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Abstract: In unmanned aerial vehicle photographs, object detection algorithms encounter chal-
lenges in enhancing both speed and accuracy for objects of different sizes, primarily due to complex
backgrounds and small objects. This study introduces the PDWT-YOLO algorithm, based on the
YOLOv7-tiny model, to improve the effectiveness of object detection across all sizes. The proposed
method enhances the detection of small objects by incorporating a dedicated small-object detection
layer, while reducing the conflict between classification and regression tasks through the replacement
of the YOLOv7-tiny model’s detection head (IDetect) with a decoupled head. Moreover, network con-
vergence is accelerated, and regression accuracy is improved by replacing the Complete Intersection
over Union (CIoU) loss function with a Wise Intersection over Union (WIoU) focusing mechanism
in the loss function. To assess the proposed model’s effectiveness, it was trained and tested on
the VisDrone-2019 dataset comprising images captured by various drones across diverse scenarios,
weather conditions, and lighting conditions. The experiments show that mAP@0.5:0.95 and mAP@0.5
increased by 5% and 6.7%, respectively, with acceptable running speed compared with the original
YOLOv7-tiny model. Furthermore, this method shows improvement over other datasets, confirming
that PDWT-YOLO is effective for multiscale object detection.

Keywords: small-object detection; decoupled head; WIoU; YOLOv7-tiny model

1. Introduction

Object detection [1] is an important task in the field of computer vision which aims
to identify and locate target objects automatically in images or videos. Unlike simple
classification tasks, object detection requires identifying multitargets in the image and
providing a bounding box for each target to indicate its precise location. Object detection
technology has been widely used in fields such as self-driving cars, video surveillance,
medical image analysis, and drone image analysis [2]. In these application fields, unmanned
aerial vehicle (UAV) object detection has received widespread attention in recent years, and
has a significant impact on both military and civilian applications [3]. However, complex
scenes, variably sized small objects, occlusions, and variable illumination bring a variety of
challenges and requirements to UAV object detection technology. Therefore, research on
this technology is of considerable significance in terms of improving the real-time accuracy
of UAV object detection.

Recently, the rapid progress in deep learning, as indicated in [4], has greatly expedited
its extensive adoption in UAV object detection. Deep learning models can be broadly
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classified into one- or two-stage approaches, a categorization based on their algorithmic
structures.

The most classic two-stage models are the region-based convolutional neural network
(R-CNN) algorithm series. In 2014, Girshick et al. [5] introduced the R-CNN, an algorithmic
method of region selection, followed by classification and detection. In 2015, Girshick [6]
improved the R-CNN and proposed a Fast R-CNN. And Ren et al. [7] made a further
improvement and introduced Faster R-CNN. This further improved detection accuracy
and efficiency. In 2018, Zhao et al. [8] introduced Cascade R-CNN.

Conversely, one-stage models do not require candidate region selection. These end-to-
end algorithms treat object detection as a direct regression task. Representative algorithms
include the You Only Look Once (YOLO) series [9–19], the Single Shot MultiBox Detector
(SSD) [20], and RetinaNet [21]. These algorithms have fewer parameters, and the detection
processes are considerably shorter; nevertheless, they tend to have a slightly lower accuracy
than two-stage models.

With continuous model development, object detection methods have evolved to meet
various scene-specific needs. However, achieving real-time and highly accurate detection
remains challenging, particularly because of the high flight speeds of UAVs. To address this
issue, Zhang et al. [22] proposed a UAV detection method based on YOLOv3 and a pruning
algorithm. These measures were aimed at enhancing the detection speed. The proposed
UAV detection model achieved a significant reduction in model size of 95.16% and inference
time of 51.37%. However, this optimization did not improve the accuracy. Wang et al. [23]
proposed replacing Visual Geometry Group 16 (VGG-16) with Residual Network (ResNet)
specifically for UAV vehicle detection scenarios. The optimized Faster R-CNN model
was effective in handling small-object vehicles while reducing false alarms and missed
detections. This led to an impressive vehicle detection accuracy of 96.83%. Nonetheless, this
improvement in accuracy came at the expense of decreasing the detection speed. Huang
et al. [24] proposed an optimized cascaded R-CNN. This enhancement involved adding
superclass detection to the original algorithm. Additionally, it incorporated the fusion of
regression confidence and modifications to the loss function, all aimed at enhancing object
detection capability. This method effectively improves the detection performance for aerial
targets. However, because of the large baseline, the model was limited by slow reasoning
speed and weak mobility.

