introduction to picture fuzzy graph and its application to select best routes in an airlines network. In

Handbook of Research on Advances and Applications of Fuzzy Sets and Logic; IGI Global: Hershey, PA, USA, 2022; pp. 385–411.
13. Chellamani, P.; Ajay, D.; Broumi, S.; Ligori, T.A.A. An approach to decision-making via picture fuzzy soft graphs. Granul. Comput.

2022, 7, 527–548. [CrossRef]
14. Shoaib, M.; Mahmood, W.; Xin, Q.; Tchier, F.; Tawfiq, F.M.O. Certain operations on complex picture fuzzy graphs. IEEE Access

2022, 10, 114284–114296. [CrossRef]
15. Xiao, W.; Dey, A.; Son, L.H. A study on regular picture fuzzy graph with applications in communication networks. J. Intell. Fuzzy

Syst. 2020, 39, 3633–3645. [CrossRef]
16. Das, S.; Ghorai, G. Analysis of road map design based on multigraph with picture fuzzy information. Int. J. Appl. Comput. Math.

2020, 6, 57. [CrossRef]
17. Koczy, L.T.; Jan, N.; Mahmood, T.; Ullah, K. Analysis of social networks and Wi-Fi networks by using the concept of picture fuzzy

graphs. Soft Comput. 2020, 24, 16551–16563. [CrossRef]
18. Mani, P.; Vasudevan, B.; Sivaraman, M. Shortest path algorithm of a network via picture fuzzy digraphs and its application.

Mater. Today Proc. 2021, 45, 3014–3018. [CrossRef]
19. Mahima, P.; Rakesh Kumar, B. On Laplacian energy of picture fuzzy graphs in site selection problem. J. Intell. Fuzzy Syst. 2021, 41,

481–498.
20. Das, S.; Ghorai, G.; Pal, M. Picture fuzzy tolerance graphs with application. Complex Intell. Syst. 2022, 8, 541–554. [CrossRef]
21. Das, S.; Ghorai, G.; Pal, M. Genus of graphs under picture fuzzy environment with applications. J. Ambient Intell. Humaniz.

Comput. 2021, 12, 10741–10756. [CrossRef]
22. Amanathulla, S.; Muhiuddin, G.; Al-Kadi, D.; Pal, M. Multiple attribute decision-making problem using picture fuzzy graph.

Math. Probl. Eng. 2021, 2021, 9937828. [CrossRef]
23. Eslahchi, C.; Onagh, B.N. Vertex-strength of fuzzy graphs. Int. J. Math. Math. Sci. 2006, 2006, 043614. [CrossRef]
24. Rosyida, I.; Widodo; Indrati, C.; Sugeng, K.A. A new approach for determining fuzzy chromatic number of fuzzy graph. J. Intell.

Fuzzy Syst. 2015, 28, 2331–2341. [CrossRef]

http://doi.org/10.1016/j.asej.2022.101826
http://dx.doi.org/10.3233/IFS-151900
http://dx.doi.org/10.1007/s12190-019-01249-y
http://dx.doi.org/10.1007/s10462-021-10020-4
http://dx.doi.org/10.1007/s41066-021-00282-2
http://dx.doi.org/10.1109/ACCESS.2022.3216615
http://dx.doi.org/10.3233/JIFS-191913
http://dx.doi.org/10.1007/s40819-020-00816-3
http://dx.doi.org/10.1007/s00500-020-04959-9
http://dx.doi.org/10.1016/j.matpr.2020.12.006
http://dx.doi.org/10.1007/s40747-021-00540-5
http://dx.doi.org/10.1007/s12652-020-02887-y
http://dx.doi.org/10.1155/2021/9937828
http://dx.doi.org/10.1155/IJMMS/2006/43614
http://dx.doi.org/10.3233/IFS-141521


Algorithms 2023, 16, 551 19 of 19

25. Mahapatra, T.; Ghorai, G.; Pal, M. Fuzzy fractional coloring of fuzzy graph with its application. J. Ambient Intell. Humaniz. Comput.
2020, 11, 5771–5784. [CrossRef]

26. Samanta, S.; Pramanik, T.; Pal, M. Fuzzy colouring of fuzzy graphs. Afrika Mat. 2016, 27, 37–50. [CrossRef]
27. Mahapatra, T.; Pal, M. Fuzzy colouring of m-polar fuzzy graph and its application. J. Intell. Fuzzy Syst. 2018, 35, 6379–6391.

