
Citation: Han, X.; Li, C.; Wang, Z.;

Liu, G. NDARTS: A Differentiable

Architecture Search Based on the

Neumann Series. Algorithms 2023, 16,

536. https://doi.org/10.3390/

a16120536

Academic Editor: Stefano Mariani

Received: 8 October 2023

Revised: 10 November 2023

Accepted: 16 November 2023

Published: 25 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

NDARTS: A Differentiable Architecture Search Based on the
Neumann Series
Xiaoyu Han, Chenyu Li, Zifan Wang and Guohua Liu *

School of Mathematics, Southeast University, Nanjing 211189, China; 220231934@seu.edu.cn (X.H.);
lichenyu@seu.edu.cn (C.L.); 220201657@seu.edu.cn (Z.W.)
* Correspondence: liuguohua@seu.edu.cn

Abstract: Neural architecture search (NAS) has shown great potential in discovering powerful and
flexible network models, becoming an important branch of automatic machine learning (AutoML).
Although search methods based on reinforcement learning and evolutionary algorithms can find high-
performance architectures, these search methods typically require hundreds of GPU days. Unlike
searching in a discrete search space based on reinforcement learning and evolutionary algorithms, the
differentiable neural architecture search (DARTS) continuously relaxes the search space, allowing for
optimization using gradient-based methods. Based on DARTS, we propose NDARTS in this article.
The new algorithm uses the Implicit Function Theorem and the Neumann series to approximate the
hyper-gradient, which obtains better results than DARTS. In the simulation experiment, an ablation
experiment was carried out to study the influence of the different parameters on the NDARTS
algorithm and to determine the optimal weight, then the best performance of the NDARTS algorithm
was searched for in the DARTS search space and the NAS-BENCH-201 search space. Compared with
other NAS algorithms, the results showed that NDARTS achieved excellent results on the CIFAR-10,
CIFAR-100, and ImageNet datasets, and was an effective neural architecture search algorithm.

Keywords: neural network; neural architecture search; DARTS; Neumann series

1. Introduction

Neural networks have seen great success in many different areas due to their powerful
feature extraction ability, including machine translation [1,2], image recognition [3,4], and
object detection [5,6]. Despite their success, neural networks are still hard to design, and
designing them requires substantial expert knowledge and much computational time [7,8].
Manually designing the structure of a neural network is a trial-and-error process, and the
search for network architectures is very time-consuming and labor-intensive, requiring a
large amount of computational resources. Recently, there has been a growing interest in
Neural Architecture Search (NAS) [9–11], which aims to automate the neural architecture
designing process. NAS can be divided into three parts: search space, search strategy,
and performance estimation strategy.The search space defines which architectures can be
represented in principle. The search strategy details how to explore the search space. The
performance estimation strategy defines which architecture performs well.

Many different search strategies can be used to explore the space of neural archi-
tectures, including the random search, reinforcement learning (RL) [12–14], evolutionary
algorithm (EA) [15–19], Bayesian optimization (BO) [20–22], and gradient-based meth-
ods [23–25]. In the RL based methods, the choice of a component of the architecture is
regarded as an action. A sequence of actions defines the architecture of a neural network,
whose validation set accuracy is used as the reward. In the original paper [10], they used
the REINFORCE algorithm to estimate the parameters of a recurrent neural network (RNN),
which represents a policy to generate a sequence of symbols (actions) specifying the struc-
ture of the CNN; the reward function was the classification accuracy on the validation

Algorithms 2023, 16, 536. https://doi.org/10.3390/a16120536 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16120536
https://doi.org/10.3390/a16120536
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-0445-2795
https://doi.org/10.3390/a16120536
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16120536?type=check_update&version=2

Algorithms 2023, 16, 536 2 of 25

set of a CNN generated from this sequence. Zoph B. et al. [12] extended this by using
a more structured search space, in which the CNN was defined in terms of a series of
stacked “cells”.

An alternative to RL is to use an EA. In [15], they introduced the age mechanism, mak-
ing their method more inclined to choose younger and better performing structures during
the evolution. This ensures diversity and the survival of the fittest in the evolutionary pro-
cess, which is called age evolution. In EA based methods, the search is performed through
mutations and re-combinations of architectural components, where those architectures
with better performances will be selected to continue evolving. Most of the Bayesian opti-
mization methods use tree-based methods and the Monte Carlo Tree Search to effectively
search the architecture space.

Despite the ability of these methods to learn network structures that outperform man-
ually designed architectures, they are often plagued by issues such as high computational
complexity and extended search times. Additionally, due to the discrete nature of their
search space, these methods can only be indirectly optimized. As a result, the entire net-
work search stage can feel more like a black-box optimization process, which necessitates
the evaluation of a considerable number of networks. This inefficiency leads to a significant
waste of both time and computational resources.

Rather than conducting a search over a discrete set of candidate architectures, gradient-
based methods aim to convert the discrete search into an optimization problem within
continuous space. This transformation allows for the utilization of gradient descent meth-
ods to effectively explore architectures by operating in a continuous search space.

In contrast to RL and EAs, gradient-based search methods operate within a continuous
space to seek out architectures, thereby enhancing the overall efficiency of the process.
Cai H et al. [26] proposed the ProxylessNAS method for different tasks and neural network
structures, using fully parameterized hyper-networks and binary neural network path
structures to reduce hardware computing resource consumption. Zela A et al. [27] pro-
posed the R-DARTS algorithm, which improves the robustness of the DARTS algorithm
through the data augmentation and L2 regularization methods. Chen X et al. proposed the
SDARTS [28] and the P-DARTS algorithms. The former uses the random smoothing and
adversarial training methods to improve robustness, while the latter uses the search space
approximation methods to reduce computational resource consumption and increase the
search stability. The SNAS algorithm proposed by Xie et al. [29] generates subnetworks
through random sampling without retraining all the model parameters during the eval-
uation phase. Xu Y et al. [25] proposed the PC-DARTS algorithm, which uses channel
sampling to reduce the required storage space, and uses the method of link edge normal-
ization to improve the search stability. DARTS+ [30] prevents the collapse phenomenon,
which dramatically increases the number of skip connections by analyzing the number of
skip connections and the final architecture’s performance. This means that the number of
skip connections and the number of training epochs are decreased using methods such as
early stopping. P Hou et al. [31] proposed Single-DARTS, which merely uses single-level
optimization, updating network weights and architecture parameters simultaneously with
the same data batch. In paper [32], the authors proposed the Self-Distillation Differentiable
Neural Architecture Search (SD-DARTS) to alleviate the discretization gap. We utilized
self-distillation to distill the knowledge from the previous steps of the supernet to guide its
training in the current step, effectively reducing the sharpness of the supernet’s loss and
bridging the performance gap between the supernet and the optimal architecture.

In 2018, Liu et al. proposed the Differential Architecture Search (DARTS) [23] to search
for neural network structures based on the gradient descent algorithm, which significantly
improved the speed of the neural network structure search, and showed outstanding
performance through continuous relaxation. Through the continuous relaxation of archi-
tecture, the search for a neural network’s architecture can be transformed into a search
for its weight coefficients. This approach, having a differentiable objective function, is
amenable to gradient-based methods that efficiently explore such architectures. Despite the

Algorithms 2023, 16, 536 3 of 25

potential benefits of this approach, the DARTS algorithm has encountered several issues,
such as high computational demands, performance gaps between discrete subnetworks and
hyper-networks, and unstable search processes. In light of these challenges, this paper aims
to enhance the efficiency and performance of the DARTS algorithm by building upon its
foundations. Specifically, we propose a novel method named NDARTS, which employs the
Neumann series to expand the super-gradient and approximates it using finite terms based
on the representation of the super-gradient through the Implicit Function Theorem. Our
empirical results demonstrate that NDARTS outperforms the baseline algorithm, DARTS,
in terms of gradient approximation performance.

DARTS [23] based on gradient descent is one of the bases for our research. The
model weights ω and architecture parameters α are toggled, and gradient descent is used
for training in DARTS. Our article made some improvements to DARTS, and achieved
good results.