In this study, to address the challenge of detecting small objects with complex back-
grounds while satisfying the high-speed detection requirements of edge computing, the
PDWT-YOLO algorithm was introduced as an improvement to YOLOv7-tiny. Experiments
were conducted using the public dataset VisDrone-2019 [25], and the results confirmed
that the proposed algorithm enhanced detection accuracy while simultaneously main-
taining detection speed. The model shows the following improvements compared with
YOLOv7-tiny:

• A small-object detection layer was added that used a 160 × 160 resolution feature
map to detect small objects. This adjustment enhanced the detection performance for
small objects.

• The contradiction between small-object classification and regression was weakened
by introducing a decoupled head [26] to replace the detection head IDetect [27] in
YOLOv7-tiny, which improved detection accuracy.

• The WIoU loss function [28] that expedites network convergence and enhances the
regression accuracy was used instead of CIoU thus presenting a balanced regression
approach for both high- and low-quality samples. Compared with CIoU [29], WIoU
emphasizes anchor boxes of average quality, resulting in an overall performance
enhancement for the detector. This function is suited to handling small object boxes
and overlapping occluded object boxes, making it beneficial for small-object detection.
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2. Related Work

In this paper, after fully studying and analyzing the structure of YOLOv7-tiny and
various improved algorithms, we put forward an improved object detection method based
on YOLOv7-tiny. In Section 2.1, we introduce the development of YOLO series algorithms
and the structure of the YOLOv7-tiny network. In most of the object detection methods
based on deep learning, the detection head and the IoU loss function are also two important
parts. They are respectively used for classification, positioning, and measuring the overlap
between the prediction box and the real box. Hence, we introduce the mainstream target
detection heads and their respective advantages and disadvantages in Section 2.2, and
various IoU loss functions in Section 2.3.

2.1. YOLOv7-Tiny Network Structure

YOLO is an object detection model that changes the traditional approach to object
detection. It applies a single CNN [30] to process the entire image, divides the image
into grids, and makes predictions. These predictions include the class probabilities and
bounding box coordinates for any object present within each grid cell. The method enables
YOLO to efficiently and accurately detect objects in images in real time.

YOLOv1 [9] was introduced in 2016 by Redmon et al. It is an end-to-end object
recognition and detection method that predicts the probabilities of object categories in a
complete image. In 2017, Redmon and team unveiled YOLOv2 [10], which improved on
some shortcomings of YOLOv1 and significantly improved its accuracy and number of
object detections. YOLOv2 adopted the network structure of DarkNet-19 [31] instead of
the GoogLeNet [32] network structure of YOLOv1. The network structure had no fully
connected layers, and there were five down samplings, all of which were convolution
operations. The 1 × 1 convolution operation saved the parameters. YOLOv3 [11], in-
troduced by Redmon et al. in 2018, represented a significant advancement in the YOLO
series. Compared with its predecessors, YOLOv3 placed a primary emphasis on network
architecture improvements, one of which was the adoption of the DarkNet-53 network
structure, which was deeper and more complex than the earlier structures. This struc-
tural enhancement simultaneously improved the speed and accuracy of object detection.
YOLOv3 introduced the idea of ResNet [33], stacking more layers for feature extraction
and using spatial pyramid pooling networks [34] to achieve multi-size input and same-size
output. In April 2020, Bochkovskiy et al. [12] improved YOLOv3 and proposed the more
powerful YOLOv4 algorithm. The network structure adopted was Cross Stage Partial
Networks 53 (CSP DarkNet-53). In YOLOv4, a spatial pyramid pooling network (SPP-Net)
was added to enable the model to adapt to inputs of different sizes. A Path Aggregation
Network (PANet) [35] was incorporated to fully exploit feature fusion. In June 2020, Red-
mon et al. launched YOLOv5 [13–15]. The Leaky ReLU activation function, commonly
used in neural network architectures, was applied in the middle or hidden layers, and the
final detection-layer activation function was sigmoid.

