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Abstract: Artificial neural networks have changed many fields by giving scientists a strong way to
model complex phenomena. They are also becoming increasingly useful for solving various difficult
scientific problems. Still, people keep trying to find faster and more accurate ways to simulate
dynamic systems. This research explores the transformative capabilities of physics-informed neural
networks, a specialized subset of artificial neural networks, in modeling complex dynamical sys-
tems with enhanced speed and accuracy. These networks incorporate known physical laws into
the learning process, ensuring predictions remain consistent with fundamental principles, which is
crucial when dealing with scientific phenomena. This study focuses on optimizing the application of
this specialized network for simultaneous system dynamics simulations and learning time-varying
parameters, particularly when the number of unknowns in the system matches the number of un-
determined parameters. Additionally, we explore scenarios with a mismatch between parameters
and equations, optimizing network architecture to enhance convergence speed, computational effi-
ciency, and accuracy in learning the time-varying parameter. Our approach enhances the algorithm’s
performance and accuracy, ensuring optimal use of computational resources and yielding more
precise results. Extensive experiments are conducted on four different dynamical systems: first-order
irreversible chain reactions, biomass transfer, the Brusselsator model, and the Lotka-Volterra model,
using synthetically generated data to validate our approach. Additionally, we apply our method to the
susceptible-infected-recovered model, utilizing real-world COVID-19 data to learn the time-varying
parameters of the pandemic’s spread. A comprehensive comparison between the performance of
our approach and fully connected deep neural networks is presented, evaluating both accuracy
and computational efficiency in parameter identification and system dynamics capture. The results
demonstrate that the physics-informed neural networks outperform fully connected deep neural
networks in performance, especially with increased network depth, making them ideal for real-time
complex system modeling. This underscores the physics-informed neural network’s effectiveness in
scientific modeling in scenarios with balanced unknowns and parameters. Furthermore, it provides a
fast, accurate, and efficient alternative for analyzing dynamic systems.

Keywords: artificial neural networks; physics-informed neural networks; time-varying parameter;
dynamical system modeling; COVID-19 Data; deep neural networks; error metrics

1. Introduction

In many scientific and engineering fields, understanding and predicting a wide range
of complex events is all about understanding and predicting dynamical systems. These
systems often employ ordinary differential equations (ODEs) to describe and model the in-
tricate relationships inherent in various natural and artificial processes. One such common
usage is seen in compartmental models, extensively used across fields such as ecology [1],
epidemiology [2], chemical engineering [3], mathematical biology [4], and economics.
These models require careful estimation of numerous unknown parameters for their valid-
ity, often derived from data collected from experiments or real-world observations. This
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process, termed calibration of the dynamical system, constitutes a challenging optimization
problem due to its iterative nature and potential convergence issues. It is also important to
keep the gap between observed data and model forecasts as small as possible. This makes
the accurate estimation of parameters a key step in developing models. Moreover, the need
for dynamical system models with accurate parameter estimates in chemical process engi-
neering has surged due to process optimization and control technology advancements [5].
However, the difficulties associated with parameter estimation become compounded in
models, such as ODEs or differential-algebraic equations (DAEs), that exhibit non-linearity
in parameters. While many system identification techniques such as the Gauss-Newton
method [6], multiple shooting, recursive estimation [7], maximum likelihood estimation,
Markov chain Monte Carlo-based Bayesian inference [8,9], finite element methods [10],
and collocation methods [11] are available for learning parameters and solving dynami-
cal systems, each has limitations, including high computational costs, reliance on initial
guesses, and limitations with time-varying parameters. Despite the challenges, the role of
parameter estimation in model accuracy and predictability remains paramount, calling for
continued innovation and research in this fundamental mathematical field.

Artificial intelligence (AI), particularly the implementation of deep neural networks
(DNNs), has experienced a significant increase in applications for analyzing and interpret-
ing complex systems [12,13]. This is especially true for dynamical systems, which present
complex interactions requiring sophisticated analytic tools. Although these AI models
have demonstrated remarkable efficacy in data fitting and short-term prediction tasks, their
implementation may need to be improved due to certain obstacles. One major barrier is
that it takes work for AI models to understand the underlying structures of a dynamic
system’s activities. The resulting AI model predictions and real system behaviors may
be at odds with one another. Additionally, the performance of these models is heavily
reliant on the quantity and quality of input data, potentially resulting in inadequate insights
when the data fails to portray the system’s dynamics. Artificial neural networks (ANNs)
have gained popularity as an AI model because of their potential to overcome common
problems in the field, such as the necessity of massive training datasets and high processing
costs. It has been proposed that ANNs can be used to pioneering effect in estimating
parameters in systems of differential equations. The advent of ANNs traces back to the
1940s, primarily attributed to the research article by McCulloch and Pitts [14]. However, it
is only in recent years that ANNs and DNNs have seen widespread acceptance and use,
owing to significant advancements in computational capabilities and data storage. DNNs,
essentially ANNs with multiple hidden layers, have seen a surge in application across
different sectors, including computer vision, image processing [15], pattern recognition [16],
and cybersecurity [17]. The architecture of DNNs allows them to capture more variance,
contributing to their success.

The effectiveness of compartmental models, which are often described by systems of
ordinary differential equations, and the effectiveness of AI models in understanding and
predicting the behaviors of dynamical systems have been demonstrated. However, they are
not without their weaknesses. Researchers are increasingly gravitating toward combining
compartmental and AI models to improve their abilities to analyze and predict the behavior
of dynamical systems. The recent emergence of physics-informed neural networks (PINNs)
has demonstrated a promising stride in integrating differential equations into neural
networks [18]. This allows the networks to fit the data accurately, learn the parameters, and
adhere to the equations. This approach employs neural networks to simulate nonlinear
systems while minimizing the necessary data and limiting the model’s search space with
pre-existing knowledge, such as a system of differential equations. Since this development,
physics-informed neural networks (PINNs) have been routinely employed as a method for
nonlinear function approximation. These networks have exhibited impressive capabilities
in tackling diverse scientific computing tasks across multiple fields. Moreover, various
research initiatives have utilized the PINNs framework for modeling and scrutinizing
dynamic systems. Oluwasakin et al. introduced the logistic-informed neural network
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(LINN), inspired by the physics-informed neural network (PINN), to specifically predict
the number of individuals infected by the COVID-19 Omicron variant. The major benefit
of using LINN in their study lies in its ability to incorporate logistic growth behavior
directly into the neural network, resulting in predictions that align well with the natural
growth pattern of an epidemic. This method provides more accurate and reliable forecasts
for the Omicron variant spread, crucial for timely and effective public health responses
and resource allocation. By integrating logistic growth principles, LINN ensures that
the model’s predictions are not only data-driven but also grounded in epidemiological
knowledge [19]. The PINN algorithm was used to learn the epidemiological parameters of a
model for COVID-19 vaccine efficacy [20]. Long et al. applied PINN to identify and predict
the time-varying parameter of the susceptible (S), infected (I), recovered (R), and death (D)
(SIRD model) [21], Olumoyin et al. used the epidemiological-informed neural network
(EINN), which was developed through PINN, to learn the time-varying transmission rate
for the COVID-19 pandemic in various mitigation scenarios [22]. Thus, this paper seeks to
make the following significant contributions:

1. We employ physics-informed neural networks (PINNs) to learn the unknown time-
varying parameters within systems of differential equations.

2. Although the application of PINNs in modeling dynamic systems is well-established,
our work introduces novel approaches that substantially augment the existing method-
ology. Firstly, we present a unique assumption where the right-hand side function of
a dynamical system is posited to have an equal number of parameters and equations.
This hypothesis is pivotal because it implies the existence of an exact solution for
the system, a scenario rarely considered in the existing literature. By demonstrating
this principle, we provide a foundational understanding that can be leveraged for
more accurate modeling of certain types of dynamical systems. Secondly, we address
the more complex situation where the number of parameters does not align with
the number of equations in the dynamical system. Here, we focus on developing
and optimizing network architectures that significantly enhance the convergence
speed. This innovation results in improved computational efficiency and elevates
the accuracy in estimating time-varying parameters. Our approach is particularly
effective in complex systems where traditional models struggle with computational
load and accuracy.

3. We thoroughly compare parameters obtained using physics-informed neural networks
(PINNs) and those derived from fully connected deep neural networks (DNNs).
To assess the effectiveness of both methodologies, we focus on two key aspects:
computational efficiency and accuracy. Computational efficiency is evaluated based on
the time and resources required to achieve convergence, while accuracy is measured
in terms of the fidelity of the parameters to known or established values. We employ
a suite of established error metrics, including mean absolute error (MAE), root mean
square error (RMSE), and mean squared error (MSE), to evaluate the performance
of the proposed method rigorously. These metrics provide a comprehensive view of
the method’s accuracy and reliability in different scenarios. The evaluation process
is designed to validate the efficacy of PINNs in modeling dynamical systems and
offer insights into how they compare with traditional DNN approaches. By analyzing
the results through these error metrics, we can draw informed conclusions about
the practicality of employing PINNs for complex dynamical systems, particularly
regarding their ability to provide precise and computationally efficient solutions.

