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Abstract: Swarm intelligence has promising applications for firm search and decision-choice problems
and is particularly well suited for examining how other firms influence the focal firm’s search. To
evaluate search performance, researchers examining firm search through simulation models typically
build a performance landscape. The NK model is the leading tool used for this purpose in the
management science literature. We assess the usefulness of the NK landscape for simulated swarm
search. We find that the strength of the swarm model for examining firm search and decision-choice
problems—the ability to model the influence of other firms on the focal firm—is limited to the NK
landscape. Researchers will need alternative ways to create a performance landscape in order to
use our full swarm model in simulations. We also identify multiple opportunities—endogenous
landscapes, agent-specific landscapes, incomplete information, and costly movements—that future
researchers can include in landscape development to gain the maximum insights from swarm-based
firm search simulations.

Keywords: firm search; NK landscape; swarm intelligence; simulation; Boids

1. Introduction

Firm managers are often faced with complex problems that require searching across
many, potentially interdependent elements in order to make a choice with significant
financial consequences [1]. Examples include developing new products, designing or-
ganizational processes, or assembling resources. To examine these problems, strategic
management and organizational science scholars often employ simulations of search strate-
gies [2]. To evaluate strategy performance, scholars typically apply the search strategy
to a performance or fitness landscape. The leading tool for this, the NK model, has been
highly influential in the strategy and management science literature and has been applied
to a variety of search problems [3]. Using NK, the researcher can create a performance
landscape consisting of N components with K interdependencies. As K increases, the
landscape becomes more rugged, with more peaks and valleys [4].

Recently, scholars interested in how competitors influence firm search have turned to
swarm intelligence models [5]. Unlike previous firm search models that focused only on
the firm’s own performance feedback, swarm models allow for the various behaviors of
other firms to influence the focal firm’s search strategy. For instance, Chen, Miller, and Toh
(2023) develop a swarm intelligence model that provides a flexible way to incorporate a
range of competitive influences, and they demonstrate how to use patent filings and patent
citation data to fit the model parameters and assess search performance [5]. However, to
investigate many problems, scholars will want to develop simulations to enable them to
abstract from the constraints of real-world data. Swarm simulations appear to have many
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promising applications for firm search and choice problems, but to utilize simulations
effectively, the researcher needs to devise a performance landscape in order to evaluate the
effectiveness of different search strategies. The best way to form a search landscape for
swarm remains unclear. A natural place to start is to simulate swarm search on the current
leading landscape tool—NK.

In this paper, we assess whether NK provides a suitable performance landscape to
conduct realistic swarm-based simulations of firm behavior. Note that our focus is not on
evaluating the effectiveness of our swarm algorithm on the NK landscape, as one might
evaluate the effectiveness of different optimization models to solve a particular problem;
rather, we want to know if the swarm-NK combination allows one to study firm search
phenomena in a realistic and insightful manner. We apply the Boids-based algorithm of
Chen et al. [5] to various NK landscapes. We find that because search on an NK landscape
is limited to movements along the hypercube rather than continuous movements in real
space, we cannot harness the full power of our swarm model. In fact, we can only have one
variable influence search at a time, thus collapsing our multivariate model into a simple
univariate model. Therefore, using NK to generate the performance landscape constrains
our swarm model from incorporating a full range of information from the environment. A
different way to generate the performance landscape is needed to harness the full potential
of our swarm model.

Through our investigation, we also uncover a variety of potential technical needs
that could allow strategy and organizational scholars to apply swarm models in a richer
way. Our main contribution is identifying necessary features (such as more appropriate
landscape attributes) to improve swarm search. We hope that by identifying these gaps,
researchers, including those in computer science and adjacent fields, can contribute to
the development of swarm search and its application to firm search and decision-choice
problems. We briefly summarize the potential research directions below.

Future Research Directions

• A payoff landscape or function that allows for continuous movement so that the full
value of swarm in modeling agent (firm or human) behavior can be realized.

• Endogenous landscapes that allow payoffs to change as a function of agents positions
on the landscape.

• Agent-specific landscapes that allow for researchers to explore heterogeneous returns
to agent actions.

• Allowing information between agents, their locations, and their performance to be
uncertain or incomplete.

• Including the cost of movements into the framework rather than implicitly assuming
free movements on the landscape.

The paper is structured as follows: Section 2 briefly discusses the NK landscape.
Section 3 describes the swarm model. Section 4 describes search algorithms for NK land-
scapes. Section 5 displays the swarm simulation results. Section 6 discusses the limitations
of NK landscapes for swarms. Section 7 lays out future research directions. Section 8
concludes the article.

2. NK Landscape
2.1. Background

The NK landscape model is a computational tool used for studying complex systems.
Introduced by Stuart Kauffman in the late 1980s to study biological systems [6,7], NK has
since found applications in various disciplines, including strategic management, economics,
and organizational studies, to examine firm choice [8].

In an NK landscape model, a system consists of N components, each of which can
exist in a certain state. Each component’s state is influenced by K other components. The
total possible states for a system are 2N. Each combination of component states has a
‘fitness’ associated with it, which is a measure of how well the system is performing in
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that particular state. Depending on the interactions among components, the fitness or
performance landscape can be visualized as a surface with peaks (high fitness) and valleys
(low fitness). A smooth landscape has fewer local optima, while a rugged landscape
has many.

In a rugged landscape, finding the global optimum is challenging [9]. Firms must
strike a balance between exploiting known solutions (climbing the local peak) and exploring
new potential solutions (searching elsewhere in the landscape). As K (interdependencies)
increases, the landscape becomes more rugged. Rugged landscapes represent highly
interdependent environments, which deteriorates the performance of local search. On
rugged landscapes, agents need to adopt more flexible and adaptive search strategies.