The main contributions of our article are as follows:

• Our proposed method, named NDARTS, utilizes the Neumann series to expand
the super-gradient and employs approximations based on the representation of the
super-gradient through the Implicit Function Theorem. Our experimental results
demonstrate that NDARTS outperforms the baseline algorithm, DARTS, in terms of
gradient approximation performance.

• We use an improved evolutionary strategy for parameter optimization between ar-
chitecture searches, which is more in line with weight-sharing hyper-network design
than gradient methods. The training design uses small batch samples to reduce the
computational complexity during the training process.

• Our proposed algorithm achieves state-of-the-art performance in multiple datasets:
CIFAR-10, CIFAR-100, and ImageNet.

The rest of this article is organized as follows: Section 2 first briefly reviews the
DARTS algorithm, and introduces our method, which optimizes the steps of the DARTS
algorithm based on the Neumann series, and then performs convergence analysis. In
Section 3, we first conducted ablation experiments in the NAS-Bench-201 search space,
studied the influence of parameters on the NDARTS algorithm, and determined the optimal
parameters for performance testing. Finally, the algorithm performance was tested on
CIFAR-10, CIFAR-100, and ImageNet datasets and compared with other NAS algorithms.

2. Methods
2.1. Overview: DARTS

We first briefly review DARTS, the basis of our proposed architecture search method.
Following the NASNet searches space [12], DARTS search for a computation cell as a
building block of the final architecture, and the overall architecture of the networks is
obtained by stacking two types of cells: a Normal cell that returns a feature map of the
same dimension and a Reduction cell that reduces the size of input feature maps by half.
A cell is a directed acyclic graph (DAG) consisting of an ordered sequence of N nodes.
Each node xi is a latent representation (e.g., a feature map in convolutional networks).
The first two nodes x0 and x1 in each unit are defined as input nodes, and they receive
the outputs of the precursor cells as input. The node xN is the output of the current cell,
which concatenates the outputs of all intermediate nodes xN−1 = concat(x0, . . . , xN−2). A
directed edge e(i,j), 0 < j < i < N − 1, indicates the existence of an operation to perform
a transformation (convolution, pooling, etc.) on the feature representation. We use O to
represent a set of candidate operations (e.g., convolution, max pooling, zero), where each
operation represents some function o to be applied to xi.

Each intermediate node is computed based on all of its predecessors:

x(i,j) = ∑
i<j

o(i,j)(x(j)). (1)

Algorithms 2023, 16, 536 4 of 25

To make the search space continuous, DARTS relaxes the categorical choice of a
particular operation to a softmax over all possible operations:

ō(i,j)(X) = ∑
o∈O

exp(α(i,j)o)

∑o′∈O exp(α(i,j)o′)
, (2)

where the operation mixing weights for a pair of nodes (i, j) are parameterized by a vector
α(i,j) of dimension |O|. It represents that there is a mixed operation parameterized by α(i,j)

instead of selecting a certain operation on each edge.
After relaxation, the task of architecture search then reduces to learning a set of

continuous variables α = α(i,j). DARTS used a bi-level optimization to jointly learn the
architecture parameters α and the weights ω within all the mixed operations (e.g., weights
of the convolution filters).

minαLval(ω ∗ (α), α), (3)

s.t.ω∗(α) = argminω Ltrain(ω, α). (4)

DARTS alternately optimizes the architecture α and the weights ω on the validation
set and the training set, respectively.

The process of DARTS is as follows:

1. Create a mixed operation o(i,j) parameterized by α(i,j) for each edge (i, j), initialize the
hyper-net weight ω, and operate weight α;

2. Train on the training dataset Dtrain, update ω by ω = ω− γ∇ω L1(ω, α);
3. Train on the validation dataset Dval , update α by α = α− γα∇αL′2(ω(α), α);
4. Stop when the termination condition is met, otherwise return to step 2.

2.2. DARTS Optimization Algorithm Based on Neumann Series Approximation (NDARTS)
2.2.1. NDARTS

We perform a one-step expansion of ∇αL2 based on the Implicit Function Theorem
(we denote L1 and L2 the training loss Ltrain, and the validation loss Lval , respectively). At
present, there has been some research work in related fields, and Simonyan et al. [16] used
this method to optimize neural network architecture search algorithms.

When ω∗ is the optimal weight of the model achieved by the training set, ∂L1(ω
∗ ,α)

∂ω = 0,
thus,

∂

∂α
(

∂L1(ω
∗(α), α)

∂ω
) = 0,

∂2L1

∂α∂ω
+

∂2L1

∂ω∂ω

∂ω∗(α)

∂α
= 0,

∂ω∗(α)

∂α
= −

[
∂2L1

∂ω∂ω

]−1
∂2L1

∂α∂ω
.

(5)

Based on this consequence, sub-gradient ∇αL2 can be represented as:

∇αL2 =
∂L2

∂α
+

∂L2

∂ω

∂ω

∂α
=

∂L2

∂α
− ∂L2

∂ω

[
∂2L1

∂ω∂ω

]−1
∂2L1

∂α∂ω
. (6)

According to Neumann series, for matrix A, when ||I − A|| < 1, we have A−1 =
∞
∑

k=0
(I − A)k.

When γ < 1
L∇ω

1
, according to ∂2L1

∂ω∂ω < L∇ω
1 , we have ||I − γ ∂2L1

∂ω∂ω || < 1.

So, we can formulate the sub-gradient:

Algorithms 2023, 16, 536 5 of 25

∇αL2 =
∂L2

∂α
− ∂L2

∂ω
γ

[
I − (I − γ

∂2L1

∂ω∂ω
)

]−1
∂2L1

∂α∂ω

=
∂L2

∂α
− γ

∂L2

∂ω

∞

∑
j=0

(I − γ
∂2L1

∂ω∂ω
)j ∂2L1

∂α∂ω
.

(7)

For this result, take the first K terms as an approximation, we can derive:

∇αL′2 =
∂L2

∂α
− γ

∂L2

∂ω

K

∑
j=0

(I − γ
∂2L1

∂ω∂ω
)j ∂2L1

∂α∂ω
. (8)

In summary, this article proposes the NDARTS algorithm, which involves the follow-
ing steps:

1. Create a mixed operation o(i, j) parameterized by α(i, j) for each edge (i, j), initialize
the hyper-net weight ω, and operate weight α;

2. Train on the training dataset Dtrain, using ω = ω− γ∇ω L1(ω, α) to update ω;
3. Train on the validation dataset Dval , using α = α− γα∇αL′2(ω(α), α) to update α;
4. Stop when the termination condition is met, otherwise return to step 2.

2.2.2. Proof

We provide some necessary assumptions that are relatively easy to satisfy before
proving the convergence of NDARTS:

(1) The function ω : α −→ ω(α) is Lipschitz continuous and has a Lipschitz constant
Lω > 0 and L∇αω > 0.

(2) ||∇2
ωαL1|| is bounded, that is, there exists CLωα

1
> 0 that can make ||∇2

ωαL1|| < CLωα
1

.
(3) For any ω and α, L2(ω, ·) and L2(·, α) are bounded and Lipschitz continuous, and

have Lipschitz constant Lω
2 > 0, Lα

2 > 0.
(4) For any ω and α, ∇ω L2(ω, ·) and ∇αL2(·, α) are Lipschitz continuous and have

Lipschitz constant L∇ω
2 > 0, L∇α

2 > 0 related to ω, α.

Theorem 1. When γαi satisfy
∞
∑

i=1
γαi = ∞,

∞
∑

i=1
γ2

αi
< ∞, the algorithm is converges on expecta-

tions:
lim

m→∞
E
[
∇αL′2(ω(αm), αm)

]
= 0, (9)

where αm and γαm are the architecture parameters and the learning rate of architecture parameters
founded during the m-th iteration, respectively.