4. We show that employing the PINN algorithm to this specific problem becomes com-
putationally more efficient as the number of layers increases, outperforming DNNs
in terms of computational time. This finding suggests that PINNs can provide faster
processing rates for complex computational tasks, providing a substantial advantage
for time-sensitive applications.
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The paper is organized as follows: Section 2 discusses the systems of ordinary differ-
ential equations used in the study. Section 3 explores the neural network used for analysis.
Section 4 examines error metrics for model performance assessment. Section 5 analyzes
computational simulations of dynamical systems. Finally, Section 6 concludes the paper,
summarizing the study’s main findings and key points.

2. Systems of Ordinary Differential Equation

Consider a dynamical system characterized by n ordinary differential equations en-
compassing m undetermined parameters (see also, [12]).

dθ(t)
dt

= Θ(t, θ(t), δ(t)), t ∈ (t0, tend), (1)

θ(t0) = θ0

These equations make up the mathematical model that describes the system’s behavior
being studied, with m parameters that define the system’s characteristics. In this context,
θ(t) = [θ1(t), θ2(t), θ3(t), . . . , θn(t)]T is a vector field composed of n components. Further, let
δ(t) = [δ1(t), δ2(t), . . . , δm(t)] ∈ Rm be the vector encompassing the unknown parameters,
and θ0 ∈ Rn be the initial condition. On the right-hand side of (1), we have the vector-
valued function

Θ(t, θ(t), δ(t)) =



Θ1(t, θ1(t), θ2(t), . . . , θn(t), δ1(t), δ2(t), . . . , δm(t))
Θ2(t, θ1(t), θ2(t), . . . , θn(t), δ1(t), δ2(t), . . . , δm(t))

.

.

.
Θα(t, θ1(t), θ2(t), . . . , θn(t), δ1(t), δ2(t), . . . , δm(t))


not necessarily linear, consisting of n components designated as

Θk(t, θ1(t), θ2(t), . . . , θn(t), δ1(t), δ2(t), . . . , δm(t))

with k = 1, . . . , n. The data for the model equation will be represented by θ∗(t).
Using the data measured at P distinct time points for the given model, (ti, θ∗(ti)) for

i = 1, 2, . . . , P, our goal is to develop physics-informed neural network (PINN) algorithm
that estimates both the unidentified parameters δ(t) and the solution θ(t) across all time
points t. Understanding the value and change of these parameters over time can give useful
information about the system’s dynamic behavior, which can be used to improve predictive
models and solutions.

3. Artificial Neural Network

Artificial neural networks, commonly referred to as neural networks (NNs), are com-
putational models inspired by the biological neural networks present within the human
brain [14]. These systems can learn to carry out tasks by processing a range of examples,
typically without explicit, task-specific programming. While there are numerous types
of artificial neural networks, this discussion primarily focuses on deep neural networks
(DNNs) and physics-informed neural networks (PINNs).

3.1. Deep Neural Networks

Deep neural networks are a type of artificial neural network with multiple layers
between the input and output layers. These layers, known as hidden layers, allow DNNs to
learn high-level features from the input data. DNNs are a cornerstone of deep learning and
are widely used for tasks such as image recognition, speech recognition, natural language
processing, and many other applications. Consider a deep neural network with similar
architecture in [12].
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θl
n = σl

( l

∑
k=1

al
kW l

k + bl
k

)
where θl

n denotes the predicted solution, al
k are the input, σl is the activation function, W l

k
and bl

k are the weight, and the bias, respectively. Using the DNN approach to solve and
identify the parameters of the dynamical system (2.1), we find the best network parameters
ω representing the biases and weights network that minimizes the loss function. In a DNN,
the loss function is typically a measure of the discrepancy between the predictions of the
network and the true output values from the training data.

L(ω; µ) =
1
n

( µ

∑
i=1
||θ(tn; ω)− θ(tn)||2

)
and

θ(tn; ω) =
dθ(tn; ω)

dt
−Θ

(
tn, θ(tn; ω), δ(tn; ω)

)
where θ(tn) are the output values, θ(tn; ω) are the predicted output values, and n is the
number of instances.

3.2. Physics-Informed Neural Network

Physics-informed neural networks represent an advanced machine-learning technique
that integrates knowledge from physical principles to provide a robust approximation of
function and parameter identification. PINNs have emerged as a powerful tool among
data-driven deep neural networks due to their versatility in solving inverse and forward
problems [18]. A PINN is a differential system solver discovering the system parameters
directly from the available data. Alternatively, it can simulate the differential system when
the parameters are already known. Interestingly, PINNs are not restricted to a specific
neural network architecture and can utilize architectures like feed-forward neural net-
works (FNNs) as their foundational framework. PINNs utilize conventional deep learning
methodologies, employing standard activation functions and optimization techniques.
However, the unique feature of PINNs lies in their sophisticated loss function, composed
of boundary conditions, initial values, and physical restrictions. This formulation ensures
that the output from the neural network adheres strictly to the underlying system of differ-
ential equations by integrating residuals from these equations into the loss function. This
algorithm holds immense promise, primarily due to its ability to tackle complex, non-linear
systems and process vast quantities of noisy or incomplete data. Furthermore, the duality
of PINNs in managing both forward and inverse problems allows them to fit observa-
tional data effectively and generate reliable predictions based on identified parameters.
Physics-informed neural networks represent a critical leap forward in machine learning.
PINNs offer a dynamic and comprehensive approach to data approximation and system
parameter identification by amalgamating conventional deep-learning techniques with
physical principles embodied in differential equations.

3.3. Parameter Identification of Dynamical Systems Model Using PINN

Let us consider a dynamical system (1). The goal is to use the PINN approach to
solve and identify the parameters of the dynamical system model. This can be conducted
by finding the best network parameters ω, representing the biases and weights network
that minimizes the loss function. We offer a physics-informed neural network shown
in Figure 1, with two networks to do this. The first network outputs are θ(tn; ω), which
admits t as the input data. The second network learns the parameters δ(tn; ω) from the
data. The following loss function was minimized.

ζ(ω; κ) = ζt(ω; κt) + ζr(ω; κr) (2)
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ζt(ω; κt) is called the training loss and ζr(ω; κr) is called the residual loss. κ = κr ∪ κt in
the total training datasets. We define the following:

ζr(ω; κr) =
1
κr

p

∑
i=1

κr

∑
n=1
|ri(tn)|2 (3)

where

ri(tn) =
dθ(tn; ω)

dt
−Θ

(
tn, θ(tn; ω), δ(tn; ω)

)
(4)

and

ζt(ω; κt) =
1
κt

( κt

∑
n=1
||θ(tn; ω)− θ(tn)||2

)
(5)

Figure 1. Schematic diagram of the PINN with the parameters of a dynamical system of ODE model.

The network is trained to minimize (3); an optimizer such as Adams is the most
optimal weight and bias that would minimize (3). The neural network also obtains the
optimal values for the model parameters. The θ(tn) represents the loss function’s training
data. We identify the parameter δ by solving Equation (5). When trying to address the
problem (5), we can categorize it into two possible scenarios:

Scenario 1: In this particular instance, we assume the right-hand side function of a
dynamical system (1) has an equal number of parameters and equations. This scenario
shows that a solution exists. In other words, there is an exact solution [12].

Scenario 2: In this context, the number of parameters does not match the number of
dynamical system equations [12].

Remark 1. It is important to underscore that the number of networks can exceed two, contingent
upon the intricacies of the dynamical system and the parameters involved.

The implementation of physics-informed neural networks (PINNs) is carried out
using Python. Its simplicity and extensive library ecosystem make it an ideal choice for
developing sophisticated models like PINNs. Key to our implementation is TensorFlow,
which offers robust tools for building and training neural network models. TensorFlow’s
compatibility with Python and its efficient handling of large-scale numerical computations
enable the effective construction of PINN architectures. Additionally, we employ NumPy, a
Python library that supports large, multi-dimensional arrays and matrices, along with a
collection of high-level mathematical functions to operate on these arrays. This is crucial
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for handling the numerical aspects inherent in PINN development. We also utilize Pandas,
a library for data manipulation and analysis. Pandas provides structures and functions that
are ideal for modifying numerical tables and time series, making it useful for preprocessing
and organizing the data that neural networks need to learn. The synergy of these libraries
in Python creates a powerful toolkit for developing and implementing PINNs.

The source code in Figure 2 provides a comprehensive example of physics-informed
neural network implementation, illustrating the practical application of parameter iden-
tification in dynamical systems. This Python-based code features a custom PINN class,
which encompasses the complete workflow of constructing, training, and deploying the
neural network for predictive analysis. At the core of this class is the initialization method,
which is responsible for configuring the network’s layers, weights, and biases. This setup
is facilitated by the initialize_NN function, leveraging TensorFlow’s robust computational
power for efficient network architecture development. The functions neural_net and neu-
ral_net1 each articulate distinct network structures tailored for specific segments of the
model. The train and loss functions represent the heart of the learning process, where
TensorFlow’s optimization algorithms are utilized to refine the network by minimizing the
loss function. This method effectively enables the network to learn the intricacies of the
dynamical system under study. Finally, the predict function demonstrates the practical use
of the trained network in generating predictions for new datasets. This implementation not
only showcases the coding aspects of PINNs but also exemplifies the fusion of theoretical
principles with their practical application in advanced computational modeling.