While being a powerful tool, the NK model has limitations. First, it reduces the
complex interactions of real-world systems into binary choices, which we will show later,
which constrains their potential to be combined with swarm intelligence models. Second,
the model assumes that interactions between components are randomly distributed and
remain constant, which might not be the case in real-world scenarios. Third, setting
appropriate N and K values to accurately represent a real-world system can be challenging.
Ganco and Hoetker (2009) provide a nice review of the NK landscape used in the strategy
literature and details of the NK landscape implementation [3].

2.2. Mathematical Development of NK

In the strategy and organization literature, an NK landscape is usually described
by a set of binary choices. As a result, the landscape is a high-dimensional hypercube.
Csaszar (2018) gives an example of three major components of a computer: the screen, CPU,
and battery. These three components are interdependent. His diagram is reproduced here
in Figure 1.
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Figure 1. An example of interaction.

In Figure 1, the arrows represent the direction of influence. The battery depends on
the screen, the CPU depends on the battery, and the screen depends on the CPU. These
interdependencies are usually described by an interaction matrix (IM). Figure 1 can be
written formally as follows:

I =

x1 x2 x3
x1
x2
x3

1 0 1
1 1 0
0 1 1

 (1)

In which the direction of influence goes from top to left. In other words, each row
describes how a component is influenced by the other components. In other words, x1
(first row) is influenced by itself and x3, x2 (second row) is influenced by itself and x1, and
x3 (third row) is influenced by itself and x2.

The NK landscape model is usually described as an N-dimensional hypercube with
binary (0/1) values at each node. We can visualize an N = 3 hypercube as shown in Figure 2.
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Each node, from [0, 0, 0] to [1, 1, 1], represents each component’s state. In this binary setting,
there are only two states (e.g., on or off).
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Figure 2. An example of a binary 3-dimensional NK landscape. Note: The battery (x1) depends on
the screen, the CPU (x2) depends on the battery, and the screen (x3) depends on CPU. The fitness
values are presented in parentheses (the global peak is 0.6333 at 1, 1, 1).

If we examine x1 (screen), since we know it is influenced by only x3 (CPU), we should
have the following information for fitness φ1(x1, x3). Similarly, we have φ2(x2, x1) and
φ3(x3, x2). Simply speaking, each sub-fitness function φi is evaluated for all components
that influence component i. We write it out explicitly as follows:

φ1(x1, x3) =


φ1(0, 0)
φ1(0, 1)
φ1(1, 0)
φ1(1, 1)

φ2(x2, x1) =


φ2(0, 0)
φ2(0, 1)
φ2(1, 0)
φ2(1, 1)

φ3(x3, x2) =


φ3(0, 0)
φ3(0, 1)
φ3(1, 0)
φ3(1, 1)

(2)

φ(x1, x2, x3) = φ1(x1, x3) + φ2(x2, x1) + φ3(x3, x2) (3)

For example,
φ(1, 0, 1) = φ1(1, 1) + φ2(0, 1) + φ3(1, 0) (4)

The entire landscape is the hypercube, which includes all the possible points, as
demonstrated in Figure 2. The fitness values are presented in parentheses (the global peak
is 0.6333 at 1, 1, 1). The major drawback of Figure 2 is that the landscape it represents
cannot be visualized.

In a general sense, the fitness function of any choice of policy can be written as:

φ(x1, · · · , xN) =
1
N ∑N

i=1φi(xi ∈ Ii) (5)

where xi = 0, 1 and Ii represents the ith row of the interaction matrix I.
Once the number of components is greater than 3, it is not possible to graphically draw

the hypercube. Furthermore, the hypercube cannot present a visual of the landscape. As a
result, it is common in the NK landscape literature to collapse the N-dimensional hypercube
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into a three-dimensional landscape, which can then be visualized, as in Figure 3 [10].
However, the usual description of a 3-D collapsed landscape often seen in the literature
is not an actual collapse of the hypercube but rather an imaginary portrait to mimic the
ruggedness of the landscape [11]. As seen in Figure 3, high K results in a rugged landscape,
while low K results in a smooth landscape.
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In this paper, we first follow Ganco and Hoetker [3] and use N = 6 to demonstrate
our swarm simulations. We set up two cases: K = 2 to represent a few interdependencies,
and K = 5 to represent the maximum interdependencies.

For example, when N = 6, then there are 26 = 64 choices from [0, 0, 0, 0, 0, 0] to
[1, 1, 1, 1, 1, 1] (or 0–63 in decimal representation). Hence, there are 64 fitness values,
one for each choice. In other words, this is a six-dimensional hypercube. Each sub-fitness
function φi is used as in Equation (5).

3. Swarm Intelligence Algorithms
3.1. Background

Swarm intelligence is the collective behavior of a decentralized system [12]. The
motivation for swarm intelligence comes from animals, such as birds, ants, bees, and
fish, that rely on group effort to achieve their basic survival needs, like seeking food or
avoiding prey [13]. Swarm intelligence has been used to study the behaviors of biological
organisms, tackle technical problems in engineering and medicine, and solve optimization
problems [14]. In this subsection, we briefly review the literature that applies swarm to op-
timization and technical problems before turning to our main focus in Section 3.2—using
the Boids [15] version of swarm to study agent search behavior. Perhaps the most ac-
tive area of swarm-related research is its application to solve optimization problems [14].
Eberhart and Kennedy (1995) were the first to adapt the behavioral model of swarm into an
objective-seeking algorithm known as particle swarm optimization (PSO) [16]. Their model
“artificializes” the group behavior of a flock of birds seeking food. Via bird-to-bird chirping
(i.e., peer-to-peer communication), all birds fly to the loudest sound of chirping. Shi and
Eberhart (1998) improve the model by adding an inertia term to seek a balance between
exploitation and exploration [17]. Since then, researchers have applied PSO to a variety of
contexts. For instance, PSO has been used for efficient frontier estimation [18], portfolio
optimization [19–24], interest rate modeling [25], earnings forecasting [26], and inventory
management [27].
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A search on an NK landscape is composed of making multiple binary decisions.
Researchers have modified the PSO algorithm to operate on binary problems [28] like mod-
eling genes. For example, Lee et al. (2008) and Di Caro (2019) introduce a modified binary
PSO in which binary and continuous positions can be connected via a response/sigmoid
function like in the logit model [29,30]. Later work developed a momentum search algo-
rithm to enhance how PSO searches [31]. Recent research examines how to alter velocity,
momentum, exploration, and exploitation to make binary PSO more effective and effi-
cient [32]. In this paper, for our purposes, we use a fixed value cutoff as opposed to the
response/sigmoid function as in Lee et al. (2008).