We first prove two lemmas:

Lemma 1. Assuming L1 is quadratic differentiable and µ-strongly convex for parameter ω, that
the difference of the approximate value ∇αL′2 and ∇αL2 in DARTS is satisfy:

||∇αL2 −∇αL′2|| 6 CLωα
1

CLω
2

1
µ
(1− γµ)K+1. (10)

Lemma 2. Assuming assumptions (1)–(4) are satisfied, the function L2 : α −→ L2(ω(α), α) is
differentiable and has a Lipschitz constant L∇α L2 = L∇α

2 + L∇ω
2 L2

ω + Lω
2 L∇αω.

Proof of Lemma 1. Since

∇αL2 =
∂L2

∂α
− γ

∂L2

∂ω

∞

∑
j=0

(I − γ
∂2L1

∂ω∂ω
)j ∂2L1

∂α∂ω
, (11)

Algorithms 2023, 16, 536 6 of 25

∇αL′2 =
∂L2

∂α
− γ

∂L2

∂ω

K

∑
j=0

(I − γ
∂2L1

∂ω∂ω
)j ∂2L1

∂α∂ω
, (12)

thus,

∇αL2 −∇αL′2 = γ
∂L2

∂ω

∞

∑
j=K+1

(I − γ
∂2L1

∂ω∂ω
)j ∂2L1

∂ω∂ω
. (13)

Since L1 is µ-strongly convex and γµI 6 γ ∂2L1
∂ω∂ω 6 I, thus

∞

∑
j=K+1

(I − γ
∂2L1

∂ω∂ω
)j 6

∞

∑
j=K+1

(I − γµI)j, (14)

the sum of the right-hand series,

∞

∑
j=K+1

(I − γ
∂2L1

∂ω∂ω
)j 6

1
γµ

(I − γµI)K. (15)

And, as ∂L2
∂ω and ∂2L1

∂α∂ω are bounded, so there exist a constant CLωα
1

and CLω
2

, subject to

||∇αL2 −∇αL′2|| 6 CLωα
1

CLω
2

1
µ
(1− γµ)K. (16)

Proof of Lemma 2.

||∇αL2(ω(α), α)−∇αL2(ω(α′), α′)||
=||∇αL2(·, α)−∇αL2(·, α′) +∇αL2(ω(α), ·)−∇αL2(ω(α′), ·)||
=||∇αL2(·, α)−∇αL2(·, α′) +∇ω L2(ω(α), ·)∇αω(α)−∇ω L2(ω(α′), ·)∇αω(α′)||
6||∇αL2(·, α)−∇αL2(·, α′)||+ ||∇ω L2(ω(α), ·)∇αω(α)−∇ω L2(ω(α′), ·)∇αω(α′)||.

(17)

Among them, the left half on the right side of the equation,

||∇αL2(·, α)−∇αL2(·, α′)|| 6 L∇α
2 ||α− α′||, (18)

the right half,

||∇ω L2(ω(α), ·)∇αω(α)−∇ω L2(ω(α′), ·)∇αω(α′)||
=||∇ω L2(ω(α), ·)∇αω(α)−∇ω L2(ω(α′), ·)∇αω(α)

−∇ω L2(ω(α′), ·)∇αω(α′) +∇ω L2(ω(α′), ·)∇αω(α)||
6||∇ω L2(ω(α′), ·)−∇ω L2(ω(α′)||||∇αω(α)||
+ ||∇ω L2(ω(α′), ·)||||∇αω(α)−∇αω(α′)||.

(19)

According to assumptions (1), (3), and (4), we obtain

||∇ω L2(ω(α)−∇ω L2(ω(α′)|| 6 Lω
2 ||ω(α)−ω(α′)||, (20)

and
||ω(α)−ω(α′)|| 6 Lω ||α− α′||, ||∇αω(α)−∇αω(α′)|| 6 L∇αω ||α− α′||. (21)

According to assumptions (1) and (3), we know ∇ω L2(ω(α′), ·), ∇αω(α) are bounded
and ||∇ω L2(ω(α′), ·)|| 6 Lω

2 ,||∇αω(α)|| 6 Lω.
Consequently,

Algorithms 2023, 16, 536 7 of 25

||∇ω L2(ω(α)∇αω(α), ·)−∇ω L2(ω(α′)∇αω(α′), ·)|| 6 L∇ω
2 L2

ω ||α− α′||+ Lω
2 L∇αω ||α− α′||. (22)

In summary,

||∇αL2(ω(α), α)−∇αL2(ω(α′), α′)|| = (L∇α
2 + L∇ω

2 L2
ω + Lω

2 L∇αω)||α− α′||. (23)

Proof of Theorem 1.

E[L2(ω
∗(αm+1), αm+1)|αm]

=E[L2(ω
∗(αm + (αm+1 − αm)), αm + (αm+1 − αm))|αm]

6E[L2(ω
∗(αm), αm)|αm] + E[〈∇αL2(ω

∗(αm), αm), αm+1 − αm〉|αm] +
L∇α L2

2
E
[
||αm+1 − αm||2

]
=L2(ω

∗(αm), αm) +
〈

E[∇αL2(ω
∗(αm), αm)],−γαm E

[
∇αL′2(ω

∗(αm), αm)|αm
]〉

+
L∇α L2

2
γ2

αm E
[
||∇αL′2(ω

∗(αm), αm)||2
]
.

(24)

where, according to Lemma 2, we know L∇α L2 exists and is bounded.
Let em = ∇αL2(ω

∗(αm), αm)−∇αL′2(ω
∗(αm), αm), hence

E[L2(ω
∗(αm), αm)] = E

[
L′2(ω

∗(αm), αm) + em
]
6 E

[
L′2(ω

∗(αm), αm)
]
+ E[em], (25)

in that way,

E[L2(ω
∗(αm+1), αm+1)|αm] 6 E

[
L′2(ω

∗(αm), αm)
]
− γαm E

[
||∇αL′2(ω

∗(αm), αm)||2
]

− γαm E
〈
em,∇αL′2(ω

∗(αm), αm)
〉
+

L∇α L2

2
γ2

αm E
[
||∇αL′2(ω

∗(αm), αm)||2
]
.

(26)

According to Lemma 1,

||em|| 6 CLωα
1

CLω
2

1
µ
(1− γµ)K+1, (27)

therefore, for any ∇αL′2(ω
∗(αm), αm),

〈
em,∇αL′2(ω

∗(αm), αm)
〉
≥ −CLωα

1
CLω

2

1
µ
(1− γµ)K||∇αL′2||

= −
CLωα

1
CLω

2
1
µ (1− γµ)K

µ||∇αL′2||
||∇αL′2||2

= −P||∇αL′2||2.

(28)

Let P =
CLωα

1
CLω

2
1
µ (1−γµ)K

µ||∇α L′2||
, Equation (22) can be rewritten as:

E[L2(ω
∗(αm+1), αm+1)] 6 E

[
L′2(ω

∗(αm), αm)
]
−

γαm(1− P)E
[
||∇αL′2||2

]
+

L∇α L2

2
γ2

αm E
[
||∇αL′2||2

]
6 E

[
L′2(ω

∗(αm), αm)
]
− γαm

[
(1− P)−

L∇α L2

2
γαm

]
E
[
||∇αL′2||2

]
.

(29)

Algorithms 2023, 16, 536 8 of 25

In the equation, select a small learning rate γαm < 1−P
L∇α L2

2

, can result in

(1− P)−
L∇α L2

2
γαm > 0. (30)

Since the learning rate is positive, 1− P should also be a positive number. This can be

achieved by adjusting γ and K to make
CLωα

1
CLω

2
1
µ (1−γµ)K+1

µ||∇α L′2||
< 1. At this point, it can be seen

from the recursive formula that as αm iterates, L2 will decrease and the loss function L2 is
bounded, so L2 is convergent. The difference in recursive equation

E[L2(ω
∗(αm), αm)]− E[L2(ω

∗(αm+1), αm+1)]

≥ γαm

[
(1− P)−

L∇α L2

2
γαm

]
E
[
||∇αL′2(ω

∗(αm), αm)||2
]
,

(31)

denote cm = γαm

[
(1− P)− L∇α L2

2 γαm

]
, we can derive

E[L2(ω
∗(α0), α0)]− E[L2(ω

∗(αm), αm)]

=
m

∑
i=1
{E[L2(ω

∗(αi−1), αi−1)]− E[L2(ω
∗(αi), αi)]}

≥
m−1

∑
i=0

ciE[L2(ω
∗(αi), αi)].