Figure 2. PINN source code.
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4. Error Metrics

This section discusses the error metrics used for data-driven simulations, examining
when and why specific metrics should be employed. These error metrics provide valu-
able insights into the accuracy and performance of data-driven models, such as physics-
informed neural networks (PINNs). By evaluating the models based on these metrics,
researchers can determine the quality of their predictions and compare the effectiveness of
different approaches. In the context of learning the time-varying parameters for dynamical
systems, it is important to consider the specific characteristics of the problem and the goals
of the analysis when selecting the appropriate error metrics. For instance, if θ symbolizes
the actual data and θ̂ represents the data predicted by the model, these error metrics are
applied in our data-driven simulations:

1. Mean absolute error (MAE): a significant advantage of using the mean absolute error
(MAE) is its relevance to quantile regression. MAE represents an average of absolute
differences between predicted and actual values. The formula for mean absolute error
is given by:

MAE =
1
N

N

∑
j=1

∣∣∣∣θj − θ̂j

∣∣∣∣
2. Root mean squared error (RMSE): RMSE is in the same units as the predicted variable,

providing a straightforward interpretation of the model’s prediction error magnitude.
The formula for root mean squared error is given by:

RMSE =

√√√√ 1
N

N

∑
j=1

(θj − θ̂)2

3. Mean squared error (MSE): mean squared error (MSE) measures the amount of error
in the models. It assesses the average squared difference between the observed and
predicted values.

MSE =
1
N

N

∑
j=1

(θj − θ̂)2

5. Computational Simulations of Dynamical Systems

This section explores physics-informed neural networks (PINNs) for parameter iden-
tification and solution in various dynamical systems. Parameter identification is crucial,
especially when working with ordinary differential equations (ODEs), as each model is
essentially unique. ODEs showcase their practicality when the parameters are correctly
determined, emphasizing this methodology’s significance. The identification of parameters
becomes evident as we develop a model employing ordinary differential equations (ODEs)
to elucidate the fundamental occurrences. These parameters include different character-
istics of the modeled system, such as rate constants, initial conditions, and coefficients,
defining the form, rate of change, and stability of the solution. The parameters that make
up an ODE can also determine the computational techniques used to solve it and have a
big impact on the quality of the solution. Consequently, parameter identification is crucial
for making insightful predictions and adequately assessing the simulation of the modeled
dynamical system. We consider five benchmark problems derived from the existing lit-
erature in our discussion. For each example, we will specify the choice of neurons, the
number of hidden layers, activation functions, and other network parameters. Two of these
five problems have an exact analytical solution, which will be leveraged to validate the
model’s accuracy. In addition, the relative error metric showing the fitting accuracy of each
dynamical system using the PINN algorithm will be provided.
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5.1. First-Order Irreversible Chain Reactions

First-order irreversible chain reactions are a type of chemical reaction where a reactant
undergoes a series of transformations to form a product, with the process continuing in a
chain-like manner. A common example of such a reaction is the decomposition of hydrogen
peroxide (H2O2) in the presence of an iodide ion as a catalyst. One of the most fundamental
studies on chain reactions was conducted by Polanyi and Wigner [23], who published
a series of papers in the 1920s and 1930s on the theory of chain reactions. Consider the
subsequent first-order irreversible chain reactions [24,25].

A k1−→ B k2−→ C

The first step is a first-order reaction where species A transforms into species B at a
rate determined by the rate constant k1. The second is another first-order reaction where
species B transforms into species C at a rate determined by the rate constant k2. In both
steps, the reaction rate depends on the concentration of a single reactant (either A or B),
which is characteristic of first-order reactions and characterized by the following model:

dz1(t)
dt

= −k1(t)z1(t)

dz2(t)
dt

= k1(t)z1(t)− k2(t)z2(t).
(6)

where z1 and z2 symbolize the concentrations of chemical species A and B, respectively
and k1, k2 denote the rate constants which are the parameters required to be learned. Given
that k1 = 5, k2 = 1 and z(t = 0) = [1, 0], then the observed data z1 and z2 are given in
Table 1. The data was taken from reference [12].

Table 1. Observed values of z1 and z2 at different time points.

t z1 z2

0.0 1.000000 0.000000
0.1 0.606531 0.372883
0.2 0.367879 0.563564
0.3 0.223130 0.647110
0.4 0.135335 0.668731
0.5 0.082085 0.655557
0.6 0.049787 0.623781
0.7 0.030197 0.582985
0.8 0.018316 0.538767
0.9 0.011109 0.494326
1.0 0.006738 0.451427

The analytical solution of (6) is given as follows:

z1(t) = e−5t

z2(t) =
5
4

e−5t(−1 + e4t),
(7)

and the analytical derivatives of (7) are given by:

dz1(t)
dt

= −5e−5t

dz2(t)
dt

= 5e−t − 25
4

e−5t(−1 + e4t).
(8)

The PINNs approach to solve and identify the parameters of the first-order irreversible
chain reactions model is performed by finding the best network parameters, ω, which
represents the biases and weights network that minimizes the loss function. We offer a
physics-informed neural network (PINN) shown in Figure 3 with three networks to do this.
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The first network outputs are z1NN(tn; ω) and z2NN(tn; ω), which admits t as the input data.
The second and third networks learn the parameters k1(tn; Φ) and k2(tn; Φ) from the data.
The neural network also obtains the optimal values for the model parameters. The z1(tn)
and z2(tn) represent the loss function’s training data. Finally, the first-order irreversible
chain reaction model parameters’ mean value was obtained using PINN with one layer of
40 neurons, 90,000 epochs, sigmoid activation function used, and 10−3 learning rate. The
PINN Algorithm 1 for learning the optimal parameters of the first-order irreversible chain
reactions model (6) is shown above.

Figure 3. Schematic diagram of the PINN with the parameters of first-order irreversible chain
reactions model.

We define the residual loss ζr(ω; κr) and training loss ζt(ω; κt) as follows:

ζr(ω; κr) =
1
κr

2

∑
i=1

κr

∑
n=1
|ri(tn)|2 (9)

where

r1(tn) =
dz1NN(tn; ω)

dt
+ k1(tn; Φ)z1NN(tn; ω)

r2(tn) =
dz2NN(tn; ω)

dt
−
(

k1(tn; Φ)z1NN(tn; ω)− k2(tn; Φ)z2NN(tn; ω)

) (10)

and

ζt(ω; κt) =
1
κt

( κt

∑
n=1
|z1NN(tn; ω)− z1(tn)|2 +

κt

∑
n=1
|z2NN(tn; ω)− z2(tn)|2

)
(11)

Two distinct scenarios were examined in the study of the first-order irreversible chain
reactions model, with results detailed in Figures 4–7. For Scenario 1, the system was solved
using Equation (10) at t∗ = 0.28 and 0.19, while for Scenario 2, it was solved at t∗ = 0.22
and 0.27. Figure 4 shows the obtained solution of the actual output and the predicted
output of the first-order irreversible chain reactions model from the data. The phase space
plot of the actual output of species z1(t) against species z2(t) and the predicted output
of species z1(t) against species z2(t) is shown in Figure 5. This visualization provides
insight into the relationships and behaviors of the species involved. Figure 6 shows
the learned time-varying parameter k1 and k2 values of the first-order irreversible chain
reaction models, shedding light on how these parameters change over time in the first-order
irreversible chain reaction models. The k1(t) curve appears to have an oscillatory behavior,
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and the oscillation frequency seems consistent throughout the curve. Upon examining the
amplitude of oscillations over time, there is a noticeable variation in amplitude. While there
are some fluctuations, there appears to be an amplitude increase toward the end of the
interval. Considering the observations, a potential functional form for the curve could be a
simple sinusoidal oscillation with a constant offset. A common form for such a function is:

k1(t) = Asin(λt + α) + C.

where A is the amplitude, λ determines the frequency, α is the phase shift, and C is the
vertical shift (which should be close to 5, given the curve’s behavior). The curve k2(t)
appears to have an initial rise, followed by a decrease, then stabilizes after a certain time. It
appears to resemble an exponential decay combined with an exponential rise. A potential
functional form for such a curve could be:

k2(t) = ae−bt + cedt + e.

where a and c are the amplitudes of the respective exponential terms, b and d are the rate
constants for the decaying and rising terms, and e is a constant offset.

Algorithm 1 PINN algorithm for learning the parameters of the first-order irreversible
chain reactions model

1: Construct PINN
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: ω
Output layer: z1NN(tn; ω) and z2NN(tn; ω), n = 1, . . . , X

2: Construct neural network: k1
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: Φ
Output layer: k1(tn; Φ), n = 1, . . . , X

3: Construct neural network: k2
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: Φ
Output layer: k2(tn; Φ), n = 1, . . . , X

4: Specify the training set
κ = κr ∪ κb of the NN

5: Train the neural network
Specify a loss function

ζ(ω; κ) = ζt(ω; κt) + ζr(β; αr)

r1(tn) =
dz1NN(tn; ω)

dt
+ k1(tn; Φ)z1NN(tn; ω)

r2(tn) =
dz2NN(tn; ω)

dt
−
(

k1(tn; Φ)z1NN(tn; ω)− k2(tn; Φ)z2NN(tn; ω)

)
Minimize minκζ(ω; κ) using Adam Optimizer.