In 2020, Bochkovskiy et al. proposed the YOLOv7 [16,17] algorithm. YOLOv7 contin-
ued optimization based on YOLOv5, and had obvious advantages in detection accuracy and
speed. First, YOLOv7 incorporated a redesigned extended efficient aggregation network to
enhance its feature extraction capabilities. The max-pooling convolution (MPConv) module
was introduced for the down sampling operation. This module added a convolution opera-
tion based on pooling and realized down sampling through the dual operation of pooling
and convolution, which reduced the loss of features. Improved SPP was the final part of the
backbone network, and a set of convolution operations was integrated into multiple parallel
pooling operations to avoid problems such as image distortion. In the neck network, the
PANet structure was still used for network aggregation to ensure the effective integration
of different feature layers. In the final prediction head network, REPConv [36] was used
to adjust the number of channels. REPconv had different structures during the training
and inference stages. Using the concept of reparameterization, the structure of REPConv
was simplified in the inference stage without losing accuracy. Although the accuracy of
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YOLOv7 has improved over the series, the network structure is too complex, the number
of parameters too large, and the equipment performance requirements too high for it to be
used for edge-terminal equipment.

YOLOv7-tiny [18,19] simplifies the structure based on YOLOv7, which is a network
model designed for edge GPUs. It consists of a backbone, neck, and head, as shown in
Figure 1. In the backbone, a simpler ELAN-T is used instead of an extended efficient layer
aggregation network (E-ELAN), and the convolution operation in MPConv is cancelled.
Only pooling is used for down sampling, which retains the optimized SPP structure and
inputs richer feature maps for the neck layer. At the neck, the PANet structure is retained
for feature aggregation. At the head, a standard convolution is used to adjust the number
of channels instead of REPConv. YOLOv7-tiny sacrifices a certain degree of accuracy, but
has advantages in terms of speed and weight compared with YOLOv7.
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2.2. Detection Head

The object detection head in the object detection model is responsible for detecting
objects within the feature pyramid. It typically comprises a series of convolutional, pooled,
and fully connected layers. To achieve a better detection performance, studies have pro-
posed different detection heads [13,16,26] based on model characteristics. In the YOLOv5
model, the coupled head plays a crucial role in multiscale object detection; it uses a feature
map extracted from the backbone network. The design idea of the module is simple, but it
requires many parameters and computing resources, and is easy to overfit. The coupled
head includes anchors, classification, and object detection.

Anchors are used to define object boxes of different sizes and aspect ratios in object
detection models. These anchor boxes provide reference points for the model to predict
the bounding box coordinates and class probabilities. During the preprocessing phase
before model training, K-means clustering [37] is applied to group similar object boxes into
clusters, and the centroids of these clusters become the anchor box dimensions.

Classification determines whether a detection box contains an object. The features
extracted from the detection box typically pass through a fully connected layer, followed
by a softmax activation function. The softmax function assigns class probabilities to each
class, and the box is assigned to the class with the highest probability if it exceeds a
certain threshold.
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Object detection regression is used to refine the position and size of each detection box.
Typically, this regression is performed using a fully connected layer that learns to predict
the necessary adjustments to the initial bounding box coordinates.

YOLOv7 introduced an auxiliary head to the head side for training. When the auxiliary
head is used for training, the loss of the auxiliary and detection head is integrated, and the
training of the model is deeply supervised. This is equivalent to performing high-level local
model ensemble operations in a network to enhance the overall performance of the model.

In YOLOX, the use of a decoupled head for classification and localization was designed
to effectively reduce the number of parameters and computational complexity, while simul-
taneously enhancing the model’s generalization ability and robustness. This architectural
choice improved the efficiency and overall performance of the YOLOX object detection
model. For each level of feature pyramid network (FPN) features, a 1 × 1 convolutional
layer was initially applied to reduce the number of feature channels to 256. This reduction
in feature channels helped manage computational complexity while preserving relevant
information. Two parallel branches were introduced, each consisting of two 3 × 3 convolu-
tional layers. These branches were responsible for the classification and localization. Finally,
an additional Intersection over Union (IoU) branch was added to the positioning branch.

2.3. IoU

IoU is a metric for assessing object detection algorithms. It quantifies the overlap
between predicted and ground truth bounding boxes by dividing their intersection area by
their union area. IoU values range from 0 to 1, where 0 indicates no overlap and 1 signifies
perfect overlap. Commonly used in tasks such as image segmentation, IoU measures
localization accuracy, with higher values indicating more precise object localization. Higher
IoU values typically signify superior precision in object localization.

The introduction of Generalized Intersection over Union (GIoU) [38] has transformed
the evaluation of object detection, as it takes into account both the overlap and alignment
between predicted and ground truth bounding boxes. GIoU offers a more nuanced assess-
ment of object localization accuracy, ensuring a comprehensive evaluation while avoiding
unnecessary repetition.