(32)

Since L2 is bounded, so that

m−1

∑
i=0

ciE
[
||∇αL′2(ω

∗(αi), αi)||2
]
< ∞. (33)

According to assumption, we can make limm→∞
m
∑

i=0
ci = ∞, as a result

lim
m→∞

E
[
∇α||L′2(ω∗(αm), αm)||2

]
= 0. (34)

In summary, we have proven that:

lim
m→∞

E
[
∇αL′2(ω(αm), αm)

]
= 0. (35)

2.3. Evolutionary Strategy

Before experimenting, let us first introduce an improved evolutionary strategy, which
is more effective in updating the parameters of neural networks than the gradient descent
method. And we will use it to update the parameter during the process of architec-
ture search.

The basic process of the (µ + λ) evolution strategy is to establish an initial population
of POP0 at the beginning of the search, which contains µ individuals. Starting from the
initial population, iteratively calculates a series of populations. In each iteration, generate λ
children from the current generation POPiter. In each case, generate a descendant by using
a three-step calculation:

1. Select two individuals as parents for recombination from the current generation
POPiter. The choice of parents is unbiased.

2. Generate a new individual through the recombination of the selected parents.

Algorithms 2023, 16, 536 9 of 25

3. Perform mutation and evaluation on the new individuals. At the end of the iteration,
select µ superior individuals from the set of λ offspring and µ parents to form a new
generation of POPiter+1.

We use the OPENAI-ES [33] evolutionary strategy proposed by OPENAI, add the

fitness calculation of the estimating gradient direction ω + α 1
nσ

n
∑

i=1
Liεi in evolutionary

strategy. The corresponding optimization algorithm steps are as follows.
Given the parameters ω of the neural network, loss function L, learning rate α, and

noise standard deviation σ, the optimization process of neural network parameters based
on evolutionary strategy are as follows:

1. Randomly sampling noise ε1, ε2, . . . , εn ∈ N (0, 1) from Gaussian distribution;
2. Calculate the loss function value corresponding to each parameter Li = L(ω + εi).

Add individual ω0 = ω + α 1
nσ

n
∑

i=1
Liεi and corresponding fitness function value L(ω0)

to the population;
3. Denote the smallest term in L(ω), L(ω0), L(ω1). . . L(ωN) as L(ω′), update the param-

eter ω = ω′;
4. Stop when the termination condition is met, otherwise return to step 1.

In comparison to the gradient descent algorithm, OPENAI-ES exhibits higher univer-
sality due to its ability to avoid the computation of real gradients. Furthermore, when
compared to Monte Carlo gradient-based optimization methods, it incurs higher computa-
tional costs but effectively utilizes sampled data to enhance performance. By incorporating
Monte Carlo gradients into the population, basic evolutionary strategies can also achieve
improved convergence speeds.

3. Experiment
3.1. Simulation Experiment

The performance testing of the NDARTS algorithm and its comparison with other
algorithms will be divided into two main parts for experimentation.

First, we will conduct performance experiments of the NDARTS algorithm within the
DARTS search space. Subsequently, we will compare the obtained experimental results
with those of other algorithms operating within their respective search spaces.

The second experiment involves comparing the NDARTS algorithm with other algo-
rithms, also operating within NAS-Bench-201 search space [34]. The comparison will be
based on the same search space and architecture evaluation criteria. To ensure a fair com-
parison, experiments in both search spaces will be conducted on CIFAR-10, CIFAR-100, and
ImageNet datasets. In the NAS-Bench-201 search space, the NDARTS algorithm employs
the same unit structure and policy evaluation as other algorithms, enabling a relatively
fair comparison. However, it is worth noting that the unit structure of the NAS-Bench-201
search space is relatively simple compared to the DARTS search space, which has more
nodes, operation types, and unit types. Therefore, the performance of the NDARTS algo-
rithm within the DARTS search space may better represent its optimal performance on
these datasets.

3.1.1. Dataset

1. CIFAR-10 Dataset.
The CIFAR-10 [35] dataset is one of the most popular public datasets in current neural

network architecture search work. CIFAR-10 is a small-scale image classification dataset
proposed by Alex in 2009. As shown in Figure 1, there are 10 categories of data, namely
aircraft, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Each category has
6000 images, each of which is a 32× 32 sized RGB image. The entire CIFAR-10 dataset
consists of 60,000 images, among these images, 50,000 images were classified for training
and 10,000 images for testing.

Algorithms 2023, 16, 536 10 of 25

Figure 1. CIFAR-10 dataset.

2. CIFAR-100 Dataset.
As shown in Figure 2, the CIFAR-100 [35] dataset is similar to the CIFAR-10 dataset,

except that it has 100 classes. The 100 categories in CIFAR-100 are divided into 20 major
categories. Each image comes with a “fine” label (the class it belongs to) and a “rough”
label (the large class it belongs to).

Figure 2. CIFAR-100 dataset.

During the experiment, the training set of CIFAR-10 and CIFAR-100 is randomly
divided into two groups: one group will be used to update weight parameters while
the other will serve as a validation set for updating schema parameters. This division is
conducted for each category within the samples of the training set.

3. ImageNET Dataset.
ImageNet [36] is an image dataset organized according to a WordNet hierarchy, where

each node in the hierarchy is described by hundreds or thousands of images. The examples
of the ImageNet dataset are shown in Figure 3. At present, there is an average of over
500 images per node, with a total number of images exceeding 10 million and a total
of 1000 types of recognition. Compared to the CIFAR-10 and CIFAR-100 datasets, the
ImageNet dataset has a larger number of images, higher resolution, more categories, and
more irrelevant noise and changes in the images. Therefore, the recognition difficulty far
exceeds that of CIFAR-10 and CIFAR-100.

Algorithms 2023, 16, 536 11 of 25

Figure 3. ImageNET Dataset.

3.1.2. Algorithm Settings

1. When optimizing neural network weight parameters through the gradient descent
method, the optimization of shallower parameters relies on layer-by-layer back-
propagation starting from the output layer, while the optimization of deeper parame-
ters also relies on the feature data corresponding to the output values of shallower
layers. Once subnetworks with different structures are obtained through training
in this way, it is difficult to maintain the dependency relationship between shallow
and deep layers, which can easily lead to significant deviations. During the training
process using evolutionary algorithms, each weight parameter within the neural
network holds a unique and independent position. This allows for individualized
training and optimization of each parameter up to a certain extent. Then, different
subnetworks can obtain better evaluation results when obtaining parameters from
the super-network. Therefore, when conducting experiments in the DARTS search
space, the improved evolutionary strategy in Section 2.3 was chosen to optimize the
network weight parameters.

2. Each epoch is trained using a random small batch of samples [37], which reduces the
computational complexity of each epoch while maintaining the training effect. At the
same time, the algorithm can break through the sample data size limit and can be
extended to large data volumes for calculation.

3.1.3. Search Space

1. DARTS search space.
The DARTS algorithm, serving as a fundamental neural network architecture search

approach based on gradient descent, encompasses a substantial quantity of nodes and oper-
ation types within the building block (unit). The resulting network structure is achieved by
stacking two structural units, thus leading to a high architectural complexity. Consequently,
the DARTS search space has the potential to produce network models with superior perfor-
mance. Currently, the majority of gradient-based methods undergo performance evaluation
within the DARTS search space and are subsequently compared with other algorithms.