Swarm optimization models have also been applied in conjunction with other methods
to solve a variety of problems. For instance, swarm intelligence has been applied to tune
hyperparameters in ensemble deep learning models [33], enhance neural networks [34,35],
and supplement other deep learning approaches [36]. The relative performance of different
swarm intelligence algorithms is not always understood; however, there is burgeoning
work in this area. For instance, Guerra et al. (2023) compare how four swarm algorithms
perform in optimizing unscented Kalman filter parameters in a robotics application [37].
We refer those interested in algorithm performance comparisons in technical applications
or dimension reduction to the following work [38–41].

3.2. Swarm Intelligence to Model Agent Behavior

Swarm intelligence can be used to analyze human behavior. For instance, swarm intel-
ligence has been used to examine blog posts to understand human collective behavior [42].
It has also been proposed as a tool to understand the dynamic casual mechanisms that
underlie human team outcomes [43]. Minar et al. (1996) created an agent-based simula-
tions software for performing multiagent simulations [44]. Coen and Maritan (2011) use
Minar et al.’s software to develop an agent-based model of resource allocation, exploring
how the firm’s search ability and initial capability endowment influence performance in a
competitive environment [45].

In this paper, we simulate firm search on a performance landscape. Our departure
point is Chen et al. [5], who apply swarm intelligence to examine how firms search for
new technological inventions. They fit an augmented version of Reynold’s model to patent
data to assess if a firm’s search is influenced by other firms or by its own past performance.
Since our goal is to simulate the Reynold’s Boids model on an NK landscape, we briefly
discuss this model before proceeding to the mathematical development.

Reynold (1987) [15] was the first to “artificialize” natural intelligence by creating the
Boids (or bird-oid object) computer algorithm. For any given bird, Reynold devises a set
of linear equations (vectors) that combine to determine how the bird should fly to its next
destination. The equations contain three factors: separation, alignment, and cohesion.
As their names suggest, “separation” is to avoid collision with other birds, “alignment”
controls how a particular bird should fly in a direction by referencing its fellow birds,
and “cohesion” decides how fast a particular bird should fly to its next target position.
Reynold’s swarm model is extremely easy to implement. There are countless versions of
Boids, some of which add obstacles, objective destinations, or mazes. We now turn to the
mathematical development of our swarm model.

3.3. Mathematical Development of Swarm

In a swarm, let i be firm (fish) i = 1 · · ·m, t be the time, and j be a corporate func-

tion j = 1 · · · n. Let
⇀
x
(i)
t represent the position of the set of choices of the ith firm at

time t and x(i)j,t be the jth element. For the sake of completeness, define F as the set of

firms F =
{

f (1), · · · , f (m)
}

whose positions at time t we define by the n × m matrix

Xt =

{
⇀
x
(1)
t , · · · ,

⇀
x
(m)

t

}
.
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The velocity of a firm is defined as follows:

⇀
v
(i)
t = wA

⇀
v
(i)
A,t + wC

⇀
v
(i)
C,t + wL

⇀
v
(i)
L,t + wS

⇀
v
(i)
S,t + wP

⇀
v
(i)
P,t (6)

where each element in vector
⇀
v
(i)
t is v(i)j,t with i = 1 · · ·m and j = 1 · · · n and ΣP

x=Awx = 1.
Each sub-velocity is defined as follows:

⇀
v
(i)
A,t = avg

(
⇀
v
(j 6=i)
t−1

∣∣∣∣ f (j)
t−1 ∈ F

)
−⇀

v
(i)
t−1

⇀
v
(i)
C,t = avg

(
⇀
x
(j 6=i)
t−1

∣∣∣∣ f (j)
t−1 ∈ F

)
−⇀

x
(i)
t−1

⇀
v
(i)
L,t = αL(

⇀
g t−1 −

⇀
x
(i)
t−1)

⇀
v
(i)
S,t = max

{∣∣∣∣⇀x (i)
t −

⇀
x
(i)
t−1

∣∣∣∣, ε

}
⇀
v
(i)
P,t = (1− αP)

⇀
u
(i)
t + αP(

⇀
p
(i)
t −

⇀
x
(i)
t )

(7)

where
⇀
v
(i)
A,t is the alignment velocity, which is to follow the velocities of others;

⇀
v
(i)
C,t is

the cohesion velocity, which is to follow the center position of others;
⇀
v
(i)
L,t is the velocity

to follow the leader;
⇀
v
(i)
S,t is the separation velocity; and finally,

⇀
v
(i)
P,t is itself a weighted

average of a random component (i.e., exploration)
⇀
u
(i)
t and a tendency toward its best

memory
⇀
p
(i)
t .

The historically personal best
⇀
p
(i)
t , which is the best over the entire history t, is

computed as follows:
→
p i(t) = max

t

{
φ(

⇀
x
(i)
t )

}
(8)

The leader (global best), which is, at any given time, the best across all firms, is
computed as follows:

→
g (t) = max

i

{
φ(

⇀
x
(i)
t )

}
(9)

In
⇀
v
(i)
P,t, it contains a random number

⇀
u
(i)
t for the purpose of exploration. It also has a

tendency toward its own historical best
⇀
p
(i)
t −

⇀
x
(i)
t , along with other velocities that reflect

the exploitation of the swarm. Finally, the positions are updated periodically:

⇀
x
(i)
t+1 =

⇀
x
(i)
t +

⇀
v
(i)
t (10)

Unlike a typical swarm that is usually cast on a real space, the NK landscape is a
hypercube with binary values. As a result, the usual swarm moves in Equation (6) do not
apply. To build a swarm model for the NK landscape, we limit our canvas to only binary
values (0/1). This means that firms are only allowed to jump from node to node in the
hypercube, as demonstrated in Figure 4.