Distance Intersection over Union (DIoU) [39] extends its scope beyond measuring the
overlap between bounding boxes. It also considers the distance between the centers of these
boxes. This innovative approach provides a more precise and refined assessment of object
localization, reducing redundancy in the evaluation process. CIoU introduces a significant
innovation in the field of object detection evaluation by incorporating additional geometric
insights. In addition to measuring intersection and union, CIoU considers the bounding
box aspect ratio and the difference in diagonal lengths. This novel approach ensures a
more holistic and precise evaluation of object localization accuracy, further minimizing
redundancy in the assessment process. CIoU builds upon the foundation laid by DIoU by
extending the IoU metric.

Efficient Intersection over Union (EIoU) [40] directly takes into account the differences
in length and width between the predicted and ground truth bounding boxes, in contrast
to CIoU. On the other hand, Scylla Intersection over Union (SIoU) [41] places increased
emphasis on the regression angle of the bounding box, enhancing the evaluation process.

Tong et al. [28] have noted that the IoU metric can be sensitive to the exact position of
bounding boxes, particularly when dealing with small objects or objects requiring precise
localization. In response to this challenge, an evaluation metric tailored for small objects
was introduced. This metric is known as WIoU, and it was developed to address the balance
issue between good- and poor-quality samples in bounding box regression (BBR). Through
the use of the Wise gradient gain allocation strategy within a dynamic nonmonotone
focusing mechanism, WIoU v3 achieves superior performance.
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3. Methodology

In this study, three innovations were introduced, a novel model was established, and
enhancements were made to the original algorithm to enhance the detection performance
for UAV image objects. Using the P2 small-object detection layer, the size of the detection
feature layer was expanded, the model recall rate was improved, and the detection perfor-
mance for small objects in the UAV images was improved. The use of a decoupled head to
weaken the contradiction between classification and regression tasks improved detection
accuracy, accelerated network convergence, and ensured information validity. WIoU was
used to solve the balance problem between samples of good and poor quality. The network
structure of PDWT-YOLO is shown in Figure 2; the improvements are shown within the
red dashed lines.
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3.1. Small-Object Detection Layer

Achieving high accuracy in detecting small objects within UAV images poses a com-
mon challenge in computer vision, especially in object detection tasks. Although YOLOv7-
tiny may perform well in different application scenarios, it still struggles with small-object
detection owing to the use of a convolution-based feature extraction mechanism. As the
network depth increases, the resolution of the feature map becomes lower step by step.
Moreover, the small features of the target are further weakened because of the pooling layer
and convolution kernel operations. These reasons above may result in falsely detecting
small targets or missing small targets. The PDWT-YOLO model consists of four detection
heads used to detect features of different sizes: 160 × 160, 80 × 80, 40 × 40, and 20 × 20.
As illustrated by the role of P2 in Figure 2, a new P2 (160 × 160) small-object detection
layer was added, and the resolution of the detection feature layer was expanded. The new
small target detection layer was added to generate a feature map with higher resolution.



Algorithms 2023, 16, 520 7 of 16

Hence, the network can maintain more detailed features in the image, which can enable the
network to detect more small targets. At the same time, the pyramid structure (as shown in
the neck part of Figure 2) can well integrate the shallow features and deep features under
various resolutions, which can not only improve the detection effect for small targets, but
also not affect the detection accuracy for large and medium targets. Therefore, after using
this improved method, the detection performance (such as the recall rate) of the model is
expected to improve soundly.

3.2. Decoupled Head

The main function of the detection head is to convert the extracted feature map from
the network into the target category, location, confidence, and other information. In the
YOLOv7-tiny model, the classification and location regression tasks share a fully connected
layer. But classification pays more attention to calculating the most probable category,
whereas regression focuses on calculating positions and boundary boxes of targets. The
two tasks are different, and may lead to mutual interference if there is only a single head.
To solve the contradiction between classification tasks and regression tasks with a single
head (which leads to problems of low detection accuracy and slow convergence speed),
a decoupled head (including a classification part and a regression part) was added to
replace the detection head in YOLOv7-tiny. A decoupled head separates the two tasks
of classification and location regression, since two different head structures can optimize
their own tasks without affecting each other. Furthermore, the weight of each task can also
be adjusted finely. The decoupled head structure, depicted in Figure 3, utilizes an initial
1 × 1 convolution for dimensionality reduction, followed by two 3 × 3 convolutions for
each of the two parallel classification and regression branches. In the classification branch,
a 1 × 1 convolution was used for the classification operation. In the regression branch,
a 1 × 1 convolution was used for the positioning and confidence operations in the two
parallel positioning and confidence branches, respectively. Finally, the anchor-based [42]
method was used to extract the object box, compare it with the marked ground truth to
determine the difference between the two, and finally produce a detection result. As shown
in the decoupled head section of Figure 2, the output of the CBL module in the head is
divided into CLs, Reg, and IoU. Our method separates classification and regression tasks
with a decoupled head, thereby improving the detection accuracy, accelerating network
convergence, and improving the detection results.
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Within the YOLOv7-tiny network, the coordinate loss for predicting the bounding box
adopts CIoU. However, CIoU exhibits a significant limitation as it is sensitive to the scale
of objects, particularly when dealing with objects of vastly different sizes. This sensitivity
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arises from its reliance on the diagonal length of the minimum bounding box, which may
not accurately represent the scale of objects with varying shapes. In this study, the scale of
the target varies greatly in the UAV image, and there are many small targets. Moreover,
CIoU is quite sensitive to input parameters. Hence, large differences in target scales can
cause training instability and unsatisfactory performance.