The unit structure of the DARTS search space shown in Figure 4, ck−2, ck−1, ck repre-
sents the outputs of units k− 2, k− 1, and k, respectively. In the k-th unit, there are four
nodes between the outputs of the first two units and the output of the k-th unit. Each
edge represents a candidate operation, with eight types of operations including extended
separable convolutions of 3× 3 and 5× 5, deep separable convolutions of 3× 3 and 5× 5,
average pooling of 3× 3, maximum pooling of 3× 3, identity operation, and zero operation.
Zero operation indicates that there is no connection between two nodes, while identity

Algorithms 2023, 16, 536 12 of 25

operation indicates that the data from the previous node is directly transferred to the
next node.

Figure 4. Cell structure of darts search space.

The entire network structure is composed of eight units, which are divided into
standard units and down-sampling units. In the down-sampling unit, the first two nodes
are connected to other nodes through pooling operations. The network consists of six
standard units and two down-sampling units, which are located at one-third and two-
thirds of the entire network.

2. NAS-Bench-201 Search space.
In current research, a growing number of NAS algorithms have been proposed. De-

spite their theoretical groundwork, many aspects of these algorithms display significant
differences, including distinct search spaces, training strategies for architecture evaluation,
and methods used to split validation sets. These differences lead to considerable challenges
when comparing the performance of various NAS algorithms. As a result, researchers
devote substantial computational resources to traverse and evaluate the performance of dif-
ferent search spaces and neural network structures, as well as their architectures within the
designed network structure search space and producing datasets. Subsequent experiments
on the NAS-Bench-201 search space [34] can obtain evaluation results through tabular
queries without the need for retraining.

The structural units used in NAS-Bench-201 are shown in Figure 5. Each structural
unit contains four nodes and five operation types (1× 1 convolution, 3× 3 convolution,
3× 3 average pooling, identity operation, zero operation), totaling 56 = 15,625 types of
unit structures.

Figure 5. Cell structure of NAS-Bench-201 search space.

3.1.4. Ablation Experiment

We first conducted ablation experiments on the NAS-Bench-201 search space to investi-
gate the impact of parameters T, K, γ, γα on the performance of NDARTS and determine the

Algorithms 2023, 16, 536 13 of 25

optimal experimental parameters. The ablation experiment used CIFAR-10 as the training
dataset, and a pre-trained model was used to reduce computational complexity. The effects
of different parameters were analyzed through 30 epochs of results.

1. T.
Parameter T is the number of steps for updating the weight parameter ω during the

update interval of the architecture parameter α. In theory, the larger the T, the more steps
the ω updates during each time α is updating, and the ω is closer to the optimal value
ω∗. The better the performance of ω, the better the performance of the super-network
when evaluating the architecture, and the more accurate the evaluation results of the
subnetwork architecture, which helps the algorithm achieve a more approximate super-
gradient estimation. However, the computational cost of the algorithm also increases with
an increase in T. According to the experimental results, T = 4 achieved a good balance
between computational cost and model performance.

The experimental results indicate that as T increases, the performance of the algorithm
gradually improves. When T = 1, both NDARTS and DARTS only optimize the weight
parameter ω once within the update interval of the architecture parameter α, with the
only difference being that NDARTS uses ∇αL2(ω− ξ∇ω L1(ω(α), α)), while DARTS uses
∇αL′2(ω(α), α) to update the parameter α.

The experimental results are shown in Figures 6 and 7; it can be seen that NDARTS
at T = 1 can search for a better framework with faster convergence speed and higher
stability compared to the benchmark algorithm DARTS. When T increased from 1 to 4, the
algorithm achieved better convergence speed and stability.

Figure 6. The impact of T on NDARTS.

Figure 7. Comparison with DARTS when T = 1, 2, 3, 4.

Algorithms 2023, 16, 536 14 of 25

2. K.
The parameter K represents the number of truncated approximations utilized in the

optimization formula. The larger the K, the smaller the error γ ∂L2
∂ω

∞
∑

j=K+1
(I − γ ∂2L1

∂ω∂ω)j ∂2L1
∂ω∂ω is,

which is between the approximate gradient value∇αL′2 and the true gradient∇αL2. Therefore,
in theory, as K increases, the performance of the neural network should also increase.

From the experimental results in Figures 8 and 9, it can be seen that when K increases
from 0 to 2, the accuracy of the model searched by the algorithm increases from 90.36% to
93.58%, and the stability of the search increases with an increase in K. Another conclusion is
that K = 2 is already large enough, so that when K ≥ 3 is used, the algorithm performance
cannot be further improved. But when K ≥ 2 continues to increase, the stability of the
algorithm still shows an increasing trend, and when K = 2, the algorithm has already
reached a good stability.

Figure 8. The impact of K on NDARTS.

Figure 9. Comparison with DARTS when K = 0, 1, 2, 3.

3. γ and γα.
The calculation of NDARTS is based on the approximation of∇L2 using the Neumann

series, with the potential condition that the learning rate γ should be small enough to make

||I − γ ∂2L1
∂ω∂ω || < 1.

Algorithms 2023, 16, 536 15 of 25

As shown in Figure 10, when γ = 0.001 and 0.005, the algorithm can maintain a good
accuracy and stability. When γ = 0.01, the algorithm performance slightly decreases, and
the accuracy decreases from 93.58% to 92.02%, indicating good stability. When γ = 0.025,
the accuracy of the algorithm is 92.17%, but the stability of the model begins to decrease.
When γ = 0.05, the performance of the algorithm decreases again, with a model accuracy
of 91.22%, and the stability of the algorithm is significantly reduced.

Figure 10. The impact of γ on NDARTS.

In NDARTS, the parameter γα should take a small value to make the coefficient

(1− P)− L∇α L2
2 γαm(1 + D) > 0. As shown in Figure 11, when γα increases from 0.0001 to

0.001. The performance of the algorithm decreases from 93.58% to 92.04%, with relatively
small stability changes. But when γα increases from 0.001 to 0.005 and 0.01, the performance
and stability of the algorithm are significantly reduced.

Figure 11. The impact of γα on NDARTS.

In summary, NDARTS has strong sensitivity to parameters γ and γα, chooses smaller
γ, and γα can help maintain the performance and stability of NDARTS. The dependence
of NDARTS on parameters T and K is relatively small. Larger T and K can improve the
convergence speed and performance of the algorithm, but also increase computational
costs. Choosing the appropriate T and K can reduce computational costs while maintaining
good performance of the NDARTS.

Algorithms 2023, 16, 536 16 of 25

3.1.5. Performance Experiment

The ablation experiment determined the optimal parameters of NDARTS. Subse-
quently, we tested the performance of NDARTS in the DARTS search space and NAS-Bench-
201 search space under the optimal parameters and compared it with other algorithms at
similar model scales. Because of the limited computational resources, we mainly tested
gradient-based algorithms, and other results are compared using the results of the original
paper, marked with * in Tables. The algorithm tested in this article will provide a reference
for the accuracy of the validation set as an additional condition, and the program list will
be provided in Appendix A.

DARTS search space.
Comparing the results of the NDARTS algorithm in the DARTS search space with

other NAS algorithms, the results on the CIFAR-10, CIFAR-100, and ImageNet datasets are
shown in Tables 1–3, respectively.

Overall, compared with other types of methods, such as random search and RL,
NDARTS has a significant increase in performance. And methods based on random search,
RL, and EA have longer computational time, and NDARTS can achieve better performance
in a short period. Although the PNAS [9] algorithm based on sequential models also
requires smaller computational resources, the cost is to reduce the accuracy of the model.

Compared with the baseline algorithm DARTS, which is based on gradient descent,
NDARTS improves the performance of the algorithm while reducing a certain computa-
tional cost. FairDARTS [38] relaxes the choice of operations to be collaborative, where
the authors let each operation have an equal opportunity to develop its strength, but our
algorithm performed better than FairDARTS. PDARTS [24] searches for neural network
architecture progressively, achieving good accuracy at a higher computational cost, while
NDARTS achieves better performance at a lower computational cost. PC-DARTS [25]
reduces computational costs by sampling channels, and can quickly obtain models with
better performance. Although NDARTS has a slightly slower speed than PC-DARTS, it has
better performance. In the DARTS search space, NDARTS achieved optimal performance
on all three datasets.