[CrossRef]
28. Raut, S.; Pal, M. On chromatic number and perfectness of fuzzy graph. Inf. Sci. 2022, 597, 392–411. [CrossRef]
29. Mahapatra, R.; Samanta, S.; Pal, M. Applications of edge colouring of fuzzy graphs. Informatica 2020, 31, 313–330. [CrossRef]
30. Munoz, S.; Ortuno, M.T.; Ramirez, J.; Yanez, J. Coloring fuzzy graphs. Omega 2005, 33, 211–221. [CrossRef]
31. Rosyida, I.; Suryono, S. Coloring picture fuzzy graphs through their cuts and its computation. Int. J. Adv. Intell. Inform. 2021, 7,

63–75. [CrossRef]
32. Rosyida, I.; Indrati, C.R.; Kalayathankal, S.J. A method based on picture fuzzy graph coloring for determining traffic signal

phasing on an intersection. In Proceedings of the INFUS 2023 Conference; Springer: Cham, Switzerland, 2023; Volume 1, pp. 293–303.
33. Rosyida, I.; Nurhaida; Narendra, A.; Widodo. Matlab algorithms for traffic light assignment using fuzzy graph, fuzzy chromatic

number, and fuzzy inference system. MethodsX 2020, 7, 101–136. [CrossRef]
34. Jurio, A.; Paternain, D.; Bustince, H.; Guerra, C.; Beliakov, G. A construction method of Atanassov’s intuitionistic fuzzy sets for

image processing. In Proceedings of the 5th IEEE Conference on Intelligent Systems, London, UK, 7–9 July 2010; pp. 1–6.
35. Singh, A.; Joshi, D.K.; Kumar, S. A novel construction method of intuitionistic fuzzy set from fuzzy set and its application in

multi-criteria decision-making problem. Adv. Intell. Syst. Comput. 2019, 702, 1–9.
36. Singh, A.; Kumar, S. Picture fuzzy parameterized soft set and its application in decision making. Res. Sq. 2023, 1–13. [CrossRef]
37. Memis, S. A Study on picture fuzzy sets. In Proceedings of the 7th International IFS and Contemporary Mathematics Conference,

Mersin, Turkey, 25–29 May 2021; pp. 125–132.
38. Zuo, C.; Pal, A.; Dey, A. New concepts of picture fuzzy graphs with application. Mathematics 2019, 7, 470. [CrossRef]
39. Buckholz, J.W. Introduction to Traffic Signal Phasing. In CEDengineering.com: An Online Continuing Education Provider for

Professional Engineers; CEDengineering.com: Woodcliff Lake, NJ, USA, 2023; pp. 1–27.
40. Sumadji, S.; Asmoro, D.; Sastrosoegito, S. Urban and semi-urban traffic-facilities. In Indonesian Highway Capacity Manual;

Directorate General Bina Marga: Jakarta, Indonesia, 1993; pp. 1–76.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s12652-020-01953-9
http://dx.doi.org/10.1007/s13370-015-0317-8
http://dx.doi.org/10.3233/JIFS-181262
http://dx.doi.org/10.1016/j.ins.2022.03.050
http://dx.doi.org/10.15388/20-INFOR403
http://dx.doi.org/10.1016/j.omega.2004.04.006
http://dx.doi.org/10.26555/ijain.v7i1.612
http://dx.doi.org/10.1016/j.mex.2020.101136
http://dx.doi.org/10.21203/rs.3.rs-1914087/v1
http://dx.doi.org/10.3390/math7050470

	Introduction
	Research Challenges and Gaps
	Preliminaries
	Strong and Weak Adjacencies between Vertices in PFGs
	Coloring of PFGs Based on Strong and Weak Adjacencies between Vertices
	The Chromatic Number of PFGs Based on (,,)-Cut Coloring

	Main Results
	Some Characteristics of the Chromatic Number of PFGs
	An Algorithm for Finding the Chromatic Number of PFGs

	Experimental Result
	The Method to Model Traffic Flows at an Intersection Using PFGs
	Case Study
	Comparison to the Fuzzy Graph Coloring Method

	Conclusions
	References