In this study, WIoU replaced CIoU as an improved loss function, because WIoU offers
a notable advantage in object detection tasks by assigning different weights to different
object classes. This approach allows for a more fine-grained evaluation, emphasizing the
accuracy of specific classes over others. By customizing the importance of different classes,
WIoU provides a nuanced assessment of object detection performance. This customization
minimizes repetition in the evaluation process. The calculation is shown in Equation (1):

LWIoU =
β

δαβ−δ
exp

(
x− xgt

)2
+
(
y− ygt

)2(
W2

g + H2
g

)∗ LIoU (1)

where ‘x’ and ‘y’ denote the center point coordinates of the prediction box, while ‘xgt’ and
‘ygt’ represent the center point coordinates of the ground truth box. Furthermore, ‘W’ and
‘H’ represent the width and height, respectively, of the minimum bounding box of the
ground truth. Additionally, ‘α’ and ‘δ’ denote the learning parameters, and ‘β’ denotes the
quality of the bounding box, with lower values indicating higher quality.

4. Experiments
4.1. Dataset

For our study, we utilized still images sourced from the VisDrone-2019 dataset [25],
which was publicly released by the AISKYEYE team at Tianjin University. The dataset
was compiled using images from different types of drones under a wide range of weather,
scene, and lighting conditions, and included 10,209 still images. The highest resolution of a
still image was 2000 × 1500 pixels, and the lowest was 960 × 540 pixels. Sample images
from the dataset are shown in Figure 4.
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The VisDrone-2019 dataset contains 6471, 548, and 3190 images for training, validation,
and testing, respectively. The category distribution of the labels in this dataset is shown in
Figure 5.
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4.2. Experimental Platform

An Ubuntu 18.04.4 LTS system was used to validate the proposed object detector.
Four GPUs (NVIDIA GeForce RTX 3090 24G (Nvida, Santa Clara, CA, USA)) were used
for training and testing. The system configuration included an Intel Xeon Silver 4210
CPU (Intel, Santa Clara, CA, USA) clocked at 2.40 GHz, Python version 3.8, CUDA toolkit
version 11.4, and PyTorch version 1.8.0. Throughout the model training phase, input
images were standardized to 640 × 640 pixels, and optimization used gradient descent.
Key parameters included an initial learning rate of 0.01, a learning rate factor of 0.1, a
momentum value of 0.937, and 250 training iterations. All model-related code can be
accessed at https://github.com/1thinker1/PDWT-YOLO (accessed on 12 June 2023).

4.3. Evaluation Criteria

A cross-validation was performed to evaluate the experimental results. After training
and validation using the corresponding datasets, the final performance evaluation of the
model was conducted using the test dataset. In the experiment, the time from the input to
the output of the model (inference time), sum of all weights and biases in the neural network
(params), billion floating-point operations/s (GFLOPS), and average accuracy/precision
(AP) were used as performance indicators to evaluate the detector.

True positives (TP) are correct identification of positive examples, while false positives
(FP) are incorrect identification of negative examples as positive. False negatives (FN) are
identification of positive examples as negative examples. Accuracy (P) evaluates the object
detection precision of the model and is computed using Equation (2):

P =
TP

TP + FP
(2)

The recall rate (R) is the proportion of correctly predicted objects. The recall rate can
be calculated using Equation (3).

R =
TP

TP + FN
(3)

AP represents the area under the curve formed by accuracy and recall rates. The
average accuracy, calculated using Equation (4), indicates the average precision across
all samples.