There can be only two types of moves in such a swarm: movement from one node to
any other node on the hypercube (i.e., long jumps), as in Figure 4A, and movement along
the edges of the hypercube (i.e., hill climbing), as in Figure 4B.

With such limitations in movements, it is clear that the search conducted by swarm in-
telligence cannot follow Equation (6) to compute a weighted average of all the components.
Instead, agents must choose only one component in Equation (6) to make a move. Also, we
must remove alignment and cohesion (since a firm cannot move to the center of other firms,
nor can it move in the same direction as the weighted average of the velocities of others)
and separation (since there is no reason why two firms cannot take the same position). We
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also remove the personal best in the last part of Equation (7) and allow only
⇀
v
(i)
P,t =

⇀
u
(i)
t .

This is because (i) there cannot be a weighted average and (ii) following your personal best
will result in a forever-stable position. At each iteration, an agent determines randomly
if he wants to move toward the leader (global best), which represents full exploitation, or
move randomly, which represents full exploration.
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Figure 4. Search on the NK landscape.

We note that the NK landscape is not the only landscape where firms make choices.
Alignment, cohesion, and separation can be incorporated when other landscape models
are considered. This will be the subject of future research.

In a regular swarm, the fitness function φ(·) is given in accordance with the main
goal of the search. Here, it is computed by summing a series of sub-functions as defined
in Equation (5). Each sub-function φi(·) contains only variables that influence variable i,
which is defined by the interaction matrix. This is a tedious binary search, and a sample
code is provided below.
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In many NK landscapes documented in the literature, this function is randomly gen-

erated from a Gaussian distribution. 
Finally, the pseudocode for a swarm of fish (firms or agents) is provided below. 

Function fit(x, n) 
 ‘read in Interaction Matrix 
 ‘loop through IM row by row 
 For i = 1 To n 
  count K of each row (K_i) 
  K = max(K_i) 
 Next 
 ‘keep track of which other variables influence variable i 
 ‘this is to read from already built tables (one for each variable 
 For i = 1 To n 
  go the table of variable i 
  loop to find the fitness value ‘binary to decimal conversion
  sum up each i-th fitness value 
 Next 
 fit = sum / n 
End Function 

In many NK landscapes documented in the literature, this function is randomly
generated from a Gaussian distribution.

Finally, the pseudocode for a swarm of fish (firms or agents) is provided below.

Algorithms 2023, 16, x FOR PEER REVIEW 10 of 26 
 

 

4. Search Algorithms 
The objective of the search is to find the highest-performing ‘peak.’ The researcher 

can use various search algorithms, from naïve search (i.e., random moves) to more realistic 
search algorithms, that capture the behaviors of single or multiagents. In most applica-
tions, search on NK landscapes has a single agent, or if it has multiple agents, the agents 
are unaware of each other’s movements [46]. Agents communicate only in an NKCS (co-
evolutionary system) landscape.  

There are three standard search strategies in the literature [47] that have been applied 
to NK landscapes:  
• One-mutant change or hill climb, where an agent chooses a new location from one of 

its one-mutant neighbors, such as 101 to 001, 111, or 100, if the fitness value of the 
new location is higher. 

• Fitter-dynamics: an agent chooses a new location from the best of its one-mutant 
neighbors. 

• Greedy dynamics (i.e., large or long jump), where an agent chooses a new location 
from all of its mutant neighbors, whoever has the highest fitness value. 

Sub swarm() 
 'preparation 
 set random number seed 
  
 'initialization 
 '1. setting up canvas (init) 
 For ifsh = 1 to nfsh 
  For idim = 1 to ndim 
   fish(ifsh, idim)= Int (Rnd * 2) 
  Next 
  fit(ifsh) = fit_fcn(fish) 
 Next 
 '2. save personal best 
 For ifsh = 1 To nfsh 
     For idim = 0 To ndim 
         pbst(ifsh, idim) = fish(ifsh, idim) 
     Next 
 Next 
 '3. find global best (leader) 
 For ifsh = 1 To nfsh 
     x1 = pbst(ifsh, 0) 
     If x1 > x0 Then 
         gbst(0) = x1 
         or idim = 1 To ndim 
            gbst(idim) = pbst(ifsh, idim) 
            x0 = x1 
        Next 
    End If 
 ext 
 
 'begin iteration (iter = 1 to nter, step 1) 
 For iter = 1 to niter 
 ‘1. choose either leader (large jumps) or personal (hill climb) 
 If u > 0.5 Then 
 ‘1a. if personal, then pick a coordinate to change 
  ipck = Int(Rnd * ndim) + 1 
  For ifsh 
   If fish(ifsh, ipck) = 1 Then fish(ifsh, ipck) = 0 
   If fish(ifsh, ipck) = 0 Then fish(ifsh, ipck) = 1 
  Next 
 Else 
 ‘1b. if global, then jump to global best if it is better; or stay 
  velo(ifsh, idim) = gbst(idim) - fish(ifsh, idim) 
  fish(ifsh, idim) = fish(ifsh, idim) + velo(ifsh, idim) 
 End If 
 ‘updating personal best 
  ... 
 ‘updating global best 
  ... 
 Next 
End Sub 
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4. Search Algorithms

The objective of the search is to find the highest-performing ‘peak.’ The researcher
can use various search algorithms, from naïve search (i.e., random moves) to more realistic
search algorithms, that capture the behaviors of single or multiagents. In most applications,
search on NK landscapes has a single agent, or if it has multiple agents, the agents are
unaware of each other’s movements [46]. Agents communicate only in an NKCS (co-
evolutionary system) landscape.