Table 1. Results of NDARTS (based on DARTS search space) and other NAS algorithms on the
CIFAR-10 dataset.

Algorithm Val Error
(%)

Test
Error (%)

Param
(m)

Search
Space

Search
Method

RandomNAS [39] * —— 2.65 4.3 DARTS Random
search

AmoebaNet * —— 3.34 5.1 NASNet EA
NASNet * —— 2.65 5.3 NASNet RL

PNAS * —— 3.41 5.1 DARTS Sequential
ENAS * —— 2.89 4.6 NASNet RL

GDAS * [40] —— 2.93 3.4 DARTS Gradient
SETN * [41] —— 2.69 4.6 DARTS Gradient

FairDARTS [38] 3.82 2.54 2.83 DARTS Gradient
PDARTS 3.99 2.50 3.4 DARTS Gradient

PC-DARTS 3.88 2.57 3.6 DARTS Gradient
DARTS 4.38 2.76 3.4 DARTS Gradient

NDARTS 3.98 2.37 3.8 DARTS Gradient

The results on the CIFAR-10 dataset are shown in Table 1. This article ran some
algorithms and displayed the accuracy of the test set in Figure 12 (truncated to 50 epochs
due to different algorithm settings). It can be seen that the performance of models searched
based on gradient methods is generally better than those searched by algorithms based
on random search, RL, and other methods. Among gradient-based methods, NDARTS
achieved the best performance on the CIFAR-10 dataset, with a test set error of only 2.37%,
which is superior to other gradient methods such as FairDARTS, PDARTS, PC-DARTS, and
DARTS with 2.54%, 2.50%, 2.57%, and 2.76%. And, it can be seen from the iteration curve

Algorithms 2023, 16, 536 17 of 25

in Figure 12 that even if the initial state is worse, NDARTS can still quickly optimize to a
better model.

Table 2. Results of NDARTS (based on DARTS search space) and other NAS algorithms on the
CIFAR-100 dataset.

Algorithm Val Error
(%)

Test
Error (%)

Param
(m)

Search
Space

Search
Method

RandomNAS * —— 17.63 4.3 DARTS Random
NASNet-A * —— 17.81 3.3 NASNet RL

PNAS * —— 17.63 3.2 DARTS Sequential

GDAS * —— 18.38 3.4 DARTS Gradient
SETN * —— 17.25 4.6 DARTS Gradient

PDARTS 19.97 17.4 3.4 DARTS Gradient
PC-DARTS 20.25 17.11 3.6 DARTS Gradient

DARTS 21.42 17.54 3.4 DARTS Gradient

NDARTS 16.17 16.02 3.8 DARTS Gradient

Table 3. Results of NDARTS (based on DARTS search space) and other NAS algorithms on the
ImageNet dataset.

Algorithm Top1
Test

Error (%)

Top5
Test

Error (%)

Param
(m)

Search
Space

Search
Method

RandomNAS * 27.1 —— 4.3 DARTS Random
AmoebaNet-A * 25.5 8.0 5.1 NASNet EA

NASNet-A * 26.0 8.4 3.3 NASNet RL
PNAS * 25.8 8.1 3.2 DARTS Sequential

GDAS * 26.0 8.5 3.4 DARTS Gradient
SETN * 25.7 8.0 4.6 DARTS Gradient

SharpDARTS [42] 25.1 7.8 4.9 DARTS Gradient
PDARTS * 24.4 7.4 3.4 DARTS Gradient

PC-DARTS * 25.1 7.8 3.6 DARTS Gradient
DARTS 26.9 8.7 3.4 DARTS Gradient

NDARTS 24.3 7.3 3.8 DARTS Gradient

Figure 12. Performance of different algorithms on the CIFAR-10 dataset.

The results on the CIFAR-100 dataset are shown in Table 2, and the 50 epoch iteration
curves of some algorithms are plotted in Figure 13. The results showed that NDARTS
outperforms other gradient-methods with an error of 16.02%, while the performance of
GDAS on the CIFAR-100 dataset drops to a Test Error of 18.38%. In addition, gradient-
based methods are generally superior to other algorithms based on random search, RL, and

Algorithms 2023, 16, 536 18 of 25

other methods. From the iteration curve, it can be seen that NDARTS, PDARTS, and PC-
DARTS have similar search speeds, they have faster search speeds and better performance
than DARTS.

Figure 13. Performance of different algorithms on the CIFAR-100 dataset.

The results on ImageNet are shown in Table 3. When extended to big data, the gradient
method can no longer maintain its superiority over other methods in performance, but the
NDARTS algorithm still achieved optimal performance with 24.3% and 7.3% TOP1 and
TOP5 Test ERROR, respectively.

Figures 14 and 15 showed the structures of Normal Cells and Reduction Cells searched
by NDARTS in the DARTS search space. As we can see, there are four nodes between the
outputs of units k− 1, k− 2 and the output of unit k. There are some operations on each
edge. There are also some pooling operations in the Reduction cell, which can reduce the
feature map height and width by a factor of two.

Figure 14. Normal cell model found by NDARTS in DARTS search space.

Figure 15. Reduction cell model found by NDARTS in DARTS search space.

Algorithms 2023, 16, 536 19 of 25

NAS-BENCH-201 search space.
The performance of the NDARTS algorithm and other NAS algorithms was tested

in the NAS-Bench-201 search space. The results on CIFAR-10, CIFAR-100, and ImageNet
datasets are shown in Tables 4–6, respectively. Among them, each algorithm searches for
the optimal structural unit on the CIFAR-10 dataset and evaluates its performance on the
CIFAR-100 and ImageNet datasets.

Table 4. Results of NDARTS and other NAS algorithms on the CIFAR-10 dataset (based on the
NAS-Bench-201 search space).

Algorithm Val Acc
(%)

Test Acc
(%)

Param
(m)

Search Space Search
Method

RandomNAS 72.42 76.10 0.4 NAS-Bench-201 Random
RL 89.83 92.20 0.4 NAS-Bench-201 RL

ENAS 39.77 54.30 0.1 NAS-Bench-201 RL
EA 91.18 93.40 1.0 NAS-Bench-201 EA

GDAS 89.78 93.49 0.8 NAS-Bench-201 Gradient
SETN 84.24 87.67 0.3 NAS-Bench-201 Gradient

DARTS 39.77 54.30 0.1 NAS-Bench-201 Gradient

NDARTS 89.94 93.67 1.3 NAS-Bench-201 Gradient

Table 5. Results of NDARTS and other NAS algorithms on the CIFAR-100 dataset (based on the
NAS-Bench-201 search space).

Algorithm Val Acc
(%)

Test Acc
(%)

Param
(m)

Search Space Search
Method

RandomNAS 47.54 46.94 0.4 NAS-Bench-201 Random
RL 68.72 67.80 0.4 NAS-Bench-201 RL

ENAS 15.03 15.61 0.1 NAS-Bench-201 RL
EA 70.88 71.00 1.0 NAS-Bench-201 EA

GDAS 71.28 70.28 0.8 NAS-Bench-201 Gradient
SETN 58.81 58.87 0.3 NAS-Bench-201 Gradient

DARTS 15.03 15.61 0.1 NAS-Bench-201 Gradient

NDARTS 71.37 70.91 1.3 NAS-Bench-201 Gradient

Table 6. Results of NDARTS and other NAS algorithms on the ImageNet dataset (based on the
NAS-Bench-201 search space).