6: Return PINN solution
z1NN(tn; ω) and z2NN(tn; ω), n = 1, . . . , X

7: Return Parameter k1:
k1(tn; Φ), n = 1, . . . , X

8: Return Parameter k2:
k2(tn; Φ), n = 1, . . . , X
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Figure 4. The first-order irreversible chain reactions solution of the actual output of species z1, z2

against tdata and the predicted output of species z1, z2 against tdata.

Figure 5. The phase space plot of the actual output of species z1 against species z2 and the predicted
output of species z1 against species z2.

(a) (b)

Figure 6. The learned time-varying parameter values of the first-order irreversible chain reactions
model. (a) Time-varying parameter k1. (b) Time-varying parameter k2.
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(a) (b)

Figure 7. Absolute error plot between the data, PINN solution, and DNN solution. (a) Absolute error
plot using PINN. (b) Absolute error plot using DNN.

Table 2 shows the obtained time-varying parameters and error metrics through the
approaches described in Scenario 1 and Scenario 2. We observe that Scenario 1 proved more
accurate than Scenario 2. The accuracy of the PINN technique is evaluated by comparing
the predicted concentrations of z1 and z2 with the actual values obtained from the data.
These metrics provide insights into the fitting accuracy of the PINN technique. The results
of the simulations show that the PINN algorithm can accurately predict the concentrations
and learn the time-varying parameters of the first-order irreversible chain reactions model.
The obtained time-varying parameter values are close to the true values, and the error
metrics indicate high accuracy and good fitting of the model to the data.

Table 2. Comparison of the two approaches using PINN.

k1(t) k2(t)

True Values 5.0 1.0
Approach 1 5.0000086 0.99999505

Error of Approach 1 0.0000086 0.00000495
Approach 2 5.0005193 1.0001917

Error of Approach 1 0.0005193 0.0001917

z1(t) z2(t)

MAE of Approach 1 2.7979 × 10−7 3.0801 × 10−6

MAE of Approach 2 1.7826 × 10−5 3.7310 × 10−5

MSE of Approach 1 1.3095 × 10−13 1.1916 × 10−11

MSE of Approach 2 4.8358 × 10−10 2.0368 × 10−9

RMSE of Approach 1 3.6187 × 10−7 3.4519 × 10−6

RMSE of Approach 2 2.1991 × 10−5 4.5131 × 10−5

In addition, we compared the results we achieved using physics-informed neural
networks to those obtained using deep neural networks, as shown in Tables 3 and 4.
This comparison study used a setup of 90,000 epochs and one hidden layer containing
40 neurons, with processing time measured in seconds.

Figure 7 explores the model’s accuracy by showing the absolute error between the
target and the predictions. Specifically, Figure 7a indicates that the absolute error is bounded
by 1× 10−6 when using PINN, while Figure 7b reveals that the error is bounded by 1 × 10−5

using DNN. This comparative analysis highlights the difference in accuracy between the
two techniques, PINN and DNN, used in the modeling process. Finally, the results show
that the PINN technique achieves comparable or better parameter estimation accuracy than
the DNN technique. Additionally, the PINN technique exhibits faster computation times,
making it an efficient choice for solving and identifying parameters in dynamical systems.
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Table 3. Comparison of obtained results using PINN vs. DNN through the approaches described in
Scenario 1. The table demonstrates a significant 67.7% improvement in computational efficiency when
employing PINNs compared to DNNs, highlighting the enhanced performance and time-saving
capabilities of PINNs in dynamic system modeling.

True Values PINN DNN Epochs CPU Using PINN CPU Using DNN

k1 5.0 5.0000086 5.0000643
90,000 40s 124s

k2 1.0 0.99999505 1.0000190

Table 4. Comparison of obtained error results using PINN vs. DNN. This table presents a detailed
analysis of the error metrics for both PINN and DNN models across two variables, u1 and u2.
The results highlight the superior accuracy of PINNs, as evidenced by significantly lower error
values across all metrics compared to DNNs, underscoring the effectiveness of PINNs in dynamic
system modeling.

Error Metrics u1(PINN) u1(DNN) u2(PINN) u2(DNN)

MAE 2.7979 × 10−7 2.1615 × 10−6 3.0801 × 10−6 2.3330 × 10−5

MSE 1.3095 × 10−13 7.0444 × 10−12 1.1916 × 10−11 5.6775 × 10−10

RMSE 3.6187 × 10−7 2.6541 × 10−6 3.4519 × 10−6 2.3827 × 10−5

Furthermore, we also conducted a detailed investigation on the impact of augmenting
the number of layers in the network called shallow vs. deep layers. Specifically, we focused
on network architectures consisting of one, two, and three hidden layers, implemented
using physics-informed neural networks. Subsequently, we compared the results obtained
with deep neural networks. The respective outcomes of these analyses are succinctly
presented in Table 5. The results indicate that the PINN with one hidden layer achieves good
accuracy, and increasing the number of layers does not significantly improve performance.
Interestingly, the three hidden layer PINN model showed a lower computation time (9 s)
than the two layer model (13 s). There are various reasons for this unexpected outcome.
Firstly, the increased depth (three layers) might enable more efficient learning and quicker
convergence to a solution, thereby reducing the required epochs for training. Although
the table shows more epochs for the two-layer configuration than the three-layer one, the
actual computation time (CPU time) is less for the latter. This suggests that each epoch in
the three-layer configuration is computationally less expensive.

Table 5. Comparison of PINN vs. DNN based on shallow vs. deep layers through the approaches
described in Scenario 1. This table details the accuracy of parameter estimation (k1 and k2) and
computational performance across various network depths. Notably, it showcases the increasing
computational efficiency of PINNs over DNNs, with improvements of 66.67%, 60.61%, and 62.5% for
different layer configurations. These findings emphasize the enhanced efficiency and adaptability of
PINNs in handling complex dynamical systems, especially in deeper network architectures.

Layers Neurons k1 (PINN) k1 (DNN) k2 (PINN) k2(DNN) Epochs CPU PINN CPU DNN

1 40 4.99815 4.9925046 1.0002131 0.9969400 21378 10s 30s
2 40, 40 5.0000534 4.9999063 1.00021 1.0000036 24358 13s 33s
3 40, 40, 40 4.999991 5.0050346 0.9999847 1.0018185 16021 9s 24s

Moreover, the three-layer network might better capture the complexities of the mod-
eled dynamical system, leading to more efficient computation per epoch. This is indirectly
supported by parameter estimation accuracy (k1 and k2), which are very close to their ideal
values in the three-layer setup, indicating a high-quality learning process. Therefore, the
reduction in computation time for the three-layer networks compared to the two-layer
ones can be attributed to more efficient learning per epoch, potentially due to better repre-
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sentation and processing of the complex relationships in the data by the deeper network
architecture.

5.2. Brusselator Model

The Brusselator model is a simple mathematical model for the behavior of chemical
oscillations. Ilya Prigogine and Lefever first proposed it in 1968 [26]. The model comprises
two chemical species, U and V, that interact through non-linear differential equations. The
equations describe how the concentrations of the two species change over time, taking
into account chemical reactions, diffusion, and other factors. The Brusselator is known for
its ability to make complex, self-sustaining oscillations in the concentrations of the two
chemical species. As a result, it has been used to study a wide range of phenomena in
chemistry, biology, and physics, including patterns of gene expression and the behavior of
simple electronic circuits [27,28]. The Brusselator model is useful in various fields because
it is a simple yet rich model that can exhibit a wide range of complex behaviors.

The Brusselator reaction is a simple model of autocatalytic chemical reactions, which
is a chemical reaction catalyzed by one of the products of the reaction. The reaction has
been used as a model to study the emergence of self-organizing behavior in chemical
systems [29]. It has been applied to various fields, including chemistry, physics, biology,
and engineering. The Brusselator reaction consists of the following:

A −→ U → du
dt

= kaa

2U + V −→ 3U →
(

du
dt

= kbu2v,
dv
dt

= −kbv2y
)

B + U −→ V + C →
(

du
dt

= −kcbu,
dv
dt

= −kcbu
)

U −→ D → du
dt

= −kau.

The overall reaction is A + B −→ C + D with intermediary species U and V. A
and B are reactants while C and D are products. During the chemical reaction, suppose
the concentration reactant A and B are kept constant; therefore, the ordinary differential
equation version of the Brusselator is given below:

du(t)
dt

= a(t) + u(t)2v(t)− (b(t) + 1)u(t)

dv(t)
dt

= bu(t)− u(t)2v(t).
(12)

where u(t) and v(t) are the concentrations of the two chemical species involved in the reac-
tion, and a(t) and b(t) are the time-varying parameters that control the system’s behavior.
The Brusselator model exhibits various dynamic behaviors, depending on the values of the
a and b parameters [26]. They demonstrated that the system could exhibit stable, steady
states, oscillations, and chaotic behavior. Finally, the parameters of the Brusselator system
are also important in understanding the behavior of real-world chemical systems, which
can be modeled using similar equations. Understanding how the parameters of such a
system affect its behavior can provide insights into the underlying chemical reactions and
help predict and control the system’s behavior.