There are three standard search strategies in the literature [47] that have been applied
to NK landscapes:

• One-mutant change or hill climb, where an agent chooses a new location from one of
its one-mutant neighbors, such as 101 to 001, 111, or 100, if the fitness value of the new
location is higher.

• Fitter-dynamics: an agent chooses a new location from the best of its one-mutant neighbors.
• Greedy dynamics (i.e., large or long jump), where an agent chooses a new location

from all of its mutant neighbors, whoever has the highest fitness value.

The first two relate to local searches, while the third one relates to distant searches
requiring large jumps on the landscape. However, as criticized by Arend (2022), most NK
large jumps are achieved by random numbers (i.e., lack of using the knowledge of other
firms) [47]. Movements in the swarm model are guided by the intelligence of Equation (5),
which include local and large jumps.

Several scholars have studied the NK landscape with similar algorithms to swarm.
Wu (2022) uses the directed Erdős–Rényi random network model to study the NK land-
scape [48]. The Erdős–Rényi network is a special case of the swarm model. It is more
limited than the standard swarm model in that each agent can only see partial information
about the other agents. Bahceci (2014) uses a memory-based search where agents look for
the highest fitness point on the landscape and move along the surface of the landscape
based upon their strategy and their memories [11]. This is analogous to swarm in that
the former is part of leader following and random exploration and the latter is pursing
personal best, both of which are included in (5). In other words, Bahceci’s search algorithm
is a special case of swarm intelligence.

Finally, we note that a rich body of literature exists on different search strategies [1,49–54].
In this paper, we focus on some standard search strategies to demonstrate swarm search on
the NK landscape.

5. Results

Our first experiment is to replicate the work of Ganco and Hoetker (2009) [3]. As in
Ganco and Hoetker, we set up a population of N = 6 with two types of interdependencies:
K = 2 and K = 5. The former represents a smooth landscape, and the latter a rugged one.
The interaction matrix (IM) for K = 2 is given in (11) and for K = 5 is given in (11) and (12).

I =

x1 x2 x3 x4 x5 x6
x1
x2
x3
x4
x5
x6



1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1


(11)

I =

x1 x2 x3 x4 x5 x6
x1
x2
x3
x4
x5
x6



1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1


(12)
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To compute any fitness value, Equation (13) is computed as follows (where each
component is only affected by two other components):

φ(x1, · · · , x6) = φ1(x1, x2, x6) + φ2(x2, x1, x3) + φ3(x3, x2, x4) + φ4(x4, x2, x3)
+ φ5(x5, x4, x6) + φ6(x6, x1, x5)

(13)

While (14) is computed as follows (where each component is affected by all other
5 components):

φ(x1, · · · , x6) = ∑6
i=1φi(x1, · · · , x6) (14)

Hence, in each of the sub-fitness tables, there will be 23 = 8 values, each of which is
randomly drawn from a uniform distribution. For (15), they are:

φ1(0, 0, 0) = u1,1
φ1(0, 0, 1) = u1,2
φ1(0, 1, 0) = u1,3
φ1(0, 1, 1) = u1,4
φ1(1, 0, 0) = u1,5
φ1(1, 0, 1) = u1,6
φ1(1, 1, 0) = u1,7
φ1(1, 1, 1) = u1,8

φ2(0, 0, 0) = u2,1
φ2(0, 0, 1) = u2,2
φ2(0, 1, 0) = u2,3
φ2(0, 1, 1) = u2,4
φ2(1, 0, 0) = u2,5
φ2(1, 0, 1) = u2,6
φ2(1, 1, 0) = u2,7
φ2(1, 1, 1) = u2,8

· · ·

φ6(0, 0, 0) = u6,1
φ6(0, 0, 1) = u6,2
φ6(0, 1, 0) = u6,3
φ6(0, 1, 1) = u6,4
φ6(1, 0, 0) = u6,5
φ6(1, 0, 1) = u6,6
φ1(1, 1, 0) = u6,7
φ1(1, 1, 1) = u6,8

(15)

where ui,j is a uniform number for function i and the order of binary j. Given a binary
number, say 011, we can translate it to a decimal number of 3, which is the 4th random
number. We use a fixed seed, and all the random numbers are precalculated. For (16), there
are 26 = 64 values as follows:

φ1(0, 0, 0, 0, 0, 0) = u1,1 φ6(0, 0, 0, 0, 0, 0) = u6,1
φ1(0, 0, 0, 0, 0, 1) = u1,2 φ6(0, 0, 0, 0, 0, 1) = u6,2

... · · ·
...

φ1(1, 1, 1, 1, 1, 1) = u1,64 φ6(1, 1, 1, 1, 1, 1) = u6,64

(16)

As mentioned earlier, it is common to collapse the hypercube into a three-dimensional
graph. We follow Ganco and Hoetker (2009) to plot the result in Figure 5.

As argued by Bahceci (2014), there is no clear systematic way to perform this task. As
we can see, Ganko and Hoetker (2009) simply randomly arrange the x-axis to be the first
three variables ( x1 ∼ x3) and y-axis the last three variables ( x4 ∼ x6) with no particular
order. As a consequence, it is difficult to see the smoothness and ruggedness. Panel A of
Figure 5 is N = 6 and K = 2 (smooth), and Panel B of Figure 5 is N = 6 and K = 5 (rugged).

5.1. Global Search

Now we start our swarm simulations. In the first set of simulations, we allow for large
jumps (i.e., global search). Each firm can see all the positions (hence fitness values) of other
firms. In other words, all firms can see the entire landscape.

The NK landscape is simulated as described in the previous section. The sorted values
are plotted in Figure 6. The global peak is 1.279608, positioned at {0, 1, 0, 1, 1, 0}. We also
note that the 95th percentile (roughly the 4th highest observation) is 1.229603 positioned
at {1, 0, 0, 1, 0, 1}, and the 90th percentile (roughly the 7th highest observation) is 1.189652
positioned at {1, 1, 1, 0, 0, 0}.