Algorithm Val Acc
(%)

Test Acc
(%)

Param
(m)

Search Space Search
Method

RandomNAS 16.53 15.63 0.4 NAS-Bench-201 Random
RL 41.90 42.23 0.4 NAS-Bench-201 RL

ENAS 16.43 16.32 0.1 NAS-Bench-201 RL
EA 44.03 44.23 1.0 NAS-Bench-201 EA

GDAS 43.47 43.10 0.8 NAS-Bench-201 Gradient
SETN 33.04 32.37 0.3 NAS-Bench-201 Gradient

DARTS 16.43 16.32 0.1 NAS-Bench-201 Gradient

NDARTS 40.66 41.02 1.3 NAS-Bench-201 Gradient

Due to the simpler unit search space of NAS-Bench-201 than the DARTS search
space, the algorithm performance generally decreases in the NAS-Bench-201 search space.
Overall, due to the omission of a large amount of training and evaluation calculations
in the NAS-Bench-201 search space, the RL- and EA-based methods have shown good
performance. The architecture search algorithm using random search as the baseline still
exhibits certain search capabilities in the NAS-Bench-201 search space. The gradient-based
method exhibits adaptive differences in the NAS-Bench-201 search space, while the GDAS
algorithm, which performs poorly in the DARTS search space, exhibits good performance in

Algorithms 2023, 16, 536 20 of 25

the NAS-Bench-201 search space. The model searched by the NDARTS algorithm achieves
optimal performance or approaches optimal performance on the three datasets.

The results of the CIFAR-10 dataset are shown in Table 4, and the results of 50 epochs
intercepted using gradient-based methods are plotted in Figure 16. It can be seen that
the methods based on RL and EA have shown good performance in the NAS-Bench-201
search space. DARTS experienced severe performance degradation, while GDAS, which
performed poorly in the DARTS search space, maintained good model performance, while
NDARTS had a slightly better test set accuracy of 93.67% than the 93.49% of GDAS. From
Figure 16, it can be seen that DARTS is difficult to search for good architectures in the NAS-
Bench-201 search space. The SETN [30] algorithm with good initial model performance
has an unstable search process, while the GDAS and NDARTS algorithms can effectively
search for better architectures.

Figure 16. Performance of different algorithms on the CIFAR-10 dataset in the NAS-Bench-201
search space.

The results of the CIFAR-100 dataset are shown in Table 5, and the results of intercept-
ing 50 epochs using gradient-based methods are plotted in Figure 17. It can be seen that on
the CIFAR-100 dataset, NDARTS performed with an accuracy of 70.91%, almost approach-
ing the optimal performance of 71.00% achieved by EA, while GDAS also maintained a
good performance of 70.28%. However, DARTS and ENAS [14] methods even have poorer
performance compared to methods based on random search. In Figure 17, when comparing
the results of the gradient method, GDAS and NDARTS have similar performance and are
superior to DARTS and SETN.

The results of the ImageNet dataset are shown in Table 6, and the results of intercepting
50 epochs using gradient-based methods are plotted in Figure 18. It can be seen that on the
ImageNet dataset, the evolutionary algorithm-based method achieved the best performance
with an accuracy of 44.23%, while the reinforcement learning-based method also achieved
an accuracy of 42.23%. In gradient-based methods, GDAS achieves the best accuracy with
43.10%, while NDARTS performs slightly worse with 41.02%. The methods based on
evolutionary algorithms and reinforcement learning can achieve good performance with
the support of a large amount of computing resources. The NAS-Bench-201 search space
uses a table query form for performance evaluation, especially on large datasets such as
ImageNet, which saves a lot of computation. Therefore, the methods based on EA and RL

Algorithms 2023, 16, 536 21 of 25

have shown good performance on the NAS-Bench-201 search space and ImageNet dataset.
The gradient-based methods has significant performance differences in the NAS-Bench-
201 search space and ImageNet dataset. Specifically, as shown in Figure 18, GDAS and
NDARTS perform better than SETN and DARTS. Although GDAS and NDARTS have poor
initial states, they can still quickly optimize to better models, while SETN has a slower
search speed and unstable search process, DARTS makes it difficult to search for better
models in the NAS-Bench-201 search space.

Figure 17. Performance of different algorithms on the CIFAR-100 dataset in the NAS-Bench-201
search space.

Figure 18. Performance of different algorithms on the ImageNet dataset in the NAS-Bench-201 search
space.

Algorithms 2023, 16, 536 22 of 25

To compare the performance of NDARTS and GDAS in detail, the results of all epochs
on the three datasets were plotted as shown in Figure 19. It can be seen that NDARTS has a
faster search speed than GDAS. When approaching stability, NDARTS and GDAS search
for the same model for a long time but ultimately stop at different architectures. At this
time, NDARTS has better performance than GDAS on CIFAR-10 and CIFAR-100 datasets,
but slightly worse performance on ImageNet datasets.

Figure 19. Test Acc of NDARTS and GDAS on three datasets.

The model cell structure searched by the NDARTS algorithm is shown in Figure 20.
As we can see, there is just one kind of cell in the NAS-Bench-201 search space. And there
are just three intermediate nodes between the input and output. Finally, we can obtain the
network by stacking the searched cell.

Figure 20. Cells found by NDARTS in the NAS-Bench-201 search space.

3.2. Experiment Results

DARTS search space is the most fundamental search space for gradient-based neu-
ral network architecture search algorithms, with two cell types and multiple nodes, as
well as multiple operation types. When compared with other algorithms in the DARTS
search space, NDARTS achieved better performance than mainstream NAS algorithms on
CIFAR-10, CIFAR-100, and ImageNet datasets.

Compared to the DARTS search space, the NAS-Bench-201 search space has fewer
unit types, fewer number of nodes in the unit, and fewer operation types. Although the
performance of the searched model is relatively low, it can compare the performance of
different NAS algorithms under a fair evaluation strategies conditions. When compared
with other algorithms in the NAS-Bench-201 search space, the NDARTS algorithm achieved
optimal performance on the CIFAR-10 dataset, outperforming than other gradient based
methods and approaching optimal evolutionary algorithm performance on the CIFAR-100
dataset. The results on the ImageNet dataset also approached the performance of the
optimal evolutionary algorithm.

In summary, NDARTS maintains a small computational cost at the same time improv-
ing its performance compared to mainstream NAS algorithms. It exhibits good adaptability

Algorithms 2023, 16, 536 23 of 25

in different structural search spaces and is a highly competitive neural network architecture
search algorithm.

4. Conclusions

By approximating the iterative update formula of the DARTS algorithm based on
Neumann series, it can be proven that the approximate iterative method is still convergent
while reducing computational complexity. When optimizing weight parameters, choose an
evolutionary strategy to avoid problems during the training process caused by gradient
methods. Simulation experiments on CIFAR-10, CIFAR-100, and ImageNet datasets have
shown that NDARTS is a highly competitive neural network architecture search algorithm.

Although our gradient approximation is more accurate and performs better than
the DARTS algorithm. However, our algorithm still has some limitations, our algorithm
has large gap between the architecture depths in search and evaluation scenarios, and
performance gaps between discrete subnetworks and hyper-networks, which need to
improvement in the further.

The algorithm model for designing the search space in the article is based on unit
structure stacking, but it has certain limitations. The main reason is that the network
instances obtained from the search can only be applicable to a specific configuration, and
the generalization ability for different configurations is weak. So, for different experimental
data scenarios, we need to develop an NAS algorithm that can search high performance
network architecture.