AP =
∫ 1

0
P(r)dr (4)

https://github.com/1thinker1/PDWT-YOLO
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The mAP@0.5 stands for the average accuracy across all categories with an IoU thresh-
old of 0.5. Meanwhile, mAP@0.5:0.95 represents the average accuracy across all categories
within the IoU range of 0.5 to 0.95. Thus, mAP@0.5 and mAP@0.5:0.95 are the two most
commonly used indicators for evaluating the performance of target detection algorithms.

To enhance the description of the detector’s capability in multiscale object detection,
COCO evaluation indicators, such as average precision for small objects (APS), average
precision for medium objects (APM), and average precision for large objects (APL) were
used. An APS is a small object with an AP value area of less than 32 × 32. An APM is an
object with an AP value between 32 × 32 and 96 × 96. An APL is an object with an AP
value greater than 96 × 96.

4.4. Experimental Results

PDWT-YOLO was compared with other models using the VisDrone-2019 dataset to
verify its effectiveness. As Table 1 shows, the values of APM and APL for PDWT-YOLO
are lower than those of the Faster R-CNN; however, the number of parameters is also
considerably smaller. In addition, Cascade R-CNN has a higher mAP@0.5:0.95; however,
it has a params indicator that is considerably larger than that of PDWT-YOLO. Although
the params indicator for PDWT-YOLO is slightly higher, the mAP@0.5:0.95 and mAP@0.5
increased by 5% and 6.7%, respectively, compared with the baseline YOLOv7-tiny. The
PDWT-YOLO outperformed CenterNet, YOLOv3, YOLOv5l, and YOLOv7-tiny in terms of
indicators. In general, PDWT-YOLO is superior to these mainstream models in terms of
multiscale object detection performance, which also shows that the model can effectively
integrate features of different scales and understand features at different scales.

Table 1. Comparison of different models using VisDrone-2019 dataset.

Method mAP@0.5:0.95 mAP@0.5 Params (M) APS APM APL

Faster R-CNN 21.9 37.1 137.1 13.1 33.6 37.1
Cascade R-CNN 24.5 39 673 15.2 36.7 39.2

CenterNet 18.7 33.6 104.8 9.8 29.3 38.7
YOLOv3 16.4 31.4 59.13 8.3 26.7 36.5
YOLOX 22.4 39.1 8.9 13.7 33.1 41.3

YOLOv5l 20.5 36.2 46.1 12.4 29.9 36.4
YOLOv7-tiny 17.5 34.5 6.2 10.4 26.5 36.5
PDWT-YOLO 22.5 41.2 6.44 15.1 31.8 36.6

We listed mAP@0.5 for each category, which can describe in detail what has been
improved with our model. As shown in Table 2, the mAP@0.5 of our model is compared
with those of other models. Improvements were achieved in each category, particularly
in the pedestrian and van categories, which increased by 11% and 8%, respectively. These
results show that the detection performance of our method is well improved for most
categories of targets.

Table 2. Results for individual categories on the VisDrone-2019.

Method Pedestrian People Bicycle Car Van Truck Tricycle Awning
Tricycle Bus Motor mAP@0.5

YOLOv3 12.8 7.8 4.0 43.0 23.5 16.5 9.5 5.1 29.0 12.5 31.4
YOLOv5l 44.4 36.8 15.6 73.9 39.2 36.2 22.6 11.9 50.5 42.8 36.2

YOLOv7-tiny 37.7 35.9 11.0 74.5 35.2 27.6 22.4 8.3 48.5 43.6 34.5
PDWT-YOLO 48.7 41.6 14.7 82.0 43.2 35.4 26.8 14.2 56.4 49.3 41.2

Figure 6 shows a comparison of the detection effects of YOLOv7-tiny (Figure 6a)
and PDWT-YOLO (Figure 6b) on the VisDrone-2019 test dataset. As shown in the blue
box of Figure 6b, we can directly observe that PDWT-YOLO successfully detected more
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small objects than those shown in Figure 6a, particularly in the far field of view, which is
equivalent to reducing the likelihood of small objects being missed or incorrectly detected.
In addition, the detection confidence and the detection accuracy for the object were also
improved. For example, the detection confidence ratings for the two white cars in the red
boxes in Figure 6b improved, respectively, from 0.73 to 0.78 and 0.92 to 0.95 compared with
those in Figure 6a. Hence, it can be concluded that our model improved the ability to detect
small objects well.
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4.5. Ablation Experiment