The maximum value (global peak) is 1.279608. The 95th percentile (roughly the 61st
observation) is 1.229603, and the 90th percentile (roughly the 58th observation) is 1.189652.
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Seeing the entire landscape, each firm then decides how to move. There are three
possible choices for moving. One, the firm can follow the global best position of the other
firms, which we call pure exploitation as the firm is purely exploiting its information gained
from the environment. Two, the firm can forge its own path by exploring the landscape
on its own, which we call exploration. Third, the firm can randomly toggle between
exploration and exploitation, like in a multiarmed bandit model.

We use 20 firms and stop after 16 iterations. The initial position of each firm is
randomly generated, and the fitness value is calculated. The results are reported in Figure 7.
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Panel A of Figure 7 presents the result of pure exploitation. In this simulation, every
firm seeks to move toward the best fitness among its peers. As we can see, in two iterations,
all fish stop moving as they all reach a local peak of 1.242677 (the third highest fitness
level, see Figure 6) as opposed to a global peak of 1.279608. This is because each firm
can jump to the best position quickly. Since this happens so quickly, without exploration,
everyone stops.

Panel B of Figure 7 presents the result of pure exploration. However, a firm will only
move if a new position is better than its current one (i.e., firms have memory). We can see
that all firms move toward the global peak, which is 1.279608. Given that there are only
64 nodes but there are 20 firms, it is understandable that one firm will very soon find the
peak, and eventually every firm will find the peak.

Panel C presents the results of the random combination of exploration and exploitation.
We set 75% for exploitation and 25% for exploration and each firm randomly choosing
between the two. We reach a local peak at 1.273777 (the second-best fitness value, see
Figure 6). This is in between pure exploitation and pure exploration, as expected. It is
clear by looking at Panel C that exploitation brings very quickly every firm to 1.242677, but
instead of getting stuck there, after six iterations, one firm finds a higher position in the
landscape and brings everyone else there. Hence, all firms will end up at the global peak.

In terms of visualizing the climbing along the landscape as commonly depicted in the
literature, such as Figure 3B, we plot firm #4 in Figure 8.
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Figure 8. An example search path.

Figure 8 is the same landscape as Figure 5A, with the path of firm #4 marked. The
positions through which firm #4 travels are given below the graph. It is clear that the
collapsed landscapes given in Figure 7 do not provide an accurate description of the exact
path on which each firm travels.

Next, we present the results of N = 6 and K = 5, which we report in Figure 9. Similar
to Figure 7, there are three panels for pure exploitation, pure exploration, and combination.

In this case, the landscape is extremely rugged. Again, only pure exploration can
reach the peak, which is shown in Figure 9B. Like the previous result, pure exploitation
(Figure 9A) is stuck at a local peak for similar reasons. Finally, the combination will
eventually reach the global peak (Figure 9C).

One interesting observation is the contrast between Figures 7B and 9B, where the case
of pure exploration is present in both landscapes. In a smooth landscape, such as Figure 7B,
each firm reaches the global peak gradually and slowly. This is expected, as neighborhoods
are just slightly better than the current position. On the contrary, in the case of a rugged
landscape, large improvements in fitness can be very nearby, and hence jumps in fitness
are more likely. Furthermore, the global peak is likely to be just nearby (for some firms).
This is observed in Figure 9B.
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Another interesting observation from Figure 9B is that many firms seem to get stuck
for a long time before they move. We see this after step 4. The green firm takes a move in
step 6, the brown firm in step 8, and the red firm in step 15. There are still many other firms
that have not moved at all. This is reasonable, as the landscape is rugged.

One puzzling observation of Figure 9B is that all firms seem to have large jumps to
the same location at the very beginning (steps 1~3). This could be just coincidental (it is a
simulation, after all).
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As a conclusion, we find that exploration outperforms exploitation. This is consistent
with the finding by Wu (2022) [47]. This indicates that, in a high-dimensional NK landscape,
following peers too closely is very likely to land on a local peak.

5.2. Local Search

In this sub-section, we provide the results of a local (one-mutant) search. Each firm
can still see the global best but cannot move there in one step. Instead, it must move to
its immediate neighbor position. For example, 101 can only move to 001, 111, or 100. The
main two reasons for such a constraint are that jumps are costly, and firms are not easily
(politically or economically) able to perform large jumps. While one could incorporate costs
for large jumps (with cost made proportional to distance in a linear or nonlinear fashion),
in this paper, for the sake of demonstrating swarm performance, we treat them as two
separate cases. It is understandable that once jump costs are prohibitively high, firms will
choose to only perform local searches, and on the other extreme, when jumps are free, firms
may pursue large jumps (however, as we see in the previous sub-section, large jumps may
not end up at the global optimum).

The simulations in this sub-section are only conducted using a combination of both
exploitation and exploration. The result for the smooth landscape (N = 6 and K = 2) is
reported in Figure 10.

Algorithms 2023, 16, x FOR PEER REVIEW 18 of 26 
 

(politically or economically) able to perform large jumps. While one could incorporate 
costs for large jumps (with cost made proportional to distance in a linear or nonlinear 
fashion), in this paper, for the sake of demonstrating swarm performance, we treat them 
as two separate cases. It is understandable that once jump costs are prohibitively high, 
firms will choose to only perform local searches, and on the other extreme, when jumps 
are free, firms may pursue large jumps (however, as we see in the previous sub-section, 
large jumps may not end up at the global optimum). 

The simulations in this sub-section are only conducted using a combination of both 
exploitation and exploration. The result for the smooth landscape ( 6N=  and 2K= ) is 
reported in Figure 10. 

 
Figure 10. N = 6, K = 2, one-mutant search (randomly choose between exploitation 75% and explo-
ration 25%). Each simulated firm is represented by a different color. 