Our primary aim is to learn the time-varying parameters of the Brusselator model.
Here, we used synthetic data that was generated by randomizing the numerical solution of
the Brusselator model derived from an ODE-solver on the Brusselator model, where we
assumed the initial conditions for the first species and the second species variables to be
u(0) = 1 and v(0) = 1, respectively. We choose a = 1.0 and b = 2.5. This problem was
solved on the time interval [0.T], where T = 30. We used a grid with Px = 1000 points on
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the time interval, and every second-time step, the numerical solution vector is taken to
obtain the observation or synthetic data. We use the PINN architecture shown in Figure 1
with three networks to learn the time-varying parameters of the Brusselator model. The
first network outputs are uNN(tn; ω) and vNN(tn; ω), which admits t as the input data.
The second and third networks learn the parameters a(tn; Φ) and b(tn; Φ) from the data.
We define the residual loss ζr(ω; κr) and training loss ζt(ω; κt) which was minimized
as follows:

ζr(ω; κr) =
1
κr

2

∑
i=1

κr

∑
n=1
|ri(tn)|2. (13)

where

r1(t) =
duNN(tn; ω)

dt
−
(

a(tn; Φ)− (b(tn; Φ) + 1)uNN(tn; ω) + uNN(tn; ω)2vNN(tn; ω)

)
r2(t) =

dvNN(t)
dt

−
(

b(tn; Φ)uNN(tn; ω)− uNN(tn; ω)2vNN(tn; ω)

) (14)

and

ζt(ω; κt) =
1
κt

( κt

∑
n=1
||uNN(tn; ω)− u(tn)||22 +

kt

∑
n=1
||vNN(tn; ω)− v(tn)||22

)
. (15)

The time-varying parameters of the Brusselator model were obtained after using
PINN and the approach of Scenario 2 with three hidden layers, 64 neurons per layer,
50,000 epochs, the tanh activation function was used, and the learning rate was 10−3.
The PINN Algorithm 2 is an excellent choice for learning the optimal parameters of the
Brusselator model. The maximum parameter value a was solved at t∗ = 6.37 and parameter
b at t∗ = 13.76. Figure 8 shows the obtained solution of the actual and predicted output of
the Brusselator model after the parameters were learned with the same initial condition
used to generate the data. The phase space plot of the actual output of species u(t) against
species v(t) and the predicted output of species uNN(t) against species vNN(t) is shown in
Figure 9.

Figure 10 shows the learned time-varying parameter values of a(t) and b(t) of the
Brusselator model. The a(t) curve appears to oscillate with an overall decreasing trend. A
potential functional form for this curve is:

a(t) = e−αβ(t) (16)

b(t) = eαβ(t). (17)

where α is the constant coefficient, its value will determine the growth or decay rate. Since
α is negative in (16), the function represents decay, and if positive, the function represents
growth. The magnitude of α will determine how fast this growth or decay occurs. The
b(t) curve also appears to oscillate with an overall increasing trend. Since α is positive in
(17), the function represents growth, and if negative, the function represents decay. β(t)
is a time-dependent function that appears as the exponent of the exponential term. It
plays a crucial role in determining the behavior of the curve over time. Table 6 shows the
parameters and error metrics obtained through the approaches described in Scenario 2.
The results showed that the PINN algorithm successfully learned the parameters of the
Brusselator model. The obtained parameter values were close to the true values used to
generate the synthetic data. The accuracy of the predictions was evaluated using various
error metrics, such as mean absolute error (MAE), mean squared error (MSE), and root
mean squared error (RMSE). The error metrics indicated a high level of accuracy in the
predictions, with very small errors.
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Algorithm 2 PINN algorithm for learning the parameters of the Brusselator model

1: Construct PINN
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: ω
Output layer: uNN(tn) and vNN(tn), n = 1, . . . , X

2: Construct neural network: a
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: Φ
Output layer: a(tn), n = 1, . . . , X

3: Construct neural network: b
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: Φ
Output layer: b(tn), n = 1, . . . , X

4: Specify the training set
k = kr ∪ kb of the NN

5: Train the neural network
Specify a loss function

ζ(ω; κ) = ζt(ω; κt) + ζr(ω; κr)

r1(t) =
duNN(tn; ω)

dt
−
(

a(tn; Φ)− (b(tn; Φ) + 1)uNN(tn; ω)+

uNN(tn; ω)2vNN(tn; ω)

)
r2(t) =

dvNN(tn; ω)

dt
−
(

b(tn; Φ)uNN(tn; ω)− uNN(tn; ω)2vNN(tn; ω)

)
Minimize minκζ(ω; κ) using Adam Optimizer.

6: Return PINN solution
uNN(tn; ω) and vNN(tn; ω), n = 1, . . . , X

7: Return Parameter a:
a(tn; Φ), n = 1, . . . , X

8: Return Parameter b:
b(tn; Φ), n = 1, . . . , X

Figure 8. The Brusselator model solution of the actual output of species u,v against tdata and the
predicted output of species u,v against tdata.
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Figure 9. The phase space plot of the actual output of species u against species v and the predicted
output of species u against species v.

(a) (b)

Figure 10. The learned time-varying parameter values of the Brusselator model. (a) Time-varying
parameter a. (b) Time-varying parameter b.

Table 6. The optimal parameter estimation and the error metrics using PINN.

a b

True Values 1.0 2.5
Approach 2 1.0000001 2.5

Error of Approach 2 0.0000001 0.0000

u v

MAE of Approach 2 1.5247 × 10−6 1.7520 × 10−6

MSE of Approach 2 6.5662 × 10−12 9.5430 × 10−12

RMSE of Approach 2 2.5625 × 10−6 3.0892 × 10−6

Furthermore, we conducted a comparison between the results obtained using physics-
informed neural networks (PINN) and those obtained through deep neural networks
(DNN), as detailed in Tables 7 and 8. This comparative analysis was carried out under the
specific setup of 50,000 epochs, three hidden layers containing 64 neurons, and employing
the tanh activation function. Processing time, measured in seconds, was also considered in
this comparison. The study revealed that PINN not only achieved faster processing times
than DNN but also showed that the optimal parameters learned through PINN were closer
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to the actual values than those determined by DNN. This emphasizes the efficiency and
accuracy advantages of PINN in this particular application.

Table 7. Comparison of obtained results using PINN vs. DNN through the approaches described
in Scenario 1. This table illustrates the accuracy in parameter estimation and the significant compu-
tational efficiency improvement of 88.7% with PINNs over DNNs, highlighting the robustness and
speed of PINNs in complex system modeling.

True Values PINN DNN Epochs CPU Using PINN CPU Using DNN

a 1.0 1.0000001 1.0038480
50,000 111s 982s

b 2.5 2.5 2.5088659

Table 8. Comparison of obtained error results using PINN vs. DNN.

Error Metrics u(PINN) u(DNN) v(PINN) v(DNN)

MAE 1.5247 × 10−6 3.6030 × 10−2 1.7520 × 10−6 4.5508 × 10−2

MSE 6.5662 × 10−12 3.8405 × 10−3 9.5430 × 10−12 5.4941 × 10−3

RMSE 2.5624 × 10−6 6.1972 × 10−2 3.0891 × 10−6 7.4122 × 10−2

In addition, the model’s accuracy is further illustrated in Figure 11, where the absolute
error between the target and predictions made by physics-informed neural networks (PINN)
and deep neural networks (DNN) is presented. The comparative analysis demonstrates
that the error was significantly reduced when PINN was utilized instead of DNN. This
discrepancy highlights the difference in accuracy between the two techniques employed
in the modeling process. Furthermore, the results demonstrate that PINN matches but
often exceeds DNN regarding parameter estimation accuracy. Finally, faster computation
times make PINN an especially efficient choice for solving and pinpointing parameters in
dynamical systems.

(a) (b)

Figure 11. Absolute error plot between the data, PINN solution, and DNN solution for the Brusselator
model. (a) Absolute error plot using PINN. (b) Absolute error plot using DNN.

Finally, an analysis of data-driven simulations for training with varying numbers
of epochs, such as 30,000, 40,000, and 50,000, using three layers with 64 neurons on the
Brusselator model to learn time-varying parameters is presented in Table 9. The overall
loss decreases as the number of epochs increases from 30,000 to 50,000. This indicates
that the model benefits from a longer training duration, refining its weights and biases
more effectively to minimize the difference between its predictions and the actual data.
Therefore, increasing the number of epochs generally leads to a decrease in loss and better
performance in predicting the parameters of u and v.
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Table 9. Analysis of the Brusselator model using different epochs.

Epochs Loss Error u Error v

50,000 2.7514 × 10−2 7.9001 × 10−4 5.5722 × 10−4

40,000 1.9048 × 10−1 1.5938 × 10−3 3.3815 × 10−3

30,000 1.5272 × 10−1 2.8571 × 10−3 5.4818 × 10−3

5.3. Biomass Transfer

Biomass transfer involves the movement of organic material from one organism to an-
other within an ecosystem. This concept is key to understanding the flow of energy within
an ecosystem, as energy is transferred from producers (like plants) to primary consumers
(like herbivores) and then on to secondary and tertiary consumers (like carnivores and
omnivores). Imagine a forest in Europe populated by one or two species of trees. We pick
out some of the eldest among them, those on the brink of their life cycle and anticipated to
wither in the coming years. We then observe their journey from living, thriving trees to
becoming lifeless entities. Over time, these deceased trees decompose and topple due to
natural seasonal changes and biological influences. Ultimately, these fallen trees transform
into nutrient-rich humus, completing their life cycle [30]. Differential equations are often
used to model biomass transfer as they can describe the rate of change of a quantity (in this
case, biomass) over time.