Ablation experiments were conducted on the PDWT-YOLO model using the VisDrone-
2019 dataset, adding the different improvement methods mentioned above, individually or
in combination, to verify the effectiveness of each individual method. To ensure accuracy,
all the experiments were conducted using the same parameters and environments. This
experiment involved adding different improvements to the YOLOv7-tiny model, including
adding a decoupled head (B1 in Table 3), continuing to add the P2 layer small-object
detection head (B2 in Table 3), and then adding WIoU (PDWT-YOLO in Table 3). The
experimental results show that each individual addition improved the mAP@0.5 and
mAP@0.5:0.95, and the three indicators of inference time, params, and FLOPS did not
increase significantly. The mAP@0.5, mAP@0.5:0.95, APS, and APM of the B1 model
increased by 1%, 0.7%, 0.9%, and 0.7%, respectively, compared with the basic model. The
mAP@0.5 and mAP@0.5:0.95 of the B2 model increased by 4.7% and 4%, respectively, and
the APS, APM, and APL also increased compared with the B1 model. The performance
of the PDWT-YOLO was better than that of the B2 model; the mAP@0.5, mAP@0.5:0.95,
APS, and APL were, respectively, 1%, 0.3%, 0.4%, and 0.4% higher than those of the B2
model. Although its APL was lower than that of the B2 model, the detection ability of
the comprehensive-scale features was better. This indicates that WIoU further improved
the accuracy of the target detection model. The ablation experiment shows that our three
improvements (independently or jointly) can enhance performance in object detection.

Table 3. Ablation experiments with VisDrone-2019 test dataset.

Method Decoupled
Head P2 WIoU mAP@0.5 mAP@

0.5:0.95
Inference
Time (ms) Params GFLOPS APS APM APL

YOLOv7-tiny 34.5 17.5 2.9 6.2 13.1 10.4 26.5 36.5
B1

√
35.5 18.2 3.2 5.8 18.9 11.3 27.2 34.2

B2
√ √

40.2 22.2 4.3 6.44 24.2 14.7 31.4 38
PDWT-YOLO

√ √ √
41.2 22.5 4.4 6.44 24.2 15.1 31.8 36.6
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The entire change processes of mAP@0.5 and mAP@0.5 are plotted in Figure 7, and
each curve can converge at about 200 epochs. Evidently, each of the additions enhances the
performance of the model compared with YOLOv7-tiny.
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4.6. IoU Contrast Experiment

Based on the addition of a decoupled head and P2 layer, the impact of different IoU
categories on the PDWT-YOLO was explored. As shown in Table 4, the performance of
WIoU is better than that of the other IoUs.

Table 4. IoU contrast experiment.

IoU mAP@0.5:0.95 mAP@0.5

CIoU 22.2 40.6
GIoU 22.0 40.2
DIoU 22.4 40.6
WIoU 22.5 41.2

4.7. Extended Experiment

To verify the generalizability of the PDWT-YOLO model, training and validation were
conducted on a universal HIT-UAV dataset. The training set contained 2008 images, the
validation set 287, and the test set 571 images. The mAP@0.5 values for each category are
listed in Table 5.

Table 5. Results for individual categories on the HIT-UAV.

Method Person Car Bicycle Other Vehicle Do Not Care mAP@0.5

YOLOv7-tiny 89.1 97.1 88.3 67.1 52.1 78.8
PDWT-YOLO 92.7 96.6 89.5 67.2 65.7 82.3

The outcomes of the extended experiment demonstrate that the PDWT-YOLO model
enhances mAP@0.5 in all image categories, with the exception of cars. The introduction of
the P2 layer for feature fusion notably improved the representation of small- and medium-
sized objects. These findings underscore the model’s generalization capabilities, affirming
its suitability for UAV image detection.
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5. Discussion

Historically, drones have predominantly relied on manual intervention for specific
tasks. However, with the rapid advancements in artificial intelligence technology, drones
can now autonomously execute tasks such as object recognition and flight. While various
object detection algorithms have made substantial improvements in performance, striking
the right balance between accuracy and speed remains a challenge due to variations in
object scale, the presence of numerous small objects, and the complexity of scenes within
drone images.