As in Figure 9C, Figure 10A shows that firms gradually reach their peak. Due to 
slower and more gradual movements, it takes longer for all firms to reach the global max-
imum. Following the literature, we now plot the percentage of firms reaching the global 
peak in Figure 10B. This is similar to the literature in that the curve is concave right before 

 
(A) How each firm moves 

0.8

0.9

1

1.1

1.2

1.3

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 
reach peak at 1.279608 
 
(B) % reached peak 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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ration 25%). Each simulated firm is represented by a different color.



Algorithms 2023, 16, 527 17 of 24

As in Figure 9C, Figure 10A shows that firms gradually reach their peak. Due to slower
and more gradual movements, it takes longer for all firms to reach the global maximum.
Following the literature, we now plot the percentage of firms reaching the global peak in
Figure 10B. This is similar to the literature in that the curve is concave right before every
firm reaches its peak. Different from the literature, we find that the curve is convex at
the beginning.

We display the result for the rugged landscape (N = 6 and K = 5) in Figure 11.
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Figure 11. N = 6, K = 5, one-mutant search. Each simulated firm is represented by a different color.

Not surprisingly, in the case of a rugged landscape, it takes longer to research the
global peak. This can be easily seen by comparing Figures 10 and 11. In Figure 10, all firms
reach the global peak at step 7, and yet in Figure 11, less than 10% of firms reach the peak
by step 7. Even by step 16 (the maximum number of iterations in our simulations), only
40% can reach the global peak (see Figure 11B). Eventually, all firms will reach the global
peak if given enough time.

5.3. Large N

In this sub-section, we simulate large samples to see if the results change as compared
to small samples. In the literature, researchers typically do not set N to be greater than 20,
because at N = 20, the hypercube has a dimension of 220 = 1,048,576. In our simulations, we
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use N = 15. We also increase the number of firms to 100, which is a much smaller amount
compared to the large space of over 1 million dimensions. As for K, we perform simulations
for two cases: K = 14, the most rugged landscape, and the other is a randomly chosen K. In
the latter case, we randomly choose K by setting a 50% chance that any other component
has an influence on or not on component i. Specifically, for a component i, we randomly
decide if any component j 6= i has an influence or not on component i. Hence, on average,
K is roughly 7. While we can make the landscape smoother, the result already seems quite
conclusive, hence indicating no such need for a smoother landscape.

We present the results for the smooth case in Figure 12 and for the rugged case in
Figure 13. Panel A of both figures depicts the case of pure exploration, and Panel B of both
figures depicts the case of pure exploitation. We can see that Figures 12 and 13 mimic the
results of the previous one with a smaller N. In the case of a smooth landscape (Figure 12, as
compared with Figure 7), pure exploration can bring everyone to the peak, yet more slowly
when the landscape is larger. And in the case of pure exploitation, firms stop searching
very quickly, an identical result found in the smaller landscape. In the case of an extremely
rugged landscape (Figure 13, as compared with Figure 9), the situation is the same, which
shows that firms do not jump to the global peak at 0.673668.
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Figure 12. N = 6, and K is small. Each simulated firm is represented by a different color.

To conclude, the larger landscape does not provide any more insight than the smaller
landscape in Ganco and Hoetker (2009). This is due to the nature of the landscape—a
hypercube with binary choices. When a firm searches such a landscape, there is not
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much flexibility for the firm to move along the hypercube—it can either rely upon its own
experience or it follows the leader of the group. Therefore, with such limited choices,
larger or smaller landscapes do not make a difference. We conjecture that the sub-group
arguments made in the literature also make no substantial differences. Instead, one must
include other considerations, such as the differential costs of various choices, to alter the
results. We summarize the results and discuss the limitations and opportunities for further
development in the following two sections.
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6. Discussion of Simulation Results and Identification of Limitations of the NK
Landscape for Swarm-Based Search
6.1. Discussion of Simulation Results

We run multiple simulations comparing exploration and exploitation search strategies
on smooth and rugged landscapes and with a small and large number of firms. We
also examine performance when firms are restricted to one-mutant search strategies. We
label following the global best as “exploitation” and randomly exploring on its own as
“exploration”. Exploration tends to outperform exploitation if gauged by the probability
of a focal firm reaching the highest peak or the number of firms reaching the highest
peak. If we take a snapshot at some intermediate point in the simulation (say t = 10),
then exploitation typically creates the highest value for firms on average, as firms quickly
converge to the best-known location (in terms of payoff), which is unlikely to be the global
maximum but may be higher than a random location on the hypercube. Overall, the results
may not be that surprising. Early in the simulation run, firms gain more information
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by copying other firms (maximizing over N other locations) as compared to exploring
randomly, so exploitation performs better but will likely result in the firm finding a local
rather than global optima.

While we can technically discuss which search strategy performs best under a given
set of criteria, it is unclear if such an assessment has practical meaning to the study of firm
search due to the limitations the NK landscape places on our swarm model, specifically the
use of only one information input from firms rather than a more sophisticated set of inputs
(as given in Equations (6) and (7)). The one information input we used was the global best
position from the entire firm population. While we could choose some other formulation (a
different reference set, etc.), the main limitation is that we can only use one factor rather
than multiple factors. The swarm model that we present in Equations (6) and (7) provides
a rich way to capture a variety of influences from the environment. These equations can be
modified in a variety of ways to capture realistic behaviors. Using the NK landscape, the
way swarm can model influences from other firms is too simplistic.

6.2. Further Discussion of NK Limitations for Swarm-Based Search Studies

Prior literature has made extensive use of the NK landscape to represent a combination
of interdependent decisions. By modeling each decision as a binary choice that can have
interdependencies with other (binary) choices, modelers using NK have produced numerous
insights about firms’ or individuals’ search behaviors, which have greatly benefited the strat-
egy and organization literature. While the simplicity of the NK landscape—the hypercube
of binary coordinates—is arguably one of its strengths, it also creates several limitations.