Author Contributions: Conceptualization, X.H. and Z.W.; writing—original draft preparation, X.H.;
writing—review and editing, C.L.; supervision, G.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All the experimental datasets can be found in CIFAR-10, CIFAR-
100: http://www.cs.toronto.edu/~kriz/cifar.html (accessed on 7 October 2023) and ImageNet http:
//image-net.org/ (accessed on 7 October 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
NAS Neural Architecture Search
RL Reinforcement
EA Evolutionary Algorithm
MDPI Multidisciplinary Digital Publishing Institute

Appendix A

Algorithms cited in this article:
DARTS: https://github.com/quark0/darts (accessed on 7 October 2023).
FairDARTS: https://github.com/xiaomi-automl/FairDARTS (accessed on 7 October

2023).
SharpDARTS: https://github.com/ahundt/sharpDARTS (accessed on 7 October

2023).
PDARTS: https://github.com/chenxin061/pdarts (accessed on 7 October 2023).
PC-DARTS: https://github.com/yuhuixu1993/PC-DARTS (accessed on 7 October

2023).
NAS-Bench-201 Search Space and Related Algorithms: https://github.com/D-X-Y/

NATS-Bench (accessed on 7 October 2023).

http://www.cs.toronto.edu/~kriz/cifar.html
http://image-net.org/
http://image-net.org/
https://github.com/quark0/darts
https://github.com/xiaomi-automl/FairDARTS
https://github.com/ahundt/sharpDARTS
https://github.com/chenxin061/pdarts
https://github.com/yuhuixu1993/PC-DARTS
https://github.com/D-X-Y/NATS-Bench
https://github.com/D-X-Y/NATS-Bench

Algorithms 2023, 16, 536 24 of 25

References
1. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s

Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016, arXiv:1609.08144.
2. Chen, M.X.; Firat, O.; Bapna, A.; Johnson, M.; Macherey, W.; Foster, G.; Jones, L.; Parmar, N.; Schuster, M.; Chen, Z.; et al. The Best

of Both Worlds: Combining Recent Advances in Neural Machine Translation. arXiv 2016, arXiv:1804.09849. [CrossRef]
3. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the

International Conference on Learning Representations.Computational and Biological Learning Society, San Diego, CA, USA, 7–9
May 2015.

4. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

5. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

6. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
Tech Report (v5). arXiv 2014, arXiv:1311.2524.

7. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

8. Dong, X.; Huang, J.; Yang, Y.; Yan, S. More is Less: A More Complicated Network with Less Inference Complexity. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

9. Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. J. Mach. Learn. Res. 2019, 20, 1997–2017.
10. Baker, B.; Gupta, O.; Naik, N.; Raskar, R. Designing Neural Network Architectures using Reinforcement Learning. arXiv 2016,

arXiv:1611.02167.
11. Ren, P.; Xiao, Y.; Chang, X.; Huang, P.Y.; Li, Z.; Chen, X.; Wang, X. A Comprehensive Survey of Neural Architecture Search:

Challenges and Solutions. ACM Comput. Surv. 2022, 54, 1–34. [CrossRef]
12. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. arXiv 2017,

arXiv:1707.07012.
13. Enzo, L.A.; Eduardo, L.; Vasty, Z.; Claudia, R.; John, M. Neural Architecture Search with Reinforcement Learning. arXiv 2016,

arXiv:1611.01578.
14. Cai, H.; Chen, T.; Zhang, W.; Yu, Y.; Wang, J. Efficient Architecture Search by Network Transformation. arXiv 2017,

arXiv:1707.04873.
15. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized Evolution for Image Classifier Architecture Search. Proc. Aaai Conf. Artif.

Intell. 2018, 33, 4780–4789. [CrossRef]
16. Liu, H.; Simonyan, K.; Vinyals, O.; Fernando, C.; Kavukcuoglu, K. Hierarchical Representations for Efficient Architecture

Search.International Conference on Learning Representations. arXiv 2018, arXiv:1711.00436.
17. Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.V.; Kurakin, A. Large-Scale Evolution of Image Classifiers.

arXiv 2017, arXiv:1703.01041.
18. Stanley, K.O.; Miikkulainen, R. Evolving neural networks through augmenting topologies. Evol. Comput. 2002, 10, 99–127.

[CrossRef] [PubMed]
19. Xie, L.; Yuille, A. Genetic CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice,

Italy, 22–29 October 2017.
20. Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Wei, H.; Li, L.-J.; Li, F.-F.; Yuille, A.; Huang, J.; Murphy, K. Progressive Neural

Architecture Search. arXiv 2017, arXiv:1712.00559.
21. Kandasamy, K.; Neiswanger, W.; Schneider, J.; Póczos, B.; Xing, E.P. Neural Architecture Search with Bayesian Optimisation and

Optimal Transport. arXiv 2018, arXiv:1802.07191.
22. Negrinho, R.; Gordon, G. DeepArchitect: Automatically Designing and Training Deep Architectures. arXiv 2017, arXiv:1704.08792.
23. Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. arXiv 2018, arXiv:1806.09055.
24. Chen, X.; Xie, L.; Wu, J.; Tian, Q. Progressive Differentiable Architecture Search: Bridging the Depth Gap between Search and

Evaluation. arXiv 2019, arXiv:1904.12760.
25. Xu, Y.; Xie, L.; Zhang, X.; Chen, X.; Qi, G.J.; Tian, Q.; Xiong, H. PC-DARTS: Partial Channel Connections for Memory-Efficient

Architecture Search. arXiv 2019, arXiv:1907.05737.
26. Cai, H.; Zhu, L.; Han, S. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware. arXiv 2018,

arXiv:1812.00332.
27. Zela, A.; Elsken, T.; Saikia, T.; Marrakchi, Y.; Brox, T.; Hutter, F. Understanding and Robustifying Differentiable Architecture

Search. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.
28. Chen, X.; Hsieh, C.J. Stabilizing Differentiable Architecture Search via Perturbation-based Regularization. arXiv 2020,

arXiv:2002.05283.
29. Xie, S.; Zheng, H.; Liu, C.; Lin, L. SNAS: Stochastic Neural Architecture Search. arXiv 2018, arXiv:1812.09926.
30. Liang, H.; Zhang, S.; Sun, J.; He, X.; Huang, W.; Zhuang, K.; Li, Z. DARTS+: Improved Differentiable Architecture Search with

Early Stopping. arXiv 2019, arXiv:1909.06035.

https://doi.org/10.18653/v1/P18-1008
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1145/3447582
http://dx.doi.org/10.1609/aaai.v33i01.33014780
http://dx.doi.org/10.1162/106365602320169811
http://www.ncbi.nlm.nih.gov/pubmed/12180173

Algorithms 2023, 16, 536 25 of 25

31. Hou, P.; Jin, Y.; Chen, Y. Single-DARTS: Towards stable architecture search. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 373–382.

32. Zhu, X.; Li, J.; Liu, Y.; Wang, W. Improving Differentiable Architecture Search via Self-Distillation. arXiv 2023, arXiv:2302.05629.
33. Salimans, T.; Ho, J.; Chen, X.; Sidor, S.; Sutskever, I. Evolution Strategies as a Scalable Alternative to Reinforcement Learning.

arXiv 2017, arXiv:1703.03864.
34. Dong, X.; Yang, Y. NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search. arXiv 2020, arXiv:2001.00326.
35. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. In Handbook of Systemic Autoimmune Diseases; 2009;

Volume 1. Available online: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 7 October 2023).
36. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.F. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the

2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009.
37. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
38. Chu, X.; Zhou, T.; Zhang, B.; Li, J. Fair DARTS: Eliminating Unfair Advantages in Differentiable Architecture Search. arXiv 2019,

arXiv:1911.12126.
39. Liam, L.I.; University, C.M.; Determined, A.I. Random Search and Reproducibility for Neural Architecture Search. arXiv 2019,

arXiv:1902.07638.
40. Dong, X.; Yang, Y. Searching for A Robust Neural Architecture in Four GPU Hours. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition 2019, Long Beach, CA, USA, 15–20 June 2019.
41. Dong, X.; Yang, Y. One-Shot Neural Architecture Search via Self-Evaluated Template Network. In Proceedings of the IEEE/CVF

International Conference on Computer Vision 2019 ICCV, Seoul, Republic of Korea, 27 October–2 November 2019.
42. Hundt, A.; Jain, V.; Hager, G.D. SharpDARTS: Faster and More Accurate Differentiable Architecture Search. arXiv 2019,

arXiv:1903.09900.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

	Introduction
	Methods
	Overview: DARTS
	DARTS Optimization Algorithm Based on Neumann Series Approximation (NDARTS)
	NDARTS
	Proof

	Evolutionary Strategy

	Experiment
	Simulation Experiment
	Dataset
	Algorithm Settings
	Search Space
	Ablation Experiment
	Performance Experiment

	Experiment Results

	Conclusions
	Appendix A
	References