Let us consider the dynamical system model of a biomass transfer

du1(t)
dt

= −a(t)u1(t) + b(t)u2(t)

du2(t)
dt

= −b(t)u2(t) + c(t)u3(t)

du3(t)
dt

= −c(t)u3(t).

(18)

where variable u1(t), u2(t) and u3(t) is defined by

u1(t) : biomass decayed into humus per time

u2(t) : biomass of dead trees per time

u2(t) : biomass of living trees

t : time in decades

and the variable a, b and c are the parameters required to be estimated. Given that a = 1,
b = 3, c = 5 and the initial conditions of u(t = 0) = [0, 0, 1], then the observed data [12] are
given in Table 10.

Table 10. Observed values of u1, u2 and u3 at different time points.

t u1 u2 u3

0.0 0.000000 0.000000 1.000000
0.1 0.055747 0.335719 0.606531
0.2 0.166850 0.452330 0.367879
0.3 0.282767 0.458599 0.223130
0.4 0.381125 0.414647 0.135335
0.5 0.454416 0.352613 0.082085
0.6 0.502502 0.288780 0.049787
0.7 0.528506 0.230648 0.030197
0.8 0.536641 0.181006 0.018316
0.9 0.531127 0.140241 0.011109
1.0 0.515706 0.107623 0.006738
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The analytical solution of (18) is given as follows:

u1(t) =
15
8

(
e−5t − 2e−3t + e−t

)
u2(t) =

5
2

(
− e−5t + e−3t

)
u3(t) = e−5t.

(19)

The PINN approach to solve and identify the parameters of the biomass transfer
model is made by finding the best network parameters, ω, representing the biases and
weights network that minimizes the loss function. Following a similar procedure in the
previous application, we offer PINN with four networks to do this. The first network
outputs are u1NN(tn; ω), u2NN(tn; ω) and u3NN(tn; ω), which admits t as the input data.
The second, third and fourth networks learn the parameters a(tn; Φ), b(tn; Φ) and c(tn; Φ)
from the data.

We define the residual loss ζr(ω; κr) and training loss ζt(ω; κt) as follows:

ζr(ω; κr) =
1
κr

3

∑
i=1

κr

∑
n=1
|ri(tn)|2. (20)

where

r1(tn) =
du1NN(tn; ω)

dt
−
(
− a(tn; Φ)u1NN(tn; ω) + b(tn; Φ)u2NN(tn; ω)

)
r2(tn) =

du2NN(tn; ω)

dt
−
(
− b(tn; Φ)u2NN(tn; ω) + c(tn; Φ)u3NN(tn; ω)

)
r3(tn) =

du3NN(tn; ω)

dt
−
(
− c(tn; Φ)u3NN(tn; ω)

) (21)

and

ζt(ω; κt) =
1
κt

( κt

∑
n=1
|u1NN(tn; ω)− u1(tn)|2 +

κt

∑
n=1
|u2NN(tn; ω)− u2(tn)|2

+
κt

∑
n=1
|u3NN(tn; ω)− u3(tn)|2

)
.

(22)

The neural network obtains the optimal values for the model parameters. The u1(tn),
u2(tn) and u3(tn) represent the loss function’s training data. The training process minimizes
the residual loss, which measures the discrepancy between the model predictions and the
actual differential equations, and the training loss, which measures the discrepancy between
the model predictions and the observed data. Finally, the biomass transfer model’s time-
varying parameters were obtained using PINN with one layer of 10 neurons, 71,800 epochs,
the tanh activation function, and a learning rate of 10−3. The PINN Algorithm 3 for learning
the optimal parameters of the biomass transfer model (18) is shown below.
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Algorithm 3 PINN algorithm for learning the parameters of the biomass transfer model

1: Construct PINN
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: ω
Output layer: u1NN(tn; ω), u2NN(tn; ω) and u3NN(tn; ω), n = 1, . . . , X

2: Construct neural network: a
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: Φ
Output layer: a(tn; Φ), n = 1, . . . , X

3: Construct neural network: b
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: Φ
Output layer: b(tn; Φ), n = 1, . . . , X

4: Construct neural network: c
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: Φ
Output layer: c(tn; Φ), n = 1, . . . , X

5: Specify the training set
κ = κr ∪ κb of the NN

6: Train the neural network
Specify a loss function

ζ(ω; κ) = ζt(ω; κt) + ζr(ω; κr)

r1(tn) =
du1NN(tn; ω)

dt
−
(
− a(tn; Φ)u1NN(tn; ω) + b(tn; Φ)u2NN(tn; ω)

)
r2(tn) =

du2NN(tn; ω)

dt
−
(
− b(tn; Φ)u2NN(tn; ω) + c(tn; Φ)u3NN(tn; ω)

)
r3(tn) =

du3NN(tn; ω)

dt
−
(
− c(tn; Φ)u3NN(tn; ω)

)
Minimize minκζ(ω; κ) using Adam Optimizer.

7: Return PINN solution
u1NN(tn; ω), u2NN(tn; ω) and u3NN(tn; ω), n = 1, . . . , X

8: Return Parameter a:
a(tn; Φ), n = 1, . . . , X

9: Return Parameter b:
b(tn; Φ), n = 1, . . . , X

10: Return Parameter c:
c(tn; Φ), n = 1, . . . , X

The time-varying parameters a(t), b(t), and c(t) are obtained using the above two
scenarios. The corresponding Equation (19) system was solved at t∗ = 0.26, 0.65, and
0.59 for parameters a, b, and c, and Figure 12 shows the obtained exact solution and the
predicted output of the biomass transfer model. The 3D surface plot of the actual output of
species u1, u2 and u3 and the predicted output of species u1, u2 and u3 is shown in Figure 13.
Figure 14 shows the learned time-varying parameter values of the biomass transfer model
for different inputs of a(t), b(t), and c(t). The a, b, and c curves look like quadratic functions.
The plot of the absolute error between the target and the predictions is shown in Figure 15.
Table 11 shows the parameters and error metrics obtained through the approaches described
in Scenarios 1 and 2. We observe that Scenario 1 proved more accurate than Scenario 2.
The results demonstrate that the PINN approach yields accurate parameter estimates and
predictions for the biomass transfer model. The obtained parameters are close to their true
values, and the error metrics indicate high accuracy and performance.
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Figure 12. The biomass transfer exact solution and the predicted output of species u1, u2, u3

against tdata.

(a) (b)

Figure 13. The true and the predicted values of species u1, u2 and u3. (a) The true values of species U.
(b) The predicted values of species U.

In addition, the results obtained from the physics-informed neural networks approach
are compared with the values and results reported in the literature using deep neural net-
works [12]. This comparative study was conducted with a configuration of 71,800 epochs
and one hidden layer containing 10 neurons. The results are shown in Table 12. The
PINN approach outperforms the DNN approach in terms of accuracy and computational
efficiency, as evidenced by comparing results and CPU times in Table 12. Furthermore,
Table 13 presents a comparative analysis between physics-informed neural networks and
deep neural networks, illustrating the differences in their performance across shallow
and deep layers. The CPU time of PINN for one, two, and three layers with 40 neurons
are 9, 9, and 6 s, while for DNN is 20, 19, and 16 s [12]. The data presented in Table 13
demonstrates that the PINN approach outperforms the DNN approach in terms of accuracy
and computational efficiency, as evidenced by comparing results and CPU times, especially
in both shallow and deep-layer processing capabilities. Specifically, for a network with
one layer of 40 neurons, the PINN model was 55% more efficient than the DNN model.
Similarly, for two layers of 40 neurons each, the efficiency improvement was 52.63%, and
for three layers, it increased to 62.5%. These results highlight the potential of PINNs in
providing faster computational solutions, particularly as the network complexity increases,
making them highly suitable for real-time complex system modeling.
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Finally, applying physics-informed neural networks in modeling biomass transfer
shows promising results in accurately learning time-varying parameters and predicting the
ecosystem’s behavior. The PINN approach offers advantages over traditional and other neu-
ral network approaches, making it a valuable tool for studying complex ecological systems.

(a) (b)

(c)

Figure 14. The learned time-varying parameter values of the biomass transfer model. (a) Time-
varying parameter a. (b) Time-varying parameter b. (c) Time-varying parameter c.

Figure 15. Absolute error plot between the data and PINN solution.
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Table 11. Comparison of the two approaches using PINN.

a b c

True Values 1.0 3.0 5.0
Approach 1 0.99999785 2.999931 5.000046

Error of Approach 1 0.00000215 0.000069 0.000046
Approach 2 1.0000874 3.0001755 5.0010123

Error of Approach 1 0.0000874 0.0001755 0.0010123

u1 u2 u3

MAE of Approach 1 2.3118 × 10−5 1.8068 × 10−5 1.5237 × 10−6

MAE of Approach 2 2.1915 × 10−5 2.6433 × 10−5 3.4797 × 10−5

MSE of Approach 1 6.4652 × 10−10 3.9821 × 10−10 3.5008 × 10−12

MSE of Approach 2 6.9882 × 10−10 8.9255 × 10−10 1.8445 × 10−9

RMSE of Approach 1 2.5427 × 10−5 1.9955 × 10−5 1.8709 × 10−6

RMSE of Approach 2 2.6435 × 10−5 2.9876 × 10−5 4.2948 × 10−5

Table 12. Comparison of obtained results using PINN vs. reported in the literature using DNN.