First, the NK landscape seems more ideally suited for examining the performance
feedback-driven search of one agent rather than how multiple agents influence each other’s
search through multiple variables, which is the main application and advantage of swarm
in the search literature. NK forces the agent to move along the (0/1) nodes of the hypercube
rather than in a real-dimensional space. Therefore, models that take multiple variables
(like in Equation (7)) and inform the agent’s search through a weighted average (like in
Equation (6)) cannot be fully utilized and instead collapse to one variable input. The ability
to draw nuanced inferences about competitive interactions (e.g., imitation, differentiation,
etc.) from search is thereby eliminated, which constrains the swarm model’s ability to
address interesting search problems.

Second, in our application of the NK landscape, we assume that all firms face the same
performance landscape, which may not be realistic. Returns to a position on the landscape
could be a function of other firm factors, such as unique resources and capabilities, not
captured in the simulation model. This poses no problem for most researchers who apply
NK to model one agent’s search but could make multiagent search unrealistic if agents are
heterogeneous. Note that such a problem is not specific to NK landscapes but is true for
any payoff structure that does not vary across agents. Nevertheless, to make the best use of
swarm, a more flexible performance landscape structure is needed.

Overall, the benefits of the NK landscape for individual search limit its ability to
appropriately capture a landscape suitable for multiagent search where agents influence
each other’s search trajectories through multiple variables.

7. Directions for Future Research

In this section, we discuss how future research can address gaps in swarm modeling
as applied to firm search.

7.1. The Need for a Flexible Landscape

The stylized 3-D representation of the NK landscape, as seen in Figure 3, depicts
landscapes of different ruggedness, and this stylized view provides powerful insights into
the challenges of search. To reap the benefits of swarm models in their application to firm
search, researchers need a way to create multidimensional landscapes that can capture
the same essence of ‘varying ruggedness’ but can be searched by multiple agents in a
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continuous way. Those in computer science or related fields that work on search algorithms
can contribute to the strategy and management science literature by developing methods
of creating such landscapes. Some scholars have begun to examine this problem [55].

7.2. Landscape and Search Process Extensions

Researchers interested in firm/agent search could benefit from the development of
several extensions to performance landscapes and search processes. Below, we call for
several extensions that, when combined with swarm, could allow the model to better
illuminate the challenges of developing search strategies in the real world.

7.2.1. Endogenous Landscapes

From our understanding, the prior literature using search simulations has only consid-
ered exogenously given payoffs or performance landscapes. In such work, users generate a
landscape based on some parameters and then analyze the search on the landscape. The
agent’s position on the landscape does not affect the payoff, which of course makes sense
for many of the research questions in which single agent search has been applied. In the
analysis of multiagent search, it can make sense for agent positions to alter the payoffs.
Consider simulating a firm search across innovation topics, according to Chen et al. (2023).
One might expect that the more firms that develop products using the same knowledge,
the lower the returns on using such knowledge. From the perspective of the performance
landscape, the height of the hill (payoff) falls as more agents take a position on the hill.
Endogenizing the landscape in this way can allow researchers to examine more nuanced
strategies that better reflect the reality of market competition.

7.2.2. Agent-Specific Landscapes

As discussed in the limitations section above, it is unrealistic to believe that firms
with varying endowments of resources and capabilities will perform in the same way by
taking the same position on the landscape. To incorporate heterogeneity in the search–
performance relationship without directly modeling the heterogeneity, future work could
model each agent (firm) on their own landscape. Information about other agents and
their payoffs in their own landscapes could be incorporated into the focal agent’s search
in its own landscape. Such an approach could illuminate questions regarding whether
incorporating information on rivals benefits the focal firm’s search strategy when the extent
to which payoffs to the same position vary across firms.

7.2.3. Incomplete Information

Swarm search typically allows the agent to absorb information from a reference group
in its complete form. In other words, the agent has complete information on the location
and performance of those in the reference group (i.e., F in Equation (7)). In reality, the focal
firm is unlikely to know the exact performance of those in the reference group or to be
able to link the position in space (e.g., position in knowledge space) to the performance of
the firm. Therefore, adding noise to the signal through a random error term or devising
other means of making the signal incomplete could have useful applications to the study of
search under uncertainty.

7.2.4. Costly Movements

To our knowledge, most search papers allow for the costliest movements across the
landscape. In the application of firm search for technological innovations, moving across
knowledge topics or technologies is not costless. Incorporating costs could have several
benefits. First, incorporating costly movement into the model can allow researchers to better
compare search strategies that incur different costs. For instance, local search—searching in
the neighborhood of the firm’s location on the landscape—could be less costly than distant
search—searching in faraway neighborhoods—as the costs of discovery of new (to the firm)
knowledge likely vary based on the firm’s current knowledge stock (as given by the firm’s
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current and prior positions on the landscape). Second, firms may differ in their cost of
search due to their unique external factors (e.g., firm-specific access to the labor market or
their own cost of capital) or internal factors (e.g., firm-specific resources and capabilities).
Optimal search strategies may differ as these factors differ, and a cost function could allow
the researcher to easily incorporate such elements into the model framework. Third, budget
constraints could be combined with costs to simulate a resource-constrained search.

8. Conclusions

Recent work by Chen et al. (2023) proposes using swarm-bases search to examine how
competitors influence search. Although Chen et al. demonstrate how to fit swarms to data,
many problems related to competitive dynamics and search will be better examined with
simulation. However, the literature has not considered how to best build a landscape to
study firm search with swarms. We apply swarm search to the workhorse landscape model
in strategy and organizational search literature—NK. While scholars have generated many
valuable insights into firm decision problems using search on NK landscapes, we find that
it is not well suited for swarm. We discuss these limitations and identify multiple research
opportunities to improve landscapes as well as other features that could improve swarm’s
ability to address search problems. We hope to encourage those working with algorithms,
such as scholars in computer science and related fields, to help develop tools that can be
applied to firm and agent choice problems.
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