The PDWT-YOLO algorithm showcased exceptional performance on the VisDrone-
2019 dataset when compared with state-of-the-art algorithms, including Faster R-CNN, Cas-
cade R-CNN, CenterNet, and the YOLO series, as demonstrated in Table 1. It achieved the
highest mAP@0.5 with the second-lowest number of required parameters. Notably, PDWT-
YOLO outperformed YOLOv7-tiny, which had fewer parameters but a lower mAP@0.5
score. PDWT-YOLO particularly excelled in enhancing the detection accuracy for small
objects, as is evident in Tables 2 and 3 and Figure 6. Furthermore, it exhibited superior
accuracy on the HIT-UAV drone dataset, which encompasses multiscale objects.

In the ablation experiment (Table 3), the addition of the decoupled head to PDWT-
YOLO resulted in improvements across all performance indicators, with the exception of
APL, which was reduced by 2.3%. Most notably, mAP@0.5 increased by 1%, indicating
an enhanced ability to extract object position and category information from the feature
map. This shows that the decoupled head achieved better performance by separating the
classification and location regression of the model. Subsequent incorporation of small-object
layers further improved detection indicators for objects of all sizes, with APS increasing by
3.4%, APM by 4.2%, and APL by 3.8%. It can be concluded that the P2 (the added small
target layer based on FPN) makes the model more focused on small targets, and improves
the detection performance of the model for multiscale targets. The addition of WIoU further
heightened accuracy, resulting in a 1% increase in mAP@0.5 without adding computational
complexity, thus ensuring both high accuracy and faster convergence. In comparison with
the baseline algorithm, the PDWT-YOLO algorithm significantly boosted performance
metrics, elevating mAP@0.5 by 6.7%, mAP@0.5:0.95 by 5%, APS by 4.7%, and APM by
5.3%. In summary, these three innovations in the PDWT-YOLO model have demonstrated
the ability to enhance detection performance, whether implemented individually or in
combination, and offer a substantial improvement in object detection for UAV applications.

6. Conclusions

The widespread integration of drones into everyday life has been significantly fa-
cilitated by deep learning technology. In this study, we introduced an enhanced object
detection algorithm, PDWT-YOLO, designed specifically for UAVs. This model represents
a substantial advancement in object detection for drone images characterized by diverse
scales and complex backgrounds. This model mainly has the following three advantages
compared with YOLOv7-tiny.

• To enhance the detection performance for small objects in drone images, a small-object
detection layer was incorporated into the algorithm.

• Additionally, a decoupled head was added in place of the detection head IDetect in
YOLOv7-tiny, which mitigated conflicts between classification and regression and
improved detection accuracy.

• Finally, WIoU was used instead of CIoU in the loss function to improve the network
convergence speed and improve regression accuracy.

• The experimental results demonstrate that PDWT-YOLO outperforms YOLOv7-tiny
in object detection accuracy and has good network convergence performance for
multiscale targets, especially for small objects. It can be inferred that the PDWT-YOLO
model excels at extracting targets from intricate backgrounds with greater precision
when compared with the YOLOv7-tiny model.



Algorithms 2023, 16, 520 14 of 16

Author Contributions: Conceptualization, L.Z.; methodology, L.Z.; software, X.P.; validation, X.P.;
investigation, N.X. and C.G.; resources, P.W.; data curation, L.Z. and N.X.; writing—original draft
preparation, L.Z. and P.W.; writing—review and editing, N.X. and X.P.; visualization, X.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the General project of the Key R & D Plan of Shanxi Province,
high-technology field (grant number 201903D121171) and the National Natural Science Foundation
of China (serial no. 61976134).

Data Availability Statement: The datasets presented in this study are available through https://github.
com/VisDrone/VisDrone-Dataset and https://github.com/suojiashun/HIT-UAV-Infrared-Thermal-
Dataset (accessed on 12 June 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
AP Average precision
APL Average precision for large objects
APM Average precision for medium objects
APS Average precision for small objects
CIoU Complete Intersection over Union
CSP DarkNet Cross Stage Partial Networks
DIoU Distance Intersection over Union
E-ELAN Extended efficient layer aggregation network
EIoU Efficient Intersection over Union
FN False negative
FP False positive
FPN Feature pyramid network
GFLOPs Giga floating-point operations per second
GIoU Generalized Intersection over Union
GPU Graphics processing unit
IOU Intersection over Union
MPConv Max-pooling convolution
PANet Path Aggregation Network
R-CNN Region-based convolutional neural network
ResNet Residual Network
SIoU Scylla Intersection over Union
SSD Single Shot MultiBox Detector
SPP-Net Spatial pyramid pooling network
TP True positive
UAV Unmanned aerial vehicle
VGG Visual Geometry Group Network
WIoU Wise Intersection over Union
YOLO You Only Look Once
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