True Values PINN DNN [12] Epochs

a 1.0 0.99999785 1.0024
71,800

b 3.0 2.999931 3.0026
71,800

c 5.0 5.000046 5.0150

Table 13. Comparison of PINN vs. reported in the literature using DNN [12] based on shallow vs.
deep layers.

Layers Neurons a (PINN) a (DNN) b (PINN) b (DNN) c (PINN) c (DNN) Epochs

1 40 1.0000379 1.0044 3.0000386 2.9936 5.0002103 4.9451 20,000
2 40, 40 1.0000603 1.0051 2.9999495 3.0125 4.9998903 5.0515 15,107
3 40, 40, 40 0.99996376 1.0044 3.000064 2.9936 4.999971 4.9451 9800

5.4. Lotka-Volterra Model

The Lotka-Volterra model is a model of the evolution of a prey-predator system. A
prey-predator system is a completion where one species, called the predator, has more
impact (winning), and the other species, less impact (losing), called the prey. James Lotka
and Vito Volterra proposed the Lotka-Volterra model in 1925 and 1926 [31,32]. If P(t) is the
prey population and Q(t) the predator population at time t, then the ordinary differential
equation of the Lotka-Volterra model is

dP(t)
dt

= P(t)(a(t)− b(t)Q(t)) (23)

dQ(t)
dt

= Q(t)(c(t)P(t)− d(t)) (24)

where variable P(t), Q(t), a(t), b(t), c(t) and d(t) represents

P(t) : the size of the prey population per time

Q(t) : the size of the predator population

a(t) : the prey per capital rate of increase per time

b(t) : the capture efficiency per time

c(t) : the conversion efficiency per time

d(t) : the mortality rate per time
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The parameters a(t), b(t), c(t), d(t) are non-negative.
The Lotka-Volterra model has an adequate system model up to some parameters that

need to be determined. To solve the Lotka-Volterra model, you can use numerical methods
or analytical techniques. A physics-informed neural network approach is proposed in
this case. The PINN combines neural networks with physical laws or equations to learn
the model’s time-varying parameters from data. Following the same PINN architecture
shown in Figure 3, we offer a PINN algorithm with five networks to do this. The first
network outputs are PNN(tn; ω) and QNN(tn; ω), which admits t as the input data. The
second, third, fourth, and fifth networks learn the parameters a(tn; Φ), b(tn; Φ), c(tn; Φ)
and d(tn; Φ) from the data. We define the residual loss ζr(ω; κr) and training loss ζt(ω; κt)
as follows to quantify the discrepancy between the model predictions and the actual data.
The PINN algorithm minimizes the combined loss function to learn the optimal parameters
and obtain the solution of the Lotka-Volterra model.

ζr(ω; κr) =
1
κr

2

∑
i=1

κr

∑
n=1
|ri(tn)|2. (25)

where

r1(t) =
dPNN(tn; ω)

dt
−
(

PNN(tn; ω)(a(tn; Φ)− b(tn; Φ)QNN(tn; ω))

)
r2(t) =

dQNN(tn; ω)

dt
−
(

QNN(tn; ω)(c(tn; Φ)PNN(tn; ω)− d(tn; Φ))

) (26)

and

ζt(ω; κt) =
1
κt

( κt

∑
n=1
|PNN(tn; ω)− P(tn)|2 +

κt

∑
n=1
|QNN(tn; ω)−Q(tn)|2

)
(27)

To generate our measurement data, we numerically solve (23) and (24), utilizing
an initial condition of (P0, Q0) = (0.2, 0.3). We selected parameter values as follows:
a = 1, b = 2, c = 1, and d = 0.3. The problem was resolved over a period delineated by the
interval [0, T], where T is set to 13, a duration that approximately encapsulates one cycle.
We employ a Nx = 100 points grid within this temporal scope. Our measurement data
is procured by extracting the numerical solution vector at every alternate time step. As a
result of this method, we obtain a dataset where N = 50 [33]. Finally, the Lotka-Volterra
model parameters were obtained using PINN and the approaches from Scenario 2 with
three hidden layers, 64 neurons per layer, 50,000 epochs, the sigmoid activation function,
and a learning rate of 10−3. The PINN Algorithm 4 for learning the optimal parameters of
the Lotka-Volterra model is shown below.

After the parameters were learned using the same initial condition used to produce the
data, the results that are obtained are then compared with the true values of the parameters
and the actual data. Figures are provided to visualize the predicted prey and predator
populations, the phase space plot, and the absolute error between the target and predicted
values. The tables present the initial and obtained parameters and error metrics such as
MAE, MSE, and RMSE.
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Algorithm 4 PINN algorithm for learning the parameters of Lotka-Volterra model

1: Construct PINN
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: ω
Output layer: PNN(tn; ω) and QNN(tn; ω), n = 1, . . . , X

2: Construct neural network: a
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: Φ
Output layer: a(tn; Φ), n = 1, . . . , X

3: Construct neural network: b
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: Φ
Output layer: b(tn; Φ), n = 1, . . . , X

4: Construct neural network: c
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: Φ
Output layer: c(tn; Φ), n = 1, . . . , X

5: Construct neural network: d
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: Φ
Output layer: d(tn; Φ), n = 1, . . . , X

6: Specify the training set
κ = κr ∪ κb of the NN

7: Train the neural network
Specify a loss function

ζ(ω; κ) = ζt(ω; κt) + ζr(ω; κr)

r1(t) =
dPNN(tn; ω)

dt
−
(

PNN(tn; ω)(a(tn; Φ)− b(tn; Φ)QNN(tn; ω))

)
r2(t) =

dQNN(tn; ω)

dt
−
(

QNN(tn; ω)(c(tn; Φ)PNN(tn; ω)− d(tn; Φ))

)
Minimize minκζ(ω; κ) using Adam Optimizer.

8: Return PINN solution
PNN(tn; ω) and QNN(tn; ω), n = 1, . . . , X

9: Return Parameter a:
a(tn; Φ), n = 1, . . . , X

10: Return Parameter b:
b(tn; Φ), n = 1, . . . , X

11: Return Parameter c:
c(tn; Φ), n = 1, . . . , X

12: Return Parameter d:
d(tn; Φ), n = 1, . . . , X

Figure 16 displays the resulting solution of the actual and predicted output of the
Lotka-Volterra model. Figure 17 shows the phase space plot of the anticipated output of
species P(t) versus species Q(t) and the actual output of species P(t) against species Q(t).
Figure 18 displays the Lotka-Volterra model’s learned time-varying parameter values for
various inputs of PNN and QNN .
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Figure 16. The Lotka-Volterra model solution for the real output of species P and Q against time data
and the predicted output of species P and Q against time data.

Figure 17. The phase space plot of the actual output of species P against species Q and the predicted
output of species P against species Q of the Lotka-Volterra model.

The learned time-varying parameters are a(t), b(t), c(t), and d(t). It was observed
that the functional form of the curve of a(t) is linear, while the functional forms of b(t), c(t),
and d(t) are

b(t) = B sin(λt + α) + k

c(t) = C sin(λt + α) + k

d(t) = D sin(λt + α) + k

where B, C and D are the amplitude, λ determines the frequency, α is the phase shift, and K
is the vertical shift (which should be close to the initial values, given the curve’s behavior).

Figure 19 plots the absolute error between the target and the Lotka-Volterra model’s
predictions. Tables 14 and 15 show the initial and the obtained parameters for the Lotka-
Volterra model and the error metrics through the approaches described in Scenario 2.
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(a) (b)

(c) (d)

Figure 18. The learned time-varying parameter values of the Lotka-Volterra model. (a) Time-
varying parameter a. (b) Time-varying parameter b. (c) Time-varying parameter c. (d) Time-varying
parameter d.

Figure 19. Absolute error plot between the data and PINN solution of the Lotka-Volterra model.

Table 14. The parameter estimation of the Lotka-Volterra model.

a b c d

True Values 1.0 2.0 1.0 0.3
Approach 2 0.999136 1.9990387 1.000002 0.3

Error of Approach 2 0.000864 0.0009619 0.000002 0.00
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Table 15. The error metrics of the Lotka-Volterra model.

P Q

MAE 2.3452 × 10−4 2.4140 × 10−4

MSE 8.5244 × 10−8 1.0660 × 10−7

RMSE 2.9197 × 10−4 3.2649 × 10−4

Furthermore, our findings, obtained through the utilization of physics-informed neural
networks (PINN), were compared with those reported in scholarly literature employing
deep neural networks (DNN) [33]. As illustrated in Table 16, this comparison involved
using a single hidden layer encompassing 20 neurons and a sigmoid activation function
over a training span of 50,000 epochs. The comparison shows that PINNs perform better
than DNNs regarding parameter estimation for the Lotka-Volterra model.

Table 16. Comparison of the obtained results using PINN vs. those reported in the literature using
DNN for the Lotka-Volterra model.

True Values PINN DNN [33] Epochs

a 1.0 0.999876 0.9931
50,000

b 2.0 1.999771 1.9860
50,000

c 1.0 0.999869 0.9946
50,000

d 0.3 0.300004 0.2984

5.5. SIR Model

The SIR model is a widely used mathematical model in epidemiology to understand
the spread of infectious diseases within a population. It divides the population into three
compartments: susceptible (S), infected (I), and recovered (R). In this model, individuals
can transition between these compartments by interacting with infected others [2,34]. The
SIR model assumes that the population size is constant, meaning no births, deaths, or
migrations occur during the disease outbreak. Additionally, it assumes that individuals
in the population mix randomly, and there is a homogeneous mixing pattern. A set of
ordinary differential equations can describe the dynamics of the SIR model. Let us denote
the number of susceptible individuals as S(t), the number of infected individuals as I(t),
and the number of recovered individuals as R(t). The following equations give the rates of
change of these compartments over time:

dS
dt

=
−β(t)S(t)I(t)

N
dI
dt

=
β(t)S(t)I(t)

N
− γ(t)I(t)

dR
dt

= γ(t)I(t).

(28)

where variable S(t), I(t), R(t), N, β(t) and γ(t) represents

S(t) : the numbers of susceptible individuals at time t

I(t) : the numbers of infected individuals at time t

R(t) : the numbers of individuals recovered at time t

N : the total population size.

β(t) : the transmission rate per time

γ(t) : the recovery rate per time.



Algorithms 2023, 16, 547 31 of 36

The continuity equation is given by

N = S(t) + I(t) + R(t), t ≥ t0

where the initial conditions are denoted by S(t0) = S0, I(t0) = I0 and R(t0) = R0, where
t ≥ t0 represents time in days and t0 is the start date of the pandemic in the model. The SIR
model provides insights into the dynamics of an infectious disease outbreak, such as the
peak number of infected individuals, the duration of the epidemic, and the overall fraction
of the infected population. These quantities depend on the model parameters β and γ
values. It is important to note that the SIR model makes several simplifying assumptions.
For instance, it assumes that the population is well-mixed, which may be false. We aim
to learn the time-varying parameter β(t) and γ(t) of the SIR model from real-life data
(COVID-19) using PINN. Following the same procedure as in the previous application, we
present PINN Algorithm 5 with three networks to do this. The first network outputs are
SNN(tn; ω), INN(tn; ω) and RNN(tn; ω), which admits t as the input data. The second and
third networks learn the parameters β(tn; Φ) and γ(tn; Φ) from the data, where ω and Φ
represent the biases and weights of the network that minimize the loss function.

Algorithm 5 PINN algorithm for learning the parameters of the SIR model

1: Construct PINN
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: ω
Output layer: SNN(tn; ω), INN(tn; ω) and RNN(tn; ω), n = 1, . . . , X

2: Construct neural network: β
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: Φ
Output layer: β(tn; Φ), n = 1, . . . , X

3: Construct neural network: γ
Specify the input: tn, n = 1, . . . , X
Initialize PINN parameter: Φ
Output layer: γ(tn; Φ), n = 1, . . . , X

4: Specify the training set
Training data: using cubic spline to generate I(ti), R(ti); i = 1, . . . , X given from the

dataset.
5: Train the neural network

Specify a loss function

r1(t) =
dSNN(t)

dt
−
(
−β(tn; Φ)SNN(tn; ω)INN(tn; ω)

N

)
r2(t) =

dINN(tn; ω)

dt
−
(

β(tn; Φ)SNN(tn; ω)INN(tn; ω)

N
− γ(tn; Φ)INN(tn; ω)

)
r3(t) =

dRNN(tn; ω)

dt
−
(

γ(tn; Φ)INN(tn; ω)

)
Minimize minκζ(ω; κ) using Adam Optimizer.

6: Return PINN solution
SNN(tn; ω), INN(tn; ω) and RNN(tn; ω), n = 1, . . . , X

7: Return Parameter β:
β(tn; Φ), n = 1, . . . , X

8: Return Parameter γ:
γ(tn; Φ), n = 1, . . . , X
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We define the residual loss ζr(ω; κr) and training loss ζt(ω; κt) as follows:

ζr(ω; κr) =
1
κr

3

∑
i=1

κr

∑
n=1
||ri(tn)||22. (29)

where

r1(t) =
dSNN(t)

dt
−
(
−β(tn; Φ)SNN(tn; ω)INN(tn; ω)

N

)
r2(t) =

dINN(t)
dt

−
(

β(tn; Φ)SNN(tn; ω)INN(tn; ω)

N
− γ(tn; Φ)INN(tn; ω)

)
r3(t) =

dRNN(t)
dt

−
(

γ(tn; Φ)INN(tn; ω)

) (30)

ζt(ω; κt) =
1
κt

( κt

∑
n=1
||SNN(tn; ω)− S(tn)||22 +

κt

∑
n=1
||INN(tn; ω)− I(tn)||22

+
κt

∑
n=1
||RNN(tn; ω)− R(tn)||22

)
.

(31)

Here, we use data from Italy [35] starting from the date of the first reported cases
to the day before vaccination data were reported, which is from 31st of January to 11
December 2020. We take the total population N to be 59.44 × 106 in Italy. Cubic spline
interpolation generates 2000 training points from the cumulative infection and recovered
data. The cumulative infections and recovered data are matched against the cumulative
and recovered learned solutions. Algorithm 5 was implemented using publicly available
COVID-19 data [35]. The parameters of the data using the SIR model and the learned
cumulative infection and recovered data were obtained after using PINN and the approach
of Scenario 2 with five hidden layers, 64 neurons per layer, 100,000 epochs, the tanh
activation function was used, and a learning rate of 10−3. Figure 20 shows the learned
solution of the SIR model, comparing the actual and predicted outputs of the infected and
recovered populations. The cumulative data aligns closely with an exponential function.
Figure 21 displays the learned values of β(t) and γ(t) using PINN. The phase space plot
in Figure 22 illustrates the relationship between the actual and predicted infected and
recovered populations.

(a) (b)

Figure 20. Cont.
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(c)

Figure 20. The data and the learned SIR model using PINN Algorithm 5 on COVID-19 data. (a) The
susceptible graph. (b) The data and the learned infectives. (c) The data and the learned recovered
population.

(a) (b)

Figure 21. The learned parameters of SIR model using PINN Algorithm 5 on COVID-19 data. (a) The
learned β. (b) The learned γ.

Figure 22. The phase space plot of the actual output of I against R and the predicted output of I
against R of the SIR model from the COVID-19 data.

Figure 23 depicts the absolute error between the target and predicted values of the SIR
model using PINN. Table 17 summarizes the error metrics for the SIR model, indicating the
accuracy of the PINN solution. The graph displays the absolute errors for two datasets,
“I” and “R” over time. After day 250, there is a noticeable spike in errors for both datasets.
This surge might be attributed to data inconsistencies, external factors impacting the mea-
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surements, or potential limitations in the predictive model if one was used. Additionally,
increased variability in the data or unforeseen shifts in the underlying system around day
250 could also be factors. A thorough examination of the data collection process and any
external events during that period is essential for a definitive conclusion. The metrics in-
clude mean absolute error (MAE), mean squared error (MSE), and root mean squared error
(RMSE). These metrics show that the PINN solution closely approximates the COVID-19
data, demonstrating the approach’s effectiveness. Finally, learning time-varying parameters
from real-life data using PINN enhances our understanding of disease dynamics and can
aid in making informed decisions regarding public health interventions. This approach
can be applied to various infectious diseases, allowing for more accurate modeling and
prediction of their spread. Combining the SIR model and PINN presents a valuable tool for
studying and managing epidemics.

Figure 23. Absolute error plot between the COVID-19 data and the PINN solution of the SIR model.

Table 17. The error metrics of the SIR model.

I R

MAE 1.3053 × 10−3 1.2820 × 10−3

MSE 6.9586 × 10−6 6.0906 × 10−6

RMSE 2.6379 × 10−3 2.4679 × 10−4

6. Conclusions

This study has systematically explored the capabilities of physics-informed neural
networks in modeling dynamic systems, marking a significant contribution to the field.
Our research has highlighted the enhanced computational efficiency and accuracy of
physics-informed neural networks, especially when compared to traditional deep neural
networks. Physics-informed neural networks are very good at staying consistent with basic
scientific laws because they use physical principles directly in the learning process. This is
very important when working with complex dynamic systems. The novel contributions
of this research lie in optimizing physics-informed neural networks for scenarios where
the number of unknowns corresponds to the number of undetermined parameters. This
approach has not only streamlined the process of dynamic system modeling but has also
opened new avenues for research in this field. The application of our methodology to real-
world scenarios, such as the COVID-19 pandemic model, further validates its practicality
and relevance.

Quantitative comparisons have been a cornerstone of this study, providing clear evi-
dence of the superiority of physics-informed neural networks over deep neural networks.
We have demonstrated this through various error metrics. Additionally, computational
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efficiency has been quantitatively assessed, revealing that physics-informed neural net-
works significantly improve processing speed, an aspect critical for real-time applications.
Finally, our results show that physics-informed neural networks have a lot of potential as
strong, fast, and accurate scientific modeling tools that can deal with the complexities of
dynamic systems. This research opens up new possibilities for future studies. It shows how
important it is to keep looking into and improving complex neural network designs for
use in science. A key area for future work is to determine how to learn the time-dependent
parameters of stiff dynamical systems.

The code for the work can be found on github (accessed on 23 November 2023).
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